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A B S T R A C T

This study utilizes machine learning (ML) method to investigate the axial compressive strength of 
fiber-reinforced polymer (FRP)-confined coral aggregate concrete (CAC). A dataset comprising 
115 samples is created, and eight input features are selected for developing and evaluating ML 
models. Besides, six empirical formulae are used to compare their performance against the ML 
models. The SHapley Additive exPlanation (SHAP) algorithm is employed to elucidate the pre
diction mechanisms of the ML models and to clarify the interactions between the eight input 
features and the axial compressive strength of FRP-confined CAC. A comparison of evaluation 
metrics indicates that the empirical model, which is developed for compressive strength of FRP- 
confined geopolymer-based CAC prediction, outperforms the other five empirical formulas in 
precision, boasting the highest R² value of 0.84. In comparison, with the exception of the KNN 
model, the remaining five data-driven ML models exhibit high precision in predicting the axial 
compressive strength of FRP-confined CAC, with metric R2 values exceeding 0.93 on both the 
training and testing dataset. Besides, the axial compressive strength of confined CAC is primarily 
influenced by thickness of FRP layer and unconfined compressive strength of CAC, and the elastic 
modulus and ultimate strength of FRP are also critical factors. Furthermore, excessive FRP 
confinement will not further enhance the axial compressive strength of confined CAC, and CAC 
column with a larger diameter necessitates either a thicker FRP layer or a higher FRP strength to 
achieve desired compressive strength.

1. Introduction

In marine construction, the production of conventional concrete is typically reliant on inland resources that are geographically 
distant from the ocean, such as river sand, crushed stone, and fresh water. The transportation of these materials to remote marine 
construction sites is often associated with high costs and lengthy supply cycles, posing significant challenges to meeting construction 
demands in locations like islands and reefs [1]. To address these limitations, researchers have recently introduced a novel type of 
concrete material-coral aggregate concrete [2]. This innovative material utilizes locally available coral-based aggregates, such as coral 
debris and coral sand, in with combination seawater and cement. By leveraging these readily accessible materials, CAC not only re
duces transportation costs but also effectively mitigates the shortage of aggregate in marine engineering projects [3]. However, the 
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naturally occurring coral gravel and coral sand possess inherent characteristics such as porosity, low density, and relatively low 
strength. When utilized directly in concrete formulations, these properties tend to undermine the mechanical performance and 
durability of the concrete [4]. A feasible method to address this shortcoming is to apply FRP as a confinement technique to bolster the 
structural integrity of coral aggregate concrete. FRP is renowned for its combination of light weight, high tensile strength, excellent 
resistance to corrosion, and superior bonding capabilities [5,6]. These features allow FRP to significantly improve the compressive 
strength, ductility, and crack resistance of coral aggregate concrete. Furthermore, the integration of FRP helps to reduce the brittle 
failure tendencies of coral aggregate concrete, thereby enhancing its overall durability in the harsh marine environments [7].

Recent advancements have spurred extensive research on the compressive strength of FRP-confined CAC [8–12]. In light of this, 
Zhang et al. [10] investigated the axial compressive behavior of BFRP-confined geopolymer-based CAC columns, focusing on the 
effects of specimen sizes and the number of BFRP layers, and found that BFRP confinement significantly enhanced the load-bearing 
capacity and deformability of columns, and the ultimate axial strength and strain of the specimens increased with the number of 
BFRP layers. Similarly, Wang et al. [11] investigated the axial compressive behavior of seawater coral aggregate concrete (SCAC) and 
SCAC-filled FRP tubes. They extended an existing model for FRP-confined lightweight concrete by incorporating the strength of the 
coral aggregates to predict the compressive strength of FRP-confined SCAC. In addition, Li et al. [12] concluded that smaller coral 
aggregate sizes resulted in better compressive strength for the FRP-confined CAC. Besides, the dilation behavior and ultimate FRP 
rupture strain were significantly influenced by the aggregate size, with smaller aggregates leading to better confinement efficiency. 
Based on these findings, they also proposed a modified stress-strain model to more accurately predict the behavior of FRP-confined 
CAC under axial compression. While the aforementioned models demonstrate high accuracy in forecasting compressive strength, 
their reliance on a single dataset for both model construction and verification introduces uncertainties in prediction when applied to 
generalized samples.

In recent decades, ML algorithms have been regarded as an effective method in material and structural engineering [13–16]. Their 
ability to deliver highly accurate predictions and classifications makes them a compelling solution for addressing challenges in 
practical application. In this regard, different ML methods are implemented to forecast the axial mechanical behavior of FRP-confined 
normal concrete, including Conditional Tabular Generative Adversarial Network [17], Random Forest [18], Support Vector Regression 
[19], Deep Learning [20], and Extreme Gradient Boosting Trees (XGBoost) [21]. All these studies demonstrated the exceptional 
precision of ML models. However, none of these models account for the reduction in compressive strength induced by coral aggregate. 
Another key challenge is that before these models can be fully implemented, their interpretability issues must be overcome.

To fill these knowledge gaps, this study compiles a dataset of 115 samples documenting the axial compressive strength of FRP- 
confined CAC along with their design parameters. Six existing empirical formulae, which include five formulae for FRP-confined 
normal concrete and one for FRP confined geopolymer-based CAC, are selected to check their applicability for FRP-confined CAC. 
In addition, ML algorithms are utilized to construct surrogate models for confined compressive strength, and their accuracy and 
generalization performance are systematically evaluated to identify the optimal model. Furthermore, SHAP method is employed to 
interpret the decision-making mechanism of the top-performing model and quantify the influence of key design variables. Finally, a 

Fig. 1. Distribution of input features and axial compressive strength of FRP confined CAC.
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comprehensive parameter analysis is conducted across the entire dataset to assess the positive or negative effects of each variable on 
compressive strength of FRP-confined CAC. The innovations of this research are as follows: 1) High-precision models are developed to 
predict the axial compressive strength of FRP-confined CAC; 2) The impact of each design variables on the compressive strength have 
been elucidated; 3) A novel parametric analysis method has been proposed. This method integrates all samples in the dataset, even if 
they differ from other samples in multiple parameters.

2. Dataset description

This study establishes a comprehensive database by integrating 115 samples for FRP-confined CAC specimen subjected to axial 
loading, as detailed in Appendix A. Five relevant publications are incorporated herein [10,12,22–24], and eight variables concerning 
the geometry of specimen and material strength are taken into account to examine their effects on the axial compressive strength (fcc). 
These parameters encompass the diameter and height of coral aggregate concrete column (D and H), type of FRP material for concrete 
confinement (Type), elastic modulus of FRP material (Efrp), ultimate strength and strain of FRP material (ffrp and εcu,frp), diameter of FRP 
bars (db), surface treatment of FRP bars (st), FRP types (Tfrp), thickness of FRP layer (Tfrp) and compressive strength of unconfined coral 
aggregate concrete (fco). The compressive strength of unconfined and FRP-confined coral aggregate concrete are all obtained through 
experimental test, and the size of specimens for these strength measurements are identical within each sample to quantify the influence 
of FRP confinement. Besides, all these specimens have a circular shape to eliminate the invalid constraint area appearing in square 
column [25]. Furthermore, to eliminate the influence of longitudinal or lateral reinforcement, this study only considers coral aggregate 
concrete cylinders that are free from steel bars. In addition, BFRP, CFRP, and GFRP are labeled as 1, 2, and 3, respectively, to 
streamline the building and assessing procedures of the ML models.

Fig. 1 and Table 1 presents the distribution diagrams and statistic properties of the eight input features and the axial compressive 
strength of FRP-confined CAC. The Pearson correlation coefficient matrix is plotted in Fig. 2 to reveal the relation between each input 
and output variables. The Pearson correlation coefficient is a powerful tool which helps to understand how closely two sets of data are 
related in a linear way, with an absolute value smaller than or equal to 1. A coefficient value of 1 indicates that the relationship 
between two variables can be perfectly represented by a linear equation, with all data points lying exactly on a straight line and 
increasing in tandem. In the provided correlation matrix, the color gradient from white to dark blue the strength of the correlation, 
with dark blue showing stronger correlations and light-colored indicating weaker correlations. Notably, two feature, i.e., elastic 
modulus of FRP and ultimate strength of FRP, has a strong correlation, but both of them are selected as input features to quantify their 
influence on the strength improvement of coral aggregate concrete.

3. Performance of existing empirical formulae

In order to quantify the contribution of FRP confinement to the compressive strength of FPR-confined CAC, several empirical 
formulae have been proposed. This study collects six formulae to check their prediction in terms of compressive strength forecasting 
[10,26–30]. In general, all these formulae are expressed as the following closed-form equation: 

fcc

fco
= α+ β

(
fl

fco

)γ

(1) 

fl =
2keTfrpEfrpεcu,frp

D
(2) 

where fcc and fco are the axial compressive strength of FRP-confined CAC and unconfined CAC, respectively; α, β and γ are coefficients 
of which the values are summarized in Table 2; fl is confinement pressure of FRP; Tfrp, Efrp and εcu,frp are thickness, elastic modulus and 
ultimate tensile strain of FRP layer, respectively; ke is effective rupture strain coefficient of which the value is 0.586, 0.580, and 0.624 
for GFRP, BFRP, and CFRP, respectively [10]; D represents diameter of CAC column.

Evaluation metrics are crucial for assessing the performance of surrogate models, providing quantitative measures to evaluate how 
well a model performs. Four metrics are used in this context: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 
Root Mean Square Error (RMSE), and Coefficient of Determination (R²). Specifically, MAE calculates the average of the absolute 

Table 1 
Statistic properties of input features and axial compressive strength of FRP confined CAC.

Symbol Description Unit Min Median Max Mean STD

D Diameter of CAC column mm 100 150 150 130.26 22.67
H Height of CAC column mm 200 300 400 295.65 69.02
Type FRP Type / BFRP:1, CFRP: 2, GFRP:3
Efrp Elastic modulus of FRP GPa 17 90 257 126.86 85.76
ffrp Ultimate strength of FRP MPa 191 2380 3900 2457.75 1222.42
εcu,frp Ultimate strain of FRP % 0.93 2.2 2.2 1.81 0.44
Tfrp Thickness of FRP layer mm 0 0.26 4 0.66 1.06
fco Compressive strength of unconfined CAC MPa 19.4 26.17 44.1 28.35 7.18
fcc Compressive strength of FRP confined CAC MPa 17.69 45.26 88 46.94 16.65
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differences between predicted and actual values. RMSE is the square root of the average of squared differences between predicted and 
actual values. MAPE measures the average of the absolute percentage differences between predicted and actual values. R² indicates the 
proportion of variance in the target variable that can be explained by the independent variables, ranging from 0 to 1, with higher 
values suggesting a better fit. The computational formulae for MAE, MAPE, RMSE, and R² can refer to [16].

The precision of selected empirical formulae are illustrated in Fig. 3 and tabulated in Table 2. In general, formulae proposed by 
Teng et al. [28], Khan et al. [29] and Zhang et al. [10] achieve high prediction precision for their high value of R2 and lower values of 
MAE, MAPE, and RMSE. In contrast, the performance of formulae proposed by Ma et al. [26] and Wu et al. [27] are inferior as the 
former overestimate the axial compressive strength while the latter achieves a conservative prediction. Among these models, the 
formula proposed by Zhang et al. [10] achieves highest precision, which might be due to the fact that it is proposed for FRP-confined 
geopolymer-based coral aggregate concrete which others for FRP-confined normal concrete.

4. Performance of machine learning algorithms

4.1. Data preprocessing

Normalization techniques are essential tools in data preprocessing, used to transform data into a consistent and comparable format. 
This ensures equal contribution of all features to model training regardless of their original scales [31]. Common normalization 
techniques include Min-Max Scaling, Log Normalization, Robust Normalization, and Batch Normalization [32]. In this study, Min-Max 
Scaling is used to normalize the dataset with nine input features to the range of [0, 1]. This method applies a linear transformation to 
the original data, and the formula for Min-Max Scaling is presented as follows: 

x∗ =
x − xmin

xmax − xmin
(3) 

where x* donates the normalized value of the input feature; x represents the value of the input feature; xmax and xmin are the maximum 
and minimum value of the input feature in the complete dataset, respectively.

After normalization, the dataset is shuffled to prevent the model from learning order-specific patterns, ensuring the training set 
represents the overall data distribution [33]. The dataset is subsequently split into 80 % for training and 20 % for testing to evaluate 

Fig. 2. Heatmap of Pearson correlation coefficient.

Table 2 
Value of coefficients and prediction performances of existing empirical methods.

Reference Coefficients Performance evaluation matrix

α β γ R2 MAE MAPE RMSE

Ma et al. [26] 1 4.68 1 0.22 10.08 19.28 % 14.68
Wu et al. [27] 0.75 2.5 1 0.44 10.85 22.93 % 12.49
Teng et al. [28] 1 3.5 1 0.79 5.02 10.12 % 7.66
Khan et al. [29] 1 3.3 1 0.82 4.73 9.94 % 7.01
Zhou et al. [30] 1 1.4 0.65 0.54 7.60 13.41 % 11.31
Zhang et al. [10] 1 3.05 1 0.84 4.60 8.98 % 6.65
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model performance.

4.2. Algorithms for machine learning model training

This study employes six ML algorithms for axial compressive strength prediction. Among these algorithms, Support Vector Machine 
(SVM) works by using kernel functions to transform data and capture complex relationships to minimizing error within a certain 
margin [34]. K-Nearest Neighbors (KNN) regression is a lazy learning approach that predicts values based on the nearest neighbors in 
the training set [35]. Decision Tree (DT) creates a tree-like model by recursively partitioning the data based on input features [36]. 
Random Forest (RF) regression is a supervised learning algorithm that integrates multiple decision trees to improve precision and 
robustness through bootstrapping and feature bagging [37]. Gradient Boosting Decision Trees (GBDT) builds an ensemble of trees 
sequentially to correct errors made by previous trees [38]. Extreme Gradient Boosting Trees (XGBoost) further enhances gradient 

Fig. 3. Performance of existing empirical methods.
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boosting by optimizing a differentiable loss function and incorporating regularization techniques to prevent overfitting [39].

4.3. Hyperparameter optimization

Hyperparameters, which are essential settings that dictate algorithm’s behavior, must be specified before training begins. Several 
hyperparameter tuning technique, including Grid-Search, Random Search and Bayesian Optimization, are widely utilized to identify 
the best hyperparameter combination. Grid Search is a brute-force approach which defines a grid of hyperparameters and evaluates the 
performance of models for every combination of these hyperparameters [40]. This method is exhaustive and ensures to find the best 
combination within the specified grid. Random Search randomly samples hyperparameters from a predefined distribution. Unlike Grid 
Search, it does not evaluate all possible combinations, making it more efficient [41]. Bayesian Optimization uses a probabilistic model 
to predict which hyperparameters are likely to yield better performance. It iteratively selects the most promising hyperparameters 
based on the predictions outputted by model and updates the model with the new results [42].

To enhance the precision of ML models, the Grid-Search Cross-Validation algorithm [43] is employed herein. In this process, the 
dataset is split into ten subsets. In each iteration, 9 folds serve as the training set, while the remaining 1 fold is utilized as the validation 
set to evaluate performance. Following 10 iterations, the overall model performance is assessed by calculating the average perfor
mance across all folds, providing a reliable estimate. The algorithm records the performance metrics for each hyperparameter 
configuration. Ultimately, the combination that achieves the highest average prediction accuracy is selected as the optimal config
uration, and the details are summarized in Table 3.

4.4. Precision of machine learning models

Fig. 4 and Fig. 5 presents the performance of six ML models on the training and testing dataset, revealing distinct patterns in their 
predictive capabilities. These models exhibited superior prediction performance on the training subset, with R2 values exceeding 0.95, 
indicating strong correlations between predicted and actual values. In addition, all models met the acceptable criterion for ML models, 
where the MAE was smaller than the RMSE [44]. The MAPE values for all models were below 6 %, further highlighting their excellent 
performance on the training data. Among the models, KNN model stood out as the most reliable for it achieved the lowest RMSE, 
MAPE, and MAE values, while also attaining an R2 value of 0.98, indicating high prediction accuracy on the training dataset. In 
contrast, SVM, Random Forest, GBDT and XGBoost models showed slightly lower precision but still acceptable performance, with R2 

values of 0.97 or 0.98. However, the Decision Tree model exhibited the highest RMSE, MAE, and MAPE values among all models, 
suggesting lower efficiency in capturing complex patterns within the training data.

Table 3 
Hyperparameter values for each ML algorithms.

Algorithms Hyperparameters Explanations Search Space Optimized 
value

SVM Kernel Type of kernel function {linear, rbf} rbf
​ γ RBF kernel coefficient {0.0001, 0.001, 0.01, 0.1, 1, 10} 1
​ C Regularization parameter {1, 10, 100, 1000, 10000} 10000
KNN K Number of nearest neighbors {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4
​ P power parameter in the distance metric {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 3
​ weight Neighbors closer in distance have greater influence {distance, uniform} distance
DT dmax Maximum depth of the tree {4, 6, 8, 10} 8
​ nmax Maximum number of leaf nodes {10, 15, 20, 25, 30} 25
​ nf Number of features to consider for the best split {1, 2, 3, 4, 5, 6, 7} 6
​ criterion The function to measure the quality of a split {poisson, absolute_error, squared_error, 

friedman_mse}
absolute_error

RF ne Number of estimators {20, 40, 60, 80, 100} 40
​ nf Number of features to consider for the best split {2, 4, 6, 8} 8
​ dmax Maximum depth of the tree {4, 6, 8, 10} 10
​ nmax Maximum number of leaf nodes {10, 15, 20, 25, 30} 30
​ criterion The function to measure the quality of a split {poisson, absolute_error, squared_error, 

friedman_mse}
poisson

GBDT ne Number of estimators {20, 40, 60, 80, 100} 40
​ lr Learning rate {0.01, 0.1, 1.0} 0.1
​ nf Number of features to consider for the best split {2, 4, 6, 8} 4
​ dmax Maximum depth of each tree {4, 6, 8, 10} 10
​ nmax Maximum number of leaf nodes {10, 15, 20, 25, 30} 10
XGBoost ne Number of estimators {20, 40, 60, 80, 100} 100
​ lr= 1.0 Learning rate {0.01, 0.1, 0.3, 0.5, 1.0} 0.5
​ γ0= 1 minimum reduction in the loss function {0.001, 0.01, 0.1, 1.0} 0.01
​ dmax= 4 Maximum depth of each tree {2, 4, 6, 8} 2
​ α= 0 Coefficient of Lasso regularization {0, 0.5, 1.0} 0.5
​ λ= 1 Coefficient of Ridge regularization {0, 0.5, 1.0} 1.0
​ Objective Objective function that defines specific goal that the model 

seeks to achieve
{reg:squarederror} reg: 

squarederror
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On the testing dataset, the performance of ML models shifted slightly. All models maintained high accuracy, with R² values 
achieving or exceeding 0.88, indicating their ability to generalize well to unseen data. However, although the KNN model showed the 
highest precision on the training dataset, it exhibited the poorest performance on the testing dataset, with the lowest R2 value and an 
MAPE value higher than 10 %. This discrepancy between training and testing performance suggests a potential overfitting issue. 
Meanwhile, Decision Tree, Random Forest and GBDT models demonstrated exceptional generalization and robustness, with R2 values 
surpassing 0.95 on both training and testing datasets, highlighting their ability to maintain high precision across different data sets. 
The SVM and XGBoost models also performed well on the testing dataset, despite having a slightly higher MAPE and lower R² value 
compared to Decision Tree, Random Forest and GBDT models. Overall, based on the prediction precision and generalization ability, 
Random Forest is emerged as the most precise model across both training and testing datasets.

5. Explanation of ML models based on SHAP analysis

Although ML models often achieve high precision, they are frequently viewed as black boxes because it is challenging to know how 
they generate their predictions. To tackle this problem, several effective methods, including Local Interpretable Model-agnostic Ex
planations (LIME) [45], Counterfactual Explanations [46], and SHAP [47], are proposed. Among these algorithms, LIME operates 
under the assumption that while global interpretability of complex models might be challenging, local interpretability is more feasible. 

Fig. 4. Performance of ML models on training dataset.
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It identifies the most important features for a particular prediction by generating perturbations in the vicinity of the instance of interest 
[45]. Counterfactual Explanations offer hypothetical scenarios by clarifying how minor alterations in the input features can result in a 
different prediction [46]. Meanwhile, SHAP ensures that the attribution of predictions to input features is fair and consistent. In this 
study, the SHAP algorithm is selected because it can determine which features are most crucial for making a prediction, the extent to 
which each feature contributes to the prediction, and whether the contribution is positive or negative [47].

5.1. Prediction process of machine learning models

Table 4 identifies a selected sample from the database, and Fig. 6 details the prediction process of this sample by four models: 

Fig. 5. Performance of ML models on testing dataset.

Table 4 
Input features of the investigated sample.

D 
(mm)

H 
(mm)

Type 
(/)

Efrp 

(GPa)
ffrp 

(MPa)
εcu,frp 

(%)
Tfrp 

(mm)
fco 

(MPa)
fcc 
(MPa)

100 200 BFRP 90 2380 2.2 0.52 19.4 54.07
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Decision Tree, Random Forest, GBDT, and XGBoost. Within this figure, red columns denote each feature’s positive contribution to the 
predicted axial compressive strength, whereas blue columns indicate negative contributions. The length of each column reflects the 
absolute magnitude of the corresponding feature’s Shapley value. For example, in Fig. 6(a), in view of the thickness of FRP layer Tfrp 
exhibits a positive correlation with the axial compressive strength of FRP-confined CAC, a large value of Tfrp (i.e., 0.52 mm) exerts a 
positive influence on the prediction outcomes. Additionally, the Decision Tree model identifies the small compressive strength of 
unconfined CAC (i.e., 19.4 MPa) as a negative variable in enhancing axial compressive strength. Moreover, the small height (i.e., 
200 mm) succeed in avoid the buckling of column, which contribute positively to the axial compressive strength. In addition, the 
tensile strength of FRP material (i.e., 2380 MPa) is viewed as a disadvantage because it lowers the predictive outcomes. Based on the 
four subplots in Fig. 6, the analysis reveals that for the studied sample, the Random Forest, GBDT, and XGBoost algorithms prioritize 
the FRP layer thickness as the most influential variable. This is evident from the longer column lengths associated with this parameter 
compared to other input features. Besides, Decision Tree model also consider the thickness of FRP layer is also be recognized as the 
important features. These models integrate the base value along with both positive and negative contributions to produce their final 
predictions. The Decision Tree, Random Forest, GBDT, and XGBoost models yield compressive strength estimates of 53.53 MPa, 
54.49 MPa, 51.88 MPa, and 59.20 MPa, respectively. In comparison, the actual values of axial compressive strength of FRP-confined 
CAC measured using three identical specimens are 49.32 MPa, 53.53 MPa and 59.36 MPa, respectively, leading to an average value of 
54.07 MPa. These difference between the average value of measured results and predictions outputted by Decision Tree, Random 
Forest, GBDT and XGBoost models results in relative errors of − 1.00 %, − 0.78 %, − 4.05 %, and 9.49 %, respectively.

5.2. Impact of each feature on axial compressive strength of FRP-confined CAC

Fig. 7 presents the Shapley values of features for individual samples across four models: Decision Tree, Random Forest, GBDT, and 
XGBoost. Within these figures, each sample is denoted by a dot—red dots correspond to samples with large feature values, while blue 
dots represent those with small ones. The features are ordered by their average absolute contribution to axial compressive strength 
across all samples, with those positioned higher in the ranking exerting a greater impact than their lower-ranked counterparts. Fig. 7
clarifies that all these selected models consider the thickness of FRP layer (Tfrp) as the most influential factor, which might attribute to 
the fact that the FRP layer provides confinement to CAC and enhances its ability to withstand compression. A thicker FRP layer can 
provide more effective confinement stress, leading to higher compressive strength. Furthermore, all models acknowledge that the 
compressive strength of unconfined CAC (fco), height of specimen (H) and elastic modulus of FRP material (Efrp) are influential var
iables. Specially, the Decision Tree, Random Forest and GBDT models believe that the ultimate strength of FRP (ffrp) critically affect the 
strength. Furthermore, the XGBoost model indicates that ffrp is less critical. One the other hand, all these models show the type and 

Fig. 6. Prediction process of various ML model.
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ultimate strain of FRP (Type and εcu,frp) and has a smaller influence as the primary mechanism through which FRP jackets enhance the 
compressive strength of CAC involves lateral confinement, which is more directly influenced by the thickness and elastic modulus of 
the FRP layer rather than its material type or ultimate strain.

5.3. Parametric analysis

Given its high precision on both the training and testing datasets, Random Forest model is selected to perform parametric analysis 
based on dependence plot of SHAP. In Fig. 8, the dot with blue or red color indicates the corresponding sample has a small or large 
value of the input feature, and its contribution to the axial compressive strength of FRP-confined CAC is presented as the value of 
vertical coordinate. As shown in Fig. 8(g), the contribution of thickness of FRP layer (Tfrp) increase rapidly with its increasement within 
the range from 0 to 1. Subsequently, the positive contribution made by Tfrp fluctuates within a small range, indicating that over 
confinement by FRP will not further enhance the axial compressive strength of confined concrete. A proper explanation for this 
phenomenon is that when the thickness of the FRP layer is within the range from 0 to 1 mm, the FRP is able to effectively transfer the 
compressive stress to the concrete core. The FRP acts like a confining jacket that restricts the lateral expansion of the CAC under axial 
compression. As the thickness increases in this initial range, the confining pressure exerted by the CAC on the concrete increases 
significantly. When the FRP layer becomes too thick, other failure modes may start to dominate. For example, the FRP jacket itself may 
experience buckling under excessive confinement pressure. In addition, CAC may experience different failure modes such as splitting 
due to excessive lateral pressure, which can also limit the further enhancement of the axial compressive strength. Apart from this, Fig. 8
(h) shows that the unconfined compressive strength exhibits a significant positive correlation with the strength of FRP-confined CAC, 
and this correlation can be approximated by a linear function. Besides, Fig. 8 also indicates that the elastic modulus and ultimate 
strength of FRP material also positively correlated with the compressive strength of confined CAC, while the diameter and height of 
column shows a negation correlation. The reason for this finding might attribute to the fact that FRP with a higher elastic modulus and 
ultimate strength is able to provide a higher lateral confinement on CAC. However, as indicated by Eq. (2), the confining pressure fl is 
inversely proportional to the diameter of column D. Consequently, to sustain the same confining pressure, a larger diameter neces
sitates either a thicker FRP layer or a higher FRP strength. Besides, as the height of the column increases, the axial compressive strength 
decreases due to the increased slenderness ratio and the potential for buckling. Finally, compared to ultimate strength of FRP, the 
remaining two factors, including FRP type and ultimate strain of FRP show slighter influence on the compressive strength, as plotted in 

Fig. 7. Summary plot of ML models on entire dataset.
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Fig. 8(c) and Fig. 8(f).

6. Conclusion

This research utilized ML algorithms to predict the axial compressive strength of FRP-confined CAC. A dataset comprising 115 
samples and eight input features were established for training and testing the ML models. The accuracy of six empirical formulas was 
compared with that of the ML models using four evaluation metrics: MAE, MAPE, RMSE, and R2. The prediction process of the ML 
models was elucidated, and a parametric analysis was conducted using the SHAP algorithm to enhance the interpretability and 

Fig. 8. SHAP value distribution of different input variables.
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reliability of the models. Based on the aforementioned analysis, the following conclusions were drawn: 

1) Three out of six empirical formulae achieve relative high prediction precision for their value of R2 exceeding 0.79 and lower values 
of MAE, MAPE, and RMSE. The empirical model, which is proposed for compressive strength of FRP-confined geopolymer-based 
coral aggregate concrete prediction, achieves superior precision among six empirical formulae, with the highest R² value of 0.84 
and the smallest values for MAE (4.60), MAPE (8.98 %) and RMSE (6.65).

2) With the exception of the KNN model, the remaining five data-driven ML models exhibit high precision in predicting the axial 
compressive strength of FRP-confined coral aggregate concrete, with metric R2 values exceeding 0.93 on both the training and 
testing dataset. Besides, the MAPE values of these five models are all smaller than 9 % on the testing dataset. Specially, compared 
with other ML models, the Random Forest model is regarded as the most precise model across the entire dataset.

3) The axial compressive strength of confined CAC is primarily influenced by thickness of FRP layer and unconfined compressive 
strength of CAC. In addition, the elastic modulus and ultimate strength of FRP are also critical factors. Besides, compared to ul
timate strength of FRP, type and ultimate strain of FRP show slighter influence on the compressive strength of confined CAC

4) Although thickness of FRP layer has a significant positive correlation with the compressive strength, excessive confinement by FRP 
will not further enhance the axial compressive strength of confined CAC. Besides, to sustain the same confining pressure provide by 
FRP, CAC column with a larger diameter necessitates either a thicker FRP layer or a higher FRP strength.
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