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Urban green space (UGS) is a key component of Sustainable Development Goal (SDG) 11.7.1, urban public open
space, and is essential for mitigating the urban heat island (UHI) effect. However, the impact of urban landscape
features on the diurnal cooling performance of UGS at the block scale across different climates remains insuf-
ficiently understood. The objective of this study is to explore the differences in features that influence the cooling
intensity of UGS at both day and night under varying climatic conditions. Four Chinese cities located in distinct
climate zones—Beijing, Shanghai, Haikou, and Urumgqi—were selected as study areas. High-resolution land
surface temperature (LST) data for summer days and nights were derived from SDGSAT-1/TIS imagery, while
land cover classifications were obtained from Gaofen (GF) satellite images. UGS cooling intensity was calculated
as the temperature difference between impervious surfaces and UGS within each urban block. To identify the key
metrics influencing UGS cooling, we employed a boosted regression tree (BRT) model incorporating seven UGS
landscape metrics, one UGS biophysical metric, and four urban block morphology metrics. The results revealed
that UGS exhibited a more pronounced cooling effect during the daytime than at night. Key metrics also varied
across cities. During the day, UGS area (+), UGS edge density (—), and block patch density (—) were significant in
Beijing and Shanghai, while block area (+), UGS aggregation index (+), and UGS edge density (—) were
dominant in Haikou and Urumqji. At night, the UGS aggregation index (+) was the most influential metric across
all four cities. Moreover, the key metrics exhibited optimal values or thresholds of influence, with significant
differences observed across cities. This study provides an important insight into how UGS features regulate
diurnal cooling across different climates and offers recommendations for UHI mitigation strategies.

1. Introduction 2022; Barriopedro et al., 2023), amplifying UHI effects and placing

additional strain on urban systems. Consequently, identifying cost-

In the context of global urbanization, the extensive replacement of
natural surfaces with artificial ones has disrupted the surface energy
balance and triggered the Urban Heat Island (UHI) effect, which is
characterized by higher Land Surface Temperature (LST) in urban cen-
ters compared to suburban areas (Zargari et al., 2024; Chen et al., 2023).
As global warming intensifies, the frequency and severity of urban
heatwaves are projected to increase (He et al., 2022; Marcotullio et al.,

effective strategies for UHI mitigation and enhancing urban thermal
comfort has become imperative.

The Sustainable Development Goals (SDGs), adopted by the United
Nations as part of the 2030 Agenda (Guo et al., 2022; Jiang et al., 2021),
emphasize the importance of enhancing the accessibility and function-
ality of urban green space (UGS), which provide an effective solution for
mitigate the UHI effect. Numerous studies have demonstrated that UGS
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plays a crucial role in regulating localized urban climates (Athokpam
et al., 2024; Li et al., 2023b; Liu et al., 2023; Wang et al., 2022). UGS
effectively reduces LST through mechanisms such as shading, solar ra-
diation absorption, and transpiration (Yu et al., 2024; Bakhshoodeh
et al., 2022), with temperature differences of up to 5.44 °C observed
between UGS and impervious surfaces (Khan and Li, 2024). Addition-
ally, the configuration and structural characteristics of UGS significantly
influence its cooling effect (Nie et al., 2024; Rakoto et al., 2021). UGSs
with multiple vegetation types exhibit more significant cooling effects
than those consisting of a single vegetation type (Wei et al., 2025).
Furthermore, research has shown that UGS landscape metrics, bio-
physical metrics, and urban block morphology metrics play crucial roles
in regulating LST (Bai et al., 2024; Hu et al., 2022; Tehrani et al., 2024).
Regarding landscape metrics, the area, patch density, and shape of UGS
significantly influence LST (Li et al., 2023c; Liu et al., 2024; Nasar-u-
Minallah et al., 2024). Similarly, the edge density, coverage, and ag-
gregation index of UGS are negatively correlated with LST (Cui et al.,
2024; Wang et al., 2023). In terms of biophysical metrics, the normal-
ized difference vegetation index (NDVI) is typically negatively corre-
lated with LST (Guha and Govil, 2021). Concerning urban block
morphology metrics, block shape, patch density, and diversity indices
may also influence LST (Zhou et al., 2014).

Recent studies have highlighted the importance of incorporating the
spatial and temporal heterogeneity of UHI effects into urban planning
and governance. Green infrastructure, such as green roofs and urban
ventilation corridors, has proven effective in mitigating UHI through
cooling and airflow enhancement (Dong et al., 2024; Guo et al. (2023a),
Guo et al. (2023b)). However, the cooling effect of UGS varies signifi-
cantly across different climatic conditions. In humid climates, higher air
humidity and adequate water supply promote vegetation growth and
enhance transpiration, effectively reducing LST (Zhu et al., 2023). In
contrast, in arid or semi-arid regions, the transpiration cooling effect of
vegetation is limited due to restricted water availability, resulting in a
diminished cooling effect (Cheung et al., 2021). Land use changes,
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especially increased impervious surfaces, further intensify UHI and
highlight the need for coordinated blue-green space planning (Ren et al.,
2024; Ren et al., 2023). In addition, population exposure and landscape
patterns interact to produce fine-scale thermal heterogeneity, under-
scoring the importance of integrating human-air-ground coupling in
planning strategies (Peng et al., 2024). While integration with water
bodies enhances cooling (Shi et al., 2020), dense built environments
may reduce effectiveness (Chen et al., 2024; Yang et al., 2024). Targeted
greening, as in Chongqing, shows district-level cooling benefits (Wang
et al., 2025), and irrigation strategies, particularly in the morning,
improve lawn-based thermal performance via longwave radiation
reduction (Huang and He, 2025). These findings establish a scientific
foundation for UGS planning and support sustainable urban develop-
ment. Furthermore, further exploration of the cooling potential of UGS
will not only optimize urban planning but also enhance the comfort and
health of residents.

Although the relationship between the cooling effect of UGS and
urban landscape structure has become a prominent area of research,
many aspects still require further investigation. First, selecting the
appropriate spatial analysis unit is a critical consideration in this study.
Conventional studies typically divide the study area into regular grids or
utilize concentric buffers around a single UGS as the unit of analysis
(Tan et al., 2021; Dong et al., 2022). While these methods are
straightforward to implement, they often fail to fully capture the spatial
heterogeneity of complex urban environments, including their structural
and functional boundary characteristics. This limitation hinders an ac-
curate assessment of the true impact of urban landscape features on the
cooling effect of UGSs. Blocks are the fundamental units of a city, and
due to the obstruction of heat flow by roads, they are often regarded as
separate thermal zones (Yao et al., 2020; Sun et al., 2018). Recent
studies have shown that 3D urban features, such as building height and
tree density, significantly impact LST at the block scale, with trees
providing a cooling effect during the day and buildings contributing to
higher LST at night due to heat retention (Han et al., 2023; Han et al.,
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Fig. 1. Location of the study areas.
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2024). However, the mechanisms influencing the cooling effect of UGS
at the block scale remain unclear. Furthermore, much of the current
research has focused on the cooling effects of UGS during the daytime
(Shahetal., 2021; Ke et al., 2021), with relatively few studies addressing
nighttime cooling mechanisms. At night, the cooling effect of UGS may
be influenced by several factors, including radiative cooling and soil
moisture. Research on the nighttime cooling effects of UGS is limited due
to challenges related to the availability of nighttime LST remotely
sensed imagery or its lower resolution (Arellano and Roca, 2021). In
light of the growing urban nighttime heat island effect (Huang et al.,
2021), a deeper understanding of the nighttime cooling mechanisms of
UGS and their differences from daytime effects is essential for enhancing
urban comfort and promoting resident health. Additionally, as global
climate change intensifies and urban climate characteristics diversify
(Esperon-Rodriguez et al., 2022; Yang and Zhao, 2024), conducting
comparative studies of representative cities across various climate zones
and systematically analyzing the factors influencing the cooling effect of
UGS is crucial for developing climate-adapted urban landscape patterns.
This research will provide valuable scientific evidence for addressing the
challenges of UGS cooling across diverse climates worldwide.

The Sustainable Development Science Satellite 1 (SDGSAT-1) is the
world’s first scientific satellite dedicated to supporting the 2030 Agenda
for Sustainable Development. It is equipped with a thermal infrared
spectrometer (TIS) that can conduct both daytime and nighttime ob-
servations over a 24-hour period, providing high-resolution temperature
data with continuous time-phase coverage (Guo et al. (2023a), Guo et al.
(2023b)). This capability allows for the utilization of high-resolution
temperature data to investigate the cooling effects of diurnal UGS.
Furthermore, the SDGSAT-1 TIS captures images with a width of 300 km
and has a revisit period of approximately 11 days (Li et al., 2023a). This
enables the acquisition of LST data across various climatic contexts,
facilitating the impact of how climatic differences influence the cooling
effects of UGS. LST is essential for maintaining the surface energy bal-
ance (Li et al., 2020, Li et al., 2023d), and the capabilities of SDGSAT-1
provided the necessary data for this study. While conventional satellite
and survey-based approaches often suffer from limited revisit frequency,
low spatial resolution, or insufficient semantic richness, SDGSAT-1 en-
ables more efficient and context-aware monitoring of urban thermal
dynamics. By supporting consistent, fine-scale observations under var-
ied climatic conditions, it enhances the reliability and interpretability of
UGS cooling assessments, thereby reinforcing the methodological
innovation of this study.

We selected four Chinese cities with distinct climatic back-
grounds—Beijing, Shanghai, Haikou, and Urumgi—to develop climate
zone-based diurnal strategies for UGS block-scale planning and man-
agement in a comparative study. We hypothesized that urban feature
metrics exert differential effects on the cooling intensity of UGS under
varying climatic conditions. The primary objectives of this study are as
follows: (1) To investigate the daily variations in LST across different
land covers in urban areas. (2) To identify the key feature metrics that
influence the cooling effect of diurnal UGS at the block scale in the four
representative cities. (3) To analyze the variations in the marginal ef-
fects of key diurnal metrics across the four representative cities. The
findings provide practical recommendations for landscape optimization
to mitigate the block-scale UHI effect across different climatic contexts.

2. Materials
2.1. Study areas

The study areas included Beijing, Shanghai, Haikou, and Urumgqi.
These four cities are located in distinct climate zones: Beijing in the
warm temperate zone, Shanghai in the subtropical zone, Haikou in the
tropical zone, and Urumgi in the mid-temperate zone (Fig. 1). Beijing is
located in northern China (115°25-117°30'E, 39°28"-41°05'N) with a
total area of 16,410.54 km?, and its resident population at the end of
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Table 1
Data sources.

Name Date (BJT) Type Data sources

Built-up 2020 Vector A dataset of built-up areas of Chinese
areas cities in 2020, (http://www.

datasets https://doi.org/10.11922/sciencedb.
j00001.00332)
Road June 2024 Vector  Open Street Map (OSM), (https://www
network .openstreetmap.org/)
data
GF satellite Beijing: Aug Raster ~ CRESDA, (https://data.cresda.
image 23, 2023 cn/#/2dMap)
Shanghai: Oct
2, 2022
Haikou: Aug 2,
2024
Aug 17, 2023
Urumgi: Aug
24, 2022
SDGSAT-1/ Beijing: Sept Raster  International Research Center of Big
TIS 14, 2023 Data for Sustainable Development
(10:08) Goals (CBAS), (https://www.sdgsat.ac.
cn/)
Sept 6, 2023
(21:28)

Shanghai: Aug
4,2024(09:38)
Aug 23,2024
(21:03)
Haikou: Sept
15, 2022
(10:28)

Aug 27,2022
(21:59)
Urumgi: Jul
16, 2024
(12:04)

Jul 3, 2023
(23:15)

Note: BJT, Beijing time.

2022 was 21.843 million. The city has a warm-temperate, semi-humid,
semi-arid monsoon climate characterized by hot, rainy summers, cold,
dry winters, and short springs and autumns. The average annual tem-
perature in 2022 was 13.4 °C, with total precipitation measuring 585.4
mm (Beijing Municipal Bureau Statistics, 2023). Shanghai is situated in
eastern China (120°52-122°12'E, 30°40"-31°53'N), with a total area of
6,340.5 km?, and its resident population at the end of 2022 was 24.7589
million. Shanghai features a subtropical monsoon climate with four
distinct seasons, abundant sunshine, and significant rainfall. In 2022,
the average annual temperature was 18 °C, with total precipitation
reaching 1,044.1 mm (Shanghai Municipal Bureau Statistics, 2023).
Haikou, located in southern China (110°07-110°42'E, 19°31-20°04'N),
is the capital of Hainan Province, with a total area of approximately
22096.82 km?, and its resident population at the end of 2022 was 2.9397
million. Haikou experiences a tropical monsoon maritime climate. The
average annual temperature in 2022 was 24.5 °C, with total precipita-
tion amount to 2,021.0 mm (Haikou Municipal Bureau Statistics, 2023).
Urumgqi, situated in northwestern China (86°37-88°58'E, 42°45'-
45°00'N), is the capital of the Xinjiang Uygur Autonomous Region, with
a total area of approximately 13,800 km?, and its resident population at
the end of 2023 was 4.0848 million. The city has a semi-arid continental
climate in the mid-temperate zone. (Urumgqi Municipal Bureau Statistics,
2024). Beijing and Shanghai experience hot and rainy summers, Haikou
has humid and hot summers, while Urumqi endures dry and hot
summers.

2.2. Datasets

In our study, we collected and utilized various datasets, including
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Fig. 2. Research flowchart.

urban built-up areas, road networks, Gaofen (GF) series satellite imag-
ery, and diurnal SDGSAT-1/TIS imagery, as shown in Table 1.

Datasets of built-up areas were obtained from the Chinese Cities
built-up areas datasets for 2020 (Sun et al., 2022) and were used to
determine the extents of the study areas in the four cities. Road network
data were sourced from OpenStreetMap (OSM) and utilized to segment
urban blocks. This study employed cloud-free summer GF-6 satellite
imagery for each city to map land cover. Additionally, SDGSAT-1/TIS
imagery from the International Research Center of Big Data for Sus-
tainable Development Goals (CBAS) was used to retrieve diurnal LSTs
for the four cities. With a high spatial resolution of 30 m and three
thermal infrared bands, the SDGSAT-1 TIS effectively monitors changes
in LST, providing significant advantages, particularly in the analysis of
temperature distributions in urban areas.

In this study, UGS primarily consists of forests, parks, and roadside
green areas. The spatial resolution of the GF images is 2 m x 2 m, while
the spatial resolution of the LST data is 30 m x 30 m. The LST data were
resampled to a spatial resolution of 2 m x 2 m to align with the land
cover utilization data.

3. Methods

The flowchart shown in Fig. 2 outlines the methodology employed in
this study. Initially, the GF image data for the four cities underwent
preprocessing. Subsequently, land cover was categorized using the
processed data. LSTs were then retrieved from SDGSAT-1/TIS imagery.
Block segmentation was conducted utilizing OSM vector road network
data. The cooling intensity of the UGS was analyzed at the block scale.
Finally, the relationship between landscape metrics and cooling

intensity was examined. The following sections provide a detailed
explanation of the methodology.

3.1. Block segmentation

This study utilized OSM vector road network maps to divide the
blocks. Smaller blocks were merged to prevent them from being exces-
sively small. Additionally, water-containing blocks were excluded to
eliminate the influence of water bodies on the cooling effect of the UGS.
Finally, a total of 3,148 blocks were included from Beijing, 2,386 from
Shanghai, 1,045 from Haikou, and 1,449 from Urumgqi in this study
(Fig. 3).

3.2. Land cover classification

Based on GF imagery, an object-oriented algorithm was utilized to
classify UGS, water-bodies, impervious surfaces, and bare land. Multi-
resolution segmentation of the GF imagery was conducted using eCog-
nition 10.3 software. This was followed by the selection of classification
parameters, the establishment of classification rules, and the extraction
of land cover classifications. The accuracy of the classification results
was assessed using Google Earth as the reference standard, based on 300
randomly selected samples from each city.

3.3. LST retrieval

This study employed a modified temperature and emissivity sepa-
ration (TES) algorithm to retrieve the LST and land surface emissivity
(LSE) based on the three TIS bands of SDGSAT-1. Radiometric calibra-
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Fig. 3. Spatial distribution of no-water blocks in four cities.

tion was initially conducted for the three bands, and digital number
(DN) values were converted to radiance using the following equation:

L1oa = DN*Gain + Bias (€D)

Loa denoted the top-of-atmosphere (TOA) radiance, expressed in W/
(m2-sr-ym).

Next, atmospheric correction was performed for the three bands. The
ERAS atmospheric profile data were utilized, and the atmospheric pa-
rameters were processed using the radiative transfer model MODTRAN
5.2.2, which subsequently calculated the ground-leaving radiance (Lg).
The following equation was employed, where 7 was the atmospheric
transmittance and L, was the atmospheric upwelling radiance.

L = M 2
T

Finally, the LST was retrieved using the Planck function (B(T;)) with
the following equation, where T; represented the LST, ¢ represented the
LSE, and L, represented the atmospheric downwelling radiance.

_LG —(1—¢)L4
B €

B(T;) 3)

The accuracy of the temperature data retrieved using this method has
been validated (Ouyang et al., 2024).

3.4. Cooling intensity calculation

Based on the classified UGS and impervious surfaces, the cooling
intensity of the UGS at the block scale was calculated using the retrieved

LST data. The mean LST of the impervious surfaces within the block was
subtracted from the mean LST of the UGS to determine the UGS cooling
intensity (Yang et al., 2022).

Tcooling = T—B - m (4)

Where To,1ing Was the cooling intensity of the UGS at the block scale, and
Tg and T,e were the average LSTs of the impervious surfaces and the
UGS within the block, respectively.

3.5. Urban feature metrics calculation

To comprehensively capture the urban characteristics that influence
the cooling intensity of UGS and accurately identify the key metrics, this
study selected seven class-level metrics related to UGS: class area (CA),
percentage of landscape (PLAND), patch density (PD), largest patch
index (LPI), edge density (ED), mean shape index (SHAPE_MN), and
aggregation index (AI). Additionally, one biophysical metric, the
normalized difference vegetation index (NDVI), was included to char-
acterize UGS features. For urban blocks, four landscape-level metrics
were chosen to describe block morphology: total area (TA), patch den-
sity (PD), shape index (SHAPE), and Simpson’s diversity index (SIDI).

This study examined the impact of urban landscape features on the
cooling effect of diurnal UGS under varying climatic conditions at the
block scale. The research utilized 12 metrics, which included seven
landscape metrics of UGS (CA_UGS, PLAND_ UGS, PD_UGS, LPI_UGS,
ED_UGS, SHAPE MN UGS, and AI_UGS), one biophysical metric
(NDVI_UGS), and four urban block morphology metrics (TA_B, PD_B,
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Table 2
Description of 12 metrics.
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Category Metrics Formula Abbreviation Description of metric
UGS landscape metrics Class area (ha) Z}’.“:”l Sij CA_UGS Total area of UGS in urban block
~10000
Percentage of landscape (%) Ef'j'l sij PLAND_UGS Percent coverage of UGS in urban block
PLAND:J;— x 100
i
Patch density (number/100 ha) pp="tE o 10000 x 100 PD_UGS Density of UGS patch in urban block
Si
Largest patch index (%) LPI*maX(Si ) % 100 LPI_UGS The largest patch of UGS in urban block
i
Edge density (m/ha) ZJ":“l eij ED_UGS Edge density of UGS patch in urban
ED=
Z;l,:ul sij block
shape index (—) S 0.25¢; SHAPE_MN_UGS  Average landscape shape of UGS patch
SHAPE MN— = s in urban block
- Niy
Aggregation index (%) i %) AI_UGS Aggregation level of UGS patch in urban
Al= ZH max(a) PLAND;; | | x 100 block
UGS biophysical metric Normalized difference 1 a NDVI_UGS Coverage index of UGS in urban block
S - NDVI ==y~ NDVI, NDVI, = 3
vegetation index (—) a P
(NIR — R)/(NIR +R)
Urban block morphology Total area (ha) Si TAB Total area of urban block
. TA=
metrics 10000
Patch density (number /100 ha) PD:E % 10000 x 100 PDB Density of land cover patches in urban
Si block
Shape index (—) SH APE_OQSEi SHAPE B Landscape shape of urban block
VSi
Simpson’s diversity index (—) SIDI = 1.2"‘ PLAND? SIDI_B Land cover patch uniformity of urban
=1

block

Note: s;; , Ny , eij , & denote the area of the jth UGS patch within the ith block, the total number of UGS patches within the ith block, the perimeter of the jth UGS
patch within the ith block, and the number of neighboring UGS patches of the jth UGS patch within the ith block, respectively. a denotes the total number of pixels
within the block. NDVI, denotes the NDVI value of the pth pixel within the block. NIR denotes the near-infrared band, and R denotes the red band. S; , n; , E; , t, m
denote the area of the ith block, the total number of patches within the ith block, the perimeter of the ith block, the patch type, and the total number of patch types,

respectively.

SHAPE_B, and SIDI_B). As shown in Table 2, these 12 distinct feature
metrics were employed as independent variables to explain the rela-
tionship between these metrics and the cooling intensity of UGS.

3.6. Boosted regression tree

Boosted regression tree (BRT) is a machine learning model that
combines the strengths of regression tree with the gradient boosting
algorithm (Elith et al., 2008). By utilizing stochastic sampling, adaptive
optimization, and iterative refinement, BRT improves model perfor-
mance and creates a high-efficient, low-error predictive model. It
accurately evaluates the relative importance of independent variables
and effectively captures the nonlinear relationships between indepen-
dent and dependent variables (Elith et al., 2008). Consequently, BRT
provides reliable and stable predictive performance, even in the pres-
ence of complex data and uncertainty. This approach is widely adopted
and recognized as an effective machine learning technique.

In this study, 12 metrics (CA_UGS, PLAND_UGS, PD_UGS, LPI UGS,
ED_UGS, SHAPE_MN_UGS, AI_UGS, NDVI_UGS, TA_B, PD_B, SHAPE B,
and SIDI B) were utilized as independent variables, while the diurnal
UGS cooling intensities of the four city blocks served as the dependent
variables. Initially, Statistical Product and Service Solutions (SPSS) was
employed to assess collinearity among the independent variables using
the variance inflation factor (VIF) test. Independent variables with VIF
values exceeding 10 were excluded (Dewan et al., 2021; Gu and You,
2022). Subsequently, BRT was utilized to analyze the relationship be-
tween UGS cooling intensity and the selected independent variables at
the city block scale, aiming to determine their relative importance and
generate marginal effect maps. The study established the learning rate,
tree complexity, and bagging fraction at 0.001, 5, and 0.75, respectively
(Han et al., 2024). Additionally, 70 % of the data was allocated for
model training, and a 10-fold cross-validation approach was imple-
mented to identify the optimal model (Zhao et al., 2024).

4. Results

4.1. Land cover patterns, diurnal LST variation, and UGS cooling
intensity across cities

Fig. 4 shows the land cover classification results for four cities: Bei-
jing, Shanghai, Haikou, and Urumgi. The UGS in Beijing comprised
43.64 %, while Shanghai’s UGS accounted for 39.60 %, Haikou’s UGS
accounted for 37.63 %, and Urumgqi’s UGS accounted for 18.69 %. The
arid climate in Urumgqi likely contributed to a notably lower proportion
of UGS compared to other cities.

Table 3 presents the classification accuracy for these cities, with an
overall accuracy exceeding 93 %.

Fig. 5 illustrates the spatial distribution of diurnal LSTs across the
four cities, highlighting significant spatial heterogeneity. During day-
time observations, LSTs in these cities were predominantly higher over
impervious surfaces. These surfaces, which include buildings and roads,
exhibit low albedo and a high capacity for heat absorption, allowing
them to rapidly absorb heat. This process significantly enhances the
sensible heat flux at the surface, leading to swift localized increases in
temperature (Ferrari et al., 2020; Wang et al., 2021). In contrast, the
LSTs of water bodies and UGS region were relatively low, with a gradual
increase in temperature observed from the edges of the water bodies and
UGS outward. Similar to daytime conditions, the temperature of
impervious surfaces remained elevated at night. The heat absorbed and
stored by these surfaces during the day is slowly dissipated, resulting in
persistently high LSTs (Qian et al., 2024).

In contrast to daytime conditions, water bodies exhibited elevated
temperatures at night due to their high heat capacity and slow thermal
response, resulting in a slight diurnal temperature difference (Yao et al.,
2023). While water bodies effectively mitigated the daytime UHI effect,
they may not alleviate the nighttime UHI effect due to their inherent
characteristics. Conversely, UGS, with its moist soil and vegetative
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Fig. 4. Spatial distribution of land cover in four cities.

Table 3

Accuracy of land cover classification.
City Beijing Shanghai Haikou Urumgqi
Overall Accuracy 93.00 % 93.30 % 94.30 % 93.70 %

cover, mitigated heat accumulation and helped maintain lower night-
time LSTs. It was evident that the diurnal variation of LST differed
significantly across the various land cover types in the four cities, and
the UGS contributed to mitigating the diurnal UHI effect in all four
locations.

Table 4 illustrates that UGS generally exhibit stronger cooling effects
during daytime than nighttime, with substantial variation observed
across different climate zones. During the daytime, Beijing, Shanghai,
and Urumqi exhibited similarly high average cooling intensities, all
exceeding 1.1 °C, while Haikou demonstrated a noticeably weaker ef-
fect. By contrast, nighttime cooling intensities were more uniform across
the four cities, ranging narrowly from 0.15 °C to 0.20 °C, with Haikou
exhibiting a slightly stronger intensity than the others.

4.2. Relative importance of urban feature metrics on cooling intensity

Fig. 6 illustrates the relative importance of the 12 feature metrics on
daytime UGS cooling intensity across the four cities. Notably, the key

metrics and the extent of their contributions varied among the cities.
The analysis focused on the top three metrics to emphasize the sig-
nificance of these key metrics. During the daytime, Beijing’s leading
impact metrics were CA_UGS, ED_UGS, and PD_B, which accounted for
38.97 %, 27.71 %, and 10.06 %, respectively, totaling 76.74 %. Among
all the metrics, the UGS landscape metrics and urban block morphology
metrics represented 83.39 % and 16.61 %, respectively. In Shanghai, the
top three impact metrics were PD_B, ED_UGS, and CA_UGS, contributing
23.88 %, 19.71 %, and 18.44 %, respectively, for a total of 62.03 %.
Across all metrics, the UGS landscape metrics, urban block morphology
metrics, and UGS biophysical metric accounted for 65.24 %, 29.29 %,
and 5.47 %, respectively. For Haikou were TA_B, AI_UGS, and ED_UGS,
which accounted for 29.60 %, 26.06 %, and 11.60 %, respectively,
totaling 67.26 %. Among all metrics, UGS landscape metrics and urban
block morphology metrics represented 58.85 % and 41.15 %, respec-
tively. In Urumqi, the top three key impact metrics were AI UGS,
ED_UGS, and TA_B, accounting for 26.40 %, 20.65 %, and 11.94 %,
respectively, totaling 58.99 %. Among all metrics, UGS landscape met-
rics, urban block morphology metrics, and the UGS biophysical metric
accounted for 70.38 %, 21.80 %, and 7.82 %, respectively. It was
observed that ED_UGS ranked among the top three metrics in all four
cities, while CA_UGS and PD_B ranked among the top three metrics in
both Beijing and Shanghai. Additionally, AL UGS and TA B ranked
among the top three metrics in both Haikou and Urumqi, with AI_UGS
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Table 4

Average cooling intensity of UGS in four cities.
City Average cooling intensity (°C)

Day Night

Beijing 1.14 0.16
Shanghai 1.18 0.15
Haikou 0.78 0.20
Urumqi 1.26 0.18

contributing significantly.

Fig. 7 presents the relative importance of the 12 feature metrics
across four cities concerning the nighttime cooling intensity of UGS.
During nighttime, the top three key impact metrics for Beijing were
AI_UGS, SIDI_B, and CA_UGS, which accounted for 65.33 %, 7.14 %, and
6.28 %, respectively, totaling 78.75 %. Among all metrics, UGS land-
scape metrics and urban block morphology metrics contributed 86.85 %
and 13.15 %, respectively. In Shanghai, the leading three impact metrics
were AI_UGS, PD_B, and ED_UGS, which accounted for 56.07 %, 14.87
%, and 10.28 %, respectively, totaling 81.22 %. Here, UGS landscape
metrics, urban block morphology metrics, and the UGS biophysical
metric represented 79.56 %, 15.96 %, and 4.48 %, respectively. For
Haikou, the top three key impact metrics were AI_UGS, CA_UGS, and
ED_UGS, which accounted for 44.52 %, 11.95 %, and 9.55 %, respec-
tively, totaling 66.02 %. Among all the metrics, UGS landscape metrics
and urban block morphology metrics represented 80.62 % and 19.38 %,
respectively. For Urumgqi, the top three key impact metrics were AI_UGS,
PD_B, and ED_UGS, which accounted for 21.84 %, 12.00 %, and 10.72 %,
respectively, totaling 44.56 %. Across all metrics, UGS landscape met-
rics, urban block morphology metrics, and the UGS biophysical metric
accounted for 60.29 %, 32.19 %, and 7.52 %, respectively. Notably,
AI_UGS ranked first among the four cities and significant surpassed other
metrics in both Beijing and Shanghai.

4.3. Marginal effect of key urban feature metrics on cooling intensity

The top three key metrics regarding the relative contributions of the
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four cities to UGS cooling intensity were selected to assess their marginal
effects. Fig. 8 illustrates the marginal effects of these key metrics on
daytime UGS cooling intensity. During the day, CA_UGS was predomi-
nantly positively correlated with UGS cooling intensity, demonstrating a
strong positive correlation within the range of 0 ~ 92.90 ha in Beijing
and 0 ~ 134.68 ha in Shanghai. Conversely, ED_UGS exhibited a pre-
dominantly negative correlation with UGS cooling intensity, showing a
strong negative correlation in Beijing within the range of 19.06 ~
485.92 m/ha, in Shanghai within the range of 332.27 ~ 681.22 m/ha,
Haikou within the range of 26.25 ~ 472.17 m/ha, and in Urumgqi within
the range of 71.70 ~ 615.04 m/ha. PD_B displayed a monotonic nega-
tive correlation with UGS cooling intensity, indicating a strong negative
correlation in Beijing within the range of 43.93 ~ 325.98/100 ha and in
Shanghai within the range of 147.43 ~ 573.24/100 ha. TA_B showed a
predominant positive correlation with UGS cooling intensity, revealing a
strong positive correlation in Haikou within the range of 11.51 ~ 47.40
ha and in Urumqi within the ranges of 2.51 ~ 88.22 ha and 184.02 ~
199.15 ha. AI_UGS exhibited a predominant positive correlation with
UGS cooling intensity, with Haikou showing a strong positive correla-
tion within 94.09 ~ 97.82 % and Urumgqi within the range of 88.89 ~
98.99 %.

Fig. 9 illustrates the marginal effects of key metrics on the intensity
of nighttime UGS cooling. During the night, Al UGS was predominantly
positively correlated with UGS cooling intensity, demonstrating a strong
positive correlation in Beijing within the range of 82.27 ~ 100 %, in
Shanghai within the range of 92.33 ~ 99.33 %, Haikou within the range
0f 90.68 ~ 96.89 %, and in Urumgqi within the range of 88.89 ~ 98.99 %.
SIDI B exhibited a predominant positive correlation with UGS cooling
intensity, with Beijing showing a strong positive correlation within the
range of 0.05 ~ 0.54. CA_UGS exhibited a predominant positive corre-
lation with UGS cooling intensity, with Beijing within the range of 0 ~
144.51 ha and Haikou within the range of 0 ~ 11.71 ha, showing a
strong positive correlation with cooling intensity. PD_B exhibited a
predominant positive correlation with UGS cooling intensity, with
Shanghai showing a strong positive correlation within 147.43 ~
244.20/100 ha and Urumgi within the 116.03 ~ 263.72/100 ha range.

Additionally, Shanghai’s nighttime PD B exhibited an inverse
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Fig. 6. Relative importance of urban feature metrics in four cities for daytime cooling intensity.



C. Liu et al.
Beijing
SHAPE_MN_UGS 112.32% I UGS landscape metrics
SHAPE_B ]2.37% :l Urban block morphology metrics
PD_UGS {1 2.47%
P ep_B{13.64%
= PLAND_UGS
S
= ED_UGS
CA_UGS
SIDI_B
AIUGS
0% 10% 20% 30% 40% 50% 60% 70%
Relative importance
Haikou
SHAPE B 12.81% I UGS landscape metrics
PLAND UGS 3.98% 7] Urban block morphology metrics
1A_B{4.37%
PD_UGS
g
£ SIDI_B
S SHAPE_MN_UGS i
=
PD_B 6.87%
ED_UGS
CA_UGS
AL_UGS
0% 10% 20% 30% 40% 50% 60% 70%

Relative importance

Metrics

.33%

Metrics

Ecological Indicators 178 (2025) 113937

Shanghai
SHAPE_MN_UGS 0.58% I UGS landscape metrics
[ UGS biophysical metric
0,
SHAPE_B ]1.09% [ Urban block morphology metrics
LPI_UGS

NDVI_UGS
CA_UGS
PD_UGS
ED_UGS

0% 10% 20% 30% 40% 50% 60% 70%

Relative importance

Urumgqi

LPL_UGS i4~67% I UGS landscape metrics
SHAPE_B{I15.15% [0 UGS biophysical metric
SIDI B 6.33% [ Urban block morphology metrics
SHAPE_MN_UGS
CA_UGS
NDVI_UGS
PD_UGS

10%

20% 30% 40%

Relative importance

Fig. 7. Relative importance of urban feature metrics in four cities for nighttime cooling intensity.

correlation compared to its daytime correlation. Regarding ED_UGS,
Shanghai exhibited a strong negative correlation with cooling intensity
within 88 ~ 140.34 m/ha and 166.52 ~ 236.31 m/ha. In contrast,
Haikou exhibited a strong positive correlation with cooling intensity
within 30.94 ~ 199.01 m/ha and a strong negative correlation within
the 199.01 ~ 451.11 m/ha ranges. Urumgqi exhibited a strong positive
correlation with cooling intensity within the ranges of 0.45 ~ 36.08 m/
ha and 160.78 ~ 392.36 m/ha. This indicated that ED_UGS was more
sensitive under different climatic background diurnal conditions.

5. Discussion
5.1. Influence of key urban feature metrics on cooling intensity

The study identified significant differences in the cooling effects of
UGS across four cities under varying climatic conditions, as evidenced
by variations in key metrics and their relative importance. Nevertheless,
the cities still exhibit some correlation with one another. During the day,
the relative impact levels on the key metrics differ between Beijing and
Shanghai; however, the key metrics remain consistent, including
CA_UGS, ED_UGS, and PD_B. This consistency may be attributed to the
similar biophysical and climatic conditions in both cities—such as hot,
humid summers and strong UHI effects—which may produce compa-
rable patterns in UGS cooling performance and landscape configuration.
It has been observed that the total area and edge density of UGS
significantly influence its cooling effect (Asgarian et al., 2015; Masoudi
and Tan, 2019; Yuan et al., 2021). This study further demonstrates that
to enhance the cooling intensity of UGS in Beijing and Shanghai, it is
essential to improve heat exchange efficiency by strategically planning
the total area of UGS, optimizing the complexity of UGS edges, and
refining the spatial distribution of block patches. These measures will
enhance the microclimatic regulation functions of UGS. Haikou and
Urumgqi exhibit a similar pattern. Although the relative importance of
the three key metrics—TA_ B, AI.UGS, and ED_UGS—varies, they
consistently rank among the top three contributors. This consistency
may stem from the shared characteristics of Haikou and Urumgqi, where
high-density built-up areas and comparable thermal environments may
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produce similar UGS cooling responses through their interaction with
UGS spatial configurations. Previous studies have indicated a strong
correlation between UGS aggregation and the cold island effect (Zhao
et al., 2020). This study suggests that to enhance the cooling intensity of
UGS, Haikou and Urumgi should focus on optimizing block size, UGS
aggregation levels, and edge density.

Furthermore, the analysis of the nighttime cooling effect reveals that
the impact of AI_UGS is particularly pronounced in the four cities, with
its magnitude in Beijing and Shanghai significantly exceeding that of the
other metrics. This finding underscores the critical role of the UGS ag-
gregation index in determining cooling intensity across various climatic
conditions. Therefore, focusing on AI_ UGS, or the aggregation index of
UGS, will serve as an effective strategy for enhancing the nighttime
cooling effect of UGS during the planning and optimization process.

As demonstrated in the marginal effect figures, the changes in UGS
cooling intensity due to variations in key feature metric units during the
daytime are significantly more pronounced than those observed at night
across all four cities, each with distinct climatic conditions. This phe-
nomenon can be attributed to the physiological characteristics of UGS,
particularly the closing or narrowing of leaf stomata, which reduces
transpiration and subsequently diminishes their cooling effect on LST
(Cheung et al., 2024; De Dios et al., 2015). These findings are consistent
with the results presented in Table 4, which further underscore the
greater cooling effect of UGS during the daytime compared to nighttime.
Furthermore, the marginal effects of key metrics reveal distinct optimal
values or thresholds that vary significantly across different cities, as
shown in Table 5. During the daytime, the optimal values of CA_UGS
within the urban blocks of Beijing and Shanghai are 92.90 ha and
134.68 ha, respectively. The optimal values of TA_B within the blocks of
Haikou and Urumgqi are 47.40 ha and 199.15 ha, respectively. When
these optimal values are exceeded, the intensity of UGS cooling remains
constant despite an increase in UGS area. The thresholds of ED_UGS
within the urban blocks of Beijing, Shanghai, Haikou, and Urumgqi are
19.06 m/ha, 332.27 m/ha, 26.25 m/ha, and 71.70 m/ha, respectively.
When these thresholds are surpassed, the intensity of UGS cooling de-
creases as the density of the UGS edge increases. The thresholds of PD_B
within the blocks of Beijing and Shanghai are 43.93/100 ha and 147.43/
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Fig. 8. Marginal effect of key urban feature metrics on daytime cooling intensity in four cities.

100 ha, respectively. When these thresholds are exceeded, the intensity
of UGS cooling decreases as block patch density increases. The thresh-
olds of AI_UGS within the blocks of Haikou and Urumgqi are 94.09 % and
88.89 %, respectively. When these thresholds are surpassed, the cooling
intensity of UGS increases with the UGS aggregation index. At night, the
optimal value of SIDI B in the Beijing blocks is 0.54. The optimal values
of CA_UGS in the Beijing and Haikou blocks are 144.51 ha and 11.71 ha,
respectively. Similarly, the optimal values of PD_B in the Shanghai and
Urumgqi blocks are 244.20/100 ha and 263.72/100 ha, respectively,
while the optimal value of ED_UGS in the Urumgqi blocks is 392.36 m/ha.
Once these optimal values are exceeded, the UGS cooling intensity re-
mains unchanged despite further increases in the index values. The
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optimal value of ED_UGS within the Haikou blocks is 199.01 m/ha. Once
this threshold is exceeded, the intensity of UGS cooling declines as the
density of the UGS edge increases. The thresholds of AI_UGS within the
urban blocks of Beijing, Shanghai, Haikou, and Urumgqi are 82.27 %,
92.33 %, 90.68 %, and 88.89 %, respectively. When these thresholds are
exceeded, the intensity of UGS cooling increases in proportion to the
index of UGS aggregation. The threshold value of ED_UGS within urban
blocks in Shanghai is 88 m/ha. Once this threshold is surpassed, the
intensity of UGS cooling declines as the density of UGS edges increases.

This study presents targeted urban block UGS planning recommen-
dations for cities with varying climate types to optimize UGS cooling
intensity. In cities characterized by warm temperate monsoon climates
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Fig. 9. Marginal effect of key urban feature metrics on nighttime cooling intensity in four cities.

(e.g., Beijing) and subtropical monsoon climates (e.g., Shanghai), it is
advisable to moderately increase the total UGS area within city blocks
(Beijing: < 92.90 ha; Shanghai: < 134.68 ha). These recommendations
are grounded in research findings that identify optimal UGS configura-
tions for maximizing cooling effects. This expansion can be achieved
through vertical greening techniques that do not require additional land.
Additionally, UGS should be designed in regular shapes (e.g., circular or
square) to maximize cooling benefits (Feyisa et al., 2014; Cao et al.,
2010). Furthermore, fragmented UGS should be integrated, block patch
density should be reduced, and the spatial aggregation of UGS should be
improved by connecting fragmented UGS patches through green space
corridors or ecological buffer zones, as demonstrated in Beijing (82.27
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%) and Shanghai (92.33 %). These strategies effectively enhance the
cooling effect of UGS during both daytime and nighttime periods. These
strategies can support evidence-based urban planning practices aimed at
mitigating thermal risks and improving outdoor thermal comfort.

For tropical monsoon cities (e.g., Haikou) and cities with mid-
temperate arid climates (e.g., Urumqi), urban planning should appro-
priately expand the total area of blocks (Haikou: < 47.40 ha; Urumgi: <
199.15 ha) and optimize the building layout to create ventilation cor-
ridors that facilitate heat dissipation within these blocks. Additionally,
fragmented UGS patches should be consolidated, and UGS aggregation
areas should be centrally planned, with supplementary horizontal and
vertical greening measures implemented to enhance UGS aggregation
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Table 5
Optimal value or thresholds of key metrics for UGS cooling intensity.
City Day Night
Optimal Threshold value ~ Optimal value Threshold
value value
Beijing CA_UGS ED_UGS (19.06 SIDI_B (0.54) AI UGS
(92.90 ha) m/ha) (82.27 %)
PD B (43.93/ CA_UGS
100 ha) (144.51 ha)
Shanghai CA_UGS ED_UGS PD B (244.20/ AIUGS
(134.68 ha) (332.27 m/ha) 100 ha) (92.33 %)
PD_B (147.43/ ED_UGS (88
100 ha) m/ha)
Haikou TA_B (47.40 ED_UGS (26.25 CA_UGS AIUGS
ha) m/ha) (11.71 ha) (90.68 %)
AI_UGS (94.09 ED_UGS
%) (199.01 m/ha)
Urumgqi TA_B (199.15 ED_UGS (71.70 PD B (263.72/ AIUGS
ha) m/ha) 100 ha) (88.89 %)
AI UGS (88.89 ED_UGS

%) (392.36 m/ha)

(Haikou: > 90.68 %; Urumqi: > 88.89 %). This study offers quantitative
references through its findings to inform localized urban planning and
UGS-related regulations. In tropical monsoon cities like Haikou, the
coverage and aggregation effect of UGS can be improved by increasing
the total UGS area (Haikou: < 11.71 ha) through the development of
micro-parks on abandoned land and underutilized spaces. In contrast,
for arid cities in the mid-temperate zone, such as Urumgqi, increasing
block patch density by subdividing large UGSs into smaller ones and
decentralizing their layout (Urumgi: < 263.72/100 ha) can enhance the
nighttime cooling function of UGS. In future research, these recom-
mendations could be further validated through case-based applications
in collaboration with urban planning agencies, enhancing their rele-
vance for real-world governance.

5.2. Limitations

This study has several limitations. First, while it examines the in-
tensity of diurnal UGS cooling in four typical urban blocks with varying
climatic backgrounds, it does not include data from other cities with
similar climatic conditions, which may limit the generalizability of the
findings. Future research should incorporate a broader range of cities to
enhance the robustness of the results. Second, conducting comparative
studies that collect diurnal LSTs on the same day to obtain more precise
measurements of diurnal UGS cooling effects presents methodological
challenges. Third, as this study focuses primarily on the summer season,
its conclusions may not be applicable across different seasons. Future
research should explore seasonal variations in UGS cooling intensity.
Fourth, future research should integrate three-dimensional (3D) fea-
tures, such as building height and volume, for a more comprehensive
understanding of how urban block structure affects UGS cooling. Finally,
the functional types of blocks (e.g., residential, commercial, industrial)
were not considered in this study. Future work should incorporate these
attributes, along with broader factors such as urban planning, infra-
structure development, and environmental policies, to better under-
stand the drivers of spatial variation in UGS cooling effects.

6. Conclusions

This study analyzed the influence of block-scale UGS landscape
metrics, a UGS biophysical metric, and urban block morphology metrics
on the diurnal cooling intensity of UGS in four representative cities:
Beijing, Shanghai, Haikou, and Urumgi. The analysis was conducted
under varying climatic conditions using SDGSAT-1/TIS data and GF
multispectral imagery. Employing the boosted regression tree algo-
rithm, we examined the diurnal temperature differences among various
land cover types and explored the relative importance and marginal
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effects of key feature metrics. The results of the study indicated that: (1)
During the day, LSTs in the four cities were generally higher in areas
with impervious surfaces compared to water bodies and UGS areas. At
night, LSTs were higher in the impervious surfaces and water bodies,
while they were lower in UGS areas. UGS maintained a relatively low
LST both during the day and at night, with its cooling effect being more
pronounced during the day than at night. (2) The key metrics for day-
time UGS cooling intensity varied across the four cities under different
climatic conditions. The relative importance of these metrics and their
correlations were as follows: Beijing (CA_UGS: 38.97 %, +; ED_UGS:
27.71 %, —; PD_B: 10.06 %, —); Shanghai (PD_B: 23.88 %, —; ED_UGS:
19.71 %, —; CA_UGS: 18.44 %, +); Haikou (TA_B: 29.60 %, +; AL UGS:
26.06 %, +; ED_UGS: 11.60 %, —); Urumqi (AI_UGS: 26.40 %, +;
ED_UGS: 20.65 %, —; TA_B: 11.94 %, +). Beijing and Shanghai shared
the same key metrics, demonstrating a consistent correlation between
these metrics and UGS cooling intensity. A similar relationship was
observed for Haikou and Urumqi. At night, AI_ UGS emerged as the most
significant metric in all four cities, with positive correlations observed in
Beijing (65.33 %), Shanghai (56.07 %), Haikou (44.52 %), and Urumqi
(21.84 %). (3) The key urban metrics exhibited a non-linear relationship
with cooling intensity across different climatic contexts. By analyzing
the marginal effects, the optimal or threshold value of each key metric
was determined, revealing significant differences among the cities. This
study provides important theoretical insights and practical guidance for
optimizing UGS landscapes in diverse climatic contexts.
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