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ARTICLE INFO ABSTRACT

Keywords: This study utilizes machine learning (ML) method to investigate the axial compressive strength of
Coral aggregate concrete fiber-reinforced polymer (FRP)-confined coral aggregate concrete (CAC). A dataset comprising
FRP

115 samples is created, and eight input features are selected for developing and evaluating ML
models. Besides, six empirical formulae are used to compare their performance against the ML
models. The SHapley Additive exPlanation (SHAP) algorithm is employed to elucidate the pre-
diction mechanisms of the ML models and to clarify the interactions between the eight input
features and the axial compressive strength of FRP-confined CAC. A comparison of evaluation
metrics indicates that the empirical model, which is developed for compressive strength of FRP-
confined geopolymer-based CAC prediction, outperforms the other five empirical formulas in
precision, boasting the highest R? value of 0.84. In comparison, with the exception of the KNN
model, the remaining five data-driven ML models exhibit high precision in predicting the axial
compressive strength of FRP-confined CAC, with metric R? values exceeding 0.93 on both the
training and testing dataset. Besides, the axial compressive strength of confined CAC is primarily
influenced by thickness of FRP layer and unconfined compressive strength of CAC, and the elastic
modulus and ultimate strength of FRP are also critical factors. Furthermore, excessive FRP
confinement will not further enhance the axial compressive strength of confined CAC, and CAC
column with a larger diameter necessitates either a thicker FRP layer or a higher FRP strength to
achieve desired compressive strength.

Confinement

Axial compressive strength
Machine learning

Model explanation

1. Introduction

In marine construction, the production of conventional concrete is typically reliant on inland resources that are geographically
distant from the ocean, such as river sand, crushed stone, and fresh water. The transportation of these materials to remote marine
construction sites is often associated with high costs and lengthy supply cycles, posing significant challenges to meeting construction
demands in locations like islands and reefs [1]. To address these limitations, researchers have recently introduced a novel type of
concrete material-coral aggregate concrete [2]. This innovative material utilizes locally available coral-based aggregates, such as coral
debris and coral sand, in with combination seawater and cement. By leveraging these readily accessible materials, CAC not only re-
duces transportation costs but also effectively mitigates the shortage of aggregate in marine engineering projects [3]. However, the
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naturally occurring coral gravel and coral sand possess inherent characteristics such as porosity, low density, and relatively low
strength. When utilized directly in concrete formulations, these properties tend to undermine the mechanical performance and
durability of the concrete [4]. A feasible method to address this shortcoming is to apply FRP as a confinement technique to bolster the
structural integrity of coral aggregate concrete. FRP is renowned for its combination of light weight, high tensile strength, excellent
resistance to corrosion, and superior bonding capabilities [5,6]. These features allow FRP to significantly improve the compressive
strength, ductility, and crack resistance of coral aggregate concrete. Furthermore, the integration of FRP helps to reduce the brittle
failure tendencies of coral aggregate concrete, thereby enhancing its overall durability in the harsh marine environments [7].

Recent advancements have spurred extensive research on the compressive strength of FRP-confined CAC [8-12]. In light of this,
Zhang et al. [10] investigated the axial compressive behavior of BFRP-confined geopolymer-based CAC columns, focusing on the
effects of specimen sizes and the number of BFRP layers, and found that BFRP confinement significantly enhanced the load-bearing
capacity and deformability of columns, and the ultimate axial strength and strain of the specimens increased with the number of
BFRP layers. Similarly, Wang et al. [11] investigated the axial compressive behavior of seawater coral aggregate concrete (SCAC) and
SCAC-filled FRP tubes. They extended an existing model for FRP-confined lightweight concrete by incorporating the strength of the
coral aggregates to predict the compressive strength of FRP-confined SCAC. In addition, Li et al. [12] concluded that smaller coral
aggregate sizes resulted in better compressive strength for the FRP-confined CAC. Besides, the dilation behavior and ultimate FRP
rupture strain were significantly influenced by the aggregate size, with smaller aggregates leading to better confinement efficiency.
Based on these findings, they also proposed a modified stress-strain model to more accurately predict the behavior of FRP-confined
CAC under axial compression. While the aforementioned models demonstrate high accuracy in forecasting compressive strength,
their reliance on a single dataset for both model construction and verification introduces uncertainties in prediction when applied to
generalized samples.

In recent decades, ML algorithms have been regarded as an effective method in material and structural engineering [13-16]. Their
ability to deliver highly accurate predictions and classifications makes them a compelling solution for addressing challenges in
practical application. In this regard, different ML methods are implemented to forecast the axial mechanical behavior of FRP-confined
normal concrete, including Conditional Tabular Generative Adversarial Network [17], Random Forest [ 18], Support Vector Regression
[19], Deep Learning [20], and Extreme Gradient Boosting Trees (XGBoost) [21]. All these studies demonstrated the exceptional
precision of ML models. However, none of these models account for the reduction in compressive strength induced by coral aggregate.
Another key challenge is that before these models can be fully implemented, their interpretability issues must be overcome.

To fill these knowledge gaps, this study compiles a dataset of 115 samples documenting the axial compressive strength of FRP-
confined CAC along with their design parameters. Six existing empirical formulae, which include five formulae for FRP-confined
normal concrete and one for FRP confined geopolymer-based CAC, are selected to check their applicability for FRP-confined CAC.
In addition, ML algorithms are utilized to construct surrogate models for confined compressive strength, and their accuracy and
generalization performance are systematically evaluated to identify the optimal model. Furthermore, SHAP method is employed to
interpret the decision-making mechanism of the top-performing model and quantify the influence of key design variables. Finally, a

D (mm) 100 130 150
Specimens | 39 [ 16 T e
Sum 39 55 115
H (mm) 200 300 400
Specimens | 30 [ 60 ——  Tmes
Sum 30 90 115
Tipe (/) BFRP CFRP GFRP
Specimens [ 60 [ 3  Teon
Sum 60 95 115
Es, (GPa) 17 21 24.4 90 232 257
Specimens  [ZINIGENNNS 60 [ 9 T 26 ]
Sum 2 18 20 80 89 115
JrpMPa) 191 210 227 2380 3805 3900
Specimens  ZIEGGE— 60 [ 9 1T 26 ]
Sum 2 18 20 80 89 115
Cupp (%) 093 1.1 1.13 1.53 1.6 2.2
Specimens [ZNNNNIGENNNE 26 [ 9 1 60 ]
Sum 2 18 20 46 55 115
Tsp(mm) ¢ 0.5 1525 35 45
Specimens [ 75!
Sum 75 99 103 109 115
Jeo (MPa) 10 20 30 40 50
Specimens 10
Sum 19 73 102 115
fee (MP) 10 30 50 70 90
Specimens [[7720 ]
Sum 20 70 103 115

Fig. 1. Distribution of input features and axial compressive strength of FRP confined CAC.
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comprehensive parameter analysis is conducted across the entire dataset to assess the positive or negative effects of each variable on
compressive strength of FRP-confined CAC. The innovations of this research are as follows: 1) High-precision models are developed to
predict the axial compressive strength of FRP-confined CAC; 2) The impact of each design variables on the compressive strength have
been elucidated; 3) A novel parametric analysis method has been proposed. This method integrates all samples in the dataset, even if
they differ from other samples in multiple parameters.

2. Dataset description

This study establishes a comprehensive database by integrating 115 samples for FRP-confined CAC specimen subjected to axial
loading, as detailed in Appendix A. Five relevant publications are incorporated herein [10,12,22-24], and eight variables concerning
the geometry of specimen and material strength are taken into account to examine their effects on the axial compressive strength (fc.).
These parameters encompass the diameter and height of coral aggregate concrete column (D and H), type of FRP material for concrete
confinement (Type), elastic modulus of FRP material (Ef;,), ultimate strength and strain of FRP material (fz, and .y ), diameter of FRP
bars (dp), surface treatment of FRP bars (st), FRP types (Tfy), thickness of FRP layer (Tf,) and compressive strength of unconfined coral
aggregate concrete (f,). The compressive strength of unconfined and FRP-confined coral aggregate concrete are all obtained through
experimental test, and the size of specimens for these strength measurements are identical within each sample to quantify the influence
of FRP confinement. Besides, all these specimens have a circular shape to eliminate the invalid constraint area appearing in square
column [25]. Furthermore, to eliminate the influence of longitudinal or lateral reinforcement, this study only considers coral aggregate
concrete cylinders that are free from steel bars. In addition, BFRP, CFRP, and GFRP are labeled as 1, 2, and 3, respectively, to
streamline the building and assessing procedures of the ML models.

Fig. 1 and Table 1 presents the distribution diagrams and statistic properties of the eight input features and the axial compressive
strength of FRP-confined CAC. The Pearson correlation coefficient matrix is plotted in Fig. 2 to reveal the relation between each input
and output variables. The Pearson correlation coefficient is a powerful tool which helps to understand how closely two sets of data are
related in a linear way, with an absolute value smaller than or equal to 1. A coefficient value of 1 indicates that the relationship
between two variables can be perfectly represented by a linear equation, with all data points lying exactly on a straight line and
increasing in tandem. In the provided correlation matrix, the color gradient from white to dark blue the strength of the correlation,
with dark blue showing stronger correlations and light-colored indicating weaker correlations. Notably, two feature, i.e., elastic
modulus of FRP and ultimate strength of FRP, has a strong correlation, but both of them are selected as input features to quantify their
influence on the strength improvement of coral aggregate concrete.

3. Performance of existing empirical formulae

In order to quantify the contribution of FRP confinement to the compressive strength of FPR-confined CAC, several empirical
formulae have been proposed. This study collects six formulae to check their prediction in terms of compressive strength forecasting
[10,26-30]. In general, all these formulae are expressed as the following closed-form equation:

14
% =a+p <f%> (€D)]
fl _ ZkeTﬁpiﬁpgcuvﬁp (2)

where f,. and f,, are the axial compressive strength of FRP-confined CAC and unconfined CAC, respectively; a, # and y are coefficients
of which the values are summarized in Table 2; f; is confinement pressure of FRP; Tfy, Ejp and ey, frp are thickness, elastic modulus and
ultimate tensile strain of FRP layer, respectively; k. is effective rupture strain coefficient of which the value is 0.586, 0.580, and 0.624
for GFRP, BFRP, and CFRP, respectively [10]; D represents diameter of CAC column.

Evaluation metrics are crucial for assessing the performance of surrogate models, providing quantitative measures to evaluate how
well a model performs. Four metrics are used in this context: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Root Mean Square Error (RMSE), and Coefficient of Determination (R?). Specifically, MAE calculates the average of the absolute

Table 1

Statistic properties of input features and axial compressive strength of FRP confined CAC.
Symbol Description Unit Min Median Max Mean STD
D Diameter of CAC column mm 100 150 150 130.26 22.67
H Height of CAC column mm 200 300 400 295.65 69.02
Type FRP Type / BFRP:1, CFRP: 2, GFRP:3
Efp Elastic modulus of FRP GPa 17 90 257 126.86 85.76
S Ultimate strength of FRP MPa 191 2380 3900 2457.75 1222.42
Ecufrp Ultimate strain of FRP % 0.93 2.2 2.2 1.81 0.44
Thp Thickness of FRP layer mm 0 0.26 4 0.66 1.06
feo Compressive strength of unconfined CAC MPa 19.4 26.17 44.1 28.35 7.18
See Compressive strength of FRP confined CAC MPa 17.69 45.26 88 46.94 16.65
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Fig. 2. Heatmap of Pearson correlation coefficient.
Table 2
Value of coefficients and prediction performances of existing empirical methods.
Reference Coefficients Performance evaluation matrix
a B v R? MAE MAPE RMSE
Ma et al. [26] 1 4.68 1 0.22 10.08 19.28 % 14.68
Wu et al. [27] 0.75 2.5 1 0.44 10.85 22.93 % 12.49
Teng et al. [28] 1 3.5 1 0.79 5.02 10.12 % 7.66
Khan et al. [29] 1 3.3 1 0.82 4.73 9.94 % 7.01
Zhou et al. [30] 1 1.4 0.65 0.54 7.60 13.41 % 11.31
Zhang et al. [10] 1 3.05 1 0.84 4.60 8.98 % 6.65

differences between predicted and actual values. RMSE is the square root of the average of squared differences between predicted and
actual values. MAPE measures the average of the absolute percentage differences between predicted and actual values. R? indicates the
proportion of variance in the target variable that can be explained by the independent variables, ranging from 0 to 1, with higher
values suggesting a better fit. The computational formulae for MAE, MAPE, RMSE, and R? can refer to [16].

The precision of selected empirical formulae are illustrated in Fig. 3 and tabulated in Table 2. In general, formulae proposed by
Teng et al. [28], Khan et al. [29] and Zhang et al. [10] achieve high prediction precision for their high value of R? and lower values of
MAE, MAPE, and RMSE. In contrast, the performance of formulae proposed by Ma et al. [26] and Wu et al. [27] are inferior as the
former overestimate the axial compressive strength while the latter achieves a conservative prediction. Among these models, the
formula proposed by Zhang et al. [10] achieves highest precision, which might be due to the fact that it is proposed for FRP-confined
geopolymer-based coral aggregate concrete which others for FRP-confined normal concrete.

4. Performance of machine learning algorithms
4.1. Data preprocessing

Normalization techniques are essential tools in data preprocessing, used to transform data into a consistent and comparable format.
This ensures equal contribution of all features to model training regardless of their original scales [31]. Common normalization
techniques include Min-Max Scaling, Log Normalization, Robust Normalization, and Batch Normalization [32]. In this study, Min-Max
Scaling is used to normalize the dataset with nine input features to the range of [0, 1]. This method applies a linear transformation to
the original data, and the formula for Min-Max Scaling is presented as follows:

Xt = X — Xmin

=" 3
Xmax — Xmin
where x* donates the normalized value of the input feature; x represents the value of the input feature; Xpq and xpn, are the maximum
and minimum value of the input feature in the complete dataset, respectively.
After normalization, the dataset is shuffled to prevent the model from learning order-specific patterns, ensuring the training set
represents the overall data distribution [33]. The dataset is subsequently split into 80 % for training and 20 % for testing to evaluate
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Fig. 3. Performance of existing empirical methods.

model performance.

4.2. Algorithms for machine learning model training

This study employes six ML algorithms for axial compressive strength prediction. Among these algorithms, Support Vector Machine
(SVM) works by using kernel functions to transform data and capture complex relationships to minimizing error within a certain
margin [34]. K-Nearest Neighbors (KNN) regression is a lazy learning approach that predicts values based on the nearest neighbors in
the training set [35]. Decision Tree (DT) creates a tree-like model by recursively partitioning the data based on input features [36].
Random Forest (RF) regression is a supervised learning algorithm that integrates multiple decision trees to improve precision and
robustness through bootstrapping and feature bagging [37]. Gradient Boosting Decision Trees (GBDT) builds an ensemble of trees
sequentially to correct errors made by previous trees [38]. Extreme Gradient Boosting Trees (XGBoost) further enhances gradient
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boosting by optimizing a differentiable loss function and incorporating regularization techniques to prevent overfitting [39].

4.3. Hyperparameter optimization

Hyperparameters, which are essential settings that dictate algorithm’s behavior, must be specified before training begins. Several
hyperparameter tuning technique, including Grid-Search, Random Search and Bayesian Optimization, are widely utilized to identify
the best hyperparameter combination. Grid Search is a brute-force approach which defines a grid of hyperparameters and evaluates the
performance of models for every combination of these hyperparameters [40]. This method is exhaustive and ensures to find the best
combination within the specified grid. Random Search randomly samples hyperparameters from a predefined distribution. Unlike Grid
Search, it does not evaluate all possible combinations, making it more efficient [41]. Bayesian Optimization uses a probabilistic model
to predict which hyperparameters are likely to yield better performance. It iteratively selects the most promising hyperparameters
based on the predictions outputted by model and updates the model with the new results [42].

To enhance the precision of ML models, the Grid-Search Cross-Validation algorithm [43] is employed herein. In this process, the
dataset is split into ten subsets. In each iteration, 9 folds serve as the training set, while the remaining 1 fold is utilized as the validation
set to evaluate performance. Following 10 iterations, the overall model performance is assessed by calculating the average perfor-
mance across all folds, providing a reliable estimate. The algorithm records the performance metrics for each hyperparameter
configuration. Ultimately, the combination that achieves the highest average prediction accuracy is selected as the optimal config-
uration, and the details are summarized in Table 3.

4.4. Precision of machine learning models

Fig. 4 and Fig. 5 presents the performance of six ML models on the training and testing dataset, revealing distinct patterns in their
predictive capabilities. These models exhibited superior prediction performance on the training subset, with R? values exceeding 0.95,
indicating strong correlations between predicted and actual values. In addition, all models met the acceptable criterion for ML models,
where the MAE was smaller than the RMSE [44]. The MAPE values for all models were below 6 %, further highlighting their excellent
performance on the training data. Among the models, KNN model stood out as the most reliable for it achieved the lowest RMSE,
MAPE, and MAE values, while also attaining an R? value of 0.98, indicating high prediction accuracy on the training dataset. In
contrast, SVM, Random Forest, GBDT and XGBoost models showed slightly lower precision but still acceptable performance, with R?
values of 0.97 or 0.98. However, the Decision Tree model exhibited the highest RMSE, MAE, and MAPE values among all models,
suggesting lower efficiency in capturing complex patterns within the training data.

Table 3
Hyperparameter values for each ML algorithms.
Algorithms  Hyperparameters  Explanations Search Space Optimized
value
SVM Kernel Type of kernel function {linear, rbf} rbf
Y RBF kernel coefficient {0.0001, 0.001, 0.01, 0.1, 1, 10} 1
C Regularization parameter {1, 10, 100, 1000, 10000} 10000
KNN K Number of nearest neighbors {1,2,3,4,5,6,7,8,9, 10} 4
P power parameter in the distance metric {1,2,3,4,5,6,7,8,9, 10} 3
weight Neighbors closer in distance have greater influence {distance, uniform} distance
DT dinax Maximum depth of the tree {4, 6, 8,10} 8
Nmax Maximum number of leaf nodes {10, 15, 20, 25, 30} 25
ng Number of features to consider for the best split {1,2,3,4,5,6,7} 6
criterion The function to measure the quality of a split {poisson, absolute_error, squared_error, absolute_error
friedman_mse}
RF n, Number of estimators {20, 40, 60, 80, 100} 40
ng Number of features to consider for the best split {2, 4, 6, 8} 8
dinax Maximum depth of the tree {4, 6, 8,10} 10
Nynax Maximum number of leaf nodes {10, 15, 20, 25, 30} 30
criterion The function to measure the quality of a split {poisson, absolute_error, squared_error, poisson
friedman_mse}
GBDT ne Number of estimators {20, 40, 60, 80, 100} 40
I Learning rate {0.01, 0.1, 1.0} 0.1
ny Number of features to consider for the best split {2, 4, 6, 8} 4
dmax Maximum depth of each tree {4, 6, 8,10} 10
Nax Maximum number of leaf nodes {10, 15, 20, 25, 30} 10
XGBoost ne Number of estimators {20, 40, 60, 80, 100} 100
L=1.0 Learning rate {0.01, 0.1, 0.3, 0.5, 1.0} 0.5
70=1 minimum reduction in the loss function {0.001, 0.01, 0.1, 1.0} 0.01
dmax= 4 Maximum depth of each tree {2, 4, 6, 8} 2
a=0 Coefficient of Lasso regularization {0, 0.5, 1.0} 0.5
=1 Coefficient of Ridge regularization {0, 0.5, 1.0} 1.0
Objective Objective function that defines specific goal that the model ~ {reg:squarederror} reg:
seeks to achieve squarederror
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Fig. 4. Performance of ML models on training dataset.

On the testing dataset, the performance of ML models shifted slightly. All models maintained high accuracy, with R? values
achieving or exceeding 0.88, indicating their ability to generalize well to unseen data. However, although the KNN model showed the
highest precision on the training dataset, it exhibited the poorest performance on the testing dataset, with the lowest R? value and an
MAPE value higher than 10 %. This discrepancy between training and testing performance suggests a potential overfitting issue.
Meanwhile, Decision Tree, Random Forest and GBDT models demonstrated exceptional generalization and robustness, with R? values
surpassing 0.95 on both training and testing datasets, highlighting their ability to maintain high precision across different data sets.
The SVM and XGBoost models also performed well on the testing dataset, despite having a slightly higher MAPE and lower R? value
compared to Decision Tree, Random Forest and GBDT models. Overall, based on the prediction precision and generalization ability,
Random Forest is emerged as the most precise model across both training and testing datasets.

5. Explanation of ML models based on SHAP analysis

Although ML models often achieve high precision, they are frequently viewed as black boxes because it is challenging to know how
they generate their predictions. To tackle this problem, several effective methods, including Local Interpretable Model-agnostic Ex-
planations (LIME) [45], Counterfactual Explanations [46], and SHAP [47], are proposed. Among these algorithms, LIME operates
under the assumption that while global interpretability of complex models might be challenging, local interpretability is more feasible.
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Fig. 5. Performance of ML models on testing dataset.

It identifies the most important features for a particular prediction by generating perturbations in the vicinity of the instance of interest
[45]. Counterfactual Explanations offer hypothetical scenarios by clarifying how minor alterations in the input features can result in a
different prediction [46]. Meanwhile, SHAP ensures that the attribution of predictions to input features is fair and consistent. In this
study, the SHAP algorithm is selected because it can determine which features are most crucial for making a prediction, the extent to
which each feature contributes to the prediction, and whether the contribution is positive or negative [47].

5.1. Prediction process of machine learning models

Table 4 identifies a selected sample from the database, and Fig. 6 details the prediction process of this sample by four models:

Table 4
Input features of the investigated sample.
D H Type Eﬁp ffrp Ecu,frp Tﬁp fco fcc
(mm) (mm) (%] (GPa) (MPa) (%) (mm) (MPa) (MPa)
100 200 BFRP 90 2380 2.2 0.52 19.4 54.07
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Decision Tree, Random Forest, GBDT, and XGBoost. Within this figure, red columns denote each feature’s positive contribution to the
predicted axial compressive strength, whereas blue columns indicate negative contributions. The length of each column reflects the
absolute magnitude of the corresponding feature’s Shapley value. For example, in Fig. 6(a), in view of the thickness of FRP layer Tfr,
exhibits a positive correlation with the axial compressive strength of FRP-confined CAC, a large value of Tf, (i.e., 0.52 mm) exerts a
positive influence on the prediction outcomes. Additionally, the Decision Tree model identifies the small compressive strength of
unconfined CAC (i.e., 19.4 MPa) as a negative variable in enhancing axial compressive strength. Moreover, the small height (i.e.,
200 mm) succeed in avoid the buckling of column, which contribute positively to the axial compressive strength. In addition, the
tensile strength of FRP material (i.e., 2380 MPa) is viewed as a disadvantage because it lowers the predictive outcomes. Based on the
four subplots in Fig. 6, the analysis reveals that for the studied sample, the Random Forest, GBDT, and XGBoost algorithms prioritize
the FRP layer thickness as the most influential variable. This is evident from the longer column lengths associated with this parameter
compared to other input features. Besides, Decision Tree model also consider the thickness of FRP layer is also be recognized as the
important features. These models integrate the base value along with both positive and negative contributions to produce their final
predictions. The Decision Tree, Random Forest, GBDT, and XGBoost models yield compressive strength estimates of 53.53 MPa,
54.49 MPa, 51.88 MPa, and 59.20 MPa, respectively. In comparison, the actual values of axial compressive strength of FRP-confined
CAC measured using three identical specimens are 49.32 MPa, 53.53 MPa and 59.36 MPa, respectively, leading to an average value of
54.07 MPa. These difference between the average value of measured results and predictions outputted by Decision Tree, Random
Forest, GBDT and XGBoost models results in relative errors of —1.00 %, —0.78 %, —4.05 %, and 9.49 %, respectively.

5.2. Impact of each feature on axial compressive strength of FRP-confined CAC

Fig. 7 presents the Shapley values of features for individual samples across four models: Decision Tree, Random Forest, GBDT, and
XGBoost. Within these figures, each sample is denoted by a dot—red dots correspond to samples with large feature values, while blue
dots represent those with small ones. The features are ordered by their average absolute contribution to axial compressive strength
across all samples, with those positioned higher in the ranking exerting a greater impact than their lower-ranked counterparts. Fig. 7
clarifies that all these selected models consider the thickness of FRP layer (Tfy,) as the most influential factor, which might attribute to
the fact that the FRP layer provides confinement to CAC and enhances its ability to withstand compression. A thicker FRP layer can
provide more effective confinement stress, leading to higher compressive strength. Furthermore, all models acknowledge that the
compressive strength of unconfined CAC (f,,), height of specimen (H) and elastic modulus of FRP material (Efp) are influential var-
iables. Specially, the Decision Tree, Random Forest and GBDT models believe that the ultimate strength of FRP (fzp) critically affect the
strength. Furthermore, the XGBoost model indicates that fz}, is less critical. One the other hand, all these models show the type and
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Fig. 6. Prediction process of various ML model.
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Fig. 7. Summary plot of ML models on entire dataset.

ultimate strain of FRP (Type and &, f;,) and has a smaller influence as the primary mechanism through which FRP jackets enhance the
compressive strength of CAC involves lateral confinement, which is more directly influenced by the thickness and elastic modulus of
the FRP layer rather than its material type or ultimate strain.

5.3. Parametric analysis

Given its high precision on both the training and testing datasets, Random Forest model is selected to perform parametric analysis
based on dependence plot of SHAP. In Fig. 8, the dot with blue or red color indicates the corresponding sample has a small or large
value of the input feature, and its contribution to the axial compressive strength of FRP-confined CAC is presented as the value of
vertical coordinate. As shown in Fig. 8(g), the contribution of thickness of FRP layer (Tf,) increase rapidly with its increasement within
the range from 0 to 1. Subsequently, the positive contribution made by Tf, fluctuates within a small range, indicating that over
confinement by FRP will not further enhance the axial compressive strength of confined concrete. A proper explanation for this
phenomenon is that when the thickness of the FRP layer is within the range from 0 to 1 mm, the FRP is able to effectively transfer the
compressive stress to the concrete core. The FRP acts like a confining jacket that restricts the lateral expansion of the CAC under axial
compression. As the thickness increases in this initial range, the confining pressure exerted by the CAC on the concrete increases
significantly. When the FRP layer becomes too thick, other failure modes may start to dominate. For example, the FRP jacket itself may
experience buckling under excessive confinement pressure. In addition, CAC may experience different failure modes such as splitting
due to excessive lateral pressure, which can also limit the further enhancement of the axial compressive strength. Apart from this, Fig. 8
(h) shows that the unconfined compressive strength exhibits a significant positive correlation with the strength of FRP-confined CAC,
and this correlation can be approximated by a linear function. Besides, Fig. 8 also indicates that the elastic modulus and ultimate
strength of FRP material also positively correlated with the compressive strength of confined CAC, while the diameter and height of
column shows a negation correlation. The reason for this finding might attribute to the fact that FRP with a higher elastic modulus and
ultimate strength is able to provide a higher lateral confinement on CAC. However, as indicated by Eq. (2), the confining pressure f; is
inversely proportional to the diameter of column D. Consequently, to sustain the same confining pressure, a larger diameter neces-
sitates either a thicker FRP layer or a higher FRP strength. Besides, as the height of the column increases, the axial compressive strength
decreases due to the increased slenderness ratio and the potential for buckling. Finally, compared to ultimate strength of FRP, the
remaining two factors, including FRP type and ultimate strain of FRP show slighter influence on the compressive strength, as plotted in
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Fig. 8. SHAP value distribution of different input variables.

This research utilized ML algorithms to predict the axial compressive strength of FRP-confined CAC. A dataset comprising 115
samples and eight input features were established for training and testing the ML models. The accuracy of six empirical formulas was
compared with that of the ML models using four evaluation metrics: MAE, MAPE, RMSE, and R2. The prediction process of the ML
models was elucidated, and a parametric analysis was conducted using the SHAP algorithm to enhance the interpretability and
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reliability of the models. Based on the aforementioned analysis, the following conclusions were drawn:

1) Three out of six empirical formulae achieve relative high prediction precision for their value of R? exceeding 0.79 and lower values
of MAE, MAPE, and RMSE. The empirical model, which is proposed for compressive strength of FRP-confined geopolymer-based
coral aggregate concrete prediction, achieves superior precision among six empirical formulae, with the highest R? value of 0.84
and the smallest values for MAE (4.60), MAPE (8.98 %) and RMSE (6.65).

With the exception of the KNN model, the remaining five data-driven ML models exhibit high precision in predicting the axial
compressive strength of FRP-confined coral aggregate concrete, with metric R? values exceeding 0.93 on both the training and
testing dataset. Besides, the MAPE values of these five models are all smaller than 9 % on the testing dataset. Specially, compared
with other ML models, the Random Forest model is regarded as the most precise model across the entire dataset.

The axial compressive strength of confined CAC is primarily influenced by thickness of FRP layer and unconfined compressive
strength of CAC. In addition, the elastic modulus and ultimate strength of FRP are also critical factors. Besides, compared to ul-
timate strength of FRP, type and ultimate strain of FRP show slighter influence on the compressive strength of confined CAC
Although thickness of FRP layer has a significant positive correlation with the compressive strength, excessive confinement by FRP
will not further enhance the axial compressive strength of confined CAC. Besides, to sustain the same confining pressure provide by
FRP, CAC column with a larger diameter necessitates either a thicker FRP layer or a higher FRP strength.
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