Trees, Forests and People 21 (2025) 100955

Contents lists available at ScienceDirect

Trees, Forests and People

o %

ELSEVIER

journal homepage: www.sciencedirect.com/journal/trees-forests-and-people

Check for

Individual tree above-ground biomass estimation by integrating LiDAR and |
machine learning

Yan To Choi?, Majid Nazeer *-", Man Sing Wong 5% Janet Elizabeth Nichol ¢,
Shao-Yuan Leu ¢, Jin Wu "%, Amos P.K. Tai ™!

& Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China

Y Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong, China

¢ Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

4 Department of Geography, School of the Environment and Life Sciences, University of Portsmouth, Hampshire, UK

¢ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

f School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China

8 Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China

1 Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Hong Kong, China

! State Key Laboratory of Agrobiotechnology, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China

ARTICLE INFO ABSTRACT

Keywords:
Allometric model
Tree felling

Tree biomass
Point-cloud

Global warming represents a critical challenge globally, while tree carbon sequestration is essential for achieving
carbon neutrality. The existing global allometric models face challenges in accurately modelling local trees’
biomass. To develop a localized allometric model using a small dataset, this study proposes an innovative
framework for estimating tree above-ground biomass (AGB) that involves local tree felling data collection, Light
Detection and Ranging (LiDAR) implementation, and the development of a machine learning-based allometric
model. During the data collection period, 100 trees were felled in Hong Kong from March 2023 to April 2024,
encompassing 31 tree species and 17 tree families. Point-cloud models of the felled trees were collected using a
LiDAR backpack. Each felled tree’s AGB was measured by integrating point-cloud technology and oven drying of
samples. A data augmentation method was developed with a proposed tree point-cloud ‘degrowth’ algorithm to
address the challenge of data limitation in allometric model development. The allometric models in this study
were trained using advanced tree parameters measured by TreeQSM and tree family parameters. The best-
performing allometric model developed by XGBoost, scored an accuracy of R> = 0.82, mean absolute percent-
age error (MAPE) = 40.70 %, and mean absolute error (MAE) = 214.37 kg. To summarize, this study enhanced
AGB estimation in the local region by incorporating LiDAR, tree data augmentation, and machine learning for
allometric model development.

1. Introduction Kong’s Climate Action Plan 2050 was enacted, aiming to achieve carbon

neutrality by 2050 (Carbon Neutrality and Sustainable Development,

Global warming has reached a critical stage, with unprecedented
record-breaking temperatures and catastrophic natural disasters occur-
ring worldwide. The global average temperature in 2024 was estimated
to be 1.54 + 0.13 °C above the preindustrial average, marking the first
year to surpass the 1.5 °C threshold (WMO, 2024). As a result, Hong

2021). The main strategies in decarbonization include emission reduc-
tion and clean energy. For vegetation, tree carbon plays a pivotal role in
achieving carbon neutrality by offsetting carbon emissions through
carbon sequestration (Chen, 2021). Forests serve as substantial carbon
sinks by absorbing and storing carbon in trees. Carbon sequestration

Abbreviations: MAE, Mean absolute error; MAPE, Mean absolute percentage error; R?, Coefficient of determination; XGB, Extreme gradient boosting (XGBoost);
AGB, Above-ground biomass; LiDAR, Light Detection and Ranging; DBH, Diameter at breast height; RF, Random forest; GBT, Gradient-boosted trees; LGBM, Light
Gradient Boosting Machine (LightGBM); QSM, Quantitative structure model; DW, Dry weight; TH, Tree height; CL, Crown length; CA, Crown area; TL, Trunk length;

BL, Branch length; TA, Trunk area; BA, Branch area; CBH, Crown base height.
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involves photosynthesis, in which tree leaves absorb CO, from the at-
mosphere and store the absorbed carbon as tree biomass (Toochi, 2018).
Therefore, estimating tree biomass becomes crucial in assessing the
carbon stock of a tree. Tree biomass is a function that can be explained
by wood volume, diameter, height, or other physical parameters. In tree
above-ground biomass (AGB) estimation, allometric models are often
employed to quantify biomass by inputs of tree physical parameters
(Vieira et al., 2008). Various studies have developed allometric models
for the local research areas (Chave et al., 2005; Chave et al., 2014;
Djomo et al., 2010).

Existing methods in AGB estimation first conduct destructive tree
harvesting and estimate the entire tree volume and dry weight by fresh
weight to dry weight ratio or water displacement methods. Then these
ground truth data are correlated with general tree parameters, including
tree height, diameter at breast height (DBH), wood density by expo-
nential model, and finally, constructed an allometric model (Chave
et al., 2005, 2014; Djomo et al., 2010; Mugasha et al., 2016; Segura and
Kanninen, 2005). Existing allometric models can mainly be stratified
into mix-species and species-specific models, while the mix-species
model has higher generalizability (Chave et al., 2014, 2005; Djomo
et al., 2010; Sarker, 2010) and the species-specific model focuses on
enhancing prediction accuracy for woodlands with specific species type
(Sarker et al., 2013; Magalhaes et al., 2021; Mulatu et al., 2024). A
limitation in building allometric models is striking a balance between
generalization and accuracy. Species-specific allometric models are built
with higher accuracy for assessing homogeneous habitats, but they
sacrifice applicability in high biodiversity regions (Van Wolputte, 2024).
Tree species categories must inherit specific patterns in carbon stock
levels (Kaul et al., 2010). Developing a model that incorporates the
strengths of both mix-species and species-specific approaches can offer a
more robust solution. To address this issue, an AGB estimation model
that allows categorical input, including tree species or tree family, was
required to enhance the applicability across diverse tree species.

Despite the high applicability of the mix-species allometric model,
the reliance on simple exponential models introduces uncertainties in
AGB estimation. The popular allometric model, developed by Chave
et al. (2014), utilized over 4000 trees globally. This allometric model,
built using the log-log regression approach, can effectively capture
general and broad patterns across the large global dataset. Yet, the
ability to capture homogeneous characteristics in small datasets remains
uncertain. Most AGB prediction studies develop allometric model
through regression or fitting on simple power law functions, linear or
polynomial functions (Sileshi, 2014). When studying local habitats with
mixed tree species, a more advanced approach should be explored to
capture more complex characteristics of localized trees. Machine
learning models have been employed in certain AGB estimation studies,
offering an advantage over simple regression methods (Roy et al., 2024;
Wongchai et al., 2022). Various machine learning algorithms are
available for regression problems, and models can be stratified into
simple models, K-Nearest Neighbors (KNN), tree-based models, and
support vector machine (SVM). Simple models include linear, ridge, and
lasso regressions that capture linear relationships between predictors
and targets. These simple models were widely used in previous allo-
metric model studies to predict AGB using a few simple variables,
including DBH and tree height. However, these simple models failed to
capture the nonlinear variations between tree parameters and AGB in a
small localized tree dataset (Roy et al., 2024). The KNN model captures
nonlinear relationships and creates predictions by averaging the output
values in the feature space (Kohli et al., 2020). However, KNN, which is
commonly used as an outlier detection algorithm, can be highly sensi-
tive to outliers (Chen et al., 2010) if extremely large or small trees are
collected in a small, localized tree dataset. SVM output predictions by
using support vectors and kernels to develop a function that best fits the
epsilon (Awad et al., 2015). However, SVM likely overfits data with a
small number of samples and a large number of variables (Han and
Jiang, 2014), and training of SVM requires careful choice of kernels and
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advanced hyperparameters tuning. The tree-based model includes de-
cision trees, random forest (RF), gradient-boosted trees (GBT), XGBoost
(XGB), and LightGBM (LGBM). Tree physical parameters can be pre-
sented in a tabular format, and tree ensemble models, such as XGB and
RF, are highly recommended for regression and classification problems
on tabular data (Grinsztajn et al., 2022). These tree-based machine
learning algorithms require less computation and tuning time, and they
even outperform various deep learning models (Shwartz-Ziv and Armon,
2022). For allometric model building, one of the challenges is the
limited data size due to the difficulties associated with large-scale tree
felling. Tree-based machine learning algorithms have been proven to
work well with small datasets (Treboux et al., 2018). Based on these
considerations, this will select ensemble tree models, including RF, GBT,
XGB, LGBM, for the development of allometric model.

Another major challenge in developing allometric model is simple
parameterization and limited tree data for training (Shi et al., 2013).
Tree data acquisition involves manual tree measurement and destructive
sampling, both of which are resource-demanding activities that lead to
data scarcity. Existing allometric models estimate AGB by parameters
such as DBH and tree height, which are easily retrievable by human
measurement. For AGB estimation in local regions with high biodiver-
sity, over-simplified parameters fail to accurately capture tree
morphological features, which negatively impacts the performance of
the allometric model. Given these limitations, an enhanced data
collection method is required to generate sufficient data samples and
acquire more complex tree parameters. Individual tree AGB estimations
have been conducted in different scenarios, including estimation on the
terrestrial level by manual measurement (Chave et al., 2005; Djomo
et al., 2010), on terrestrial level using LiDAR technology (Calders et al.,
2015; Chave et al., 2019). To address the problem of data scarcity,
LiDAR technology can serve as a solution to replace manual measure-
ments and extensive destructive sampling of trees. LiDAR point-cloud
can capture the 3D geometry of an individual tree, while the 3D quan-
titative structure models (QSM) can reconstruct the 3D tree model,
providing more complex tree parameters instead of only DBH or tree
height (Lau et al., 2018). To address the data scarcity problem, the data
collection approach should adopt LiDAR modelling to enable tree data
augmentation and extraction of complex tree parameters.

Furthermore, the only local (Hong Kong) allometric model was
developed by Sarker (2010), using 75 trees and 13 different species.
Therefore, there is a pressing need to develop a new allometric model
that incorporates a wider range of species and LiDAR technologies in
order to provide a tool for tree AGB estimation in Hong Kong.

In summary, the development of existing allometric models faces
several challenges, including data scarcity, reliance on simple modelling
approaches, limitations to either species-specific or mixed-species
models, reliance on simple manually measured parameters, and the
absence of a local model specifically for the study region. To address
these issues, this study proposes the use of LiDAR technology for tree
data augmentation and advanced measurement of tree parameters,
thereby constructing an enhanced machine learning-based allometric
model that enables the input of tree taxa variables for AGB estimation.
The specific objectives are as follows:

o Developing an integrated framework that combines laboratory oven-
drying of wood samples and tree point-cloud models to address the
infeasibility of oven-drying entire trees, enabling accurate mea-
surement for above-ground biomass (AGB) of felled trees.

e Developing a point-cloud processing algorithm for tree data
augmentation to address the limited data challenge.

e Building machine learning-based allometric models that incorporate
tree family parameters and advanced physical parameters for precise
AGB estimation in Hong Kong’s diverse tree species.
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2. Study area and data collection
2.1. Study area

This research took place in Hong Kong, located in southeast Asia,
spanning from approximately 22°08 and 22°35 North latitude and
113°49" and 114°31’ East longitude (Lands department, 2024). Hong
Kong is characterized by a humid subtropical climate, influenced
heavily by the South Asian monsoon (Lam et al., 2022). The average
temperature ranges from 16 °C in January, the coldest month, to about
29 °C in July, the warmest month (Cheung and Hart, 2014). Such cli-
matic conditions are conducive to a rich diversity of vegetation and
affect the growth patterns and biomass accumulation in trees. Hong
Kong’s vegetation is predominantly subtropical. The natural forests are
largely secondary and have regrown after previous agricultural and
urban development use (Zhang et al., 2024).

2.2. Tree felling and samples collection

Tree felling operations were conducted predominantly in urban
areas of Hong Kong. Professional tree maintenance personnel felled the
tree in parts, including twigs, branches, and trunks. Felled tree parts
were further trimmed into sample slices by chainsaw and immediately
sealed in sample bags upon felling to prevent water loss or contamina-
tion. All types of trees in the range of healthy to unhealthy, leaf-on to
leaf-off, were harvested and collected for this study. Collections of trees
include roadside trees, slope trees, estate trees, garden trees, and also
forest trees from around Hong Kong (Fig. 1).

Tree sampling was conducted from March 2023 to April 2024,
encompassing a total of 100 trees, which represented 31 tree species and
17 tree families. Three types of samples per tree were collected,
including the trunks, branches, and leaves, as shown in Fig. 2. Slices of
the trunk and branches were collected using a chainsaw on the felled
tree. If available, we typically collected 3 slices of trunks (1 to 3 cm
thick), 5 branch samples, and 1 bag of leaves. Generally, the trunk
samples were retrieved in the wood part that was below the first tree
fork.

According to the Hong Kong Biodiversity Information Hub, the
dominant tree families in Hong Kong as of 2022 include Euphorbiaceae,
Sapotaceae, Moraceae, Sterculiaceae, Myrtaceae, Fagaceae, Lauraceae, and
Theaceae. Six of the listed families (75 %) are covered in the 17 families
collected for this research. Table S1, S2 in the Supplementary Materials
shows the species and families of the collected trees.
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Fig. 2. Collection of tree samples.

2.3. Mobile laser scanning

LiDAR technology is considered an accurate solution for retrieving
biophysical attributes of vegetation (Xu et al., 2021). Before the trees
were felled, mobile laser scanning was performed by surrounding the
tree in 360 degrees using a LIDAR backpack. As collecting the entire tree
for AGB estimation was not available, we implemented mobile laser
scanning to obtain the trees’ 3D structure models. In this study, LiDAR
surveys were conducted using the GreenValley LiBackpack DGC 50
backpack laser scanning system, which features Global Navigation Satel-
lite System (GNSS) and Simultaneous Localization and Mapping (SLAM)
technology, providing 1 cm + 1 ppm positioning accuracy and a point
cloud with +/- 3 cm relative accuracy. Max ranging distance is up to 100
m with a scanning rate of 600,000 pts/s, enabling it to penetrate and
capture tree top information (Figs. 3-7).

3. Methodology

This study proposes an innovative framework for developing an
allometric model in Hong Kong. First, data collection was conducted
using destructive sampling and backpack laser scanning of trees. Next,
the aboveground biomass (AGB) of felled trees is measured by
combining the methods of point-cloud processing and laboratory pro-
cessing. The former involves calculating felled tree volume, while the
latter includes oven-drying and measuring dry weight (biomass). Then,
tree data augmentation and quantitative structure model (QSM) gen-
eration are conducted to enlarge the data size and extract detailed tree
parameters, respectively. The measured tree AGB and extracted tree
parameters were used to develop the allometric models. Finally, vali-
dation and analysis were performed to evaluate the performance of the

22°08’N-

0 25 5

® 'h-ée pruning site
T T

113°52°E  114°02°E  114°12°E  114°22°E

Fig. 1. (a) Map showing the tree felling locations around Hong Kong, (b, c, d, e) tree felling site photos.
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Fig. 7. Apical ‘degrowth’ with 10 iterations.

developed allometric model.
3.1. AGB measurement of felled trees

In this section, the AGB of each felled tree is measured. After the tree
samples were collected, they were oven-dried at 50 degrees Celsius for
two weeks to remove all moisture. The weight of the samples after oven
drying refers to dry weight (DW), and the sample’s DW is equal to the
sample’s biomass (Parresol, 1999). Apart from measuring the samples’
biomass, the samples’ volume is calculated by measuring the samples’
thickness and diameters.

Next, the tree point-cloud model of the felled tree is input into the
software TreeQSM, which calculates the entire tree volume. TreeQSM
reconstructs the quantitative structure model (QSM) of the felled trees
from the point-cloud data. A QSM is composed of cylinders to capture
the topology, geometry, and volume of tree’s wood structure
(Raumonen et al., 2013). The TreeQSM is open-source software with
constant updates in version, and the performance of TreeQSM in metrics
extraction was explained in Raumonen et al. (2013). With TreeQSM, the
entire tree volume, including trunk volume and branch volume can be
measured.

Once the sample’s volume, sample’s biomass, and entire tree volume
are calculated, the entire tree above ground biomass (AGB) can be
measured. The entire tree AGB is calculated as the sum of trunk and
branch biomass using Eq. (2), where density is derived from the ratio of
sample biomass to sample volume (Eq. (1)).

sampley,,x biomass

trunk density =
nic density sample i volume’

sampley,qncn, biomass

branch density =
ranch density samplep,gncy volume

(€8]

AGB = trunk volume x trunk density + branch volume x branch density
(2)

3.2. Tree data augmentation by ‘degrowth’
In a local region with high tree species diversity, trees’ volume can be

different even though both trees have the same height and DBH due to
local tree species richness and structural variability (Kunz et al., 2019).

Addressing this issue is hindered by the fact that there is a limited
amount of felled-tree data. Given that real-world data is insufficient, we
propose a tree ‘degrowth’ method to generate a substantial training
dataset by synthesizing tree data to create a robust model.

Tree growth can be mainly stratified into apical growth and radial
growth (Wilson, 2000), and apical growth is focused on data augmen-
tation in this study. We propose geometrically shrinking the point-cloud
model of the felled tree apically, and virtual trees can be extracted at
certain intervals during the shrinking process. Tree allometric model
describes the relationship between tree AGB and dendrometric param-
eters. Existing allometric models are highly data-dependent and require
substantial datasets for accurate predictions (Roxburgh et al., 2015).
Augmented trees enable better generalization to unseen tree data and
enhance the diversity of training dendrometric parameters. Regarding
the apical degrowth method, we first assume apical growth of tree
biomass occurs at the tips of branches and trunk, contributing to lon-
gitudinal growth.

3.2.1. Mean shift segmentation

The initial step involves transforming scattered point-clouds into
meaningful 3D structures by generating tree nodes that emulate physical
tree structures. The mean-shift clustering algorithm is applied and this
iterative clustering algorithm does not require a pre-set number of
clusters, and the level of clustering is defined by the bandwidth
parameter ¢ (Daghigh et al.,, 2022). To initialize, assume the tree
point-cloud = {x1, X, ..., Xn}, a Gaussian function G was selected for the
kernel as shown in (Eq. (3)) (Wang and Wong, 2023). To enhance the
mean-shift clustering performance, a decaying bandwidth oy, was used.
For every tree point x;, m(x;), which is the mean of all points weighted by
Gaussian kernel within the bandwidth radius was calculated. Next, x;
was translated to computed m(x;), and this process iterates until
convergence. To avoid over-clustering in the trunk region, the band-
width should be set to a size similar to the DBH. Conversely, a smaller
bandwidth should be set to preserve finer details in a small branch
(tree-top) region. Hence, the bandwidth should vary along the height to
establish a suitable searching range, and the bandwidth setting is shown
in (Eq. (4)).
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3.2.2. Wood leaf separation

Next, leaf points are removed to extract only the trunk and branch for
precise AGB estimation. We adopted the graph-based wood-leaf sepa-
ration (GBS) algorithm proposed by Tian and Li (2022). After per-
forming mean-shift clustering in the previous step, we adopted the GBS
method for initial and final wood points extraction through the source
codes provided by (Tian and Li, 2022). Finally, the extracted wood
point-cloud is input into the TreeQSM for parameter extraction.

3.2.3. Tree node generation

Mean-shift clustering is a centroid-based clustering algorithm, and
this enables the estimation of local maxima where density is highest
(Carreira-Perpinan, 2015). However, when dealing with large datasets,
the computed mean-shift centroid can fall outside the classified cluster.
This occurs when kernel bandwidth is incompatible with scenarios such
as noisy or irregularly shaped clusters. Out-of-boundary centroids could
be found in tree forks or turning regions, where non-convex-shaped
clusters typically dominated. To address this, out-of-boundary cen-
troids were first detected and identified; then, a medoid is implemented
to replace these out-of-boundary centroids. In the mean-shift-generated
cluster, the cluster’s medoid is the point that has minimal average
dissimilarity to other data points within the cluster (Kaur et al., 2014).
This ensures that the generated tree node accurately reflects the tree
morphology, as the medoid is always the actual point within the clus-
ter’s point set.

3.2.4. Tree skeleton construction

Following the tree node generation, nodes were interconnected by
edges to construct tree edge graph. For every node, neighbouring node
points are identified and connected by edge. A varying searching radius
is applied across different node points (Eq. (5)). The searching radius
was defined to be slightly higher than the bandwidth parameter in
previous mean-shift clustering. This adjustment was made to ensure the
formation of meaningful connections by linking consecutive nodes,
while simultaneously preventing over-connections that could compro-
mise the tree’s morphological structure. ¢ is the bandwidth parameter
and c is the searching buffer. The buffer ¢ will adjust the complexity of
the graph connection, while c was defaulting as 0.5 m for most tree data.

searching radiuspog. i = on +C ®

After constructing the tree graph by connecting nodes with edges,
the graph is filtered by pruning excess edges to form a tree skeleton
model. The skeleton construction process was initiated by registering
the root node (Eq. (6)), which was identified as the node point with the
minimum 2 value. For every node point, the shortest path distance along
the connected edges to the root node was computed. Next, delete the
edges that the computed shortest paths had never passed. Most of the
redundant edges were filtered in this step, generating a preliminary tree
skeleton model.

node.,,; = node[min(z)] (6)

At this stage, certain edges may still be incorrectly connected, con-
tradicting the original tree structure. Numerous studies have proposed
sophisticated algorithms and solutions for constructing tree skeleton
models (Li et al., 2022; Cardenas et al., 2022; Livny et al., 2010). Yet it
remains challenging for a single algorithm to handle diverse tree types.
Rather than further refining the skeleton construction algorithm, it is
proposed to reinput the original tree point-cloud for final tree skeleton

Trees, Forests and People 21 (2025) 100955

refinement. The preliminary skeleton is overlaid on the original point
cloud; this allows for a straightforward way to detect falsely connected
edges. To remove such edges, a searching radius that is perpendicular to
the edge is established for every edge, with a radius value that varies
among edges (Eq. (8)). For edge;, a group of points within the searching
radius are defined as point-set; (Eq. (9)). Next, edge; is divided into n
segments (usually n = 5) of equal length (Eq. (10)). Then project all the
points in pointset; to edge;, if the middle segment of edge; record points’
projection, edge; is retained, otherwise it is deleted (Eq. (11)). The tree
skeleton is then constructed for further 3D tree modelling.

shortest path distance d; = d( node;, node:) ()

searching radius of edge e; =r; 8)

pointset; = {p;|distance(p;, e;) < r;} (&)

e = {Si1), Si2), Si3)> Si4)» Sic5) } 10)
. true, if any points from pointset; project onto S;

retain e; — { , if any p fa{gre otl})lerwisel proj i(3) 11

The following figure demonstrated the skeleton generation:

3.2.5. Tree augmentation

With the tree skeleton model, boundary nodes are defined as nodes
that are connected to only one edge, except the base root node. Next, the
degrowth is activated by deleting the first boundary nodes, resulting in a
1st updated skeleton model. Then, the detection and removal of
boundary nodes on the newly updated skeleton model iterate. Define
iteration number = n, and n updated skeleton models are generated.
Augmented tree point-cloud models and QSMs can be generated with
these updated skeleton models. The following figures demonstrate only
the apical degrowth process, with 10 iterations. Note that in every
iteration, all the boundary nodes will be removed.

Apart from the “degrowth” method, a random pruning of structures
was carried out by randomly removing some branch structures. In a real-
world scenario, after moving a segment of a branch, existing allometric
models are unable to detect biomass loss since tree parameters,
including height, DBH, and crown length, remain unchanged.

3.3. Allometric model development

The 100 felled trees were shuffled and divided into train and test sets,
in an 8:2 ratio. The felled tree data were then augmented to increase
data size. Each felled tree will generate 10 augmented trees; hence, the
entire dataset contains 1100 trees. The training phase of all machine
learning models utilized a 5-fold cross-validation to maintain robustness
and reliability. The testing dataset was unseen data for performing the
out-of-sample test to prevent overfitting.

For the parameters input in allometric model development, the
TreeQSM-extracted parameters were utilized. Table 1 summarises the
tree parameters that were used as predictors for trees’ AGB estimation,

Table 1
Tree parameters.

Parameter Table

Family Parameter family

Advanced parameter Basic parameter DBH
Tree Height (TH)
Crown Length (CL)
Crown Area (CA)
Trunk Length (TL)
Branch Length (BL)
Trunk Area (TA)
Branch Area (BA)
Crown Base Height (CBH)
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and they can be classified into family parameters, basic parameters and
advanced parameters.

This study adopts two approaches to develop the AGB estimation
model: (1) fitting the existing allometric models, and (2) developing
machine learning based allometric models. The first approach aims to at
assess the performance of the existing allometric models on local tree
data, while the second approach aims to enhance the AGB prediction
accuracy by leveraging machine learning algorithms.

3.3.1. Existing allometric model
Three published allometric models (Chave et al., 2005; Djomo et al.,
2010) were selected as candidate models.

Model 1:

In(AGB) = a+b In (H*p+DBH ?) 12)
Model 2:

In(AGB) = a + b[In(DBH)]* + ¢ In (H) + dIn (p) 13)
Model 3:

In(AGB) = a + b[In(DBH))> +c In (H+DBH ?) +d In (p) a4

These selected models applied logarithmic transformation and relied
on the same basic parameters listed in Table 1, including tree height (H),
diameter at breast height (DBH), and wood density (p). To evaluate the
performance of these models, all three models were fitted to the local
dataset using the ordinary least squares regression method, and the
goodness-of-fit and error will be assessed.

3.3.2. Machine learning model

In machine learning training, basic, advanced and family parameters
were employed. For the tree family, the one-hot encoding technique was
applied to these taxonomic parameters before machine learning
training. Furthermore, to evaluate the impact of different parameters on
prediction accuracy, three configurations with varying parameter
combinations were designed for training: (1) basic parameters, (2)
advanced parameters, and (3) advanced and family parameters. We
selected various machine learning algorithms, and the best-performing
algorithms were chosen as the final allometric model. Considering the
model inference stage in AGB estimation, it is challenging to obtain
wood density data, as the wood density value of the same species varies
with wood age, tree height, growth rate, etc. (Chave et al., 2009). Given
the main goal of this study is to use parameters extracted from LiDAR
model to predict tree AGB, wood density is excluded from the AGB
predictor variables.

Next, the selected machine learning algorithms are introduced and
explained.

a) Random Forest (RF)

Random Forest operates by growing numerous trees to increase ac-
curacy while reducing overfitting. Random Forest searches for the best
feature in the random data groups (Breiman, 2001). In random forest
training, bootstrap sampling is employed and each tree is trained on a
random subset of data. RF is effective in capturing non-linear relation-
ships in tabular data, while it features bootstrap mechanism and max_-
depth function to prevent overfitting. RF is a simple yet robust model
that establishes a resilient baseline for the study.

b) Gradient Boosting Tree (GBT)

Unlike Random Forest, Gradient Boosting Tree (GBT) grows trees
iteratively, and each new decision tree is trained to reduce the error of
the previous tree through optimizing the loss function (Friedman, 2001).
Apart from bagging models, including RF or decision trees, GBT is a
baseline algorithm in boosting models, where trees are grown sequen-
tially. GBT was employed to test the general performance of the boosting
tree model in AGB prediction.

¢) XGBoost (XGB)

XGBoost (Extreme Gradient Boosting) is an optimized machine
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learning model based on gradient boosting. Similar to GBT, XGB builds
trees to correct the error of the previous tree. It also enhances the
traditional GBT by adding Lasso and Ridge regularization to prevent
overfitting (Chen and Guestrin, 2016), avoiding the error induced by
significant outliers due to extremely large tree data.

d) LightGBM (LGBM)

LightGBM (light gradient boosting machine) is also an enhanced GBT
machine learning algorithm. LightGBM features histogram-based
learning, which involves data binning to increase training efficiency
(Ke et al., 2017). LGBM supports categorical features with integer input,
eliminating the need for one-hot encoding, which enables more efficient
training when considering the family parameters in this study.

Finally, Table 2 summarizes all six models to be developed in this
study.

3.4. Accuracy metrics

The model accuracy is evaluated by mean absolute error (MAE),
mean absolute percentage error (MAPE) and R? for goodness-of-fit.

Mean absolute error MAE measures the average magnitude of errors
in a prediction, while MAPE expresses the error relative to the true
value.

1¢ R
n;ly ¥il (15)
1y — 3

mAPE =~ Y1 100 (16)
ni= i

Where, n = number of predictions, y; = measured AGB for the i" prediction,
and y; = predicted AGB for the i observation

R? value (coefficient of determination), evaluates the goodness of fit
of a regression model.

_ SSresiduals

RP=1-="7222
SStutal

a7)
Where, SSiesiquais = sum of squared residuals and SSyq = total sum of
squares

4. Results and discussion
4.1. Tree parameters measurement by QSM

Table 3 summarizes the statistics of the extracted tree parameters of
all 100 trees. Basic parameters including tree height and DBH, displayed
a skewness value of around 0.5, indicating a slightly symmetrical dis-
tribution. On the contrary, the advanced parameters extracted by QSM
showed a larger positive skewness, exhibiting an asymmetrical distri-
bution. This suggests that on the same dataset, there are differences in
basic and advanced parameters in terms of distribution. The advanced
parameters extracted by QSM can inherit heterogeneous information
across the mixed-species dataset.

Next, 50 felled trees were randomly selected for evaluation by
assessing tree parameters extracted from QSM, including tree height,
DBH, and crown length. The QSM-measured metrics were compared

Table 2
Summary of models.

Final Models

Model 1 In(AGB) = a+ b In (Hxp«DBH ?)

Model 2 In(AGB) = a+ b[ln(DBH)|* + ¢ In (H) + din (p)

Model 3 In(AGB) = a+ b[ln(DBH)}* + ¢ In (H*DBH 2) + d In (p)
Model 4 MLpes; (basic)

Model 5 MLpes; (advanced)

Model 6 MLi,est (advanced, family)
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Table 3
Statistics of tree parameters.
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Metrics Tree parameters
Tree Trunk Branch Trunk Branch DBH Crown Crown Crown Length
Height (m) Length Length Area Area (m) Area Base (m)
(m) (m) (m?) (m?) (m?) Height
(m)
Min 3.05 0.29 0.00 0.02 0.00 0.02 0.05 0.51 0.00
Max 20.62 17.71 391.00 15.70 77.25 0.61 111.70 10.17 18.49
Mean 10.61 8.27 125.58 5.23 24.05 0.26 35.59 3.70 6.90
Median 9.99 7.92 101.54 4.82 21.04 0.25 29.40 3.34 6.54
Std 3.51 3.76 88.05 2.89 17.42 0.12 28.63 2.09 3.31
Q1 8.63 5.91 58.18 3.32 10.44 0.17 12.14 2.01 5.42
Q3 12.56 10.37 172.70 6.98 35.35 0.32 45.98 4.88 8.24
Skewness 0.56 0.67 1.03 0.82 1.04 0.49 1.06 0.88 1.13
against manual measurements from raw point-cloud tree model. Manual
measurement of tree metrics was performed by human annotation using AGB = exp (
the point-picking tools in CloudCompare, where tree dimensions (tree —1.803 — 0.976E + 0.976lIn(p) + 2.673In(D) — 0.0299[In (D)}z)

height, DBH, and crown length) were measured directly on the point-
cloud data. The scatter plots in Fig. 8 compare the QSM-extracted and
manual-measured tree parameters. The highest correlation was ach-
ieved with DBH (R? = 0.96), followed by the crown length (R? = 0.89)
and tree height (R*> = 0.89). For measurement of height and crown
length in raw point-cloud model, leaf and noises were taken into ac-
count, while QSM-extracted height and crown excluded the effect of leaf
points. Overall QSM-measured results showed a strong alignment with
the CloudCompare-manual measurement, providing promising and ac-
curate results for tree metrics measurement.

4.2. AGB measurement of felled trees

The AGB measurement results are presented in Table S3 of the
Supplementary Materials. The performance of AGB measurement is
determined by the quality of destructive sampling processing and the
accuracy of QSM. Since it is impossible to oven-dry the entire trees, we
compared the measured AGB of felled trees (obtained in this study) to
the estimated AGB of felled tree calculated by widely cited existing
allometric model. We select the two published allometric models,
identified as model A and model B, from Chave et al. (2014) to compare
the measured AGB derived in this study. This aims to validate our
measured trees’ AGB by checking the alignment with the
well-established model, ensuring that the results in this study were
consistent with existing methodologies. Eqs. (18) and 19 demonstrate
the selected model A and model B, and Fig. 9 compared the measured
felled tree AGB and model A, B predicted felled tree AGB.

Model A:

AGB = 0.0673 x pD?H*°7% 18
Model B:
R%:0.89 /./ 05 R?:0.96
16| MAE: 1.22 o o" MAE: 0.02
MAPE: 12.8% MAPE: 13.6%
14/ n:50 ’E‘O-“‘ n: 50
E ~
T 12| %oa
E 101 =
o 80.2
8
6/

6 8 10 12 14 16
Manual H (m)

0.2 0.3
Manual DBH (m)

19

Model A and B predicted AGB values indicated a moderate correla-
tion to the measured AGB, with R? = 0.61 and R? = 0.57 respectively.
Despite moderate correlations, typically high MAE values of 434.9 (kg)
and 549.43 (kg), and MAPE of 48.73 % and 67.79 % were observed in
Models A and B. The moderate correlation validated the credibility of
the measured AGB, while the high MAE value suggested that the existing
allometric models were not sufficiently accurate for the local dataset.

4.3. Accuracy assessment of models

The following Fig. 10 shows the results of model 1 to model 6. All
results of R?, MAE, and MAPE were calculated in the out-of-sample
testing. The left-most bar chart in Fig. 10 shows the results of model 1
— 3, which model 1 refers to Chave_1 (equation 12); model 2 refers to
Chave_2 (equation 13); model 3 refers to Djomo (Eq. (14)). Model 4 - 6
were machine learning training, and the results of all selected machine
learning algorithms were presented in the bar charts.

Table 4 summarizes the final results of the six models and presents
the best-performing machine learning algorithms for models 4 — 6.
Model 5 - 6, which utilized machine learning algorithms and advanced
tree parameters, had an overall better accuracy compared to model 1 —
3, which relied on existing allometric equations. Model 2 scored the
best-performing model among the three existing allometric models, with
R? = 0.52; MAPE = 53.97 %, while the remaining model 1 and 3 scored
R? = 0.52; MAPE = 60.83 %, and R?> = 0.53; MAPE = 56.40 %,
respectively. Best-performing machine learning algorithms for model 4,
model 5 and model 6 are Random Forest (R*> = 0.41; MAPE = 79.20 %),
LightGBM (R? = 0.79; MAPE = 42.59 %) and XGBoost (R? = 0.82; MAPE
= 40.70 %), respectively. The best-performing machine learning algo-
rithms were selected based on R? value and MAPE. MAE calculate the

R?:0.89
MAE: 1.02
MAPE: 17.7%

0.4 0.5 0 2 14

4 6 8 10
Manual CL (m)

Fig. 8. QSM vs manual measurement. (a) Tree Height; (b) DBH; (c) Crown Length.
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underestimation of AGB is observed in high AGB trees, and a slight
Z;ble‘:. del it overestimation is exhibited in low AGB trees. Most data points are
omefric mode’s resu concentrated in the AGB range of 0 — 1000 kg, indicating that high AGB
Allometric Models  Best ML algorithms  R? MAE (kg)  MAPE (%) tree data is insufficient for the development of AGB prediction model.
Model 1 - 052 32436 60.83
Model 2 - 052 309.10 53.97 4.3.1. Parameterization of existing allometric model (Model 1 — 3)
Model 3 - 053 310.75 56.40 The following displays the results of the existing allometric models
Model 4 RF 0.41  398.09 79.20 dels 1 ized usi local d
Model 5 LGBM 079  237.70 42.50 (models 1-3), parameterized using a local dataset.
Model 6 XGB 0.82 21437 40.70 Model 1:
In(AGB) = 2.364 + 0.471 In (H+ p+DBH ?) (20)
absolute differences between measured and predicted values, while .
. . Model 2:
MAPE calculate the absolute percentage differences. In selecting the
best-performing models, MAPE weighs more than MAE since MAE In(AGB) = 2.398 + 0.912[ln(DBH))* + 0.456 In (H) + 1.06In (p)  (21)
disproportionately penalizes errors given the wide ranges of AGB values. del 3:
MAPE normalizes error relative to the measured value, making this more Model 3:
suitable for interpreting models’ performance on AGB prediction. In(AGB) = 2.574 + 0.894(In(DBH)]* + 0.419 In (H+DBH 2)
Fig. 11 compares the model-predicted AGB and measured AGB,
+0.182 In (p) (22)

Fig. 11 (a - c) are scatter plots of existing allometric models (model 1 —
3) and Fig. 11 (d - f) are scatter plots of the best-performing machine
learning models (model 4 — 6). By assessing the scatter plots, an

Models 1, 2, and 3 displayed similar R? and MAPE values, as shown
in Table 4. A R? value of 0.52-0.53 represents a relatively weak
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Fig. 11. Scatter plots comparing model-predicted AGB and measured AGB, (a) model 1; (b) model 2; (c) model 3; (d) model 4 [Random Forest]; (e) model 5
[LightGBM]; (f) model 6 [XGBoost]. The black line, red line, and red shaded area represent the 1:1 reference line, regression line, and 95 % confidence interval for the

regression line, respectively.

correlation, indicating that the existing allometric model predicts
approximately 50 % of the allometric relationship. Our results indicate
that applying existing global allometric models to a specific local dataset
led to poor performance. Developed using large and global datasets,
these existing allometric models perform well across universal datasets
(Chave et al., 2005). However, the specific local variability exhibited in
our local dataset cannot be well captured by the existing models, as trees
in localized regions exhibit complex variabilities in AGB, wood density,
and health conditions (Temesgen et al., 2015). Our finding supports the
need for site-specific allometric models (Yuen et al., 2016; Yang et al.,
2022) to enhance the accuracy of local AGB estimation.

Overall, the accuracy results suggested that the existing allometric
models failed to predict AGB accurately, and they are insufficient to
capture the complexity of tree structure in the local tree data. To sum-
marize, the existing allometric models are limited by their non-localized
application and the simplicity that results in poor performance on local
datasets. In order to capture non-linear relationships between tree
physical parameters and AGB in Hong Kong, enhanced methods of
machine learning and advanced parameters implementation are
required to handle the complexity of local trees.

4.3.2. Machine learning based allometric model (Model 4 — 6)

Model 4 — 6 employed machine learning algorithms to predict AGB
using advanced parameters. Model 4 used only basic parameters (DBH
and tree height), in order to mimic the existing allometric model.
Eventually, model 4 performs worse than model 1 — 3 (utilized simple
linear regression), in terms of R? (0.41) and MAPE (79.20 %).

When only basic parameters are available, existing allometric models
remain a more robust choice for AGB prediction. Basic parameters,
including tree height and DBH, exhibit a strong linear relationship with
AGB (Liu et al., 2018). Hence simple linear regression is more suitable
for AGB prediction when using basic parameters, as it generalizes better
in small and limited features datasets, while machine learning models
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are more prone to overfitting as the depth of trees increase (Van der
Putten and Van Someren, 2004; Roelofs et al., 2019).

Given the poor accuracy in existing allometric models, more
advanced tree parameters are required to support the training of ma-
chine learning algorithms. Comparing model 4 — 6, the performance of
model 4 is limited by the insufficient input predictors. The superior
performance of models 5-6 over model 4 suggested that machine
learning models require richer predictors to fully leverage the non-linear
modelling capabilities for AGB prediction. This finding also reflects the
contribution of advanced parameters to enhance AGB prediction accu-
racy and highlights the limitations of basic parameters, which existing
allometric models commonly rely on. By comparing model 5 - 6 and
model 1 - 3, a huge enhancement in accuracy of model 5 and 6 is
observed in terms of R? and MAPE value, with R? value reaching over
0.8 and MAPE reduced from range of 53 — 79 % in existing allometric
models to 40 — 43 % in model 5 and 6. Model 5 — 6 are machine learning
algorithms trained with advanced parameters listed in Table 1. This
suggests that AGB variations in local trees can be well-captured by
integrating advanced parameters and machine learning algorithms.

By comparing model 5 and 6, model 6 demonstrated a superior ac-
curacy of R% = 0.82 and MAPE = 40.70 % compared to model 5's R? =
0.79 and MAPE = 45.59 %. This indicated that the inclusion of “tree
family” parameters enhanced the modelling accuracy. Tree family pa-
rameters could conceal trees’ taxonomic characteristics that exhibit
family-specific growth dynamics, wood densities, or intrinsic structure
that contribute to the accuracy of AGB estimation (Mensah et al., 2016).
To summarize, the improvement on model 6 accuracy supports a
data-driven finding that tree family parameter embodies meaningful
value in enhancing AGB prediction accuracy. As most existing allometric
models are stratified as either mix-species or species-specific models, the
superior performance in model 6 provide a strong foundation for
developing allometric model that enables taxa-inputs.
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4.4. Application of advanced parameters

Correlation analysis was conducted on advanced parameters, and the
results are presented in Fig. 12. The correlation was computed using the
Pearson correlation coefficient, where 1 represents a perfect positive
correlation, 0 indicates no relationship, and —1 refers to a perfect
negative correlation (Sedgwick, 2012). By assessing the bottom row in
the heatmap, all parameters displayed a positive correlation to AGB,
except crown base height (CBH). This is reasonable as the increase of
CBH is followed by the decrease of crown volume, which results in the
decrease of AGB. For the basic parameter, tree height (TH), scored a
relatively low correlation (0.19) among all parameters. Among all pa-
rameters, branch area (BA) calculated by QSM scored the highest cor-
relation to AGB, followed by DBH, trunk area (TA), branch length (BA)
and crown area (CA). The calculation of these important parameters,
except DBH are enabled by QSM reconstruction, and this underscores
the significance of QSM application in allometric model development.

The importance of each advanced parameter was assessed by per-
mutation importance and the result is displayed in Fig. 13. Across all
models, DBH, or a feature comprised of DBH scored the highest
importance, this indicated that DBH is the most important parameter in
AGB estimation. The aforementioned advanced parameters including
trunk area (TA), branch area (BA), and branch length (BL) contribute a
vast proportion of importance among all parameters in models 5 and 6.

Surprisingly, tree height (TH) achieved negative importance in
models 2, 3, and 5, indicating that the tree height parameter could harm
the model’s performance. A possible reason for this could be the mul-
ticollinearity between tree height and other parameters. According to
Fig. 12, tree height is highly correlated to trunk length (TL) and crown
length (CL), this might reduce the importance of tree height as tree
height information is hidden in trunk length and crown length. That
said, the importance of trunk length and crown length was not signifi-
cantly high according to Fig. 13, and the negative importance of tree
height was also achieved in model 2. The tree condition in the local
study area is also one of the factors that reduces the importance of tree
height. In Hong Kong, Arecaceae and Moraceae are two common tree
families, the former can grow very tall with no branches (Edelman and
Richards, 2019) and the latter can grow dense branches (Primack et al.,
1985). Moreover, other research discovered that the inclusion of tree
height in the allometric model led to an overestimation of AGB, while
the exclusion of tree height led to an underestimation (Goodman et al.,
2014). Overall, these findings challenge the parameter tree height as a
fundamental predictor in existing allometric models. When more
advanced parameters are available, tree height is not the most reliable or
impactful parameter for predicting AGB. Furthermore, the tree family
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Fig. 12. Correlation heatmap of tree parameters and AGB.
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contributed a relatively small amount of importance compared to other
predictors. However, according to Fig. 10, the XGBoost model from
model 5 to model 6 recorded an increase in R? value from 0.78 to 0.82.
This data-driven result supports the importance of family parameters.
The reason for the low importance of family is that the family-inherited
ecological traits of trees could be partially explained by other features
such as DBH.

Overall, while DBH still remains the most important AGB predictor,
the importance and correlation analysis revealed that the most advanced
parameters displayed relatively comparable importance, indicating that
both basic and advanced parameters exhibit complementary roles in
developing accurate allometric models for local region. To conclude,
this highlights one of the study’s key contributions: integrating LiDAR
and QSM-measured advance parameters, which enables the capture of
detailed structural variability of trees and hence enhances AGB esti-
mation accuracy.

4.5. Significance of tree data augmentation

To assess the effectiveness of the tree data augmentation method, we
compare the best-performing machine learning based allometric model
(model 6) and the existing allometric model (model 2). Model 6 is
trained with the augmented tree data while model 2 is the existing
allometric model developed by Chave et al. (2005). Both
model-predicted AGB values are plotted against QSM-generated volume
and DBH, while the results are displayed in the 3D scatter plot in Fig. 14.
In the 3D scatter plot, distinct colours were assigned to the tree data to
represent each tree family. A 3D linear regression surface was fitted onto
the data point for interpretation and comparison. In Fig. 14b, for trees
with same DBH, the predicted AGB remains unchanged as QSM-derived
volume increase. Given the volume and weight of the tree, a positive
correlation is expected. However, it is found that the existing allometric
model approach fails to handle complex tree shapes. Assume a scenario
that multiple tree species with the same DBH, allometric model that
trained by conventional sampling technique will fail to model AGB
accurately. The proposed tree data augmentation method in this study
enhanced the limited dataset of felled trees. In Fig. 14a, for trees with
same DBH, QSM-derived volume and predicted AGB displayed a positive
correlation observed in the 3D regression plane. In the augmentation
stage, synthetic trees were generated by trimming branches, thus
simulating as many possible tree shapes of a single tree at the age of
felling day. Consider a scenario in which a tree branch was shortened or
trimmed off due to general tree maintenance, existing allometric models
were unable to detect such AGB reduction as the basic dendrometric
parameters of a tree before and after trimming remained unchanged.
Existing allometric models were developed by collecting felled trees,
and directly relied on measured DBH, tree height and AGB (Chave et al.,
2005, 2014). The direct assumption of a linear relationship between
basic parameters and AGB limits the performance of existing allometric
models in local datasets, as trees with similar DBH exhibit different AGB
due to various factors, including tree morphology or species variation.
The comparison in Fig. 14 underscores the significance of data
augmentation for AGB prediction. Without being developed by the
augmented data, the existing allometric model is unable to detect subtle
AGB changes resulting from minor tree structural changes.

The tree data augmentation method is a key innovation of this study.
By systematically trimming branches from a tree’s point cloud models,
synthetic trees were generated, simulating a wide range of possible tree
shapes for the same DBH, effectively enhancing the structural diversity
of the training data. The augmentation method addresses the existing
allometric model’s limitation, which is the inability to capture AGB
change outside the dimension of DBH and height. The augmented tree
data resolves this limitation by systematically simulating branch prun-
ing scenarios, enabling the model to predict minor AGB changes.
Moreover, the tree augmentation enhanced the structural diversity of
the tree data, which mitigates the challenge of limited tree data. By
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Fig. 14. (a) 3D scatter plot derived by model 6 predicted AGB; (b) 3D scatter plot derived by model 2 predicted AGB.

introducing enhanced structural variation to the tree data, the tree data
augmentation method enables the trained model to reflect better the
complexity of the local real-world trees’ AGB.

5. Conclusion

The study presented an innovative workflow for estimating tree AGB
by leveraging LiDAR technology with machine learning algorithms.
Given the scarcity of available data for AGB modelling, the study pro-
posed a tree data augmentation method to enhance the model’s gener-
alization and accuracy. Then, tree reconstruction by TreeQSM was
carried out to retrieve advanced tree dendrometric parameters. In model
development, it was found that the existing allometric equations did not
fit the local dataset well. The best AGB estimation model was found to be
the XGBoost, with the input of the advanced QSM-derived parameters
and tree family parameters, scoring R?> = 0.82 and MAPE = 40.70 %.
Compared to the previous allometric model developed by Sarker (2010)
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in Hong Kong, this study encompassed 100 trees (17 species), whereas
Sarker (2010) collected 75 trees (14 species). Instead of relying on
manual tree measurement, this study further exploits LiDAR technology
by applying TreeQSM and proposing a tree data augmentation method
to address the limitations of traditional destructive sampling techniques.
For the development of the allometric model, Sarker (2010) and other
related research relied on simple linear regression. This study proposes a
local AGB prediction model using machine learning algorithms that
utilize augmented data and detailed QSM parameters. Finally, the pro-
posed model incorporates the tree taxa category, which allows broader
ecological applicability with higher generalization. Overall, the study
combines city-scale tree data collection with LiDAR and machine
learning algorithms, surpassing the capabilities of the existing allome-
tric models to achieve accurate AGB estimation in the local region.
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