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A B S T R A C T

Accurate forecasting of high-volatility stock markets is critical for investors and policymakers, yet existing
models struggle with computational inefficiency and noise sensitivity. This study introduces STL-ELM, a novel
hybrid model combining Seasonal-Trend decomposition using LOESS (STL) and Extreme Learning Machine
(ELM), to deliver unparalleled accuracy and speed. By decomposing stock data into trend, seasonal, and residual
components, STL-ELM isolates multiscale features, while ELM’s lightweight architecture ensures rapid training
and robust generalization, outperforming advanced techniques such as LSTM, GRU, and transformer variants in
both prediction and trading simulations. With faster runtimes and minimal memory usage, STL-ELM is tailored
for real-time trading applications and high-frequency financial forecasting, offering institutional investors,
traders, and financial analysts a competitive edge in volatile markets. The hybrid nature of STL-ELM, which
combines STL’s multiscale decomposition with ELM’s rapid learning, enhances its adaptability to various
financial domains, including stocks, commodities, foreign exchange, and cryptocurrencies, by efficiently
capturing domain-specific volatility patterns. This work not only sets a new standard for predictive accuracy in
stock market modelling but also presents an invaluable tool for those navigating the complexities of modern
financial markets.

1. Introduction

The stock market has long been a cornerstone of modern finance and
economics, serving as a barometer for economic health (Olorunnimbe &
Viktor, 2023; Shah et al., 2022; Zhao et al., 2025), a platform for in-
vestment, and a critical mechanism for capital allocation. Accurate
prediction of stock market behavior is not only crucial for investors
seeking to maximize returns but also for policymakers and economic
analysts aiming to stabilize markets and promote economic growth
(Oyewola et al., 2025). However, the inherent complexity of stock
markets, amplified by factors such as high volatility, noise, and uncer-
tainty, presents significant challenges for accurate forecasting
(Abolmakarem et al., 2024). In this context, the development of robust
and innovative models for stock market prediction becomes a pressing
need. Stock market prediction holds immense importance in finance and

economics for several reasons. First, it enables investors to make
informed decisions, optimize portfolio performance, and minimize risks.
Second, accurate forecasting supports financial institutions and regula-
tors in anticipating market disruptions, thereby enhancing market sta-
bility. Third, from a macroeconomic perspective, stock market trends
often reflect broader economic, political, and social conditions, making
them vital indicators for policy formulation (T.O. Kehinde et al., 2025;
Wang, 2025; Wei et al., 2025).

Traditional methods of stock market prediction relied heavily on
statistical and econometric models. Techniques such as Exponential
Smoothing (ES), Autoregressive Integrated Moving Average (ARIMA),
Seasonal ARIMA (SARIMA), and Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) have been widely used to model time
series data and volatility (Kehinde, Chan et al., 2023; Zhu et al., 2024).
Among the available statistical or econometric methods, SARIMA
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appears to be the most prominent technique for predicting seasonal time
series (Xiong et al., 2018); however, the prediction performance may be
low due to the linear assumption of the SARIMA model. While these
methods offer valuable insights, they are often limited in their ability to
capture the non-linear and dynamic nature of stock markets, particularly
during periods of high volatility. High-volatility markets pose unique
challenges for predictive modeling. These markets are characterized by
rapid price fluctuations driven by factors such as geopolitical events,
economic announcements, and market sentiment (Pham et al., 2025).
This unpredictability introduces noise into the data, obscuring under-
lying trends and patterns. Conventional statistical models, despite their
mathematical rigor, often struggle to adapt to these rapidly changing
conditions, resulting in suboptimal performance.

Machine learning (ML) models have emerged as a powerful alter-
native to conventional methods, leveraging data-driven approaches to
uncover complex patterns in financial data. Algorithms such as Artificial
Neural Networks (ANN), Support Vector Machines (SVM), Random
Forests (RF), and Gradient Boosting Machines (GBM) have demon-
strated considerable success in improving prediction accuracy. Howev-
er, these models also have limitations, particularly in their sensitivity to
feature selection and the risk of overfitting. Deep learning (DL) models,
such as Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNN) and their variants, Long Short-Term Memory (LSTM)
networks (Kehinde, Chung et al., 2023), and Gated Recurrent Units
(GRU), have further advanced the field of stock market prediction
(Jiang, 2021). These models excel in capturing temporal dependencies
and learning hierarchical representations from large datasets. Never-
theless, their reliance on extensive computational resources and
vulnerability to overfitting in the presence of noise limit their applica-
bility in high-volatility scenarios.

Stock market data exhibits multiscale properties, characterized by
features such as trend, seasonality, and residual components. These
properties become evident when a decomposition plot is performed on
stock data, revealing its noisy, chaotic, non-stationary, and non-linear
nature. Most existing ML and DL algorithms are not equipped to
handle such scenarios in their default form, limiting their performance.
Conventional statistical methods often fail to capture non-linear de-
pendencies, while ML models are prone to overfitting and require
extensive feature engineering. DL, although powerful, is computation-
ally intensive and may struggle with noisy data and high computational
requirements, as these models are not naturally built on understanding
the multiscale properties of the stock market. To address this challenge,
it is essential to develop robust hybrid models capable of decomposing
the time series data first to expose its multiscale properties and then
modeling these properties to facilitate easier processing by ML/DL
algorithms.

In recent years, hybrid ML models have emerged as a promising
approach to address the limitations of individual methodologies. By
combining the strengths of different techniques, hybrid models aim to
enhance predictive performance while mitigating weaknesses. For
instance, models that integrate statistical decomposition methods with
ML algorithms have shown significant potential in handling the com-
plexities of financial time series data. These models include combina-
tions of two or more ML algorithms, two or more DL algorithms,
statistical + DL algorithms, econometric models + ML algorithms, sta-
tistical + ML algorithms, econometric models + DL algorithms, and
decomposition algorithms combined with ML or DL algorithms. Com-
mon decomposition methods, such as Empirical Mode Decomposition
(EMD), Ensemble EMD (EEMD), Complete Ensemble EMD with Adaptive
Noise (CEEMDAN), wavelet decomposition, and Variational Mode
Decomposition (VMD), have been used alongside ML/DL algorithms (Asl
et al., 2024; Kumar et al., 2025; Zhou et al., 2019). However, these
models often lack robustness, producing significant errors and yielding
less profit.

In this regard, we propose a new hybrid model combining Seasonal-
Trend decomposition using LOESS (STL) and Extreme Learning Machine

(ELM), termed the STL-ELM model, which has not been explored in the
existing literature on stock forecasting. STL, using Loess smoothing, is
particularly suitable for stock data with multiscale features, as it de-
composes data into trend, seasonal, and remainder components while
allowing the original data to be reconstructed by summing these indi-
vidual components. When combined with robust machine learning al-
gorithms such as ELM, the resulting hybrid model can leverage the
strengths of both techniques to deliver superior predictive performance.
Among the various existing ML/DL models, we chose ELM due to its
versatility, minimal computational requirements, and reduced param-
eter tuning compared to other models like SVM, KNN, MLP, RF, RNN,
GRU, LSTM, and CNN, which are computationally intensive and often
non-feedforward (Van Thieu et al., 2025). By integrating STL and ELM,
our proposed STL-ELM model offers a robust solution for handling the
multiscale properties of stock market data, addressing limitations in
existing methods.

Unlike existing methods, the proposed STL-ELM model is specifically
designed to decompose and analyze highly volatile time series data,
leveraging ELM’s fast training capability and generalization perfor-
mance to enhance predictive accuracy. The primary objective of this
study is to develop and validate a hybrid STL-ELM model for robust and
accurate prediction of high-volatility stock market indices. To achieve
this, the research aims to design a systematic framework for integrating
STL and ELM to address the challenges of volatility and noise in stock
market data, evaluate the performance of the STL-ELM model against
other high-performing ML/DL approaches, apply the model to real-
world stock market data to demonstrate its practical applicability and
relevance, and highlight its potential to enhance decision-making for
investors, financial analysts, and policymakers. This study makes several
key contributions to the field of stock market prediction:

1. Novel Integration of STL and ELM: The research introduces a unique
hybrid model that combines STL’s ability to decompose and analyze
time series data with ELM’s rapid training and generalization capa-
bilities. This integration is specifically tailored to address the chal-
lenges of high-volatility markets.

2. Application to Real-World Data: The proposed model is applied to
real-world stock market datasets, showcasing its effectiveness in
handling practical challenges such as noise and uncertainty.

3. Enhanced Predictive Performance: By leveraging the strengths of STL
and ELM, the hybrid model demonstrates superior performance in
terms of accuracy, robustness, and computational efficiency
compared to existing methods.

4. Profitability Assessment through Trading Strategy: The proposed
model is also tested for its profitability by subjecting it to a trading
strategy. This ensures that the predictions are not only accurate but
also actionable in a real-world trading environment.

5. Implications for Decision-Making: The study highlights the potential
of the STL-ELM model to enhance decision-making for stakeholders
by providing reliable predictions that inform investment strategies,
risk management, and policy formulation.

The subsequent sections of this work are systematically structured as
follows: Section 2 reviews related studies. Section 3 discusses models
and methods, while Section 4 provides empirical analysis and results.
Section 5 serves as the final part of the work, summarizing the acquired
insights and outlining a direction for future work.

2. Literature review

Stock market evaluation is divided into two main approaches:
fundamental analysis and technical analysis (Lohrmann & Luukka,
2019). Fundamental analysis evaluates a company’s financial
well-being, management, industry standing, and economic indicators to
determine its inherent value. In contrast, technical analysis examines
price fluctuations, chart formations, and trading volume to anticipate
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future patterns. Although there are supporters for both sides, the ques-
tion of whether they can continuously outperform the market is still a
subject of debate. Traditional financial time series analysis was based on
the assumptions of linearity and stationarity, often utilizing the linear
regression model. However, non-linear connections and other compli-
cations in financial time series have rendered classic linear models
insufficient. Accurate stock market prediction is arduous due to the
immense amount of financial data and the complex dynamics of stock
markets. The complexity is additionally expanded by variables such as
market volatility, economic data, investor mood, and global events, all
contributing to the unpredictability of stock movements. Stock price
prediction is essentially a task of forecasting time-series data, aiming to
estimate future values based on past data. Over three decades, a diverse
range of techniques, as discussed in the subsequent sub-sections, have
been developed to address the inherent complexity and uncertainty of
stock markets.

2.1. Econometric models for stock forecasting

Econometric models such as ARIMA, SARIMA, and GARCH have
been foundational in time series analysis. SARIMA is widely used for
modeling linear relationships in time series data that has seasonality,
while GARCH effectively captures volatility clustering, a common
feature in financial markets. GARCH extends the ARCH model by
incorporating lagged values of the conditional variance. ARIMA is a
popular statistical method for time series forecasting. It combines
autoregressive (AR) and moving average (MA) models, along with dif-
ferencing to make the time series stationary. ARIMA models are effective
for short-term forecasting and can capture linear relationships in the
data. Some studies have utilized these models to model their financial
data. For instance, Mondal et al. (2014) employ the Akaike information
criterion (AIC) to pick the optimal ARIMA model for individual stock
and quantify prediction accuracy using MAE. In addition, they assess the
predictive accuracy across various training data set sizes and employ
t-tests to evaluate the statistical significance of any observed differences.
The ARIMA model used in their study demonstrates high predictive
accuracy for some industries, particularly FMCG and IT, while exhibit-
ing lower effectiveness in the banking and automobile sectors. In a
separate study, Singh et al. (2021) put forth a novel method that in-
tegrates wavelet decomposition, wavelet denoising, ARMA, and ARIMA
models to produce precise forecasts using historical data from the BSE
100 S&P index. The authors compare their hybrid models against the
baseline models, demonstrating that their models exhibit reduced pre-
dicting errors and improved accuracy. The proposed model by the au-
thors effectively mitigates risk and uncertainty for investors in stock
market investments.

However, econometric models struggle with non-linear patterns and
sudden market changes, which are common in high-volatility markets.
The model’s reliance on historical data means it may not always adapt
quickly to new market conditions, making it less effective during periods
of rapid change. Additionally, ARIMA requires careful parameter tuning
and model selection, which can be time-consuming and complex. While
GARCH models are particularly useful in financial markets where
volatility clustering is common, they may not perform well in highly
volatile markets with frequent sudden changes. The model’s ability to
predict volatility is valuable for risk management and derivative pricing,
but the assumption of a constant mean return can limit its performance.
Moreover, GARCH models can be sensitive to the choice of parameters
and may require extensive historical data to produce accurate forecasts.
The existence of this gap has resulted in an increasing trend towards the
use of more advanced methods that can effectively handle these
limitations.

2.2. Machine learning (ML) models for stock forecasting

With the advent of ML, new models have been developed to improve

the accuracy of stock market predictions. These models can capture
complex patterns and non-linear relationships in the data, making them
suitable for high volatility markets. ML models can reveal complex
patterns in data that may not be immediately obvious, providing a more
sophisticated comprehension of market dynamics compared to con-
ventional statistical models. In this realization, some researchers already
employed ML approaches to study stock market prediction. For instance,
Yunneng (2020) proposed an improved KNN algorithm that integrates
the historical stock price data from the past N days with the overall
pattern observed over the initial N days to predict the price trend for the
following day. The study evaluates the effectiveness of the suggested
approach by benchmarking it with the conventional KNN algorithm and
the regression prediction method. The results demonstrate that the
proposed method achieves superior accuracy and exhibits a reduced
standard error. Hindrayani et al. (2020) utilize historical fundamental
data from four firms (TLKM, EXCL, FREN, and ISAT) to train and eval-
uate four regression models (Multiple Linear Regression, Support Vector
Regression, Decision Tree Regression, and K-Nearest Regression). The
results indicate that the Decision Tree Regression method yields the
most favourable outcomes in terms of correlation coefficient and MAPE.

SVM is a supervised learning algorithm used for classification and
regression tasks. In stock market prediction, SVM can classify stock price
movements based on historical data. The SVM model finds the hyper-
plane that best separates the data into different classes (Bao et al., 2024).
SVM can handle non-linear data by using kernel functions, such as the
radial basis function (RBF). However, it may struggle with large datasets
and high-dimensional data. The model’s ability to find the optimal hy-
perplane makes it effective for classification tasks, but its performance
can be affected by the choice of kernel and regularization parameters.
Due to promising results, SVM has emerged as the most widely used
machine learning algorithm for stock prediction. SVM provides more
adaptability to acquire knowledge from data, resulting in greater fore-
cast accuracy. Some researchers have used SVM to predict the stock
market. For instance, Lin et al. (2013) present an SVM-based market
trend prediction. The method consists of a feature selection and a pre-
diction model. The authors use a correlation-based SVM filter to rank
and select financial indicators that are highly correlated with the stock
market trend. The prediction model uses a quasi-linear SVM to avoid
over-fitting and improve generalization.

The article by Khaidem et al. (2016) suggests a method for predicting
stock price trends using RF. The authors use historical trading data from
four US-listed companies and apply exponential smoothing to reduce
noise and volatility. The authors calculate ten technical indicators as
features and use random search to optimize parameters. The optimized
model achieves higher accuracy, precision, recall, and F1 score, making
it more stable and reliable. Similarly, Basak et al. (2019) applied RF and
Gradient Boosted Decision Tree (GBDT) algorithms to classify the di-
rection of stock prices throughout a trading period spanning 3 to 90
days. The study’s results suggest that the models are suitable for trading
over longer durations, as the accuracy improved as the trading period
rose.

While these aforementioned approaches may yield satisfactory re-
sults in many cases of stock predictions, their application to extensive
datasets is hindered by their limited capacity to extract relevant features
(Vadlamudi, 2017). To fill this gap, Yun et al. (2021) developed a
three-stage predictive model utilising a hybrid GA-XGBoost, which
specifically aimed to improve feature expansion, data preprocessing,
and optimal feature selection. Similarly, Mohanty et al. (2021) devised a
hybrid model that integrates Auto Encoder (AE) and Kernel ELM (KELM)
to boost the robustness of stock predictions. Although ML methods show
proficiency in modelling non-linear connections and extracting insights
from complex datasets, these models suffer from high computational
costs and high sensitivity to parameter selection. Also, these models do
not have the capacity to extract the multiscale properties of stock data,
such as trend, seasonality, and residuals. Consequently, investors and
researchers increasingly emphasize new approaches, such as DL models.

T.O. Kehinde et al.
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2.3. Deep learning (DL) models for stock forecasting

DL models utilize intricate structures to acquire knowledge from
extensive datasets, capturing hidden and intricate patterns that con-
ventional machine learning models may overlook. The ability of deep
learning to analyze sequential data and its proficiency in managing
extensive datasets make it very suitable for evaluating the sequential
characteristics of stock prices.

2.3.1. Application of CNN in time series forecasting
CNNs, RNNs, LSTMSs, and GRU play a novel role in enhancing stock

prediction approaches. For example, Gunduz et al. (2017) proposed a
CNN-based stock market prediction using diverse variables. The work
explores CNN architectures, including convolutional, pooling, and fully
connected layers, and introduces two models, 2D-CNNpred and
3D-CNNpred, for improved prediction accuracy. Nevertheless, the pro-
posed CNN performance was surpassed by the one developed by
Hoseinzade and Haratizadeh (2019). The authors present a CNN struc-
ture to forecast the intraday movement of Borsa Istanbul 100 equities.
The distinguishing characteristic of this CNN model is that it utilizes a
meticulously arranged feature set obtained by using diverse indicators,
pricing data, and temporal information. This approach is contrasted
with a CNN that employs randomly ordered features and Logistic
Regression. The results indicate that using ordered features, the sug-
gested classifier surpasses the randomly ordered CNN and Logistic
Regression. This emphasizes the effectiveness of feature selection in
improving prediction accuracy, as well as lowering model complexity
and training time. More recently, Kim et al. (2025) proposed an
advanced algorithmic trading model for index futures prediction, inte-
grating TimeGAN for time-series data augmentation and 3D-CNN for
capturing multidimensional patterns. Unlike conventional stock pre-
diction methods, this approach focuses on the futures market, which is
more volatile and lacks sufficient historical data. Empirical testing on
KOSPI 200, S&P 500, and NASDAQ 100 futures markets demonstrates
significant performance improvements, with the model achieving up to
1.35x higher risk-adjusted returns and 6,390x greater computational
efficiency compared to baseline methods.

2.3.2. Application of RNN and its variants in time series forecasting
RNNs, renowned for their effectiveness in managing time-series data

using past information, have also found extensive use in stock predic-
tion. For instance, in Kaczmarek et al. (2022), the authors adopt RNN
volatility forecasts to determine market conditions and develop an in-
vestment approach that adaptively blends stocks, cash, and low-risk
assets. Unfortunately, RNNs have a notable drawback: their vulnera-
bility to the vanishing and ballooning gradient problem, especially when
dealing with long sequence dependencies (Kehinde, Khan et al., 2023;
Wang et al., 2022). The emergence of LSTMs directly responded to RNN
limitations, as they incorporated gate logic units into RNNs to tackle
these problems effectively. LSTMs have been prominent in stock fore-
casting. For instance, Rokhsatyazdi et al. (2020) introduced a neural
network model using LSTM and differential evolution (DE) to predict
future stock prices. More recently, Yang et al. (2024) designed a model
called MEEMD-LSTM-MLP to improve stock price index prediction,
particularly in volatile markets like those affected by COVID-19. The
model integrates Modified Ensemble EMD (MEEMD) to decompose stock
price indices into components, followed by Multilayer Perceptron (MLP)
for high-frequency fluctuations and LSTM for long-term trends. The
hybrid approach significantly outperforms traditional models and
advanced ML techniques (such as CNN-LSTM and
GRU-CEEMDAN-wavelet) across multiple stock market datasets,
including Shenzhen Component Index (SZI) and Dow Jones Industrial
Average (DJIA).

Sun et al. (2024) develop a novel hybrid approach for stock price
prediction, integrating CEEMDAN, LSTM, Simulated Annealing (SA),
and LightGBM to improve prediction accuracy and robustness in

financial markets. CEEMDAN decomposes stock data to filter out noise,
LSTM captures long-term dependencies in time series, LightGBM en-
hances predictive stability through ensemble learning, and SA optimizes
model parameters to prevent overfitting. The proposed
CEEMDAN-LSTM-SA-LightGBM model outperforms traditional models,
including standalone LSTM and other hybrid methods, in forecasting six
stock datasets with higher accuracy and lower error metrics (RMSE and
MAE). More recently, Kumar et al. (2025) present a cutting-edge ML
framework that enhances volatility forecasting across financial markets
using high-frequency data from SSE, INFY, and NIFTY. The authors
introduce a hybrid model that integrates VMD with DL architectures
(ANN, LSTM, GRU) and a Q-learning ensemble mechanism, forming the
Q-VMD-ANN-LSTM-GRU model. This hybrid approach excels in
capturing complex, nonlinear, and time-dependent patterns in realized
volatility, outperforming traditional models (e.g., GARCH) and stand-
alone ML models in predictive accuracy.

GRU is well noted for its straightforward architecture with a lesser
number of gates (Bao et al., 2024), and in some cases, it has often out-
performed LSTM or exhibited identical performances in making accu-
rate stock predictions. Leng et al. (2022) combine Gated Orthogonal
Recurrent Units (GORU) with a Variational Auto-Encoder (VAE) to
capture both temporal dependencies and market sentiment. More
recently, Gkonis and Tsakalos (2025) developed a novel hybrid DL,
GJO-GRU|LSTM, optimized using the Golden Jackal Optimizer (GJO), a
nature-inspired metaheuristic algorithm for accurate stock price fore-
casting. Compared against 18 benchmark neural network models, the
GJO-GRU|LSTM consistently delivers superior prediction accuracy
based on RMSE, MAE, and MAPE metrics.

While GRU is specifically designed to address the issue of vanishing
gradients, it may still face difficulties in capturing dependencies that
extend over a substantial number of time steps. This limitation can
impact the model’s robustness when handling unusually lengthy se-
quences over prolonged durations. It is worth noting that despite the
immense potential of AI models, ML and DL models are computationally
intensive and require large amounts of memory and runtime for the
successful training of high-volatility stock markets.

2.4. Beyond DL models in time series forecasting

Away from traditional DL models, recent advancements have shifted
towards attention-based DL architectures for time series prediction (T.
Kehinde et al., 2025). Vaswani et al. (2017) introduced the Transformer
model, marking a significant breakthrough in modelling and prediction
tasks, particularly in natural language processing (NLP). Transformers
excel in capturing long-term dependencies through their multi-head
self-attention mechanism, outperforming conventional feedforward
and feedback networks. While substantial research has explored the
application of Transformers in time series forecasting, their imple-
mentation in structured data scenarios remains limited. This limitation
arises from the quadratic complexity of self-attention computation in
terms of both memory and processing time (Hao & Liu, 2024).

To address this challenge, various Transformer-based variants have
been proposed to enhance efficiency and adapt the architecture to time
series forecasting, particularly in stock price prediction. For instance,
LogTrans introduced a novel LogSparse self-attention mechanism where
queries and keys for self-attention are generated through causal
convolution, reducing computational demands (Li et al., 2019). Another
variant, Reformer, replaces the standard self-attention mechanism with
locality-sensitive hashing and employs reversible residual connections
to optimize memory usage (Kitaev et al., 2020). Informer improves ef-
ficiency by utilizing a ProbSparse self-attention mechanism that selec-
tively focuses on extracting significant queries (Lu et al., 2023; Zhou
et al., 2021), while Autoformer integrates an autocorrelation-based
approach with sequence decomposition to enhance predictive perfor-
mance (Wu et al., 2021). Similarly, Fedformer leverages the Fourier
transform to improve time series forecasting accuracy (Zhou et al.,
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2022). More recently, T. Kehinde et al. (2025) introduced a novel
attention-based model called Helformer, which displays a stellar per-
formance in predicting highly volatile time series data.

Despite the introduction of numerous other Transformer variants,
such as Helformer, longformer, ETSformer, Pyraformer, Crossformer,
Quatformer, Galformer, and more (Ji et al., 2024; T. Kehinde et al.,
2025; Lin et al., 2022; Tay et al., 2022), empirical studies have
demonstrated that their performance can often be surpassed by simpler
linear models or hybrid approaches. While Transformers have un-
doubtedly revolutionized prediction tasks, their default architecture
struggles when applied to time series forecasting, particularly in
high-volatility stock markets like the Hang Seng Index, S&P 500, FTSE
100 and DJIA. The computational burden, coupled with suboptimal
performance in rapidly fluctuating market conditions, highlights the
necessity of exploring alternative models that balance efficiency and
predictive accuracy.

2.5. Research gaps

Despite significant advancements in stock market prediction, exist-
ing methods still face notable limitations. Traditional statistical and
econometric models, such as ARIMA, SARIMA, and GARCH, struggle to
capture the complex, nonlinear, and dynamic nature of financial mar-
kets, especially under high-volatility conditions. While ML and DL
models, including LSTM, GRU, and CNN, have improved predictive ac-
curacy, they are often computationally expensive, sensitive to hyper-
parameter tuning, and prone to overfitting, particularly when dealing
with noisy and multiscale financial data. Hybrid models that integrate
statistical decomposition techniques with ML/DL algorithms have
emerged as a promising approach to address these challenges. However,
many existing hybrid frameworks lack a systematic integration process,
resulting in suboptimal performance. Additionally, recent attention-
based DL models, such as Transformer variants, have shown promise
in time series forecasting. However, their application to high-volatility
stock markets remains limited due to their computational inefficiency,
quadratic complexity, and challenges in handling structured financial
data. While various Transformer modifications, such as Helformer,
LogTrans, Reformer, Informer, Autoformer, and FedFormer, have
attempted to optimize time series forecasting, empirical findings suggest
that their performance may be outmatched by simpler, more efficient
models (Das et al., 2023; Hao & Liu, 2024; Zeng et al., 2023).

To bridge these gaps, this study introduces a novel hybrid STL-ELM
framework that leverages STL for effective time series decomposition
and ELM for rapid and robust forecasting. Unlike conventional models,
STL-ELM efficiently captures the multiscale features of financial time
series data while maintaining high predictive accuracy and computa-
tional efficiency, making it particularly suitable for real-time and high-
frequency trading scenarios. This research aims to fill the gap by
providing a computationally lightweight yet highly effective model for
stock market forecasting, demonstrating superior performance over
existing ML, DL, and hybrid approaches. STL’s ability to decompose time
series data into trend, seasonal, and residual components provides a
robust foundation for analyzing multiscale properties, while ELM’s
rapid training and generalization capabilities make it well-suited for
handling complex relationships. By leveraging these complementary
strengths, the STL-ELM model offers a practical and efficient solution for
predicting high-volatility stock markets, with the potential to signifi-
cantly improve predictive accuracy and profitability at a lesser compu-
tational requirement, resource usage, and hyperparameter tuning.

3. Data and methods

The proposed STL-ELM model integrates Seasonal-Trend Decompo-
sition using Loess (STL) with Extreme Learning Machine (ELM) to create
a robust framework for predicting high-volatility stock market data. The
methodology involves decomposing the stock price data into trend,

seasonal, and residual components using STL. Each component is
modeled and predicted individually using ELM, and the final predictions
are obtained by summing the outputs of the individual components.

3.1. Seasonal-Trend decomposition using LOESS (STL)

STL is a robust and flexible method that was developed by Cleveland
et al. (1990) for decomposing time series data into three distinct com-
ponents: trend, seasonal, and remainder. STL works by first applying
LOESS (Locally Estimated Scatterplot Smoothing) to estimate the sea-
sonal component, which captures repeating patterns within a specified
seasonal window. The seasonal component is then subtracted from the
original data to obtain a deseasonalized series. Next, LOESS is applied
again to the deseasonalized series to estimate the trend component,
which represents the long-term progression of the data. The residual
component, which captures the irregular fluctuations, is obtained by
subtracting both the trend and seasonal components from the original
series. STL, as a filtering procedure decomposes a given stock series Xt
into three additive components: trend (Tt), seasonal (St), and remainder
(Rt). This decomposition can be expressed mathematically as:

Xt = Tt + St + Rt (1)

STL is an iterative method that involves two recursive methods: inner
and outer loops. Each pass through the inner loop includes a seasonal
smoothing step to update the seasonal component, followed by a trend
smoothing step to update the trend component. After completing the
inner loop, robustness weights are calculated in the outer loop to reduce
the influence of outliers on the seasonal and trend components in sub-
sequent inner loops. The inner loop consists of six steps as follows:

1. Detrending: The time series is detrended by removing the estimated
trend component:

Xdetrend = Xt − Tt (2)

2. Seasonal Smoothing: A Loess smoother is applied to Xdetrend to extract
the preliminary seasonal component St.

St = Loess(Xdetrend) (3)

3. Low-Pass Filtering: The preliminary seasonal component is processed
to remove remaining trends, producing Tt.

4. Seasonal Component Extraction: The final seasonal component is
computed as:

St = St − Tt (4)

5. Deseasonalizing: The original series is adjusted by removing the
seasonal component:

Xdeseason = Xt − St (5)

6. Trend Smoothing: The deseasonalized series is smoothed to extract
the final trend component:

Tt = Loess(Xdeseason) (6)

This iterative process ensures robust decomposition, isolating sea-
sonality and trends effectively while handling outliers. For the outer
loop, the residual components are analyzed, and any extreme deviations
among them are classified as outliers. These outliers are detected, and
corresponding weights are calculated. The computed weights are
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utilized in subsequent iterations of the inner loop to reduce the influence
of the identified outliers from the previous iteration in the outer loop,
ensuring improved robustness and accuracy in the modelling process.

3.2. Extreme learning machine (ELM)

ELM was first developed by Huang et al. (2006) as an innovative and
efficient method for training Single-Layer Feedforward Neural Networks
(SLFNs). ELM differentiates itself from traditional ANNs by randomly
assigning input weights and biases instead of iteratively optimizing
them through backpropagation (Van Thieu et al., 2025). This signifi-
cantly reduces computational complexity, as only the output weights are
computed by solving a linear system, ensuring a global optimum and
eliminating the risk of getting stuck in local minima. ELM offers
exceptional generalization performance, often surpassing traditional
models like SVM. Its ability to handle large-scale datasets efficiently and
adapt across diverse applications, such as regression, classification, and
time-series forecasting, makes it a unique and highly effective tool. The
lightweight architecture and computational speed of ELM, coupled with
its ability to deliver high accuracy, make it an excellent choice for this
work, particularly in high-frequency stock forecasting, where rapid and
precise predictions are crucial. Given N training samples (xj, tj) where xj
represents inputs and tj represents outputs, ELM is defined by:

∑N

i=1
βig

(
wi⋅xj + bi

)
= tj,wherej = 1,2, ...N (7)

Where wi is the input weight vector, bi is the bias, βi is the output
weight vector, g(.) is the activation function, and N is the number of
hidden neurons. The training involves:

1. Random initialization: input weights (wi) and biases (bi) are
randomly assigned.

2. The hidden layer output calculation is expressed as follows:

H =

⎛

⎝
g(w1⋅x1 + b1) … g(wN⋅x1 + bN)

⋮ ⋱ ⋮
g(w1⋅xN + b1) ⋯ g(wN⋅xN + bN)

⎞

⎠ (8)

preprocessing involved several steps to ensure data quality and
improve model performance.

3. Output Weight Optimization: Solve Hβ=T. β = H † T where H† is the
Moore-Penrose (MP) generalized inverse of matrix H.

3.3. Proposed STL-ELM method

The STL-ELM method combines STL decomposition with ELM to
forecast high-volatility stock prices. The framework of the proposed

Fig. 1. STL-ELM methodology flow chart.
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model is illustrated in Fig. 1. The methodology involves the following
steps:

1. Decomposition: Decompose the original time series Xt into three
components using STL:

Xt = Tt + St + Rt (9)

2. Independent Component Prediction: Use ELM to model and predict
each component (St, Tt, Rt) separately as follows:

St = ELM(St),Tt = ELM(Tt),Rt = ELM(Rt) (10)

3. Reconstruction: Combine the predicted components to generate the
final forecast as follows:

Table 1
Descriptive statistics of selected stock indices.

Index Country Samples Start date (dd/mm/yy) End date (dd/mm/yy) Mean Std. Dev.

S&P 500 USA 5285 01–01–2004 31–12–2024 2295.73 1272.85
FTSE 100 UK 5304 01–01–2004 31–12–2024 6351.58 1024.23
HSI Hong Kong 5175 01–01–2004 31–12–2024 21,600.58 4584.05
DJIA USA 5285 01–01–2004 31–12–2024 19,516.68 9427.17

Fig. 2. Decomposition plot of stock indices.

T.O. Kehinde et al.
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Xt = St + Tt + Rt (11)

This hybrid approach ensures that each decomposed component is
accurately modelled and predicted, leveraging the strengths of STL for
decomposition and ELM for fast and efficient learning. The final pre-
dictions are obtained by summing the individual components, offering a
robust and computationally efficient solution for high-volatility stock
forecasting.

3.4. Data preprocessing

Data preprocessing plays a crucial role in ensuring the quality and
reliability of input data for ML models, especially in the context of
financial forecasting. For this study, daily historical stock data were
collected from investing.com for four major global indices: the S&P 500
(USA), FTSE 100 (UK), Hang Seng Index (HSI – Hong Kong), and Dow
Jones Industrial Average (DJIA – USA). These indices were carefully
selected for their geographical coverage, economic significance, and

inherent volatility. The S&P 500 and DJIA are leading benchmarks for
the US market, representing a mix of large-cap corporations across
various sectors. The FTSE 100 captures market dynamics within the UK
and broader European context, while the HSI represents a critical win-
dow into the Asian financial markets, particularly China-linked equities.
The inclusion of these four indices ensures that the proposed model is
tested on datasets exhibiting diverse volatility profiles, economic con-
ditions, and trading behaviours. Each dataset spans from January 1,
2004, to December 31, 2024, with a summary provided in Table 1,
encompassing multiple market cycles, including the 2008 global finan-
cial crisis, the COVID-19 pandemic, and subsequent recoveries, and the
ongoing war between Russia and Ukraine, as well as Israel and Hamas.
This long-term horizon supports robust temporal analysis and enhances
the generalizability of the proposed STL-ELM model. The proposed
model is designed to predict the next day’s value using a look-back
period of 10 days. The choice of market indices over individual stock
data offers broader market representativeness, reduced idiosyncratic
noise, and greater relevance for institutional investors.

Table 1 provides descriptive statistics for four major stock indices,
highlighting their sample sizes, time spans, mean values, and standard

Fig. 2. (continued).
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deviations. The HSI and DJIA exhibit the highest average prices and
volatility, indicating greater market fluctuations. In contrast, the FTSE
100 shows lower average values and variability. These differences
emphasize the diverse behavior of global markets and the need for
adaptable forecasting models like STL-ELM.

Preliminary data checks confirmed the absence of missing values,
and outlier analysis was conducted to validate data consistency. A cor-
relation analysis identified the closing price as the most informative and
representative feature, prompting the removal of redundant variables.
Focusing on the close price simplifies the model input while retaining
critical information about market behaviour. To ensure uniformity and
improve model training efficiency, a Min-Max [0, 1] scaler was fitted on
the training data to transform both the training and test sets. This
normalization facilitates faster convergence during training and ensures
comparability across different indices with varying price magnitudes.
The Min-Max scaling transformation is defined as follows:

Xscaled =
X − Xmin

Xmax − Xmin
(12)

Where X is the original closing price, and Xmin and Xmax are the
minimum and maximum values of the price series, respectively.

By adopting this uniform preprocessing approach, the study ensures
that each index retains its intrinsic temporal characteristics while being
compatible with the same hybrid modelling architecture. These steps
collectively establish a solid foundation for fair model comparison,
effective training, and credible evaluation of stock forecasting perfor-
mance across global markets.

3.5. Decomposition analysis

To uncover the multiscale properties inherent in financial time se-
ries, STL decomposition was applied to the daily prices of four major
global stock indices: S&P 500 (USA), FTSE 100 (UK), HSI (Hong Kong),
and DJIA (USA). This method effectively disaggregates each time series
into trend, seasonal, and residual components, enabling more precise
insights into long-term market movements, recurring cyclical patterns,
and irregular fluctuations. As illustrated in Fig. 2, each index displays
distinctive multiscale behavior, characterized by non-linear trends and
varying degrees of seasonality. The trend component captures the
persistent directional shifts over time, the seasonal component reveals
cyclical movements potentially linked to institutional or macroeco-
nomic cycles, and the remainder isolates unpredictable volatility. The
clarity of these decomposed elements provides a strong foundation for
improved forecasting by reducing noise and isolating meaningful
structure within each index.

To further validate the presence of trends and assess stationarity, the
Augmented Dickey-Fuller (ADF) test was conducted on the daily price
series of all four indices. The results revealed non-stationary charac-
teristics across the datasets, with S&P 500 (ADF = 2.2711, p = 0.9989),
DJIA (ADF = 1.3579, p = 0.9969), and FTSE 100 (ADF = − 2.1377, p =

0.2296) all failing to reject the null hypothesis of non-stationarity at the
5 % level. Although the HSI presented a relatively lower ADF statistic
(− 2.7713) with a p-value of 0.0625, it still did not meet the standard
threshold for stationarity. These findings reinforce the rationale for
adopting STL, as the presence of significant non-stationary components
across all indices necessitates decomposition to enhance model inter-
pretability and performance. By isolating the structural components of
stock market data, STL serves as a critical preprocessing step in enabling
robust, data-driven forecasting within the proposed STL-ELM
framework.

3.6. Evaluation metrics and trading strategy

This study employed four key evaluation metrics, Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and coefficient of determination (R²), to assess the per-
formance of the proposed model. These metrics provide a comprehen-
sive evaluation of prediction accuracy, error magnitude, and model
reliability. The evaluation metrics are expressed as follows:

Table 2
TPE hyperparameters for various model configurations.

Model #P #SR #TP #TP #TP #TP
S&P
500

FTSE
100

HSI DJIA

STL-
ELM

Neurons
(trend)

(30, 35,
step = 1)

33 34 35 35

Neurons
(seasonal)

(30, 35,
step = 1)

35 35 35 35

Neurons
(remainder)

(30, 35,
step = 1)

35 32 35 35

LSTM
Neurons (25, 40,

step = 5)
40 40 40 40

Epochs (70, 130,
step = 10)

120 120 120 130

Dropout (0, 0.2) 0.0252 0.0307 0.0003 0.0170
Learning rate (0.0001,

0.01)
0.0080 0.0016 0.0075 0.0046

Batch size [16, 32,
64]

16 16 16 16

Layers (1,4) 1 2 1 1

GRU
Neurons (25, 40,

step = 5)
35 35 40 40

Epochs (70, 130,
step = 10)

110 110 120 120

Dropout (0, 0.2) 0.0384 0.0384 0.0040 0.0348
Learning rate (0.0001,

0.01)
0.0048 0.0048 0.0037 0.0043

Batch size [16, 32,
64]

32 32 16 32

Layers (1,4) 1 1 1 1

#P = Parameter, #SR = Search Range, #TP = Tuned Parameter.

Table 3
Evaluation metrics on out-of-sample period (Base model configuration).

Model Metric S&P 500 FTSE 100 HSI DJIA

LSTM RMSE 55.5021 82.6004 356.9658 383.9929
MAE 43.9355 68.5327 276.9732 307.1941
MAPE ( %) 0.98 0.91 1.35 0.88
R2 0.9922 0.9753 0.9923 0.9882

GRU RMSE 74.9982 75.3061 342.5812 382.6947
MAE 58.5996 58.5328 254.0223 307.3048
MAPE ( %) 1.25 0.80 1.21 0.87
R2 0.9857 0.9795 0.9929 0.9883

STL-ELM RMSE 49.2262 61.1117 327.7894 323.0286
MAE 38.6157 44.4965 244.2430 245.5001
MAPE ( %) 0.87 0.61 1.16 0.71
R2 0.9938 0.9865 0.9935 0.9917

Table 4
Evaluation metrics on out-of-sample period (Tuning using Optuna).

Model Metric S&P 500 FTSE 100 HSI DJIA

LSTM
RMSE 53.1989 61.2743 334.7227 339.6334
MAE 40.4696 44.6358 248.9309 259.4398
MAPE ( %) 0.92 0.61 1.19 0.75
R2 0.9928 0.9864 0.9932 0.9908

GRU
RMSE 56.2221 61.6468 333.2739 371.2612
MAE 44.5258 45.4073 245.1551 289.1579
MAPE ( %) 0.99 0.62 1.17 0.83
R2 0.9920 0.9863 0.9933 0.9890

STL-ELM
RMSE 46.5275 60.9782 324.8360 317.7204
MAE 35.4788 44.4916 242.5197 242.2876
MAPE ( %) 0.81 0.61 1.16 0.70
R2 0.9945 0.9866 0.9936 0.9919

T.O. Kehinde et al.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − xi)

2

√
√
√
√ (13)

MAPE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
xi − xi

xi

⃒
⃒
⃒
⃒ ∗ 100% (14)

MAE =
1
N

∑N

i=1
|xi − xi| (15)

R2 = 1 −

∑N

i− 1
(xi − xi)

2

∑N

i− 1
(xi − x̂i)

2
(16)

Where, xi is the actual value, xi is the predicted value, x̂i is the mean
value, and N is the length of the dataset.

To evaluate the practical applicability of the models in financial
trading, the proposed model, STL-ELM, and other baseline models were
subjected to a trading strategy to estimate net portfolio values and
evaluate their monetary implications. The strategy leverages the
model’s ability to predict future (next day) stock prices accurately,
enabling practical trading decisions aimed at generating monetary re-
wards. This approach evaluates the effectiveness of translating predic-
tive accuracy into real-world portfolio investments. The trading strategy
uses key metrics, including total return, volatility, maximum drawdown,
and the Sharpe ratio, to assess performance. Total return quantifies the
overall profit or loss generated by the portfolio over the trading period,
providing an essential indicator of the strategy’s financial performance.
Volatility measures the degree of price variation over time, serving as a
critical risk assessment tool for investors and traders. Maximum draw-
down evaluates the largest decline in portfolio value from its peak to its
lowest point, reflecting the strategy’s risk of significant losses. Finally,
the Sharpe ratio assesses the risk-adjusted performance by calculating
the additional return per unit of risk taken. In this study, the risk-free
interest rate was assumed to be 1 %, and the number of trading days

per year was set at 252, which is in line with standard market
conventions.

Therefore, a dynamic signal-based trading strategy was imple-
mented. This strategy leverages the directional prediction generated by
STL-ELM and other models to inform long and short positions. Specif-
ically, a trading signal is triggered based on the sign of the difference
between the predicted price and the previous actual price: a positive
signal indicates a long position, while a negative signal initiates a short
position. The model incorporates trading frictions by applying a 0.05 %
transaction cost on both entry and exit, totaling 0.10 % transaction cost.
The capital is updated iteratively based on the holding position and
actual market returns, enabling the computation of performance metrics
such as total return, volatility, Sharpe ratio, and maximum drawdown.
This strategy aligns with the directional forecasting approach in quan-
titative trading and allows for assessing the predictive model’s profit-
ability and risk profile under realistic market conditions. By integrating
prediction accuracy with trade execution logic, the framework bridges
the gap between financial forecasting and actionable investment
decisions.

3.7. Hyperparameter settings

Hyperparameter tuning is a crucial step in optimizing model per-
formance, as it helps identify the best set of parameters for achieving
superior accuracy and efficiency. In this study, Optuna, an efficient and
flexible optimization framework, is employed to fine-tune the hyper-
parameters of the proposed STL-ELM model and the baseline models
(LSTM and GRU). Optuna’s ability to automate the hyperparameter
search process through techniques such as Tree-structured Parzen Esti-
mators (TPE) allowed for efficient exploration of the parameter space
while minimizing computational overhead (T. Kehinde et al., 2025). For
the STL-ELM model, Optuna was used to optimize the number of neu-
rons assigned to the trend, seasonal, and remainder components inde-
pendently. The search range for each parameter was carefully defined
based on initial experiments, ensuring a balance between model
complexity and computational efficiency. Similarly, for the baseline

Fig. 3. Error plot of experiments.
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models (LSTM and GRU), key hyperparameters such as the number of
neurons, batch size, learning rate, dropout rate, number of layers, and
epochs were optimized. The search ranges for these parameters were
tailored to the specific characteristics of each model to ensure fairness in
the comparison. The tuning process for all models began with a defined
objective function that minimized the validation error, such as the MSE,
over a predefined number of trials. Optuna’s framework dynamically
adjusts the search space based on previous results, making the tuning
process both efficient and effective. Once the best hyperparameter
combinations were identified, these values were applied to the models to
generate optimized results.

4. Experiments, results, and discussion

4.1. Hardware and software requirements

All experiments were conducted on a personal computer equipped

with an Intel® Core™ Ultra 7 processor, 32 GB of RAM, and 1 TB of
solid-state storage (SSD). The implementation and evaluation of the
proposed models were carried out using Python version 3.12.7,
distributed via Anaconda on a 64-bit Windows environment (MSC
v.1929 AMD64). The modeling and statistical computations were per-
formed using key scientific libraries and frameworks including NumPy
(v1.26.4), Pandas (v2.2.2), Seaborn (v0.13.2), Matplotlib (v3.9.2), and
Statsmodels (v0.14.2). Model training and hyperparameter optimization
leveraged Scikit-learn (v1.5.1), Optuna (v4.2.1), and Hyperopt (v0.2.7).
Deep learning components utilized TensorFlow (v2.19.0) and Keras
(v3.9.0). System-level monitoring and performance evaluation were
supported by psutil (v5.9.0) and GPUtil (v1.4.0). This configuration
ensured efficient execution of training routines, performance bench-
marking, and visual analytics throughout the experimental workflow.

Fig. 4. STL-ELM - Predicted vs True curve (Out of sample data).
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4.2. Experimental set-up

To evaluate the effectiveness of the STL-ELM hybrid model for high-
volatility stock forecasting, all selected stock index datasets are parti-
tioned into training and testing sets, with 80 % of the data used for
rigorous training and 20 % as an out-of-sample period. Additionally, a
validation split of 0.2 was applied during training to assess model per-
formance during the training process to prevent overfitting. For all
models, the loss function used is MSE. These settings formed the foun-
dation for the experiments, which undergo 50 trials during tuning to
ensure optimal performance. All models, including the baseline models,
LSTM and GRU were configured with the following initial parameters: a
look-back window of 10 days, batch size of 32, then 30 neurons were
applied, one layer was selected, a dropout rate of 0.1, a learning rate of
0.001, Adam optimizer, tanh activation function, and 100 epochs. To
enhance the performance of all models, hyperparameter tuning was
conducted using the Optuna framework.. The tuning parameters, their
respective search ranges, and the final optimized values for each model
are summarized in Table 2.

4.3. Experimental results

Tables 3 and 4 present a comparative evaluation of the proposed STL-
ELM model alongside LSTM and GRU across four major stock indices:
S&P 500, FTSE 100, HSI, and DJIA, under two experimental configu-
rations: without hyperparameter tuning (Table 3) and after tuning with
Optuna (Table 4). This two-tiered analysis enables a comprehensive
understanding of both the models’ inherent forecasting capabilities and
the performance enhancements brought by optimization. In the base
model configuration (Table 3), STL-ELM consistently outperforms LSTM
and GRU across all evaluation metrics. Specifically, STL-ELM achieves
the lowest RMSE, MAE, and MAPE in all four indices. For instance, on
the DJIA dataset, STL-ELM records an RMSE of 323.03 and MAPE of 0.71
%, outperforming LSTM (RMSE = 383.99, MAPE = 0.88 %) and GRU
(RMSE = 382.69, MAPE = 0.87 %). A similar trend is observed in the
FTSE 100, where STL-ELM achieves a significantly lower RMSE (61.11)
compared to LSTM (82.60) and GRU (75.31). These results demonstrate
the robustness of STL-ELM even without parameter tuning, reflecting the
strength of its hybrid architecture in modeling multiscale and volatile

Fig. 4. (continued).
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stock data.
Following hyperparameter tuning using Optuna (Table 4), all models

exhibit improvements in performance, but STL-ELM maintains its
leading position across all indices. The gains are particularly notable in
LSTM and GRU, which benefit from better dropout rates, neuron counts,
and learning rate configurations. For example, LSTM’s RMSE on the S&P
500 improves from 55.50 to 53.20, while GRU’s RMSE on the HSI drops
from 342.58 to 333.27. Despite these improvements, STL-ELM continues
to yield the lowest RMSE and MAE in all four datasets, reaffirming its
computational and predictive superiority. On the HSI, STL-ELM achieves
an RMSE of 324.84 and MAPE of 1.16 %, slightly better than GRU
(RMSE = 333.27, MAPE = 1.17 %) and LSTM (RMSE = 334.72, MAPE =

1.19 %). Additionally, STL-ELM achieves the highest R² values across all
datasets post-tuning, peaking at 0.9945 for the S&P 500. What is
particularly compelling is STL-ELM’s minimal error reduction after
tuning, suggesting that its architecture is naturally robust and less sen-
sitive to hyperparameter settings. In contrast, LSTM and GRU exhibit
more significant changes in performance after tuning, highlighting their
dependence on careful parameter configuration. STL-ELM’s lightweight
feedforward design, combined with STL’s decomposition of the time
series, appears to provide a strong structural advantage in capturing

complex stock market dynamics with fewer adjustments.
Fig. 3 illustrates the comparative out-of-sample performance of

LSTM, GRU, and STL-ELM models across four major stock indices using
RMSE, MAE, MAPE, and R² metrics.

In Fig. 4, the out-of-sample prediction plots for the DJIA and S&P 500
indices clearly illustrate the STL-ELM model’s strong alignment between
predicted and actual closing prices over time. For DJIA, the model
captures both long-term upward momentum and intermediate market
corrections with impressive accuracy. Similarly, the S&P 500 plot
showcases a tight overlap between the true and predicted curves across
bullish trends, dips, and rebounds. These results indicate the model’s
capacity to learn from historical trends and generalize effectively, even
in the presence of non-linear fluctuations. The consistency observed
throughout these U.S.-based indices highlights STL-ELM’s robustness in
modelling complex dynamics in high-cap, developed markets. For the
HSI and FTSE 100, the predicted curves also closely follow the actual
price trajectories, though these markets exhibit more pronounced
volatility and trend shifts. The HSI plot reflects significant drawdowns
and short-term spikes, which the model captures well, reinforcing STL-
ELM’s adaptability to unstable and noisy environments like the Hong
Kong market. Meanwhile, the FTSE 100 prediction aligns with the

Fig. 5. Scatter plots of stock index’s predicted vs. true values (STL-ELM).
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index’s moderate growth path, capturing recurring fluctuations and
stabilization periods effectively. Across all indices, the minimal visual
deviation between true and predicted values validates the model’s high
predictive precision and confirms its capability to operate reliably across
different global financial markets and market regimes.

Fig. 5 illustrates the scatter plots of predicted versus actual values for
all four indices, highlighting the regression lines that quantify the STL-
ELM model’s predictive performance. For the DJIA, the regression
equation is y = 1.00x - 149.20, indicating a perfect slope of 1.00, which
signifies that the model accurately captures the scale of the actual
values. The negative intercept reflects a slight underestimation across
the prediction range. Nevertheless, the tight clustering of points around
the regression line affirms the model’s precision in tracking high-cap U.
S. stock index movements. In the case of the HSI, the regression line y =
0.99x + 165.09 reveals a strong linear relationship, with a slope just
under 1.00, suggesting minor underprediction at higher value ranges.
The positive intercept introduces a slight upward bias, which can be
attributed to the inherent volatility in the Hong Kong market. Still, the
model maintains consistent accuracy across the spectrum.

For the FTSE 100, the equation y = 0.99x + 52.35 also implies high

fidelity, with a slope close to unity and a modest positive intercept. This
result signifies that the STL-ELM model performs stably in moderately
volatile environments such as the UK market, accurately reproducing
both the trend and scale of the original series. Finally, the S&P 500
exhibits a regression line of y = 1.00x - 1.60, indicating near-perfect
scale alignment with minimal bias. The slope of 1.00 and the negli-
gible negative intercept confirm the model’s capability to generalize
effectively and maintain predictive accuracy across all value ranges.
Together, these regression plots validate STL-ELM’s robustness and
generalization strength across diverse market behaviors, highlighting its
suitability for both stable and volatile financial forecasting scenarios.

4.4. Trading results

The trading performance of the proposed STL-ELM model, its base-
line counterparts (LSTM and GRU), and the Buy and Hold (B&H) strat-
egy is benchmarked using four key metrics: total return, volatility,
maximum drawdown, and Sharpe ratio, as presented in Table 5. The
results clearly demonstrate that STL-ELM substantially outperforms the
baseline models and B&H strategy across all indices, especially in terms

Fig. 5. (continued).
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of total return, drawdown control, and risk-adjusted returns. In the high-
volatility HSI market, STL-ELM achieves an exceptional total return of
256.12 %, significantly outperforming LSTM (− 32.11 %) and GRU
(− 46.89 %), both of which result in substantial losses. The B&H
approach also fails under these conditions, returning − 17.78 %.
Notably, STL-ELM attains the highest Sharpe ratio (1.3165) among all
models and indices, underscoring its superior ability to generate
consistent risk-adjusted returns even in turbulent markets. Additionally,
it records a relatively modest maximum drawdown of − 0.2277, signif-
icantly lower than the B&H (− 0.5275) and GRU (− 0.5017) strategies.

In the S&P 500, STL-ELM yields the highest total return of 81.84 %,
outperforming B&H (71.54 %), while LSTM and GRU perform poorly
with − 60.77 % and − 39.01 % returns, respectively. The STL-ELM
strategy also posts the highest Sharpe ratio (0.8854) and the lowest
drawdown (− 0.1718) in this market, indicating better profitability and
stability during adverse movements. For the FTSE 100, STL-ELM again
leads with a return of 59.12 %, exceeding both B&H (40.06 %) and GRU
(17.02 %), while LSTM still underperforms with a 56.11 % return.
Although LSTM’s return is slightly competitive, its Sharpe ratio (0.7929)
and drawdown (− 0.1078) trail those of STL-ELM, which maintains a
stronger Sharpe ratio of 0.8266 and a lower drawdown (− 0.1040). In the
DJIA, STL-ELM secures a solid 68.05 % return, clearly outperforming
B&H (50.82 %) and vastly outpacing LSTM (− 45.60 %) and GRU (11.34
%). The Sharpe ratio of STL-ELM (0.8657) again leads all models,
reflecting strong risk-adjusted performance, while its drawdown
(− 0.1260) remains the smallest, reinforcing its capital preservation ca-
pabilities. These results affirm STL-ELM’s superior robustness and
adaptability to diverse market conditions, positioning it as a practical
and reliable approach for algorithmic trading across global equity
markets.

Notably, STL-ELM demonstrates a clear advantage over the B&H
strategy during periods of heightened volatility, such as sharp correc-
tions, crisis-induced drawdowns, or rapid rebounds. While B&H suffers
in such regimes due to its static exposure, STL-ELM’s signal-based
strategy enables timely exits during downturns and swift re-entry dur-
ing recoveries. This dynamic responsiveness allows STL-ELM to reduce
exposure during adverse market movements, limiting losses, and re-
engage during upward trends, ultimately achieving superior risk-
adjusted returns. Such performance is particularly evident in indices
like the HSI and DJIA, which experienced extended periods of instability
during the test horizon.

Fig. 6 presents the cumulative net value curves for the STL-ELM
model, its baseline models (LSTM and GRU), and B&H strategy across
the DJIA, HSI, FTSE 100, and S&P 500 indices. These curves depict
portfolio growth over time, normalized to an initial value of 1, and
provide critical insights into the models’ trading effectiveness and sta-
bility. In the DJIA plot, the STL-ELM model (red curve) exhibits the most
consistent and highest performance, ending with the greatest cumula-
tive return and displaying smooth upward growth with minimal draw-
downs. The B&H strategy (black curve) performs respectably but is
marked by more volatility. GRU (blue curve) yields moderate gains with
less stability, while LSTM (green curve) performs the worst, reflecting a
steady and significant decline in value, highlighting its poor adaptability
to the DJIA’s market behavior. The HSI plot further amplifies the
dominance of STL-ELM. The red curve shows a steep and sustained rise,
ultimately delivering the highest net value among all strategies, even in
the face of HSI’s disreputable volatility. In contrast, the B&H (black),
GRU (blue), and LSTM (green) curves all trend downward or remain flat
over time, indicating their inability to capitalize on market fluctuations
or manage downside risk effectively in a turbulent environment.

In the FTSE 100, STL-ELM once again demonstrates a strong and
relatively stable upward trajectory, outperforming its counterparts by
the end of the testing period. LSTM closely trails STL-ELM early on and
even overlaps for some duration, but its final performance is marginally
lower. B&H remains competitive, while GRU lags with visibly weaker
and more erratic performance throughout. For the S&P 500, the STL-
ELM model consistently maintains superior performance, culminating
in the highest net value. The B&H strategy follows closely, demon-
strating strong long-term returns in this relatively stable market. How-
ever, GRU and LSTM underperform significantly, especially LSTM,
which suffers from a prolonged and deep decline. STL-ELM’s ability to
navigate and outperform even in upward-trending markets showcases
its robustness and effectiveness as a tactical model. Across all indices,
the STL-ELM model delivers not only the highest cumulative returns but
also the most stable equity growth, affirming its resilience to market
volatility and its suitability for algorithmic trading across diverse global
stock markets. These plots substantiate STL-ELM’s superiority in both
return maximization and risk mitigation, reinforcing its value as a
practical, high-performance trading strategy.

4.5. Computational efficiency

Table 6 and Fig. 7 present the computational performance metrics of
the evaluated models, including runtime and memory usage. These as-
pects are critical for evaluating the models’ feasibility in real-time
trading and high-frequency financial applications where computa-
tional efficiency is essential. Table 6 indicates that the proposed STL-
ELM model outperforms both LSTM and GRU by a substantial margin
in terms of computational efficiency. In terms of runtime, STL-ELM
completes training in just 4 to 5 s, compared to LSTM and GRU
models, which require between 2120 and 4634 s. Specifically, while
LSTM takes as long as 4634 s on the FTSE 100 and GRU reaches 4611 s
on the DJIA, STL-ELM maintains a consistently fast runtime across all
indices, highlighting its remarkable training speed.

This rapid execution is attributed to its feedforward structure and the
simplicity of the ELM algorithm, which eliminates iterative back-
propagation. Memory usage shows an equally striking advantage. STL-
ELM consumes only a fraction of the memory used by LSTM and GRU
models, ranging from just 0.70 MB on the HSI to 2.20 MB on the S&P
500. In contrast, LSTM and GRU demand hundreds to thousands of
megabytes, with GRU peaking at 2191 MB on the DJIA dataset. This
lightweight memory footprint underscores STL-ELM’s superior scal-
ability and suitability for deployment in constrained environments such
as low-latency trading systems, edge computing platforms, or mobile
applications.This high level of efficiency makes STL-ELM well-suited for
deployment in high-frequency trading (HFT) systems, where real-time
data processing and rapid decision-making are critical. The model’s

Table 5
Trading strategy on out of sample period.

Model Metric S&P 500 FTSE
100

HSI DJIA

LSTM
Total Return − 60.77

%
56.11 % − 32.11

%
− 45.60
%

Volatility 0.0104 0.0083 0.0158 0.0090
Maximum
Drawdown

− 0.6569 − 0.1078 − 0.5998 − 0.5334

Sharpe Ratio − 1.3331 0.7929 − 0.2899 − 1.0090

GRU
Total Return − 39.01

%
17.02 % − 46.89

%
11.34 %

Volatility 0.0104 0.0084 0.0158 0.0090
Maximum
Drawdown

− 0.4562 0.1698 − 0.5017 − 0.1960

Sharpe Ratio − 0.6931 0.2725 − 0.5299 0.1808

STL-
ELM

Total Return 81.84 % 59.12 % 256.12 % 68.05 %
Volatility 0.0104 0.0083 0.0158 0.0090
Maximum
Drawdown

− 0.1718 − 0.1040 − 0.2277 − 0.1260

Sharpe Ratio 0.8854 0.8266 1.3165 0.8657
B&H Total Return 71.54 % 40.06 % − 17.78

%
50.82 %

Volatility 0.0104 0.0083 0.0158 0.0090
Maximum
Drawdown

− 0.2543 − 0.1103 − 0.5275 − 0.2194

Sharpe Ratio 0.8044 0.5970 − 0.1044 0.6862
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lightweight architecture allows for fast retraining and real-time infer-
ence on incoming data streams, enabling traders to execute strategies
based on up-to-the-moment forecasts. Furthermore, its minimal resource
consumption facilitates deployment in low-latency environments, such
as edge servers or co-located trading infrastructure, making STL-ELM a
practical choice for time-sensitive algorithmic trading operations.

4.6. Comparison with existing studies

To establish the robustness and superiority of the proposed STL-ELM
model, a comprehensive comparative analysis was conducted against
state-of-the-art (SOTA) models from existing literature. This comparison
was carefully aligned in terms of datasets, stock indices, and experi-
mental setups to ensure fairness and reproducibility. STL-ELM was
benchmarked against a range of baseline and advanced models,
including traditional DL architectures (MLP, CNN, LSTM), attention-
based models, e.g., the Uncertainty-Aware (UA) model by Gao et al.
(2020), and sophisticated hybrid architectures like SDTP (Series
Decomposition Transformer with Periodic Correlation) by Tao et al.
(2024) and EMD2FNN by Zhou et al. (2019), which combines Empirical

Mode Decomposition with Factorization Machine-based neural net-
works. As depicted in Table 7, on the HSI index, STL-ELM significantly
outperformed SDTP in all key metrics: it achieved a lower MAE (233.164
vs. 256.024), lower RMSE (315.404 vs. 345.411), lower MAPE (0.8997
vs. 0.9920), and a higher R² (0.9866 vs. 0.9788), indicating both su-
perior prediction accuracy and a better fit. In the S&P 500 comparison
with models reported by Gao et al. (2020), STL-ELM demonstrated the
lowest RMSE (19.2237) among all contenders, including the UA model
(25.4851), CNN (25.7888), LSTM (35.4955), and MLP (44.5137). While
UA achieved a slightly lower MAPE (0.67 %) compared to STL-ELM
(0.71 %), STL-ELM’s substantially lower RMSE reinforces its robust-
ness in minimizing absolute prediction errors.

Further comparison with EMD2FNN models from Zhou et al. (2019)
across varying window sizes also affirmed STL-ELM’s superiority. At all
tested window sizes (3, 4, and 5), STL-ELM achieved lower RMSE and
comparable or better MAE and MAPE. For instance, with window size 3,
STL-ELM slightly outperformed EMD2FNN in RMSE (17.5691 vs.
17.6591) and MAE (13.0201 vs. 13.0396), while maintaining identical
MAPE (1.05 %). This trend persisted for other window sizes, under-
scoring the STL-ELM model’s consistent edge in both precision and

Fig. 6. Cumulative net value curves on the out-of-sample period of selected indices.
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generalization. Based on these results, the STL-ELM model not only
achieves top-tier performance compared to existing singular,
attention-based, and hybrid models but also does so with fewer pa-
rameters and reduced computational complexity. These findings further
reinforce STL-ELM’s potential as a lightweight, accurate, and scalable
forecasting solution for high-volatility financial markets.

4.7. Managerial implications

The findings of this study offer significant managerial insights for
practitioners and decision-makers in financial services, portfolio

management, and algorithmic trading. The superior forecasting accu-
racy and trading performance of the proposed STL-ELM model suggest
that financial institutions can benefit from adopting hybrid machine
learning frameworks that integrate signal decomposition with light-
weight neural networks. By achieving higher returns and lower draw-
downs than traditional deep learning models and benchmark strategies
like B&H, STL-ELM demonstrates its practical viability in real-world
trading environments. Managers can leverage this model to enhance
decision-making under uncertainty, particularly in volatile markets such
as the HSI and DJIA. Moreover, its exceptional computational efficiency,
in both runtime and memory usage, makes STL-ELM an ideal solution for
firms operating under hardware constraints or seeking scalable models
for high-frequency trading. The interpretability of the STL decomposi-
tion also aids risk analysts and compliance teams in understanding the
model’s behaviour, addressing regulatory transparency requirements.
All things considered, this research equips managers with a robust and
efficient forecasting tool that supports dynamic portfolio optimization
and risk management strategies, ultimately leading to improved prof-
itability and operational agility in fast-moving capital markets.

Fig. 6. (continued).

Table 6
Computational performance metrics on training datasets.

Model Computational Efficiency S&P
500

FTSE
100

HSI DJIA

LSTM Runtime (seconds) 2916 4634 2120 2534
Memory Usage (MB) 1228 1046 1378 1346

GRU Runtime (seconds) 3326 2440 2401 4611
Memory Usage (MB) 1250 645 850 2191

STL-
ELM

Runtime (seconds) 4 5 5 4
Memory Usage (MB) (*
10–2)

220 196 70 190
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5. Conclusion and future study

5.1. Conclusion

This study introduced a computationally efficient hybrid model, STL-
ELM, for forecasting high-volatility stock markets. By integrating STL
with ELM, STL-ELM overcomes the limitations of conventional statisti-
cal, ML, and DL models in handling the complexities of stock price
prediction. STL’s decomposition capabilities allow the model to extract
multiscale features from volatile stock data, such as trends, seasonality,
and residual components, which are often overlooked by traditional
methods. ELM complements this by providing rapid training, robust
generalization, and minimal computational overhead, ensuring that the
model remains efficient even in high-frequency trading environments.
The proposed model not only outperforms state-of-the-art models,
including notable singular, hybrid, or attention-based models, but also
demonstrates superior computational efficiency, making it ideal for real-
time forecasting applications.

The novelty of STL-ELM lies in its ability to combine two comple-
mentary techniques, STL and ELM, into a seamless hybrid model that
excels in predictive accuracy while maintaining a lightweight and
scalable architecture. Unlike other hybrid approaches that struggle with
high volatility and noise in stock market data, STL-ELM demonstrates
exceptional robustness and profitability, outperforming competitors
across various global stock indices, including the S&P 500, FTSE 100,

HSI, and DJIA. The model’s ability to handle multiscale time series
features and its superior generalization capability position it as a
powerful tool for investors, analysts, and policymakers seeking to
navigate dynamic financial markets. Additionally, the STL-ELM model
provides accurate predictions and ensures that these predictions are
actionable in real-world trading, as evidenced by its success in a trading
strategy that maximizes returns while minimizing risks.

From a practical standpoint, the STL-ELM model represents a sig-
nificant advancement in stock market forecasting, particularly in high-
volatility markets, where traditional methods often fall short. The
model’s efficiency, combined with its ability to produce reliable, high-
quality forecasts, makes it an attractive solution for institutional in-
vestors, financial analysts, and policy decision-makers. Furthermore,
due to its modular architecture, the STL-ELM model is easily transferable
across financial time series with differing characteristics. The decom-
position step enables the extraction of structural patterns unique to each
domain, while ELM’s lightweight configuration facilitates retraining
with minimal overhead. This makes STL-ELM suitable for broader ap-
plications such as commodities forecasting, FX rate prediction, and high-
frequency trading scenarios.

5.2. Future study

Future research can explore several avenues to build upon this work.
First, enhancing ELM by integrating optimization algorithms like the Bat

Fig. 7. Computational measures during training.

T.O. Kehinde et al.



Intelligent Systems with Applications 27 (2025) 200564

19

algorithm (Saheed et al., 2024), particle swarm optimization (PSO) or
genetic algorithms (GA) for weight initialization may address variability
issues and improve predictive stability. Second, expanding the evalua-
tion to include diverse datasets across different markets and sectors
would test the model’s generalizability and robustness. Additionally,
future studies can investigate more sophisticated trading strategies that
incorporate portfolio diversification, adaptive risk management, and
market sentiment analysis to better simulate real-world scenarios.
Finally, integrating explainability techniques to interpret the model’s
predictions can provide deeper insights for users and stakeholders,
enhancing its practical utility in decision-making.
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Stock Index Models MAE RMSE MAPE R²

HSI SDTP 256.024 345.411 0.9920 0.9788
STL-ELM 233.164 315.404 0.8997 0.9866

Gao et al. (2020)

Stock
Index

Models MAE RMSE MAPE R²

S&P
500

MLP – 44.5137 1.18
%

0.9745

LSTM – 35.4955 0.96
%

0.9803

CNN – 25.7888 0.68
%

0.9888

Uncertainty-aware
Attention (UA)

– 25.4851 0.67
%

0.9891

STL-ELM – 19.2237 0.71 0.9558

Zhou et al. (2019)

Stock
Index

Models MAE RMSE MAPE R²

S&P 500
EMD2FNN (window size =

3)
13.0396 17.6591 1.05 % –

STL-ELM (window size ¼
3)

13.0201 17.5691 1.05 % –

EMD2FNN (window size =

4)
15.1386 20.3978 1.22 % –

STL-ELM (window size ¼
4)

13.0474 17.9865 1.05 % –

EMD2FNN (window size =

5)
16.1700 22.1277 1.30 % –

STL-ELM (window size ¼
5)

13.7026 18.5118 1.11 % –
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