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A B S T R A C T

Global warming represents a critical challenge globally, while tree carbon sequestration is essential for achieving 
carbon neutrality. The existing global allometric models face challenges in accurately modelling local trees’ 
biomass. To develop a localized allometric model using a small dataset, this study proposes an innovative 
framework for estimating tree above-ground biomass (AGB) that involves local tree felling data collection, Light 
Detection and Ranging (LiDAR) implementation, and the development of a machine learning-based allometric 
model. During the data collection period, 100 trees were felled in Hong Kong from March 2023 to April 2024, 
encompassing 31 tree species and 17 tree families. Point-cloud models of the felled trees were collected using a 
LiDAR backpack. Each felled tree’s AGB was measured by integrating point-cloud technology and oven drying of 
samples. A data augmentation method was developed with a proposed tree point-cloud ‘degrowth’ algorithm to 
address the challenge of data limitation in allometric model development. The allometric models in this study 
were trained using advanced tree parameters measured by TreeQSM and tree family parameters. The best- 
performing allometric model developed by XGBoost, scored an accuracy of R2 = 0.82, mean absolute percent
age error (MAPE) = 40.70 %, and mean absolute error (MAE) = 214.37 kg. To summarize, this study enhanced 
AGB estimation in the local region by incorporating LiDAR, tree data augmentation, and machine learning for 
allometric model development.

1. Introduction

Global warming has reached a critical stage, with unprecedented 
record-breaking temperatures and catastrophic natural disasters occur
ring worldwide. The global average temperature in 2024 was estimated 
to be 1.54 ± 0.13 ◦C above the preindustrial average, marking the first 
year to surpass the 1.5 ◦C threshold (WMO, 2024). As a result, Hong 

Kong’s Climate Action Plan 2050 was enacted, aiming to achieve carbon 
neutrality by 2050 (Carbon Neutrality and Sustainable Development, 
2021). The main strategies in decarbonization include emission reduc
tion and clean energy. For vegetation, tree carbon plays a pivotal role in 
achieving carbon neutrality by offsetting carbon emissions through 
carbon sequestration (Chen, 2021). Forests serve as substantial carbon 
sinks by absorbing and storing carbon in trees. Carbon sequestration 

Abbreviations: MAE, Mean absolute error; MAPE, Mean absolute percentage error; R2, Coefficient of determination; XGB, Extreme gradient boosting (XGBoost); 
AGB, Above-ground biomass; LiDAR, Light Detection and Ranging; DBH, Diameter at breast height; RF, Random forest; GBT, Gradient-boosted trees; LGBM, Light 
Gradient Boosting Machine (LightGBM); QSM, Quantitative structure model; DW, Dry weight; TH, Tree height; CL, Crown length; CA, Crown area; TL, Trunk length; 
BL, Branch length; TA, Trunk area; BA, Branch area; CBH, Crown base height.
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involves photosynthesis, in which tree leaves absorb CO2 from the at
mosphere and store the absorbed carbon as tree biomass (Toochi, 2018). 
Therefore, estimating tree biomass becomes crucial in assessing the 
carbon stock of a tree. Tree biomass is a function that can be explained 
by wood volume, diameter, height, or other physical parameters. In tree 
above-ground biomass (AGB) estimation, allometric models are often 
employed to quantify biomass by inputs of tree physical parameters 
(Vieira et al., 2008). Various studies have developed allometric models 
for the local research areas (Chave et al., 2005; Chave et al., 2014; 
Djomo et al., 2010).

Existing methods in AGB estimation first conduct destructive tree 
harvesting and estimate the entire tree volume and dry weight by fresh 
weight to dry weight ratio or water displacement methods. Then these 
ground truth data are correlated with general tree parameters, including 
tree height, diameter at breast height (DBH), wood density by expo
nential model, and finally, constructed an allometric model (Chave 
et al., 2005, 2014; Djomo et al., 2010; Mugasha et al., 2016; Segura and 
Kanninen, 2005). Existing allometric models can mainly be stratified 
into mix-species and species-specific models, while the mix-species 
model has higher generalizability (Chave et al., 2014, 2005; Djomo 
et al., 2010; Sarker, 2010) and the species-specific model focuses on 
enhancing prediction accuracy for woodlands with specific species type 
(Sarker et al., 2013; Magalhães et al., 2021; Mulatu et al., 2024). A 
limitation in building allometric models is striking a balance between 
generalization and accuracy. Species-specific allometric models are built 
with higher accuracy for assessing homogeneous habitats, but they 
sacrifice applicability in high biodiversity regions (Van Wolputte, 2024). 
Tree species categories must inherit specific patterns in carbon stock 
levels (Kaul et al., 2010). Developing a model that incorporates the 
strengths of both mix-species and species-specific approaches can offer a 
more robust solution. To address this issue, an AGB estimation model 
that allows categorical input, including tree species or tree family, was 
required to enhance the applicability across diverse tree species.

Despite the high applicability of the mix-species allometric model, 
the reliance on simple exponential models introduces uncertainties in 
AGB estimation. The popular allometric model, developed by Chave 
et al. (2014), utilized over 4000 trees globally. This allometric model, 
built using the log-log regression approach, can effectively capture 
general and broad patterns across the large global dataset. Yet, the 
ability to capture homogeneous characteristics in small datasets remains 
uncertain. Most AGB prediction studies develop allometric model 
through regression or fitting on simple power law functions, linear or 
polynomial functions (Sileshi, 2014). When studying local habitats with 
mixed tree species, a more advanced approach should be explored to 
capture more complex characteristics of localized trees. Machine 
learning models have been employed in certain AGB estimation studies, 
offering an advantage over simple regression methods (Roy et al., 2024; 
Wongchai et al., 2022). Various machine learning algorithms are 
available for regression problems, and models can be stratified into 
simple models, K-Nearest Neighbors (KNN), tree-based models, and 
support vector machine (SVM). Simple models include linear, ridge, and 
lasso regressions that capture linear relationships between predictors 
and targets. These simple models were widely used in previous allo
metric model studies to predict AGB using a few simple variables, 
including DBH and tree height. However, these simple models failed to 
capture the nonlinear variations between tree parameters and AGB in a 
small localized tree dataset (Roy et al., 2024). The KNN model captures 
nonlinear relationships and creates predictions by averaging the output 
values in the feature space (Kohli et al., 2020). However, KNN, which is 
commonly used as an outlier detection algorithm, can be highly sensi
tive to outliers (Chen et al., 2010) if extremely large or small trees are 
collected in a small, localized tree dataset. SVM output predictions by 
using support vectors and kernels to develop a function that best fits the 
epsilon (Awad et al., 2015). However, SVM likely overfits data with a 
small number of samples and a large number of variables (Han and 
Jiang, 2014), and training of SVM requires careful choice of kernels and 

advanced hyperparameters tuning. The tree-based model includes de
cision trees, random forest (RF), gradient-boosted trees (GBT), XGBoost 
(XGB), and LightGBM (LGBM). Tree physical parameters can be pre
sented in a tabular format, and tree ensemble models, such as XGB and 
RF, are highly recommended for regression and classification problems 
on tabular data (Grinsztajn et al., 2022). These tree-based machine 
learning algorithms require less computation and tuning time, and they 
even outperform various deep learning models (Shwartz-Ziv and Armon, 
2022). For allometric model building, one of the challenges is the 
limited data size due to the difficulties associated with large-scale tree 
felling. Tree-based machine learning algorithms have been proven to 
work well with small datasets (Treboux et al., 2018). Based on these 
considerations, this will select ensemble tree models, including RF, GBT, 
XGB, LGBM, for the development of allometric model.

Another major challenge in developing allometric model is simple 
parameterization and limited tree data for training (Shi et al., 2013). 
Tree data acquisition involves manual tree measurement and destructive 
sampling, both of which are resource-demanding activities that lead to 
data scarcity. Existing allometric models estimate AGB by parameters 
such as DBH and tree height, which are easily retrievable by human 
measurement. For AGB estimation in local regions with high biodiver
sity, over-simplified parameters fail to accurately capture tree 
morphological features, which negatively impacts the performance of 
the allometric model. Given these limitations, an enhanced data 
collection method is required to generate sufficient data samples and 
acquire more complex tree parameters. Individual tree AGB estimations 
have been conducted in different scenarios, including estimation on the 
terrestrial level by manual measurement (Chave et al., 2005; Djomo 
et al., 2010), on terrestrial level using LiDAR technology (Calders et al., 
2015; Chave et al., 2019). To address the problem of data scarcity, 
LiDAR technology can serve as a solution to replace manual measure
ments and extensive destructive sampling of trees. LiDAR point-cloud 
can capture the 3D geometry of an individual tree, while the 3D quan
titative structure models (QSM) can reconstruct the 3D tree model, 
providing more complex tree parameters instead of only DBH or tree 
height (Lau et al., 2018). To address the data scarcity problem, the data 
collection approach should adopt LiDAR modelling to enable tree data 
augmentation and extraction of complex tree parameters.

Furthermore, the only local (Hong Kong) allometric model was 
developed by Sarker (2010), using 75 trees and 13 different species. 
Therefore, there is a pressing need to develop a new allometric model 
that incorporates a wider range of species and LiDAR technologies in 
order to provide a tool for tree AGB estimation in Hong Kong.

In summary, the development of existing allometric models faces 
several challenges, including data scarcity, reliance on simple modelling 
approaches, limitations to either species-specific or mixed-species 
models, reliance on simple manually measured parameters, and the 
absence of a local model specifically for the study region. To address 
these issues, this study proposes the use of LiDAR technology for tree 
data augmentation and advanced measurement of tree parameters, 
thereby constructing an enhanced machine learning-based allometric 
model that enables the input of tree taxa variables for AGB estimation. 
The specific objectives are as follows: 

• Developing an integrated framework that combines laboratory oven- 
drying of wood samples and tree point-cloud models to address the 
infeasibility of oven-drying entire trees, enabling accurate mea
surement for above-ground biomass (AGB) of felled trees.

• Developing a point-cloud processing algorithm for tree data 
augmentation to address the limited data challenge.

• Building machine learning-based allometric models that incorporate 
tree family parameters and advanced physical parameters for precise 
AGB estimation in Hong Kong’s diverse tree species.
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2. Study area and data collection

2.1. Study area

This research took place in Hong Kong, located in southeast Asia, 
spanning from approximately 22◦08′ and 22◦35′ North latitude and 
113◦49′ and 114◦31′ East longitude (Lands department, 2024). Hong 
Kong is characterized by a humid subtropical climate, influenced 
heavily by the South Asian monsoon (Lam et al., 2022). The average 
temperature ranges from 16 ◦C in January, the coldest month, to about 
29 ◦C in July, the warmest month (Cheung and Hart, 2014). Such cli
matic conditions are conducive to a rich diversity of vegetation and 
affect the growth patterns and biomass accumulation in trees. Hong 
Kong’s vegetation is predominantly subtropical. The natural forests are 
largely secondary and have regrown after previous agricultural and 
urban development use (Zhang et al., 2024).

2.2. Tree felling and samples collection

Tree felling operations were conducted predominantly in urban 
areas of Hong Kong. Professional tree maintenance personnel felled the 
tree in parts, including twigs, branches, and trunks. Felled tree parts 
were further trimmed into sample slices by chainsaw and immediately 
sealed in sample bags upon felling to prevent water loss or contamina
tion. All types of trees in the range of healthy to unhealthy, leaf-on to 
leaf-off, were harvested and collected for this study. Collections of trees 
include roadside trees, slope trees, estate trees, garden trees, and also 
forest trees from around Hong Kong (Fig. 1).

Tree sampling was conducted from March 2023 to April 2024, 
encompassing a total of 100 trees, which represented 31 tree species and 
17 tree families. Three types of samples per tree were collected, 
including the trunks, branches, and leaves, as shown in Fig. 2. Slices of 
the trunk and branches were collected using a chainsaw on the felled 
tree. If available, we typically collected 3 slices of trunks (1 to 3 cm 
thick), 5 branch samples, and 1 bag of leaves. Generally, the trunk 
samples were retrieved in the wood part that was below the first tree 
fork.

According to the Hong Kong Biodiversity Information Hub, the 
dominant tree families in Hong Kong as of 2022 include Euphorbiaceae, 
Sapotaceae, Moraceae, Sterculiaceae, Myrtaceae, Fagaceae, Lauraceae, and 
Theaceae. Six of the listed families (75 %) are covered in the 17 families 
collected for this research. Table S1, S2 in the Supplementary Materials 
shows the species and families of the collected trees.

2.3. Mobile laser scanning

LiDAR technology is considered an accurate solution for retrieving 
biophysical attributes of vegetation (Xu et al., 2021). Before the trees 
were felled, mobile laser scanning was performed by surrounding the 
tree in 360 degrees using a LiDAR backpack. As collecting the entire tree 
for AGB estimation was not available, we implemented mobile laser 
scanning to obtain the trees’ 3D structure models. In this study, LiDAR 
surveys were conducted using the GreenValley LiBackpack DGC 50 
backpack laser scanning system, which features Global Navigation Satel
lite System (GNSS) and Simultaneous Localization and Mapping (SLAM) 
technology, providing 1 cm + 1 ppm positioning accuracy and a point 
cloud with +/- 3 cm relative accuracy. Max ranging distance is up to 100 
m with a scanning rate of 600,000 pts/s, enabling it to penetrate and 
capture tree top information (Figs. 3–7).

3. Methodology

This study proposes an innovative framework for developing an 
allometric model in Hong Kong. First, data collection was conducted 
using destructive sampling and backpack laser scanning of trees. Next, 
the aboveground biomass (AGB) of felled trees is measured by 
combining the methods of point-cloud processing and laboratory pro
cessing. The former involves calculating felled tree volume, while the 
latter includes oven-drying and measuring dry weight (biomass). Then, 
tree data augmentation and quantitative structure model (QSM) gen
eration are conducted to enlarge the data size and extract detailed tree 
parameters, respectively. The measured tree AGB and extracted tree 
parameters were used to develop the allometric models. Finally, vali
dation and analysis were performed to evaluate the performance of the 

Fig. 1. (a) Map showing the tree felling locations around Hong Kong, (b, c, d, e) tree felling site photos.

Fig. 2. Collection of tree samples.
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Fig. 3. (a). LiDAR backpack; (b). LiDAR backpack survey; (c). Tree felling practice.

Fig. 4. Flowchart diagram of overall methodology.

Fig. 5. Implementation of medoids.

Fig. 6. (a) Raw point-cloud; (b) graph connection; (c) skeleton model.
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developed allometric model.

3.1. AGB measurement of felled trees

In this section, the AGB of each felled tree is measured. After the tree 
samples were collected, they were oven-dried at 50 degrees Celsius for 
two weeks to remove all moisture. The weight of the samples after oven 
drying refers to dry weight (DW), and the sample’s DW is equal to the 
sample’s biomass (Parresol, 1999). Apart from measuring the samples’ 
biomass, the samples’ volume is calculated by measuring the samples’ 
thickness and diameters.

Next, the tree point-cloud model of the felled tree is input into the 
software TreeQSM, which calculates the entire tree volume. TreeQSM 
reconstructs the quantitative structure model (QSM) of the felled trees 
from the point-cloud data. A QSM is composed of cylinders to capture 
the topology, geometry, and volume of tree’s wood structure 
(Raumonen et al., 2013). The TreeQSM is open-source software with 
constant updates in version, and the performance of TreeQSM in metrics 
extraction was explained in Raumonen et al. (2013). With TreeQSM, the 
entire tree volume, including trunk volume and branch volume can be 
measured.

Once the sample’s volume, sample’s biomass, and entire tree volume 
are calculated, the entire tree above ground biomass (AGB) can be 
measured. The entire tree AGB is calculated as the sum of trunk and 
branch biomass using Eq. (2), where density is derived from the ratio of 
sample biomass to sample volume (Eq. (1)). 

trunk density =
sampletrunk biomass
sampletrunk volume

;

branch density =
samplebranch biomass
samplebranch volume

(1) 

AGB = trunk volume × trunk density + branch volume × branch density
(2) 

3.2. Tree data augmentation by ‘degrowth’

In a local region with high tree species diversity, trees’ volume can be 
different even though both trees have the same height and DBH due to 
local tree species richness and structural variability (Kunz et al., 2019). 

Addressing this issue is hindered by the fact that there is a limited 
amount of felled-tree data. Given that real-world data is insufficient, we 
propose a tree ‘degrowth’ method to generate a substantial training 
dataset by synthesizing tree data to create a robust model.

Tree growth can be mainly stratified into apical growth and radial 
growth (Wilson, 2000), and apical growth is focused on data augmen
tation in this study. We propose geometrically shrinking the point-cloud 
model of the felled tree apically, and virtual trees can be extracted at 
certain intervals during the shrinking process. Tree allometric model 
describes the relationship between tree AGB and dendrometric param
eters. Existing allometric models are highly data-dependent and require 
substantial datasets for accurate predictions (Roxburgh et al., 2015). 
Augmented trees enable better generalization to unseen tree data and 
enhance the diversity of training dendrometric parameters. Regarding 
the apical degrowth method, we first assume apical growth of tree 
biomass occurs at the tips of branches and trunk, contributing to lon
gitudinal growth.

3.2.1. Mean shift segmentation
The initial step involves transforming scattered point-clouds into 

meaningful 3D structures by generating tree nodes that emulate physical 
tree structures. The mean-shift clustering algorithm is applied and this 
iterative clustering algorithm does not require a pre-set number of 
clusters, and the level of clustering is defined by the bandwidth 
parameter σ (Daghigh et al., 2022). To initialize, assume the tree 
point-cloud = {x1, x2, …, xn}, a Gaussian function G was selected for the 
kernel as shown in (Eq. (3)) (Wang and Wong, 2023). To enhance the 
mean-shift clustering performance, a decaying bandwidth σh was used. 
For every tree point xi, m(xi), which is the mean of all points weighted by 
Gaussian kernel within the bandwidth radius was calculated. Next, xi 
was translated to computed m(xi), and this process iterates until 
convergence. To avoid over-clustering in the trunk region, the band
width should be set to a size similar to the DBH. Conversely, a smaller 
bandwidth should be set to preserve finer details in a small branch 
(tree-top) region. Hence, the bandwidth should vary along the height to 
establish a suitable searching range, and the bandwidth setting is shown 
in (Eq. (4)). 

Fig. 7. Apical ‘degrowth’ with 10 iterations.
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m(xi) =

∑
xj∈N(xi)

xjG
(
‖

xj − xi
σ ‖2

)

∑
xj∈N(xi)

G
(
‖

xj − xi
σ ‖2

) − x (3) 

σh

{
σmax ≈ DBH

σmin = 0.01 (default) (4) 

3.2.2. Wood leaf separation
Next, leaf points are removed to extract only the trunk and branch for 

precise AGB estimation. We adopted the graph-based wood-leaf sepa
ration (GBS) algorithm proposed by Tian and Li (2022). After per
forming mean-shift clustering in the previous step, we adopted the GBS 
method for initial and final wood points extraction through the source 
codes provided by (Tian and Li, 2022). Finally, the extracted wood 
point-cloud is input into the TreeQSM for parameter extraction.

3.2.3. Tree node generation
Mean-shift clustering is a centroid-based clustering algorithm, and 

this enables the estimation of local maxima where density is highest 
(Carreira-Perpinán, 2015). However, when dealing with large datasets, 
the computed mean-shift centroid can fall outside the classified cluster. 
This occurs when kernel bandwidth is incompatible with scenarios such 
as noisy or irregularly shaped clusters. Out-of-boundary centroids could 
be found in tree forks or turning regions, where non-convex-shaped 
clusters typically dominated. To address this, out-of-boundary cen
troids were first detected and identified; then, a medoid is implemented 
to replace these out-of-boundary centroids. In the mean-shift-generated 
cluster, the cluster’s medoid is the point that has minimal average 
dissimilarity to other data points within the cluster (Kaur et al., 2014). 
This ensures that the generated tree node accurately reflects the tree 
morphology, as the medoid is always the actual point within the clus
ter’s point set.

3.2.4. Tree skeleton construction
Following the tree node generation, nodes were interconnected by 

edges to construct tree edge graph. For every node, neighbouring node 
points are identified and connected by edge. A varying searching radius 
is applied across different node points (Eq. (5)). The searching radius 
was defined to be slightly higher than the bandwidth parameter in 
previous mean-shift clustering. This adjustment was made to ensure the 
formation of meaningful connections by linking consecutive nodes, 
while simultaneously preventing over-connections that could compro
mise the tree’s morphological structure. σ is the bandwidth parameter 
and c is the searching buffer. The buffer c will adjust the complexity of 
the graph connection, while c was defaulting as 0.5 m for most tree data. 

searching radiusnode i = σh + c (5) 

After constructing the tree graph by connecting nodes with edges, 
the graph is filtered by pruning excess edges to form a tree skeleton 
model. The skeleton construction process was initiated by registering 
the root node (Eq. (6)), which was identified as the node point with the 
minimum z value. For every node point, the shortest path distance along 
the connected edges to the root node was computed. Next, delete the 
edges that the computed shortest paths had never passed. Most of the 
redundant edges were filtered in this step, generating a preliminary tree 
skeleton model. 

noderoot = node[min(z)] (6) 

At this stage, certain edges may still be incorrectly connected, con
tradicting the original tree structure. Numerous studies have proposed 
sophisticated algorithms and solutions for constructing tree skeleton 
models (Li et al., 2022; Cárdenas et al., 2022; Livny et al., 2010). Yet it 
remains challenging for a single algorithm to handle diverse tree types. 
Rather than further refining the skeleton construction algorithm, it is 
proposed to reinput the original tree point-cloud for final tree skeleton 

refinement. The preliminary skeleton is overlaid on the original point 
cloud; this allows for a straightforward way to detect falsely connected 
edges. To remove such edges, a searching radius that is perpendicular to 
the edge is established for every edge, with a radius value that varies 
among edges (Eq. (8)). For edgei, a group of points within the searching 
radius are defined as point-seti (Eq. (9)). Next, edgei is divided into n 
segments (usually n = 5) of equal length (Eq. (10)). Then project all the 
points in pointseti to edgei, if the middle segment of edgei record points’ 
projection, edgei is retained, otherwise it is deleted (Eq. (11)). The tree 
skeleton is then constructed for further 3D tree modelling. 

shortest path distance di = d( nodei, noderoot) (7) 

searching radius of edge ei = ri (8) 

pointseti = {pi|distance(pi, ei) ≤ ri} (9) 

ei = {Si(1), Si(2), Si(3), Si(4), Si(5)} (10) 

retain ei =

{
true, if any points from pointseti project onto Si(3)

false, otherwise (11) 

The following figure demonstrated the skeleton generation:

3.2.5. Tree augmentation
With the tree skeleton model, boundary nodes are defined as nodes 

that are connected to only one edge, except the base root node. Next, the 
degrowth is activated by deleting the first boundary nodes, resulting in a 
1st updated skeleton model. Then, the detection and removal of 
boundary nodes on the newly updated skeleton model iterate. Define 
iteration number = n, and n updated skeleton models are generated. 
Augmented tree point-cloud models and QSMs can be generated with 
these updated skeleton models. The following figures demonstrate only 
the apical degrowth process, with 10 iterations. Note that in every 
iteration, all the boundary nodes will be removed.

Apart from the “degrowth” method, a random pruning of structures 
was carried out by randomly removing some branch structures. In a real- 
world scenario, after moving a segment of a branch, existing allometric 
models are unable to detect biomass loss since tree parameters, 
including height, DBH, and crown length, remain unchanged.

3.3. Allometric model development

The 100 felled trees were shuffled and divided into train and test sets, 
in an 8:2 ratio. The felled tree data were then augmented to increase 
data size. Each felled tree will generate 10 augmented trees; hence, the 
entire dataset contains 1100 trees. The training phase of all machine 
learning models utilized a 5-fold cross-validation to maintain robustness 
and reliability. The testing dataset was unseen data for performing the 
out-of-sample test to prevent overfitting.

For the parameters input in allometric model development, the 
TreeQSM-extracted parameters were utilized. Table 1 summarises the 
tree parameters that were used as predictors for trees’ AGB estimation, 

Table 1 
Tree parameters.

Parameter Table

Family Parameter family

Advanced parameter Basic parameter DBH
Tree Height (TH)
Crown Length (CL)
Crown Area (CA)
Trunk Length (TL)
Branch Length (BL)
Trunk Area (TA)
Branch Area (BA)
Crown Base Height (CBH)
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and they can be classified into family parameters, basic parameters and 
advanced parameters.

This study adopts two approaches to develop the AGB estimation 
model: (1) fitting the existing allometric models, and (2) developing 
machine learning based allometric models. The first approach aims to at 
assess the performance of the existing allometric models on local tree 
data, while the second approach aims to enhance the AGB prediction 
accuracy by leveraging machine learning algorithms.

3.3.1. Existing allometric model
Three published allometric models (Chave et al., 2005; Djomo et al., 

2010) were selected as candidate models.
Model 1: 

ln(AGB) = a + b ln
(
H ∗ ρ ∗DBH 2) (12) 

Model 2: 

ln(AGB) = a + b[ln(DBH)]
2
+ c ln (H) + dln (ρ) (13) 

Model 3: 

ln(AGB) = a + b[ln(DBH)]
2
+ c ln

(
H ∗DBH 2)+ d ln (ρ) (14) 

These selected models applied logarithmic transformation and relied 
on the same basic parameters listed in Table 1, including tree height (H), 
diameter at breast height (DBH), and wood density (ρ). To evaluate the 
performance of these models, all three models were fitted to the local 
dataset using the ordinary least squares regression method, and the 
goodness-of-fit and error will be assessed.

3.3.2. Machine learning model
In machine learning training, basic, advanced and family parameters 

were employed. For the tree family, the one-hot encoding technique was 
applied to these taxonomic parameters before machine learning 
training. Furthermore, to evaluate the impact of different parameters on 
prediction accuracy, three configurations with varying parameter 
combinations were designed for training: (1) basic parameters, (2) 
advanced parameters, and (3) advanced and family parameters. We 
selected various machine learning algorithms, and the best-performing 
algorithms were chosen as the final allometric model. Considering the 
model inference stage in AGB estimation, it is challenging to obtain 
wood density data, as the wood density value of the same species varies 
with wood age, tree height, growth rate, etc. (Chave et al., 2009). Given 
the main goal of this study is to use parameters extracted from LiDAR 
model to predict tree AGB, wood density is excluded from the AGB 
predictor variables.

Next, the selected machine learning algorithms are introduced and 
explained.

a) Random Forest (RF)
Random Forest operates by growing numerous trees to increase ac

curacy while reducing overfitting. Random Forest searches for the best 
feature in the random data groups (Breiman, 2001). In random forest 
training, bootstrap sampling is employed and each tree is trained on a 
random subset of data. RF is effective in capturing non-linear relation
ships in tabular data, while it features bootstrap mechanism and max_
depth function to prevent overfitting. RF is a simple yet robust model 
that establishes a resilient baseline for the study.

b) Gradient Boosting Tree (GBT)
Unlike Random Forest, Gradient Boosting Tree (GBT) grows trees 

iteratively, and each new decision tree is trained to reduce the error of 
the previous tree through optimizing the loss function (Friedman, 2001). 
Apart from bagging models, including RF or decision trees, GBT is a 
baseline algorithm in boosting models, where trees are grown sequen
tially. GBT was employed to test the general performance of the boosting 
tree model in AGB prediction.

c) XGBoost (XGB)
XGBoost (Extreme Gradient Boosting) is an optimized machine 

learning model based on gradient boosting. Similar to GBT, XGB builds 
trees to correct the error of the previous tree. It also enhances the 
traditional GBT by adding Lasso and Ridge regularization to prevent 
overfitting (Chen and Guestrin, 2016), avoiding the error induced by 
significant outliers due to extremely large tree data.

d) LightGBM (LGBM)
LightGBM (light gradient boosting machine) is also an enhanced GBT 

machine learning algorithm. LightGBM features histogram-based 
learning, which involves data binning to increase training efficiency 
(Ke et al., 2017). LGBM supports categorical features with integer input, 
eliminating the need for one-hot encoding, which enables more efficient 
training when considering the family parameters in this study.

Finally, Table 2 summarizes all six models to be developed in this 
study.

3.4. Accuracy metrics

The model accuracy is evaluated by mean absolute error (MAE), 
mean absolute percentage error (MAPE) and R2 for goodness-of-fit.

Mean absolute error MAE measures the average magnitude of errors 
in a prediction, while MAPE expresses the error relative to the true 
value. 

MAE =
1
n
∑n

i=1
|yi − ŷi| (15) 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ ∗ 100 (16) 

Where, n = number of predictions, yi = measured AGB for the ith prediction, 
and ŷi = predicted AGB for the ith observation

R2 value (coefficient of determination), evaluates the goodness of fit 
of a regression model. 

R2 = 1 −
SSresiduals

SStotal
(17) 

Where, SSresiduals = sum of squared residuals and SStotal = total sum of 
squares

4. Results and discussion

4.1. Tree parameters measurement by QSM

Table 3 summarizes the statistics of the extracted tree parameters of 
all 100 trees. Basic parameters including tree height and DBH, displayed 
a skewness value of around 0.5, indicating a slightly symmetrical dis
tribution. On the contrary, the advanced parameters extracted by QSM 
showed a larger positive skewness, exhibiting an asymmetrical distri
bution. This suggests that on the same dataset, there are differences in 
basic and advanced parameters in terms of distribution. The advanced 
parameters extracted by QSM can inherit heterogeneous information 
across the mixed-species dataset.

Next, 50 felled trees were randomly selected for evaluation by 
assessing tree parameters extracted from QSM, including tree height, 
DBH, and crown length. The QSM-measured metrics were compared 

Table 2 
Summary of models.

Final Models

Model 1 ln(AGB) = a+ b ln
(
H ∗ρ ∗DBH 2)

Model 2 ln(AGB) = a+ b[ln(DBH)]
2
+ c ln (H)+ dln (ρ)

Model 3 ln(AGB) = a+ b[ln(DBH)]
2
+ c ln

(
H ∗DBH 2)+ d ln (ρ)

Model 4 MLbest (basic)
Model 5 MLbest (advanced)
Model 6 MLbest (advanced, family)
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against manual measurements from raw point-cloud tree model. Manual 
measurement of tree metrics was performed by human annotation using 
the point-picking tools in CloudCompare, where tree dimensions (tree 
height, DBH, and crown length) were measured directly on the point- 
cloud data. The scatter plots in Fig. 8 compare the QSM-extracted and 
manual-measured tree parameters. The highest correlation was ach
ieved with DBH (R2 = 0.96), followed by the crown length (R² = 0.89) 
and tree height (R² = 0.89). For measurement of height and crown 
length in raw point-cloud model, leaf and noises were taken into ac
count, while QSM-extracted height and crown excluded the effect of leaf 
points. Overall QSM-measured results showed a strong alignment with 
the CloudCompare-manual measurement, providing promising and ac
curate results for tree metrics measurement.

4.2. AGB measurement of felled trees

The AGB measurement results are presented in Table S3 of the 
Supplementary Materials. The performance of AGB measurement is 
determined by the quality of destructive sampling processing and the 
accuracy of QSM. Since it is impossible to oven-dry the entire trees, we 
compared the measured AGB of felled trees (obtained in this study) to 
the estimated AGB of felled tree calculated by widely cited existing 
allometric model. We select the two published allometric models, 
identified as model A and model B, from Chave et al. (2014) to compare 
the measured AGB derived in this study. This aims to validate our 
measured trees’ AGB by checking the alignment with the 
well-established model, ensuring that the results in this study were 
consistent with existing methodologies. Eqs. (18) and 19 demonstrate 
the selected model A and model B, and Fig. 9 compared the measured 
felled tree AGB and model A, B predicted felled tree AGB.

Model A: 

AGB = 0.0673 × ρD2H0.976 (18) 

Model B: 

AGB = exp
(

− 1.803 − 0.976E+0.976ln(ρ)+ 2.673ln(D) − 0.0299[ln (D)]2
)

(19) 

Model A and B predicted AGB values indicated a moderate correla
tion to the measured AGB, with R² = 0.61 and R² = 0.57 respectively. 
Despite moderate correlations, typically high MAE values of 434.9 (kg) 
and 549.43 (kg), and MAPE of 48.73 % and 67.79 % were observed in 
Models A and B. The moderate correlation validated the credibility of 
the measured AGB, while the high MAE value suggested that the existing 
allometric models were not sufficiently accurate for the local dataset.

4.3. Accuracy assessment of models

The following Fig. 10 shows the results of model 1 to model 6. All 
results of R², MAE, and MAPE were calculated in the out-of-sample 
testing. The left-most bar chart in Fig. 10 shows the results of model 1 
– 3, which model 1 refers to Chave_1 (equation 12); model 2 refers to 
Chave_2 (equation 13); model 3 refers to Djomo (Eq. (14)). Model 4 – 6 
were machine learning training, and the results of all selected machine 
learning algorithms were presented in the bar charts.

Table 4 summarizes the final results of the six models and presents 
the best-performing machine learning algorithms for models 4 – 6. 
Model 5 – 6, which utilized machine learning algorithms and advanced 
tree parameters, had an overall better accuracy compared to model 1 – 
3, which relied on existing allometric equations. Model 2 scored the 
best-performing model among the three existing allometric models, with 
R2 = 0.52; MAPE = 53.97 %, while the remaining model 1 and 3 scored 
R2 = 0.52; MAPE = 60.83 %, and R2 = 0.53; MAPE = 56.40 %, 
respectively. Best-performing machine learning algorithms for model 4, 
model 5 and model 6 are Random Forest (R2 = 0.41; MAPE = 79.20 %), 
LightGBM (R2 = 0.79; MAPE = 42.59 %) and XGBoost (R2 = 0.82; MAPE 
= 40.70 %), respectively. The best-performing machine learning algo
rithms were selected based on R2 value and MAPE. MAE calculate the 

Table 3 
Statistics of tree parameters.

Metrics Tree parameters

Tree 
Height (m)

Trunk 
Length 
(m)

Branch 
Length 
(m)

Trunk 
Area 
(m2)

Branch 
Area 
(m2)

DBH 
(m)

Crown 
Area 
(m2)

Crown 
Base 
Height 
(m)

Crown Length 
(m)

Min 3.05 0.29 0.00 0.02 0.00 0.02 0.05 0.51 0.00
Max 20.62 17.71 391.00 15.70 77.25 0.61 111.70 10.17 18.49
Mean 10.61 8.27 125.58 5.23 24.05 0.26 35.59 3.70 6.90
Median 9.99 7.92 101.54 4.82 21.04 0.25 29.40 3.34 6.54
Std 3.51 3.76 88.05 2.89 17.42 0.12 28.63 2.09 3.31
Q1 8.63 5.91 58.18 3.32 10.44 0.17 12.14 2.01 5.42
Q3 12.56 10.37 172.70 6.98 35.35 0.32 45.98 4.88 8.24
Skewness 0.56 0.67 1.03 0.82 1.04 0.49 1.06 0.88 1.13

Fig. 8. QSM vs manual measurement. (a) Tree Height; (b) DBH; (c) Crown Length.
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absolute differences between measured and predicted values, while 
MAPE calculate the absolute percentage differences. In selecting the 
best-performing models, MAPE weighs more than MAE since MAE 
disproportionately penalizes errors given the wide ranges of AGB values. 
MAPE normalizes error relative to the measured value, making this more 
suitable for interpreting models’ performance on AGB prediction.

Fig. 11 compares the model-predicted AGB and measured AGB, 
Fig. 11 (a – c) are scatter plots of existing allometric models (model 1 – 
3) and Fig. 11 (d – f) are scatter plots of the best-performing machine 
learning models (model 4 – 6). By assessing the scatter plots, an 

underestimation of AGB is observed in high AGB trees, and a slight 
overestimation is exhibited in low AGB trees. Most data points are 
concentrated in the AGB range of 0 – 1000 kg, indicating that high AGB 
tree data is insufficient for the development of AGB prediction model.

4.3.1. Parameterization of existing allometric model (Model 1 – 3)
The following displays the results of the existing allometric models 

(models 1–3), parameterized using a local dataset.
Model 1: 

ln(AGB) = 2.364 + 0.471 ln
(
H ∗ ρ ∗DBH 2) (20) 

Model 2: 

ln(AGB) = 2.398 + 0.912[ln(DBH)]
2
+ 0.456 ln (H) + 1.06ln (ρ) (21) 

Model 3: 

ln(AGB) = 2.574 + 0.894[ln(DBH)]
2
+ 0.419 ln

(
H ∗DBH 2)

+ 0.182 ln (ρ) (22) 

Models 1, 2, and 3 displayed similar R² and MAPE values, as shown 
in Table 4. A R2 value of 0.52–0.53 represents a relatively weak 

Fig. 9. Measured AGB vs model predicted AGB. (a) Model A, (b) Model B.

Fig. 10. Results comparison of model 1 – 6 using R2, MAE, MAPE.

Table 4 
Allometric models result.

Allometric Models Best ML algorithms R2 MAE (kg) MAPE (%)

Model 1 – 0.52 324.36 60.83
Model 2 – 0.52 309.10 53.97
Model 3 – 0.53 310.75 56.40
Model 4 RF 0.41 398.09 79.20
Model 5 LGBM 0.79 237.70 42.59
Model 6 XGB 0.82 214.37 40.70
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correlation, indicating that the existing allometric model predicts 
approximately 50 % of the allometric relationship. Our results indicate 
that applying existing global allometric models to a specific local dataset 
led to poor performance. Developed using large and global datasets, 
these existing allometric models perform well across universal datasets 
(Chave et al., 2005). However, the specific local variability exhibited in 
our local dataset cannot be well captured by the existing models, as trees 
in localized regions exhibit complex variabilities in AGB, wood density, 
and health conditions (Temesgen et al., 2015). Our finding supports the 
need for site-specific allometric models (Yuen et al., 2016; Yang et al., 
2022) to enhance the accuracy of local AGB estimation.

Overall, the accuracy results suggested that the existing allometric 
models failed to predict AGB accurately, and they are insufficient to 
capture the complexity of tree structure in the local tree data. To sum
marize, the existing allometric models are limited by their non-localized 
application and the simplicity that results in poor performance on local 
datasets. In order to capture non-linear relationships between tree 
physical parameters and AGB in Hong Kong, enhanced methods of 
machine learning and advanced parameters implementation are 
required to handle the complexity of local trees.

4.3.2. Machine learning based allometric model (Model 4 – 6)
Model 4 – 6 employed machine learning algorithms to predict AGB 

using advanced parameters. Model 4 used only basic parameters (DBH 
and tree height), in order to mimic the existing allometric model. 
Eventually, model 4 performs worse than model 1 – 3 (utilized simple 
linear regression), in terms of R2 (0.41) and MAPE (79.20 %).

When only basic parameters are available, existing allometric models 
remain a more robust choice for AGB prediction. Basic parameters, 
including tree height and DBH, exhibit a strong linear relationship with 
AGB (Liu et al., 2018). Hence simple linear regression is more suitable 
for AGB prediction when using basic parameters, as it generalizes better 
in small and limited features datasets, while machine learning models 

are more prone to overfitting as the depth of trees increase (Van der 
Putten and Van Someren, 2004; Roelofs et al., 2019).

Given the poor accuracy in existing allometric models, more 
advanced tree parameters are required to support the training of ma
chine learning algorithms. Comparing model 4 – 6, the performance of 
model 4 is limited by the insufficient input predictors. The superior 
performance of models 5–6 over model 4 suggested that machine 
learning models require richer predictors to fully leverage the non-linear 
modelling capabilities for AGB prediction. This finding also reflects the 
contribution of advanced parameters to enhance AGB prediction accu
racy and highlights the limitations of basic parameters, which existing 
allometric models commonly rely on. By comparing model 5 – 6 and 
model 1 – 3, a huge enhancement in accuracy of model 5 and 6 is 
observed in terms of R2 and MAPE value, with R2 value reaching over 
0.8 and MAPE reduced from range of 53 – 79 % in existing allometric 
models to 40 – 43 % in model 5 and 6. Model 5 – 6 are machine learning 
algorithms trained with advanced parameters listed in Table 1. This 
suggests that AGB variations in local trees can be well-captured by 
integrating advanced parameters and machine learning algorithms.

By comparing model 5 and 6, model 6 demonstrated a superior ac
curacy of R2 = 0.82 and MAPE = 40.70 % compared to model 5′s R2 =

0.79 and MAPE = 45.59 %. This indicated that the inclusion of “tree 
family” parameters enhanced the modelling accuracy. Tree family pa
rameters could conceal trees’ taxonomic characteristics that exhibit 
family-specific growth dynamics, wood densities, or intrinsic structure 
that contribute to the accuracy of AGB estimation (Mensah et al., 2016). 
To summarize, the improvement on model 6 accuracy supports a 
data-driven finding that tree family parameter embodies meaningful 
value in enhancing AGB prediction accuracy. As most existing allometric 
models are stratified as either mix-species or species-specific models, the 
superior performance in model 6 provide a strong foundation for 
developing allometric model that enables taxa-inputs.

Fig. 11. Scatter plots comparing model-predicted AGB and measured AGB, (a) model 1; (b) model 2; (c) model 3; (d) model 4 [Random Forest]; (e) model 5 
[LightGBM]; (f) model 6 [XGBoost]. The black line, red line, and red shaded area represent the 1:1 reference line, regression line, and 95 % confidence interval for the 
regression line, respectively.

Y.T. Choi et al.                                                                                                                                                                                                                                  Trees, Forests and People 21 (2025) 100955 

10 



4.4. Application of advanced parameters

Correlation analysis was conducted on advanced parameters, and the 
results are presented in Fig. 12. The correlation was computed using the 
Pearson correlation coefficient, where 1 represents a perfect positive 
correlation, 0 indicates no relationship, and − 1 refers to a perfect 
negative correlation (Sedgwick, 2012). By assessing the bottom row in 
the heatmap, all parameters displayed a positive correlation to AGB, 
except crown base height (CBH). This is reasonable as the increase of 
CBH is followed by the decrease of crown volume, which results in the 
decrease of AGB. For the basic parameter, tree height (TH), scored a 
relatively low correlation (0.19) among all parameters. Among all pa
rameters, branch area (BA) calculated by QSM scored the highest cor
relation to AGB, followed by DBH, trunk area (TA), branch length (BA) 
and crown area (CA). The calculation of these important parameters, 
except DBH are enabled by QSM reconstruction, and this underscores 
the significance of QSM application in allometric model development.

The importance of each advanced parameter was assessed by per
mutation importance and the result is displayed in Fig. 13. Across all 
models, DBH, or a feature comprised of DBH scored the highest 
importance, this indicated that DBH is the most important parameter in 
AGB estimation. The aforementioned advanced parameters including 
trunk area (TA), branch area (BA), and branch length (BL) contribute a 
vast proportion of importance among all parameters in models 5 and 6.

Surprisingly, tree height (TH) achieved negative importance in 
models 2, 3, and 5, indicating that the tree height parameter could harm 
the model’s performance. A possible reason for this could be the mul
ticollinearity between tree height and other parameters. According to 
Fig. 12, tree height is highly correlated to trunk length (TL) and crown 
length (CL), this might reduce the importance of tree height as tree 
height information is hidden in trunk length and crown length. That 
said, the importance of trunk length and crown length was not signifi
cantly high according to Fig. 13, and the negative importance of tree 
height was also achieved in model 2. The tree condition in the local 
study area is also one of the factors that reduces the importance of tree 
height. In Hong Kong, Arecaceae and Moraceae are two common tree 
families, the former can grow very tall with no branches (Edelman and 
Richards, 2019) and the latter can grow dense branches (Primack et al., 
1985). Moreover, other research discovered that the inclusion of tree 
height in the allometric model led to an overestimation of AGB, while 
the exclusion of tree height led to an underestimation (Goodman et al., 
2014). Overall, these findings challenge the parameter tree height as a 
fundamental predictor in existing allometric models. When more 
advanced parameters are available, tree height is not the most reliable or 
impactful parameter for predicting AGB. Furthermore, the tree family 

contributed a relatively small amount of importance compared to other 
predictors. However, according to Fig. 10, the XGBoost model from 
model 5 to model 6 recorded an increase in R2 value from 0.78 to 0.82. 
This data-driven result supports the importance of family parameters. 
The reason for the low importance of family is that the family-inherited 
ecological traits of trees could be partially explained by other features 
such as DBH.

Overall, while DBH still remains the most important AGB predictor, 
the importance and correlation analysis revealed that the most advanced 
parameters displayed relatively comparable importance, indicating that 
both basic and advanced parameters exhibit complementary roles in 
developing accurate allometric models for local region. To conclude, 
this highlights one of the study’s key contributions: integrating LiDAR 
and QSM-measured advance parameters, which enables the capture of 
detailed structural variability of trees and hence enhances AGB esti
mation accuracy.

4.5. Significance of tree data augmentation

To assess the effectiveness of the tree data augmentation method, we 
compare the best-performing machine learning based allometric model 
(model 6) and the existing allometric model (model 2). Model 6 is 
trained with the augmented tree data while model 2 is the existing 
allometric model developed by Chave et al. (2005). Both 
model-predicted AGB values are plotted against QSM-generated volume 
and DBH, while the results are displayed in the 3D scatter plot in Fig. 14. 
In the 3D scatter plot, distinct colours were assigned to the tree data to 
represent each tree family. A 3D linear regression surface was fitted onto 
the data point for interpretation and comparison. In Fig. 14b, for trees 
with same DBH, the predicted AGB remains unchanged as QSM-derived 
volume increase. Given the volume and weight of the tree, a positive 
correlation is expected. However, it is found that the existing allometric 
model approach fails to handle complex tree shapes. Assume a scenario 
that multiple tree species with the same DBH, allometric model that 
trained by conventional sampling technique will fail to model AGB 
accurately. The proposed tree data augmentation method in this study 
enhanced the limited dataset of felled trees. In Fig. 14a, for trees with 
same DBH, QSM-derived volume and predicted AGB displayed a positive 
correlation observed in the 3D regression plane. In the augmentation 
stage, synthetic trees were generated by trimming branches, thus 
simulating as many possible tree shapes of a single tree at the age of 
felling day. Consider a scenario in which a tree branch was shortened or 
trimmed off due to general tree maintenance, existing allometric models 
were unable to detect such AGB reduction as the basic dendrometric 
parameters of a tree before and after trimming remained unchanged. 
Existing allometric models were developed by collecting felled trees, 
and directly relied on measured DBH, tree height and AGB (Chave et al., 
2005, 2014). The direct assumption of a linear relationship between 
basic parameters and AGB limits the performance of existing allometric 
models in local datasets, as trees with similar DBH exhibit different AGB 
due to various factors, including tree morphology or species variation. 
The comparison in Fig. 14 underscores the significance of data 
augmentation for AGB prediction. Without being developed by the 
augmented data, the existing allometric model is unable to detect subtle 
AGB changes resulting from minor tree structural changes.

The tree data augmentation method is a key innovation of this study. 
By systematically trimming branches from a tree’s point cloud models, 
synthetic trees were generated, simulating a wide range of possible tree 
shapes for the same DBH, effectively enhancing the structural diversity 
of the training data. The augmentation method addresses the existing 
allometric model’s limitation, which is the inability to capture AGB 
change outside the dimension of DBH and height. The augmented tree 
data resolves this limitation by systematically simulating branch prun
ing scenarios, enabling the model to predict minor AGB changes. 
Moreover, the tree augmentation enhanced the structural diversity of 
the tree data, which mitigates the challenge of limited tree data. By Fig. 12. Correlation heatmap of tree parameters and AGB.
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introducing enhanced structural variation to the tree data, the tree data 
augmentation method enables the trained model to reflect better the 
complexity of the local real-world trees’ AGB.

5. Conclusion

The study presented an innovative workflow for estimating tree AGB 
by leveraging LiDAR technology with machine learning algorithms. 
Given the scarcity of available data for AGB modelling, the study pro
posed a tree data augmentation method to enhance the model’s gener
alization and accuracy. Then, tree reconstruction by TreeQSM was 
carried out to retrieve advanced tree dendrometric parameters. In model 
development, it was found that the existing allometric equations did not 
fit the local dataset well. The best AGB estimation model was found to be 
the XGBoost, with the input of the advanced QSM-derived parameters 
and tree family parameters, scoring R2 = 0.82 and MAPE = 40.70 %. 
Compared to the previous allometric model developed by Sarker (2010)

in Hong Kong, this study encompassed 100 trees (17 species), whereas 
Sarker (2010) collected 75 trees (14 species). Instead of relying on 
manual tree measurement, this study further exploits LiDAR technology 
by applying TreeQSM and proposing a tree data augmentation method 
to address the limitations of traditional destructive sampling techniques. 
For the development of the allometric model, Sarker (2010) and other 
related research relied on simple linear regression. This study proposes a 
local AGB prediction model using machine learning algorithms that 
utilize augmented data and detailed QSM parameters. Finally, the pro
posed model incorporates the tree taxa category, which allows broader 
ecological applicability with higher generalization. Overall, the study 
combines city-scale tree data collection with LiDAR and machine 
learning algorithms, surpassing the capabilities of the existing allome
tric models to achieve accurate AGB estimation in the local region.

Fig. 13. Feature importance of AGB predictors.

Fig. 14. (a) 3D scatter plot derived by model 6 predicted AGB; (b) 3D scatter plot derived by model 2 predicted AGB.
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