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A B S T R A C T

Urban green space (UGS) is a key component of Sustainable Development Goal (SDG) 11.7.1, urban public open 
space, and is essential for mitigating the urban heat island (UHI) effect. However, the impact of urban landscape 
features on the diurnal cooling performance of UGS at the block scale across different climates remains insuf
ficiently understood. The objective of this study is to explore the differences in features that influence the cooling 
intensity of UGS at both day and night under varying climatic conditions. Four Chinese cities located in distinct 
climate zones—Beijing, Shanghai, Haikou, and Urumqi—were selected as study areas. High-resolution land 
surface temperature (LST) data for summer days and nights were derived from SDGSAT-1/TIS imagery, while 
land cover classifications were obtained from Gaofen (GF) satellite images. UGS cooling intensity was calculated 
as the temperature difference between impervious surfaces and UGS within each urban block. To identify the key 
metrics influencing UGS cooling, we employed a boosted regression tree (BRT) model incorporating seven UGS 
landscape metrics, one UGS biophysical metric, and four urban block morphology metrics. The results revealed 
that UGS exhibited a more pronounced cooling effect during the daytime than at night. Key metrics also varied 
across cities. During the day, UGS area (+), UGS edge density (− ), and block patch density (− ) were significant in 
Beijing and Shanghai, while block area (+), UGS aggregation index (+), and UGS edge density (− ) were 
dominant in Haikou and Urumqi. At night, the UGS aggregation index (+) was the most influential metric across 
all four cities. Moreover, the key metrics exhibited optimal values or thresholds of influence, with significant 
differences observed across cities. This study provides an important insight into how UGS features regulate 
diurnal cooling across different climates and offers recommendations for UHI mitigation strategies.

1. Introduction

In the context of global urbanization, the extensive replacement of 
natural surfaces with artificial ones has disrupted the surface energy 
balance and triggered the Urban Heat Island (UHI) effect, which is 
characterized by higher Land Surface Temperature (LST) in urban cen
ters compared to suburban areas (Zargari et al., 2024; Chen et al., 2023). 
As global warming intensifies, the frequency and severity of urban 
heatwaves are projected to increase (He et al., 2022; Marcotullio et al., 

2022; Barriopedro et al., 2023), amplifying UHI effects and placing 
additional strain on urban systems. Consequently, identifying cost- 
effective strategies for UHI mitigation and enhancing urban thermal 
comfort has become imperative.

The Sustainable Development Goals (SDGs), adopted by the United 
Nations as part of the 2030 Agenda (Guo et al., 2022; Jiang et al., 2021), 
emphasize the importance of enhancing the accessibility and function
ality of urban green space (UGS), which provide an effective solution for 
mitigate the UHI effect. Numerous studies have demonstrated that UGS 
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plays a crucial role in regulating localized urban climates (Athokpam 
et al., 2024; Li et al., 2023b; Liu et al., 2023; Wang et al., 2022). UGS 
effectively reduces LST through mechanisms such as shading, solar ra
diation absorption, and transpiration (Yu et al., 2024; Bakhshoodeh 
et al., 2022), with temperature differences of up to 5.44 ◦C observed 
between UGS and impervious surfaces (Khan and Li, 2024). Addition
ally, the configuration and structural characteristics of UGS significantly 
influence its cooling effect (Nie et al., 2024; Rakoto et al., 2021). UGSs 
with multiple vegetation types exhibit more significant cooling effects 
than those consisting of a single vegetation type (Wei et al., 2025). 
Furthermore, research has shown that UGS landscape metrics, bio
physical metrics, and urban block morphology metrics play crucial roles 
in regulating LST (Bai et al., 2024; Hu et al., 2022; Tehrani et al., 2024). 
Regarding landscape metrics, the area, patch density, and shape of UGS 
significantly influence LST (Li et al., 2023c; Liu et al., 2024; Nasar-u- 
Minallah et al., 2024). Similarly, the edge density, coverage, and ag
gregation index of UGS are negatively correlated with LST (Cui et al., 
2024; Wang et al., 2023). In terms of biophysical metrics, the normal
ized difference vegetation index (NDVI) is typically negatively corre
lated with LST (Guha and Govil, 2021). Concerning urban block 
morphology metrics, block shape, patch density, and diversity indices 
may also influence LST (Zhou et al., 2014).

Recent studies have highlighted the importance of incorporating the 
spatial and temporal heterogeneity of UHI effects into urban planning 
and governance. Green infrastructure, such as green roofs and urban 
ventilation corridors, has proven effective in mitigating UHI through 
cooling and airflow enhancement (Dong et al., 2024; Guo et al. (2023a), 
Guo et al. (2023b)). However, the cooling effect of UGS varies signifi
cantly across different climatic conditions. In humid climates, higher air 
humidity and adequate water supply promote vegetation growth and 
enhance transpiration, effectively reducing LST (Zhu et al., 2023). In 
contrast, in arid or semi-arid regions, the transpiration cooling effect of 
vegetation is limited due to restricted water availability, resulting in a 
diminished cooling effect (Cheung et al., 2021). Land use changes, 

especially increased impervious surfaces, further intensify UHI and 
highlight the need for coordinated blue-green space planning (Ren et al., 
2024; Ren et al., 2023). In addition, population exposure and landscape 
patterns interact to produce fine-scale thermal heterogeneity, under
scoring the importance of integrating human–air–ground coupling in 
planning strategies (Peng et al., 2024). While integration with water 
bodies enhances cooling (Shi et al., 2020), dense built environments 
may reduce effectiveness (Chen et al., 2024; Yang et al., 2024). Targeted 
greening, as in Chongqing, shows district-level cooling benefits (Wang 
et al., 2025), and irrigation strategies, particularly in the morning, 
improve lawn-based thermal performance via longwave radiation 
reduction (Huang and He, 2025). These findings establish a scientific 
foundation for UGS planning and support sustainable urban develop
ment. Furthermore, further exploration of the cooling potential of UGS 
will not only optimize urban planning but also enhance the comfort and 
health of residents.

Although the relationship between the cooling effect of UGS and 
urban landscape structure has become a prominent area of research, 
many aspects still require further investigation. First, selecting the 
appropriate spatial analysis unit is a critical consideration in this study. 
Conventional studies typically divide the study area into regular grids or 
utilize concentric buffers around a single UGS as the unit of analysis 
(Tan et al., 2021; Dong et al., 2022). While these methods are 
straightforward to implement, they often fail to fully capture the spatial 
heterogeneity of complex urban environments, including their structural 
and functional boundary characteristics. This limitation hinders an ac
curate assessment of the true impact of urban landscape features on the 
cooling effect of UGSs. Blocks are the fundamental units of a city, and 
due to the obstruction of heat flow by roads, they are often regarded as 
separate thermal zones (Yao et al., 2020; Sun et al., 2018). Recent 
studies have shown that 3D urban features, such as building height and 
tree density, significantly impact LST at the block scale, with trees 
providing a cooling effect during the day and buildings contributing to 
higher LST at night due to heat retention (Han et al., 2023; Han et al., 

Fig. 1. Location of the study areas.
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2024). However, the mechanisms influencing the cooling effect of UGS 
at the block scale remain unclear. Furthermore, much of the current 
research has focused on the cooling effects of UGS during the daytime 
(Shah et al., 2021; Ke et al., 2021), with relatively few studies addressing 
nighttime cooling mechanisms. At night, the cooling effect of UGS may 
be influenced by several factors, including radiative cooling and soil 
moisture. Research on the nighttime cooling effects of UGS is limited due 
to challenges related to the availability of nighttime LST remotely 
sensed imagery or its lower resolution (Arellano and Roca, 2021). In 
light of the growing urban nighttime heat island effect (Huang et al., 
2021), a deeper understanding of the nighttime cooling mechanisms of 
UGS and their differences from daytime effects is essential for enhancing 
urban comfort and promoting resident health. Additionally, as global 
climate change intensifies and urban climate characteristics diversify 
(Esperon-Rodriguez et al., 2022; Yang and Zhao, 2024), conducting 
comparative studies of representative cities across various climate zones 
and systematically analyzing the factors influencing the cooling effect of 
UGS is crucial for developing climate-adapted urban landscape patterns. 
This research will provide valuable scientific evidence for addressing the 
challenges of UGS cooling across diverse climates worldwide.

The Sustainable Development Science Satellite 1 (SDGSAT-1) is the 
world’s first scientific satellite dedicated to supporting the 2030 Agenda 
for Sustainable Development. It is equipped with a thermal infrared 
spectrometer (TIS) that can conduct both daytime and nighttime ob
servations over a 24-hour period, providing high-resolution temperature 
data with continuous time-phase coverage (Guo et al. (2023a), Guo et al. 
(2023b)). This capability allows for the utilization of high-resolution 
temperature data to investigate the cooling effects of diurnal UGS. 
Furthermore, the SDGSAT-1 TIS captures images with a width of 300 km 
and has a revisit period of approximately 11 days (Li et al., 2023a). This 
enables the acquisition of LST data across various climatic contexts, 
facilitating the impact of how climatic differences influence the cooling 
effects of UGS. LST is essential for maintaining the surface energy bal
ance (Li et al., 2020, Li et al., 2023d), and the capabilities of SDGSAT-1 
provided the necessary data for this study. While conventional satellite 
and survey-based approaches often suffer from limited revisit frequency, 
low spatial resolution, or insufficient semantic richness, SDGSAT-1 en
ables more efficient and context-aware monitoring of urban thermal 
dynamics. By supporting consistent, fine-scale observations under var
ied climatic conditions, it enhances the reliability and interpretability of 
UGS cooling assessments, thereby reinforcing the methodological 
innovation of this study.

We selected four Chinese cities with distinct climatic back
grounds—Beijing, Shanghai, Haikou, and Urumqi—to develop climate 
zone-based diurnal strategies for UGS block-scale planning and man
agement in a comparative study. We hypothesized that urban feature 
metrics exert differential effects on the cooling intensity of UGS under 
varying climatic conditions. The primary objectives of this study are as 
follows: (1) To investigate the daily variations in LST across different 
land covers in urban areas. (2) To identify the key feature metrics that 
influence the cooling effect of diurnal UGS at the block scale in the four 
representative cities. (3) To analyze the variations in the marginal ef
fects of key diurnal metrics across the four representative cities. The 
findings provide practical recommendations for landscape optimization 
to mitigate the block-scale UHI effect across different climatic contexts.

2. Materials

2.1. Study areas

The study areas included Beijing, Shanghai, Haikou, and Urumqi. 
These four cities are located in distinct climate zones: Beijing in the 
warm temperate zone, Shanghai in the subtropical zone, Haikou in the 
tropical zone, and Urumqi in the mid-temperate zone (Fig. 1). Beijing is 
located in northern China (115◦25′-117◦30′E, 39◦28′-41◦05′N) with a 
total area of 16,410.54 km2, and its resident population at the end of 

2022 was 21.843 million. The city has a warm-temperate, semi-humid, 
semi-arid monsoon climate characterized by hot, rainy summers, cold, 
dry winters, and short springs and autumns. The average annual tem
perature in 2022 was 13.4 ◦C, with total precipitation measuring 585.4 
mm (Beijing Municipal Bureau Statistics, 2023). Shanghai is situated in 
eastern China (120◦52′-122◦12′E, 30◦40′-31◦53′N), with a total area of 
6,340.5 km2, and its resident population at the end of 2022 was 24.7589 
million. Shanghai features a subtropical monsoon climate with four 
distinct seasons, abundant sunshine, and significant rainfall. In 2022, 
the average annual temperature was 18 ◦C, with total precipitation 
reaching 1,044.1 mm (Shanghai Municipal Bureau Statistics, 2023). 
Haikou, located in southern China (110◦07′-110◦42′E, 19◦31′-20◦04′N), 
is the capital of Hainan Province, with a total area of approximately 
2296.82 km2, and its resident population at the end of 2022 was 2.9397 
million. Haikou experiences a tropical monsoon maritime climate. The 
average annual temperature in 2022 was 24.5 ◦C, with total precipita
tion amount to 2,021.0 mm (Haikou Municipal Bureau Statistics, 2023). 
Urumqi, situated in northwestern China (86◦37′-88◦58′E, 42◦45′- 
45◦00′N), is the capital of the Xinjiang Uygur Autonomous Region, with 
a total area of approximately 13,800 km2, and its resident population at 
the end of 2023 was 4.0848 million. The city has a semi-arid continental 
climate in the mid-temperate zone. (Urumqi Municipal Bureau Statistics, 
2024). Beijing and Shanghai experience hot and rainy summers, Haikou 
has humid and hot summers, while Urumqi endures dry and hot 
summers.

2.2. Datasets

In our study, we collected and utilized various datasets, including 

Table 1 
Data sources.

Name Date (BJT) Type Data sources

Built-up 
areas 
datasets

2020 Vector A dataset of built-up areas of Chinese 
cities in 2020, (http://www.
https://doi.org/10.11922/sciencedb. 
j00001.00332)
​

Road 
network 
data

June 2024 Vector Open Street Map (OSM), (https://www 
.openstreetmap.org/)
​

GF satellite 
image

Beijing: Aug 
23, 2023

Raster CRESDA, (https://data.cresda. 
cn/#/2dMap)

Shanghai: Oct 
2, 2022

​

Haikou: Aug 2, 
2024

​

Aug 17, 2023 ​
Urumqi: Aug 
24, 2022

​

SDGSAT-1/ 
TIS

Beijing: Sept 
14, 2023 
(10:08)

Raster International Research Center of Big 
Data for Sustainable Development 
Goals (CBAS), (https://www.sdgsat.ac. 
cn/)

Sept 6, 2023 
(21:28)

​

Shanghai: Aug 
4,2024(09:38)

​

Aug 23,2024 
(21:03)

​

Haikou: Sept 
15, 2022 
(10:28)

​

Aug 27,2022 
(21:59)

​

Urumqi: Jul 
16, 2024 
(12:04)

​

Jul 3, 2023 
(23:15)

​ ​

Note: BJT, Beijing time.
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urban built-up areas, road networks, Gaofen (GF) series satellite imag
ery, and diurnal SDGSAT-1/TIS imagery, as shown in Table 1.

Datasets of built-up areas were obtained from the Chinese Cities 
built-up areas datasets for 2020 (Sun et al., 2022) and were used to 
determine the extents of the study areas in the four cities. Road network 
data were sourced from OpenStreetMap (OSM) and utilized to segment 
urban blocks. This study employed cloud-free summer GF-6 satellite 
imagery for each city to map land cover. Additionally, SDGSAT-1/TIS 
imagery from the International Research Center of Big Data for Sus
tainable Development Goals (CBAS) was used to retrieve diurnal LSTs 
for the four cities. With a high spatial resolution of 30 m and three 
thermal infrared bands, the SDGSAT-1 TIS effectively monitors changes 
in LST, providing significant advantages, particularly in the analysis of 
temperature distributions in urban areas.

In this study, UGS primarily consists of forests, parks, and roadside 
green areas. The spatial resolution of the GF images is 2 m × 2 m, while 
the spatial resolution of the LST data is 30 m × 30 m. The LST data were 
resampled to a spatial resolution of 2 m × 2 m to align with the land 
cover utilization data.

3. Methods

The flowchart shown in Fig. 2 outlines the methodology employed in 
this study. Initially, the GF image data for the four cities underwent 
preprocessing. Subsequently, land cover was categorized using the 
processed data. LSTs were then retrieved from SDGSAT-1/TIS imagery. 
Block segmentation was conducted utilizing OSM vector road network 
data. The cooling intensity of the UGS was analyzed at the block scale. 
Finally, the relationship between landscape metrics and cooling 

intensity was examined. The following sections provide a detailed 
explanation of the methodology.

3.1. Block segmentation

This study utilized OSM vector road network maps to divide the 
blocks. Smaller blocks were merged to prevent them from being exces
sively small. Additionally, water-containing blocks were excluded to 
eliminate the influence of water bodies on the cooling effect of the UGS. 
Finally, a total of 3,148 blocks were included from Beijing, 2,386 from 
Shanghai, 1,045 from Haikou, and 1,449 from Urumqi in this study 
(Fig. 3).

3.2. Land cover classification

Based on GF imagery, an object-oriented algorithm was utilized to 
classify UGS, water-bodies, impervious surfaces, and bare land. Multi
resolution segmentation of the GF imagery was conducted using eCog
nition 10.3 software. This was followed by the selection of classification 
parameters, the establishment of classification rules, and the extraction 
of land cover classifications. The accuracy of the classification results 
was assessed using Google Earth as the reference standard, based on 300 
randomly selected samples from each city.

3.3. LST retrieval

This study employed a modified temperature and emissivity sepa
ration (TES) algorithm to retrieve the LST and land surface emissivity 
(LSE) based on the three TIS bands of SDGSAT-1. Radiometric calibra

Fig. 2. Research flowchart.
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tion was initially conducted for the three bands, and digital number 
(DN) values were converted to radiance using the following equation: 

LTOA = DN*Gain+Bias (1) 

LTOA denoted the top-of-atmosphere (TOA) radiance, expressed in W/ 
(m2⋅sr⋅μm).

Next, atmospheric correction was performed for the three bands. The 
ERA5 atmospheric profile data were utilized, and the atmospheric pa
rameters were processed using the radiative transfer model MODTRAN 
5.2.2, which subsequently calculated the ground-leaving radiance (LG). 
The following equation was employed, where τ was the atmospheric 
transmittance and Lu was the atmospheric upwelling radiance. 

LG =
(LTOA − Lu)

τ (2) 

Finally, the LST was retrieved using the Planck function (B(Ts)) with 
the following equation, where Ts represented the LST, ε represented the 
LSE, and Ld represented the atmospheric downwelling radiance. 

B(Ts) =
LG − (1 − ε)Ld

ε (3) 

The accuracy of the temperature data retrieved using this method has 
been validated (Ouyang et al., 2024).

3.4. Cooling intensity calculation

Based on the classified UGS and impervious surfaces, the cooling 
intensity of the UGS at the block scale was calculated using the retrieved 

LST data. The mean LST of the impervious surfaces within the block was 
subtracted from the mean LST of the UGS to determine the UGS cooling 
intensity (Yang et al., 2022). 

Tcooling = TB − Tugs (4) 

Where Tcooling was the cooling intensity of the UGS at the block scale, and 
TB and Tugs were the average LSTs of the impervious surfaces and the 
UGS within the block, respectively.

3.5. Urban feature metrics calculation

To comprehensively capture the urban characteristics that influence 
the cooling intensity of UGS and accurately identify the key metrics, this 
study selected seven class-level metrics related to UGS: class area (CA), 
percentage of landscape (PLAND), patch density (PD), largest patch 
index (LPI), edge density (ED), mean shape index (SHAPE_MN), and 
aggregation index (AI). Additionally, one biophysical metric, the 
normalized difference vegetation index (NDVI), was included to char
acterize UGS features. For urban blocks, four landscape-level metrics 
were chosen to describe block morphology: total area (TA), patch den
sity (PD), shape index (SHAPE), and Simpson’s diversity index (SIDI).

This study examined the impact of urban landscape features on the 
cooling effect of diurnal UGS under varying climatic conditions at the 
block scale. The research utilized 12 metrics, which included seven 
landscape metrics of UGS (CA_UGS, PLAND_UGS, PD_UGS, LPI_UGS, 
ED_UGS, SHAPE_MN_UGS, and AI_UGS), one biophysical metric 
(NDVI_UGS), and four urban block morphology metrics (TA_B, PD_B, 

Fig. 3. Spatial distribution of no-water blocks in four cities.
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SHAPE_B, and SIDI_B). As shown in Table 2, these 12 distinct feature 
metrics were employed as independent variables to explain the rela
tionship between these metrics and the cooling intensity of UGS.

3.6. Boosted regression tree

Boosted regression tree (BRT) is a machine learning model that 
combines the strengths of regression tree with the gradient boosting 
algorithm (Elith et al., 2008). By utilizing stochastic sampling, adaptive 
optimization, and iterative refinement, BRT improves model perfor
mance and creates a high-efficient, low-error predictive model. It 
accurately evaluates the relative importance of independent variables 
and effectively captures the nonlinear relationships between indepen
dent and dependent variables (Elith et al., 2008). Consequently, BRT 
provides reliable and stable predictive performance, even in the pres
ence of complex data and uncertainty. This approach is widely adopted 
and recognized as an effective machine learning technique.

In this study, 12 metrics (CA_UGS, PLAND_UGS, PD_UGS, LPI_UGS, 
ED_UGS, SHAPE_MN_UGS, AI_UGS, NDVI_UGS, TA_B, PD_B, SHAPE_B, 
and SIDI_B) were utilized as independent variables, while the diurnal 
UGS cooling intensities of the four city blocks served as the dependent 
variables. Initially, Statistical Product and Service Solutions (SPSS) was 
employed to assess collinearity among the independent variables using 
the variance inflation factor (VIF) test. Independent variables with VIF 
values exceeding 10 were excluded (Dewan et al., 2021; Gu and You, 
2022). Subsequently, BRT was utilized to analyze the relationship be
tween UGS cooling intensity and the selected independent variables at 
the city block scale, aiming to determine their relative importance and 
generate marginal effect maps. The study established the learning rate, 
tree complexity, and bagging fraction at 0.001, 5, and 0.75, respectively 
(Han et al., 2024). Additionally, 70 % of the data was allocated for 
model training, and a 10-fold cross-validation approach was imple
mented to identify the optimal model (Zhao et al., 2024).

4. Results

4.1. Land cover patterns, diurnal LST variation, and UGS cooling 
intensity across cities

Fig. 4 shows the land cover classification results for four cities: Bei
jing, Shanghai, Haikou, and Urumqi. The UGS in Beijing comprised 
43.64 %, while Shanghai’s UGS accounted for 39.60 %, Haikou’s UGS 
accounted for 37.63 %, and Urumqi’s UGS accounted for 18.69 %. The 
arid climate in Urumqi likely contributed to a notably lower proportion 
of UGS compared to other cities.

Table 3 presents the classification accuracy for these cities, with an 
overall accuracy exceeding 93 %.

Fig. 5 illustrates the spatial distribution of diurnal LSTs across the 
four cities, highlighting significant spatial heterogeneity. During day
time observations, LSTs in these cities were predominantly higher over 
impervious surfaces. These surfaces, which include buildings and roads, 
exhibit low albedo and a high capacity for heat absorption, allowing 
them to rapidly absorb heat. This process significantly enhances the 
sensible heat flux at the surface, leading to swift localized increases in 
temperature (Ferrari et al., 2020; Wang et al., 2021). In contrast, the 
LSTs of water bodies and UGS region were relatively low, with a gradual 
increase in temperature observed from the edges of the water bodies and 
UGS outward. Similar to daytime conditions, the temperature of 
impervious surfaces remained elevated at night. The heat absorbed and 
stored by these surfaces during the day is slowly dissipated, resulting in 
persistently high LSTs (Qian et al., 2024).

In contrast to daytime conditions, water bodies exhibited elevated 
temperatures at night due to their high heat capacity and slow thermal 
response, resulting in a slight diurnal temperature difference (Yao et al., 
2023). While water bodies effectively mitigated the daytime UHI effect, 
they may not alleviate the nighttime UHI effect due to their inherent 
characteristics. Conversely, UGS, with its moist soil and vegetative 

Table 2 
Description of 12 metrics.

Category Metrics Formula Abbreviation Description of metric

UGS landscape metrics Class area (ha)
TA=

∑ni,u
j=1si,j

10000

CA_UGS Total area of UGS in urban block

Percentage of landscape (%)
PLAND=

∑ni,u
j=1si,j

Si 
× 100

PLAND_UGS Percent coverage of UGS in urban block

Patch density (number/100 ha) PD=
ni,u

Si 
× 10000 × 100 PD_UGS Density of UGS patch in urban block

Largest patch index (%)
LPI=

max(si,j)

Si 
× 100

LPI_UGS The largest patch of UGS in urban block

Edge density (m/ha)
ED=

∑ni,u
j=1ei,j

∑ni,u
j=1si,j

ED_UGS Edge density of UGS patch in urban 
block

shape index (− )

SHAPE_MN=

∑ni,u
j=1

0.25ei,j
̅̅̅̅̅si,j

√

ni,u

SHAPE_MN_UGS Average landscape shape of UGS patch 
in urban block

Aggregation index (%)
AI=

[
∑ni,u

j=1

(
gi,j

max(gi,j)
× PLANDi,j

)]

× 100
AI_UGS Aggregation level of UGS patch in urban 

block

UGS biophysical metric Normalized difference 
vegetation index (− )

NDVI =
1
a
×
∑a

p=1
NDVIp NDVIp =

(NIR − R)/(NIR + R)

NDVI_UGS Coverage index of UGS in urban block

Urban block morphology 
metrics

Total area (ha) TA=
Si

10000
TA_B Total area of urban block

Patch density (number /100 ha) PD=
ni

Si 
× 10000 × 100 PD_B Density of land cover patches in urban 

block
Shape index (− ) SHAPE=

0.25Ei
̅̅̅̅
Si

√
SHAPE_B Landscape shape of urban block

Simpson’s diversity index (− ) SIDI = 1-
∑m

t=1
PLAND2

t
SIDI_B Land cover patch uniformity of urban 

block

Note: si,j，ni,u，ei,j，gi,j denote the area of the jth UGS patch within the ith block, the total number of UGS patches within the ith block, the perimeter of the jth UGS 
patch within the ith block, and the number of neighboring UGS patches of the jth UGS patch within the ith block, respectively. a denotes the total number of pixels 
within the block. NDVIp denotes the NDVI value of the pth pixel within the block. NIR denotes the near-infrared band, and R denotes the red band. Si，ni，Ei，t，m 
denote the area of the ith block, the total number of patches within the ith block, the perimeter of the ith block, the patch type, and the total number of patch types, 
respectively.
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cover, mitigated heat accumulation and helped maintain lower night
time LSTs. It was evident that the diurnal variation of LST differed 
significantly across the various land cover types in the four cities, and 
the UGS contributed to mitigating the diurnal UHI effect in all four 
locations.

Table 4 illustrates that UGS generally exhibit stronger cooling effects 
during daytime than nighttime, with substantial variation observed 
across different climate zones. During the daytime, Beijing, Shanghai, 
and Urumqi exhibited similarly high average cooling intensities, all 
exceeding 1.1 ◦C, while Haikou demonstrated a noticeably weaker ef
fect. By contrast, nighttime cooling intensities were more uniform across 
the four cities, ranging narrowly from 0.15 ◦C to 0.20 ◦C, with Haikou 
exhibiting a slightly stronger intensity than the others.

4.2. Relative importance of urban feature metrics on cooling intensity

Fig. 6 illustrates the relative importance of the 12 feature metrics on 
daytime UGS cooling intensity across the four cities. Notably, the key 

metrics and the extent of their contributions varied among the cities.
The analysis focused on the top three metrics to emphasize the sig

nificance of these key metrics. During the daytime, Beijing’s leading 
impact metrics were CA_UGS, ED_UGS, and PD_B, which accounted for 
38.97 %, 27.71 %, and 10.06 %, respectively, totaling 76.74 %. Among 
all the metrics, the UGS landscape metrics and urban block morphology 
metrics represented 83.39 % and 16.61 %, respectively. In Shanghai, the 
top three impact metrics were PD_B, ED_UGS, and CA_UGS, contributing 
23.88 %, 19.71 %, and 18.44 %, respectively, for a total of 62.03 %. 
Across all metrics, the UGS landscape metrics, urban block morphology 
metrics, and UGS biophysical metric accounted for 65.24 %, 29.29 %, 
and 5.47 %, respectively. For Haikou were TA_B, AI_UGS, and ED_UGS, 
which accounted for 29.60 %, 26.06 %, and 11.60 %, respectively, 
totaling 67.26 %. Among all metrics, UGS landscape metrics and urban 
block morphology metrics represented 58.85 % and 41.15 %, respec
tively. In Urumqi, the top three key impact metrics were AI_UGS, 
ED_UGS, and TA_B, accounting for 26.40 %, 20.65 %, and 11.94 %, 
respectively, totaling 58.99 %. Among all metrics, UGS landscape met
rics, urban block morphology metrics, and the UGS biophysical metric 
accounted for 70.38 %, 21.80 %, and 7.82 %, respectively. It was 
observed that ED_UGS ranked among the top three metrics in all four 
cities, while CA_UGS and PD_B ranked among the top three metrics in 
both Beijing and Shanghai. Additionally, AI_UGS and TA_B ranked 
among the top three metrics in both Haikou and Urumqi, with AI_UGS 

Fig. 4. Spatial distribution of land cover in four cities.

Table 3 
Accuracy of land cover classification.

City Beijing Shanghai Haikou Urumqi

Overall Accuracy 93.00 % 93.30 % 94.30 % 93.70 %
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Fig. 5. Spatial patterns of the diurnal LST in four cities.
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contributing significantly.
Fig. 7 presents the relative importance of the 12 feature metrics 

across four cities concerning the nighttime cooling intensity of UGS. 
During nighttime, the top three key impact metrics for Beijing were 
AI_UGS, SIDI_B, and CA_UGS, which accounted for 65.33 %, 7.14 %, and 
6.28 %, respectively, totaling 78.75 %. Among all metrics, UGS land
scape metrics and urban block morphology metrics contributed 86.85 % 
and 13.15 %, respectively. In Shanghai, the leading three impact metrics 
were AI_UGS, PD_B, and ED_UGS, which accounted for 56.07 %, 14.87 
%, and 10.28 %, respectively, totaling 81.22 %. Here, UGS landscape 
metrics, urban block morphology metrics, and the UGS biophysical 
metric represented 79.56 %, 15.96 %, and 4.48 %, respectively. For 
Haikou, the top three key impact metrics were AI_UGS, CA_UGS, and 
ED_UGS, which accounted for 44.52 %, 11.95 %, and 9.55 %, respec
tively, totaling 66.02 %. Among all the metrics, UGS landscape metrics 
and urban block morphology metrics represented 80.62 % and 19.38 %, 
respectively. For Urumqi, the top three key impact metrics were AI_UGS, 
PD_B, and ED_UGS, which accounted for 21.84 %, 12.00 %, and 10.72 %, 
respectively, totaling 44.56 %. Across all metrics, UGS landscape met
rics, urban block morphology metrics, and the UGS biophysical metric 
accounted for 60.29 %, 32.19 %, and 7.52 %, respectively. Notably, 
AI_UGS ranked first among the four cities and significant surpassed other 
metrics in both Beijing and Shanghai.

4.3. Marginal effect of key urban feature metrics on cooling intensity

The top three key metrics regarding the relative contributions of the 

four cities to UGS cooling intensity were selected to assess their marginal 
effects. Fig. 8 illustrates the marginal effects of these key metrics on 
daytime UGS cooling intensity. During the day, CA_UGS was predomi
nantly positively correlated with UGS cooling intensity, demonstrating a 
strong positive correlation within the range of 0 ~ 92.90 ha in Beijing 
and 0 ~ 134.68 ha in Shanghai. Conversely, ED_UGS exhibited a pre
dominantly negative correlation with UGS cooling intensity, showing a 
strong negative correlation in Beijing within the range of 19.06 ~ 
485.92 m/ha, in Shanghai within the range of 332.27 ~ 681.22 m/ha, 
Haikou within the range of 26.25 ~ 472.17 m/ha, and in Urumqi within 
the range of 71.70 ~ 615.04 m/ha. PD_B displayed a monotonic nega
tive correlation with UGS cooling intensity, indicating a strong negative 
correlation in Beijing within the range of 43.93 ~ 325.98/100 ha and in 
Shanghai within the range of 147.43 ~ 573.24/100 ha. TA_B showed a 
predominant positive correlation with UGS cooling intensity, revealing a 
strong positive correlation in Haikou within the range of 11.51 ~ 47.40 
ha and in Urumqi within the ranges of 2.51 ~ 88.22 ha and 184.02 ~ 
199.15 ha. AI_UGS exhibited a predominant positive correlation with 
UGS cooling intensity, with Haikou showing a strong positive correla
tion within 94.09 ~ 97.82 % and Urumqi within the range of 88.89 ~ 
98.99 %.

Fig. 9 illustrates the marginal effects of key metrics on the intensity 
of nighttime UGS cooling. During the night, AI_UGS was predominantly 
positively correlated with UGS cooling intensity, demonstrating a strong 
positive correlation in Beijing within the range of 82.27 ~ 100 %, in 
Shanghai within the range of 92.33 ~ 99.33 %, Haikou within the range 
of 90.68 ~ 96.89 %, and in Urumqi within the range of 88.89 ~ 98.99 %. 
SIDI_B exhibited a predominant positive correlation with UGS cooling 
intensity, with Beijing showing a strong positive correlation within the 
range of 0.05 ~ 0.54. CA_UGS exhibited a predominant positive corre
lation with UGS cooling intensity, with Beijing within the range of 0 ~ 
144.51 ha and Haikou within the range of 0 ~ 11.71 ha, showing a 
strong positive correlation with cooling intensity. PD_B exhibited a 
predominant positive correlation with UGS cooling intensity, with 
Shanghai showing a strong positive correlation within 147.43 ~ 
244.20/100 ha and Urumqi within the 116.03 ~ 263.72/100 ha range. 
Additionally, Shanghai’s nighttime PD_B exhibited an inverse 

Table 4 
Average cooling intensity of UGS in four cities.

City Average cooling intensity (℃)
Day Night

Beijing 1.14 0.16
Shanghai 1.18 0.15
Haikou 0.78 0.20
Urumqi 1.26 0.18

Fig. 6. Relative importance of urban feature metrics in four cities for daytime cooling intensity.
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correlation compared to its daytime correlation. Regarding ED_UGS, 
Shanghai exhibited a strong negative correlation with cooling intensity 
within 88 ~ 140.34 m/ha and 166.52 ~ 236.31 m/ha. In contrast, 
Haikou exhibited a strong positive correlation with cooling intensity 
within 30.94 ~ 199.01 m/ha and a strong negative correlation within 
the 199.01 ~ 451.11 m/ha ranges. Urumqi exhibited a strong positive 
correlation with cooling intensity within the ranges of 0.45 ~ 36.08 m/ 
ha and 160.78 ~ 392.36 m/ha. This indicated that ED_UGS was more 
sensitive under different climatic background diurnal conditions.

5. Discussion

5.1. Influence of key urban feature metrics on cooling intensity

The study identified significant differences in the cooling effects of 
UGS across four cities under varying climatic conditions, as evidenced 
by variations in key metrics and their relative importance. Nevertheless, 
the cities still exhibit some correlation with one another. During the day, 
the relative impact levels on the key metrics differ between Beijing and 
Shanghai; however, the key metrics remain consistent, including 
CA_UGS, ED_UGS, and PD_B. This consistency may be attributed to the 
similar biophysical and climatic conditions in both cities—such as hot, 
humid summers and strong UHI effects—which may produce compa
rable patterns in UGS cooling performance and landscape configuration. 
It has been observed that the total area and edge density of UGS 
significantly influence its cooling effect (Asgarian et al., 2015; Masoudi 
and Tan, 2019; Yuan et al., 2021). This study further demonstrates that 
to enhance the cooling intensity of UGS in Beijing and Shanghai, it is 
essential to improve heat exchange efficiency by strategically planning 
the total area of UGS, optimizing the complexity of UGS edges, and 
refining the spatial distribution of block patches. These measures will 
enhance the microclimatic regulation functions of UGS. Haikou and 
Urumqi exhibit a similar pattern. Although the relative importance of 
the three key metrics—TA_B, AI_UGS, and ED_UGS—varies, they 
consistently rank among the top three contributors. This consistency 
may stem from the shared characteristics of Haikou and Urumqi, where 
high-density built-up areas and comparable thermal environments may 

produce similar UGS cooling responses through their interaction with 
UGS spatial configurations. Previous studies have indicated a strong 
correlation between UGS aggregation and the cold island effect (Zhao 
et al., 2020). This study suggests that to enhance the cooling intensity of 
UGS, Haikou and Urumqi should focus on optimizing block size, UGS 
aggregation levels, and edge density.

Furthermore, the analysis of the nighttime cooling effect reveals that 
the impact of AI_UGS is particularly pronounced in the four cities, with 
its magnitude in Beijing and Shanghai significantly exceeding that of the 
other metrics. This finding underscores the critical role of the UGS ag
gregation index in determining cooling intensity across various climatic 
conditions. Therefore, focusing on AI_UGS, or the aggregation index of 
UGS, will serve as an effective strategy for enhancing the nighttime 
cooling effect of UGS during the planning and optimization process.

As demonstrated in the marginal effect figures, the changes in UGS 
cooling intensity due to variations in key feature metric units during the 
daytime are significantly more pronounced than those observed at night 
across all four cities, each with distinct climatic conditions. This phe
nomenon can be attributed to the physiological characteristics of UGS, 
particularly the closing or narrowing of leaf stomata, which reduces 
transpiration and subsequently diminishes their cooling effect on LST 
(Cheung et al., 2024; De Dios et al., 2015). These findings are consistent 
with the results presented in Table 4, which further underscore the 
greater cooling effect of UGS during the daytime compared to nighttime. 
Furthermore, the marginal effects of key metrics reveal distinct optimal 
values or thresholds that vary significantly across different cities, as 
shown in Table 5. During the daytime, the optimal values of CA_UGS 
within the urban blocks of Beijing and Shanghai are 92.90 ha and 
134.68 ha, respectively. The optimal values of TA_B within the blocks of 
Haikou and Urumqi are 47.40 ha and 199.15 ha, respectively. When 
these optimal values are exceeded, the intensity of UGS cooling remains 
constant despite an increase in UGS area. The thresholds of ED_UGS 
within the urban blocks of Beijing, Shanghai, Haikou, and Urumqi are 
19.06 m/ha, 332.27 m/ha, 26.25 m/ha, and 71.70 m/ha, respectively. 
When these thresholds are surpassed, the intensity of UGS cooling de
creases as the density of the UGS edge increases. The thresholds of PD_B 
within the blocks of Beijing and Shanghai are 43.93/100 ha and 147.43/ 

Fig. 7. Relative importance of urban feature metrics in four cities for nighttime cooling intensity.
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100 ha, respectively. When these thresholds are exceeded, the intensity 
of UGS cooling decreases as block patch density increases. The thresh
olds of AI_UGS within the blocks of Haikou and Urumqi are 94.09 % and 
88.89 %, respectively. When these thresholds are surpassed, the cooling 
intensity of UGS increases with the UGS aggregation index. At night, the 
optimal value of SIDI_B in the Beijing blocks is 0.54. The optimal values 
of CA_UGS in the Beijing and Haikou blocks are 144.51 ha and 11.71 ha, 
respectively. Similarly, the optimal values of PD_B in the Shanghai and 
Urumqi blocks are 244.20/100 ha and 263.72/100 ha, respectively, 
while the optimal value of ED_UGS in the Urumqi blocks is 392.36 m/ha. 
Once these optimal values are exceeded, the UGS cooling intensity re
mains unchanged despite further increases in the index values. The 

optimal value of ED_UGS within the Haikou blocks is 199.01 m/ha. Once 
this threshold is exceeded, the intensity of UGS cooling declines as the 
density of the UGS edge increases. The thresholds of AI_UGS within the 
urban blocks of Beijing, Shanghai, Haikou, and Urumqi are 82.27 %, 
92.33 %, 90.68 %, and 88.89 %, respectively. When these thresholds are 
exceeded, the intensity of UGS cooling increases in proportion to the 
index of UGS aggregation. The threshold value of ED_UGS within urban 
blocks in Shanghai is 88 m/ha. Once this threshold is surpassed, the 
intensity of UGS cooling declines as the density of UGS edges increases.

This study presents targeted urban block UGS planning recommen
dations for cities with varying climate types to optimize UGS cooling 
intensity. In cities characterized by warm temperate monsoon climates 

Fig. 8. Marginal effect of key urban feature metrics on daytime cooling intensity in four cities.
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(e.g., Beijing) and subtropical monsoon climates (e.g., Shanghai), it is 
advisable to moderately increase the total UGS area within city blocks 
(Beijing: < 92.90 ha; Shanghai: < 134.68 ha). These recommendations 
are grounded in research findings that identify optimal UGS configura
tions for maximizing cooling effects. This expansion can be achieved 
through vertical greening techniques that do not require additional land. 
Additionally, UGS should be designed in regular shapes (e.g., circular or 
square) to maximize cooling benefits (Feyisa et al., 2014; Cao et al., 
2010). Furthermore, fragmented UGS should be integrated, block patch 
density should be reduced, and the spatial aggregation of UGS should be 
improved by connecting fragmented UGS patches through green space 
corridors or ecological buffer zones, as demonstrated in Beijing (82.27 

%) and Shanghai (92.33 %). These strategies effectively enhance the 
cooling effect of UGS during both daytime and nighttime periods. These 
strategies can support evidence-based urban planning practices aimed at 
mitigating thermal risks and improving outdoor thermal comfort.

For tropical monsoon cities (e.g., Haikou) and cities with mid- 
temperate arid climates (e.g., Urumqi), urban planning should appro
priately expand the total area of blocks (Haikou: < 47.40 ha; Urumqi: <
199.15 ha) and optimize the building layout to create ventilation cor
ridors that facilitate heat dissipation within these blocks. Additionally, 
fragmented UGS patches should be consolidated, and UGS aggregation 
areas should be centrally planned, with supplementary horizontal and 
vertical greening measures implemented to enhance UGS aggregation 

Fig. 9. Marginal effect of key urban feature metrics on nighttime cooling intensity in four cities.
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(Haikou: > 90.68 %; Urumqi: > 88.89 %). This study offers quantitative 
references through its findings to inform localized urban planning and 
UGS-related regulations. In tropical monsoon cities like Haikou, the 
coverage and aggregation effect of UGS can be improved by increasing 
the total UGS area (Haikou: < 11.71 ha) through the development of 
micro-parks on abandoned land and underutilized spaces. In contrast, 
for arid cities in the mid-temperate zone, such as Urumqi, increasing 
block patch density by subdividing large UGSs into smaller ones and 
decentralizing their layout (Urumqi: < 263.72/100 ha) can enhance the 
nighttime cooling function of UGS. In future research, these recom
mendations could be further validated through case-based applications 
in collaboration with urban planning agencies, enhancing their rele
vance for real-world governance.

5.2. Limitations

This study has several limitations. First, while it examines the in
tensity of diurnal UGS cooling in four typical urban blocks with varying 
climatic backgrounds, it does not include data from other cities with 
similar climatic conditions, which may limit the generalizability of the 
findings. Future research should incorporate a broader range of cities to 
enhance the robustness of the results. Second, conducting comparative 
studies that collect diurnal LSTs on the same day to obtain more precise 
measurements of diurnal UGS cooling effects presents methodological 
challenges. Third, as this study focuses primarily on the summer season, 
its conclusions may not be applicable across different seasons. Future 
research should explore seasonal variations in UGS cooling intensity. 
Fourth, future research should integrate three-dimensional (3D) fea
tures, such as building height and volume, for a more comprehensive 
understanding of how urban block structure affects UGS cooling. Finally, 
the functional types of blocks (e.g., residential, commercial, industrial) 
were not considered in this study. Future work should incorporate these 
attributes, along with broader factors such as urban planning, infra
structure development, and environmental policies, to better under
stand the drivers of spatial variation in UGS cooling effects.

6. Conclusions

This study analyzed the influence of block-scale UGS landscape 
metrics, a UGS biophysical metric, and urban block morphology metrics 
on the diurnal cooling intensity of UGS in four representative cities: 
Beijing, Shanghai, Haikou, and Urumqi. The analysis was conducted 
under varying climatic conditions using SDGSAT-1/TIS data and GF 
multispectral imagery. Employing the boosted regression tree algo
rithm, we examined the diurnal temperature differences among various 
land cover types and explored the relative importance and marginal 

effects of key feature metrics. The results of the study indicated that: (1) 
During the day, LSTs in the four cities were generally higher in areas 
with impervious surfaces compared to water bodies and UGS areas. At 
night, LSTs were higher in the impervious surfaces and water bodies, 
while they were lower in UGS areas. UGS maintained a relatively low 
LST both during the day and at night, with its cooling effect being more 
pronounced during the day than at night. (2) The key metrics for day
time UGS cooling intensity varied across the four cities under different 
climatic conditions. The relative importance of these metrics and their 
correlations were as follows: Beijing (CA_UGS: 38.97 %, +; ED_UGS: 
27.71 %, − ; PD_B: 10.06 %, − ); Shanghai (PD_B: 23.88 %, − ; ED_UGS: 
19.71 %, − ; CA_UGS: 18.44 %, +); Haikou (TA_B: 29.60 %, +; AI_UGS: 
26.06 %, +; ED_UGS: 11.60 %, − ); Urumqi (AI_UGS: 26.40 %, +; 
ED_UGS: 20.65 %, − ; TA_B: 11.94 %, +). Beijing and Shanghai shared 
the same key metrics, demonstrating a consistent correlation between 
these metrics and UGS cooling intensity. A similar relationship was 
observed for Haikou and Urumqi. At night, AI_UGS emerged as the most 
significant metric in all four cities, with positive correlations observed in 
Beijing (65.33 %), Shanghai (56.07 %), Haikou (44.52 %), and Urumqi 
(21.84 %). (3) The key urban metrics exhibited a non-linear relationship 
with cooling intensity across different climatic contexts. By analyzing 
the marginal effects, the optimal or threshold value of each key metric 
was determined, revealing significant differences among the cities. This 
study provides important theoretical insights and practical guidance for 
optimizing UGS landscapes in diverse climatic contexts.
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