
Distributed Secretary Problem: A Case of Two UnevenQueues
Ke Ding

Department of Computing

Hong Kong Polytechnic University

Hong Kong, China

coco-ke.ding@connect.polyu.hk

Bo Li

Department of Computing

Hong Kong Polytechnic University

Hong Kong, China

comp-bo.li@polyu.edu.hk

Fangxiao Wang

Department of Computing

Hong Kong Polytechnic University

Hong Kong, China

fangxiao.wang@connect.polyu.hk

Abstract
Secretary problem is one of the most widely studied online stochas-

tic models, in which an employer wants to hire the best candidate

from 𝑛 candidates who arrive in a random order. It is well-known

that the optimal success probability is
1

𝑒 . However, in reality, things

are more complex because employers often have interviewers in

different cities, interviewing candidates in a distributed manner.

This motivates us to study the secretary problem with multiple

queues. Feldman and Tennenholtz [EC 2012] studied this assuming

the candidates are distributed evenly. In particular, when there are

two even queues, the optimal success probability is
1

4
. In this work,

we move to the general problem when the queues are arbitrary and

design the optimal online algorithm for the case of two queues. Our

results characterize the exact success probability curve, connecting

the cases of a single queue and two equal queues. Our technique

is grounded on the linear programming framework introduced by

Buchbinder et al. [Math. Oper. Res. 2014] and a novel analysis.

CCS Concepts
• Theory of computation → Design and analysis of algo-
rithms.
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1 Introduction
In the classical secretary problem, an employer would like to select

the best candidate among 𝑛 comparable candidates. The candidates

are assumed to arrive in a random order. After each interview, the

employer must decide whether to select the current candidate or

reject her irrevocably. The objective is to hire the best candidate

with the largest probability. A simple well-known two-phase algo-

rithm interviews but rejects the first
𝑛
𝑒 candidates and then hires

the first candidate who is better than all previous candidates. This

algorithm is optimal and hires the best candidate with probability
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𝑒 [5, 8]. In practice, the problem can be more complicated. The

employer may assign different interviewers to different cities, and

the best candidate may appear in any city. The interviews in each

city are simultaneous and independent until one candidate is hired

by some queue, and all interviews halt. For example, in a job fair

scenario, different recruiters are assigned to booths in various cities

or sections of the venue. The best potential employee could be

present at any of these booths, and recruiters conduct interviews

independently until a hiring decision is made, thereby halting the

process for the others. We refer the readers to Feldman and Ten-

nenholtz [6] for more examples. This motivates us to study the

distributed secretary problem with multiple queues.

In the distributed setting, the candidates in different cities are not

directly comparable. There are several reasons. The interviewers

may not have instant communications (for example, due to effi-

ciency concerns) and their scores may not be comparable (for exam-

ple, they may adopt different questions or have different evaluation

criteria). Further, the interview speeds of different interviewers are

the same. This is because each interview is usually given a fixed

amount of time. When one of the interviewers decides to hire a

candidate, she can notify the other interviewers to halt further inter-

views. The interviewers’ joint objective is to hire the best candidate

with the largest probability.

1.1 Our Model
This model has been studied by Feldman and Tennenholtz [6],

where they assume the candidates are evenly and randomly par-

titioned into multiple queues. This may not be true in practice as

different cities have different populations and different preferences.

Thus, in the current work, we consider the general case when the

candidates are not evenly partitioned. For the case of two queues

with uneven 𝑛1 ≤ 𝑛2, we prove that a simple stopping strategy is

surprisingly optimal:

• If the two queues differ a lot (i.e., 𝑛2 is much larger than

𝑛1), we simply reject all candidates in the shorter queue,

and adopt the optimal two-phase algorithm for the longer

queue (i.e., interviewing the first
1

𝑒 fraction of candidates

without selection, and selecting the first best-so-far candidate

thereafter).

• If the two queues are similar in length (i.e., 𝑛1 is at least a

large fraction of 𝑛2), we adopt two-phase algorithms for both

queues. Interestingly, the first phase in both queues has the

same length. This may not be expected since the two queues

still have different lengths in this case.

The success probability curve is illustrated in Figure 1 when

𝑛1 and 𝑛2 change. It is worth noting that the classic problems of

a single queue and two even queues are exactly the two extreme
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Figure 1: Success Probability. In this curve, we set 𝑛 = 𝑛1 + 𝑛2
and 𝑛1 ranges from 0 to 𝑛

2
. When 𝑛1 = 0, our model degen-

erates to the classic one-queue model and has success prob-
ability of 1

𝑒 ; When 𝑛1 = 𝑛
2
, our model degenerates to the

two-even-queue model [6] and has success probability of 1

4
.

cases in our model with 𝑛1 = 0 and 𝑛1 = 𝑛2. Our results connect

these two models and demonstrate how the success probability

shifts as the two queues become increasingly more balanced. We

prove the optimality of the algorithm using the linear programming

technique introduced by Buchbinder et al. [3].

1.2 Related Work
The classic secretary problemwas introduced in a puzzle by Gardner

[7]. Later, Dynkin [5], Lindley [8] gave the optimal strategy – the

two-phase algorithm. Subsequently, many variants of the secretary

problem have been studied in the literature. For example, Correa

et al. [4] considered the fairness of the secretary problem, where the

candidates are classified into different groups. There is also a line

of literature that extends the single selection to multiple selections

under various constraints, such as Matroids [2] and Knapsack [1].

Buchbinder et al. [3] first proposed the linear programming tech-

nique for the secretary problem, and reduce designing optimal

algorithm to computing the optimal solution for LP. This approach

is powerful and has been applied to more complicated settings, such

as [4, 6]. Our work is most closely related to the work by Feldman

and Tennenholtz [6], who proposed the secretary problemwith mul-

tiple queues. They assume the candidates are evenly and randomly

partitioned into 𝑑 queues, and designed the optimal algorithm with

success probability 𝑑−𝑑/(𝑑−1) if selecting one candidate. Later, Sun
et al. [9] considered a more general problem called the Q-queue

J-choice K-best, but the candidates are still evenly distributed.

2 Preliminaries
In a distributed secretary problem, a set N of 𝑛 comparable can-

didates (i.e., there is a strict total order over them) are randomly

partitioned into two queues, denoted by 𝑄1 and 𝑄2 with length 𝑛1
and 𝑛2, where 𝑛1 ≤ 𝑛2 and 𝑛1 +𝑛2 = 𝑛. The candidates within each

queue are ordered randomly. Two interviewers interview 𝑄1 and

𝑄2 simultaneously and independently. They do not communicate

with each other (so that the candidates in different queues are not

directly comparable) until one of them decides to hire one particular

candidate. The interview speeds are the same and normalized to 1

so we use integers 𝑡 = 1, 2, . . . , 𝑛2 to denote the time stamp when

the interviewers are interviewing the 𝑡-th candidate 𝑄𝑖 [𝑡] in each

queue 𝑖 = 1, 2, or only the second queue if 𝑡 > 𝑛1. Throughout the

paper, we assume 𝑛 is sufficiently large.

An algorithm 𝜋 , given its input 𝑛1, 𝑛2, describes a hiring strategy

for each of the two queues. The algorithm considers the candidates

sequentially. For each 𝑡 = 1, 2, . . . , 𝑛1, the algorithm observes values

𝑄1 [𝑡] and𝑄2 [𝑡] and their relative ranks so far in their own queues.

The algorithm makes an irreversible decision whether to hire𝑄1 [𝑡]
or 𝑄2 [𝑡] (in which case the algorithm terminates) or reject both

and move to the next time stamp. We break ties in favor of 𝑄1 so

that within each time stamp, the decision is first made on 𝑄1 and

then 𝑄2. If 𝑛1 ≠ 𝑛2, for each 𝑡 = 𝑛1 + 1, . . . , 𝑛2, no new candidate

exists in queue 1 and the algorithm only observes 𝑄2 [𝑡] and its

relative ranks so far in queue 2 in case that the algorithm still not

terminates. When 𝑡 = 𝑛2 but the algorithm has not hired any candi-

date, the algorithm outputs empty. The objective is to maximize the

probability of hiring the best candidate. We call an event in which

the best candidate is hired a success event, and the probability of

hiring the best candidate success probability.

3 Linear Programming Representation
In the following, we use the linear programming technique intro-

duced by Buchbinder et al. [3] to solve the distributed secretary

problem. Feldman and Tennenholtz [6] applied this technique on

the case when the queues have identical lengths and we further

extend it to uneven lengths.

We first assume that the algorithms we consider do not hire

one candidate if she is not the best so far in its queue at every

time stamp. This assumption is without loss of generality since,

otherwise, the probability of hiring the globally best candidate is

0. Given an algorithm, we use 𝑓𝑖, 𝑗 to denote the probability that

candidate 𝑗 in queue 𝑖 = 1, 2 is selected, given that it is the best

overall. Then we have the following linear program LP shown atop

the next page.

Lemma 1. The optimal value of LP is an upper bound on the success
probability of any algorithm.

Proof. Consider an arbitrary algorithm 𝜋 . Let 𝑓𝑖, 𝑗 be the proba-

bility that 𝜋 hires the candidate at position 𝑗 in queue 𝑖 , given it is

the best overall. Since the best candidate appears in each position

(𝑖, 𝑗), 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑛𝑖 , with probability
1

𝑛 , the probability

that 𝜋 can hire the best candidate at (𝑖, 𝑗) is 1

𝑛 𝑓𝑖, 𝑗 . Thus the total

probability of hiring the best candidate is
1

𝑛

∑
𝑖=1,2

∑𝑛𝑖
𝑗=1

𝑓𝑖, 𝑗 , which

is exactly the objective of LP.
To prove the lemma, it remains to prove that 𝜋 satisfies all the

conditions of LP. We first consider candidates (1, 𝑗) for 𝑗 = 1, . . . , 𝑛1.

Given candidate (1, 𝑗) is the best overall, The probability that 𝜋

hires her should not be greater than the probability that 𝜋 rejects

all candidates in previous time stamps 𝑙 = 1, . . . , 𝑗 − 1 for both two

queues 𝑄𝑖 , 𝑖 = 1, 2.
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(LP) max

1

𝑛

2∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑓𝑖, 𝑗

s.t. 𝑓1, 𝑗 +
2∑︁

𝑖=1

𝑗−1∑︁
𝑙=1

𝑓𝑖,𝑙

𝑙
≤ 1, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑓2, 𝑗 +
2∑︁

𝑖=1

𝑗−1∑︁
𝑙=1

𝑓𝑖,𝑙

𝑙
+
𝑓1, 𝑗

𝑗
≤ 1, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑓2, 𝑗 +
2∑︁

𝑖=1

𝑛1∑︁
𝑙=1

𝑓𝑖,𝑙

𝑙
+

𝑗−1∑︁
𝑙=𝑛1+1

𝑓2, 𝑗

𝑗
≤ 1, ∀𝑛1 < 𝑗 ≤ 𝑛2

𝑓1, 𝑗 ≥ 0, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑓2, 𝑗 ≥ 0, ∀ 2 ≤ 𝑗 ≤ 𝑛2

One crucial observation is that, the algorithm’s behavior depends

only on the relative ranks of previously interviewed candidates.

Thus, at position (𝑖, 𝑗) the algorithm acts the same if candidate (𝑖, 𝑗)
is the best overall, or is the best among the first 𝑗 candidates in 𝑄𝑖 .

As we fixed candidate (1, 𝑗) being the best overall, the probability
that 𝜋 hires (𝑖, 𝑙) at some previous time stamp equals

Pr[𝜋 hires (𝑖, 𝑙) | (1, 𝑗) is the best overall]
= Pr[𝜋 hires (𝑖, 𝑙)]
= Pr[𝜋 hires (𝑖, 𝑙) | (𝑖, 𝑙) is the best so far in 𝑄𝑖 ]
· Pr[(𝑖, 𝑙) is the best so far in 𝑄𝑖 ]

= Pr[𝜋 hires (𝑖, 𝑙) | (𝑖, 𝑙) is the best overall]
· Pr[(𝑖, 𝑙) is the best so far in 𝑄𝑖 ]

=𝑓𝑖,𝑙 ·
1

𝑙
,

which gives the first constraint 𝑓1, 𝑗 ≤ 1 − ∑
2

𝑖=1

∑𝑗−1
𝑙=1

𝑓𝑖,𝑙
𝑙

for 𝑄1.

Since 𝑄1 makes a decision before 𝑄2 within each time stamp,

for the candidate at (2, 𝑗) we also need to consider the probability

that 𝜋 does not hire at time stamps prior to (2, 𝑗). Thus, for (2, 𝑗),
𝑗 = 1, . . . , 𝑛1, we have 𝑓2, 𝑗 ≤ 1 − ∑

2

𝑖=1

∑𝑗−1
𝑙=1

𝑓𝑖,𝑙
𝑙

− 𝑓1, 𝑗
𝑗 , which gives

the second constraint. Similarly, when 𝑗 > 𝑛1, only 𝑄2 remains in

the algorithm, and we have the third constraint, which completes

the proof of the lemma. □

To bound the optimal value of LP, denoted by𝑂𝑃𝑇LP, we consider
its dual DP shown atop this page, and denote the optimal value of

DP by 𝑂𝑃𝑇DP. Note that 𝑂𝑃𝑇LP = 𝑂𝑃𝑇DP.

We use the indices (𝑖, 𝑗), 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑛𝑖 , of the first

variable to refer to each constraint in DP. Further, for simplicity,

let 𝐻𝑘 = 1 + 1

2
+ · · · + 1

𝑘
and 𝐺𝑘 = 1 + 1

2
2
+ · · · + 1

𝑘2
for any integer

𝑘 ≥ 1. Let 𝐻0 = 𝐺0 = 0.

Lemma 2. If 𝑛1 − 1 <
𝑛2−1
𝑒 , then 𝑂𝑃𝑇DP ≤ 𝑛2

𝑛·𝑒 .

Proof. To prove the lemma, it suffices to construct a feasible

solution whose objective value is
𝑛2

𝑛·𝑒 .
Denote by 𝑇 the integer that satisfies

𝑛2−1∑︁
𝑖=𝑇+1

1

𝑖
< 1 ≤

𝑛2−1∑︁
𝑖=𝑇

1

𝑖
.

(DP) min

𝑛1∑︁
𝑗=1

𝑥1, 𝑗 +
𝑛2∑︁
𝑗=1

𝑥2, 𝑗

s.t. 𝑗 · 𝑥1, 𝑗 +
𝑛1∑︁

𝑙=𝑗+1
𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙 ≥

𝑗

𝑛
, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑗 · 𝑥2, 𝑗 +
𝑛1∑︁

𝑙=𝑗+1
𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗+1

𝑥
2,𝑙 ≥

𝑗

𝑛
, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑗 · 𝑥2, 𝑗 +
𝑛2∑︁

𝑙=𝑗+1
𝑥
2,𝑙 ≥

𝑗

𝑛
, ∀𝑛1 < 𝑗 ≤ 𝑛2

𝑥1, 𝑗 ≥ 0, ∀ 1 ≤ 𝑗 ≤ 𝑛1

𝑥2, 𝑗 ≥ 0, ∀ 1 ≤ 𝑗 ≤ 𝑛2

Since ln
𝑛2−1
𝑇+1 < 1, we have 𝑇 >

𝑛2

𝑒 − 1 > (𝑛1 − 1) − 1 so that

𝑇 ≥ 𝑛1 − 1. Consider the following solution:

𝑥1, 𝑗 = 0, for all 𝑗 = 1, . . . , 𝑛1,

and

𝑥2, 𝑗 =

{
0, for 1 ≤ 𝑗 ≤ 𝑇
1

𝑛 (1 − 𝐻𝑛2−1 + 𝐻 𝑗−1), for 𝑇 < 𝑗 ≤ 𝑛2 .

The non-negativity of 𝑥𝑖, 𝑗 directly follows from the definition

of 𝑇 . We prove that the solution is feasible via backward induction.

First observe that for all 𝑇 + 1 ≤ 𝑗 ≤ 𝑛2 − 1, 𝑥2, 𝑗 decreases as 𝑗

increases, and in particular,

𝑥2, 𝑗 = 𝑥2, 𝑗+1 −
1

𝑛𝑗
.

The constraint (2, 𝑛2) holds since 𝑥2,𝑛2
= 1

𝑛 . In fact, this constraint

is tight where equality holds. Given that constraint (2, 𝑗) holds with
equalities for 𝑇 + 1 < 𝑗 ≤ 𝑛2, for constraint (2, 𝑗 − 1), we have

( 𝑗 − 1) · 𝑥2, 𝑗−1 +
𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙 = ( 𝑗 − 1)

(
𝑥2, 𝑗 −

1

𝑛( 𝑗 − 1)

)
+

𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙

=
©­« 𝑗 · 𝑥2, 𝑗 +

𝑛2∑︁
𝑙=𝑗+1

𝑥
2,𝑙

ª®¬ − 1

𝑛

=
𝑗

𝑛
− 1

𝑛
=

𝑗 − 1

𝑛
,

where the second last equality holds because of the induction step

for constraint (2, 𝑗). For the remaining constraints 𝑗 ≤ 𝑇 , we note

that the value of the left-hand side of the inequality increases but

the value of the right-hand side decreases as 𝑗 decreases, we directly

have the correctness of these inequalities.

Next, we verify the objective value of this solution.
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𝑜𝑏 𝑗 =

𝑛1∑︁
𝑗=1

𝑥1, 𝑗 +
𝑛2∑︁
𝑗=1

𝑥2, 𝑗 =

𝑛2∑︁
𝑗=𝑇+1

𝑥2, 𝑗

= −𝑇 · 𝑥2,𝑇+1 + (𝑇 + 1) · 𝑥2,𝑇+1 +
𝑛2∑︁

𝑗=𝑇+2
𝑥2, 𝑗

= − 𝑇

𝑛
(1 − 𝐻𝑛2−1 + 𝐻𝑇 ) +

𝑇 + 1

𝑛

=
𝑇

𝑛
(𝐻𝑛2−1 − 𝐻𝑇−1)

≈𝑇
𝑛
ln

𝑛2 − 1

𝑇 − 1

≈ 𝑛2

𝑛 · 𝑒 ,

where the fourth equality holds because constraint (2,𝑇 + 1) holds
with equality, i.e.,

(𝑇 + 1) · 𝑥2,𝑇+1 +
𝑛2∑︁

𝑗=𝑇+2
𝑥2, 𝑗 =

𝑇 + 1

𝑛
.

The last two approximations hold when 𝑛 goes large. □

Lemma 3. If 𝑛1 − 1 ≥ 𝑛2−1
𝑒 ,

𝑂𝑃𝑇DP ≤ 𝑛1

𝑛 ·
(
2 − 𝐻𝑛2−1 + 𝐻𝑛1−1

) + 𝑜 ( 1
𝑛
).

Proof. Similar to Lemma 2, it suffices for us to construct a fea-

sible solution with the desired objective value. Denote by 𝑇 the

integer that satisfies the following condition,

𝑛1−1∑︁
𝑖=𝑇+1

1

𝑖2
<

1 − 𝐻𝑛2−1 + 𝐻𝑛1−1
𝑛1

≤
𝑛1−1∑︁
𝑖=𝑇

1

𝑖2
.

We try to bound the value of 𝑇 . Since 1

𝑖 (𝑖+1) < 1

𝑖2
< 1

(𝑖−1)𝑖 , we
have

1

𝑇 + 1

− 1

𝑛1
<

1 − 𝐻𝑛2−1 + 𝐻𝑛1−1
𝑛1

<
1

𝑇 − 1

− 1

𝑛1 − 1

<
1

𝑇 − 1

− 1

𝑛1
.

𝑛1

2 − 𝐻𝑛2−1 + 𝐻𝑛1−1
− 1 < 𝑇 <

𝑛1

2 − 𝐻𝑛2−1 + 𝐻𝑛1−1
+ 1.

Note that when 𝑛1 − 1 ≥ 𝑛2−1
𝑒 , 0 ≤ 𝐻𝑛2−1 −𝐻𝑛1−1 ≤ 1, and thus

𝑇 ≤ 𝑛1 ≤ 𝑛2. Consider the following solution:

• For 𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑇 , 𝑥𝑖, 𝑗 = 0.

• For 𝑖 = 1 and 𝑇 + 1 ≤ 𝑗 ≤ 𝑛1,

𝑥𝑖, 𝑗 =
1

𝑛

𝑗 − 1

𝑛1
(1 − 𝐻𝑛2−1 + 𝐻𝑛1−1) −

𝑗 − 1

𝑛
(𝐺𝑛1−1 −𝐺 𝑗−1).

• For 𝑖 = 2 and 𝑇 + 1 ≤ 𝑗 ≤ 𝑛1,

𝑥𝑖, 𝑗 =
1

𝑛

𝑗

𝑛1
(1 − 𝐻𝑛2−1 + 𝐻𝑛1−1) −

𝑗

𝑛
(𝐺𝑛1−1 −𝐺 𝑗−1)

• For 𝑖 = 2 and 𝑛1 < 𝑗 ≤ 𝑛2,

𝑥𝑖, 𝑗 =
1

𝑛
(1 − 𝐻𝑛2−1 + 𝐻 𝑗−1).

We first prove the feasibility of the solution. For 𝑖 = 2 and

𝑛1 ≤ 𝑗 ≤ 𝑛2, constraints (𝑖, 𝑗) hold with equality since the values

of 𝑥𝑖, 𝑗 (note that this includes 𝑗 = 𝑛1) are the same as the solution

constructed in the proof of Lemma 2.

For 𝑇 + 1 ≤ 𝑗 ≤ 𝑛1, by the design of the solution, we have

𝑥1, 𝑗 = 𝑥2, 𝑗 ·
𝑗 − 1

𝑗
and 𝑥2, 𝑗−1 = 𝑥1, 𝑗 −

1

𝑛( 𝑗 − 1) .

We continue to prove by backward induction and recall that the

(2, 𝑛1) constraint holds with equality. Given constraint (2, 𝑗) holds
with equality for 𝑡 + 1 ≤ 𝑗 ≤ 𝑛1, for constraint (1, 𝑗),

𝑗 · 𝑥1, 𝑗 +
𝑛1∑︁

𝑙=𝑗+1
𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙

= 𝑗 · 𝑥2, 𝑗 ·
𝑗 − 1

𝑗
+

𝑛1∑︁
𝑙=𝑗+1

𝑥
1,𝑙 +

©­«𝑥2, 𝑗 +
𝑛2∑︁

𝑙=𝑗+1
𝑥
2,𝑙

ª®¬
= 𝑗 · 𝑥2, 𝑗 +

𝑛1∑︁
𝑙=𝑗+1

𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗+1

𝑥
2,𝑙 =

𝑗

𝑛
,

where the last equality holds because of the induction on constraint

(2, 𝑗). Next, given constraint (1, 𝑗) holds for 𝑡 + 1 < 𝑗 ≤ 𝑛1, for

constraint (2, 𝑗 − 1),

( 𝑗 − 1) · 𝑥2, 𝑗−1 +
𝑛1∑︁
𝑙=𝑗

𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙

=( 𝑗 − 1)
(
𝑥1, 𝑗 −

1

𝑛( 𝑗 − 1)

)
+ ©­«𝑥1, 𝑗 +

𝑛1∑︁
𝑙=𝑗+1

𝑥
1,𝑙

ª®¬ +
𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙

= 𝑗 · 𝑥1, 𝑗 +
𝑛1∑︁

𝑙=𝑗+1
𝑥
1,𝑙 +

𝑛2∑︁
𝑙=𝑗

𝑥
2,𝑙 −

1

𝑛
=

𝑗

𝑛
− 1

𝑛
=

𝑗 − 1

𝑛
,

where the last equality is by the induction on constraint (1, 𝑗).
The remaining constraints for 𝑗 ≤ 𝑇 are satisfied via a similar

argument in the proof of Lemma 2.

Secondly, to see the non-negativity of the solution, we only need

to show the non-negativity of 𝑥1,𝑇+1 due to the monotonicity of 𝑥 ,

𝑥1,𝑇+1 =
1

𝑛

𝑇

𝑛1
(1 − 𝐻𝑛2−1 + 𝐻𝑛1−1) −

𝑇

𝑛
(𝐺𝑛1−1 −𝐺𝑇 )

=
𝑇

𝑛

(
1 − 𝐻𝑛2−1 + 𝐻𝑛1−1

𝑛1
−

𝑛1−1∑︁
𝑖=𝑇+1

1

𝑖2

)
> 0,

where the inequality follows from the definition of 𝑇 .

We finally upper-bound the objective value of the above solution,

𝑜𝑏 𝑗 =

𝑛1∑︁
𝑗=1

𝑥1, 𝑗 +
𝑛2∑︁
𝑗=1

𝑥2, 𝑗 =

𝑛1∑︁
𝑗=𝑇+1

𝑥1, 𝑗 +
𝑛2∑︁

𝑗=𝑇+1
𝑥2, 𝑗

=
©­«(𝑇 + 1) · 𝑥1,𝑇+1 +

𝑛1∑︁
𝑗=𝑇+2

𝑥1, 𝑗 +
𝑛2∑︁

𝑗=𝑇+1
𝑥2, 𝑗

ª®¬ −𝑇 · 𝑥1,𝑇+1

=
𝑇 + 1

𝑛
−𝑇 · 𝑥1,𝑇+1 ≤ 𝑇 + 1

𝑛

=
𝑛1

𝑛 ·
(
2 − 𝐻𝑛2−1 + 𝐻𝑛1−1

) + 𝑜 ( 1
𝑛
),

where the second last inequality holds because the (1,𝑇 + 1) con-
straint holds with equality and 𝑥1,𝑇+1 > 0, and the last equality

follows from the bound of 𝑇 . □
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4 The Optimal Algorithm for Two Queues
We now design the optimal algorithm for two uneven queues.

Algorithm 1: The optimal algorithm for two queues

Input: 𝑛1 and 𝑛2, where 𝑛1 ≤ 𝑛2 and 𝑛1 + 𝑛2 = 𝑛.

1 if 𝑛1 − 1 <
𝑛2−1
𝑒 then

2 Reject all candidates in 𝑄1.

3 Reject the first ⌊𝑛2

𝑒 ⌋ candidates in 𝑄2. For the remaining

candidates in 𝑄2, hire the first one who is better than

all previous candidates in 𝑄2.

4 else
5 Reject the first ⌊ 𝑛1

2−𝐻𝑛
2
+𝐻𝑛

1

⌋ candidates in 𝑄1 and 𝑄2.

6 For the remaining candidates in 𝑄1 and 𝑄2, hire the first

one who is better than all previous candidates in its

queue. If two candidates are hired at the same time,

hire the one in 𝑄1.

Theorem 4. Algorithm 1 is optimal for any two-queue instance.

The proof of Theorem 4 relies on the following Lemmas 5 and 6.

Lemma 5. If 𝑛1 − 1 <
𝑛2−1
𝑒 , Algorithm 1 has success probability

𝑛2

𝑛 · 𝑒 >
1

𝑒 + 1

.

Proof. If we always reject all candidates in 𝑄1, the success

probability is

Pr[the best in 𝑄2] · Pr[select the best in 𝑄2 | the best in 𝑄2] .

It is clear that Pr[the best in 𝑄2] = 𝑛2

𝑛 , and Pr[select the best in 𝑄2 |
the best in 𝑄2] = 1

𝑒 as this degenerates to the classic single-queue

problem, which proves the lemma. □

Lemma 6. If 𝑛1 − 1 ≥ 𝑛2−1
𝑒 , Algorithm 1 has success probability

𝑛1

𝑛(2 − 𝐻𝑛2−1 + 𝐻𝑛1−1)
≥ 1

4

.

Proof. When 𝑛1 − 1 ≥ 𝑛2−1
𝑒 , Algorithm 1 sets threshold𝑇 ≤ 𝑛1.

We use the probability method to calculate the success probability.

We claim that our algorithm hires the best candidate at position

𝑖 > 𝑇 in queue 𝑄 𝑗 , 𝑗 = 1, 2, if the following three conditions hold

simultaneously:

• The best candidate appears at position 𝑖 in𝑄 𝑗 , which happens

with probability
1

𝑛 ;

• The best candidate in 𝑄 𝑗 [1, . . . , 𝑖 − 1] appears in the first 𝑇

positions, which happens with probability
𝑇
𝑖−1 ;

• The best candidate in 𝑄3− 𝑗 [1, . . . , 𝑖] appears in the first 𝑇

positions, which happens with probability
𝑇
𝑖 .

Our analysis here ignores the ties, which happens with probability

𝑜 (1). Summing over all 𝑖 = 𝑇 + 1, . . . , 𝑛2, we have the success

probability of Algorithm 1 being

2

𝑛1∑︁
𝑖=𝑇+1

1

𝑛
· 𝑇

𝑖 − 1

· 𝑇
𝑖
+

𝑛2∑︁
𝑖=𝑛1+1

1

𝑛
· 𝑇
𝑛1

· 𝑇

𝑖 − 1

=
2𝑇 2

𝑛
( 1
𝑇

− 1

𝑛1
) + 𝑇 2

𝑛 · 𝑛1
(

𝑛2∑︁
𝑖=𝑛1+1

1

𝑖 − 1

)

=
2𝑇

𝑛
− 𝑇 2

𝑛 · 𝑛1
(2 − 𝐻𝑛2−1 + 𝐻𝑛1−1)

>
𝑇

𝑛
− 𝑜 ( 1

𝑛
) = 𝑛1

𝑛 · (2 − 𝐻𝑛2
+ 𝐻𝑛1

) − 𝑜 ( 1
𝑛
).

When 𝑛 goes to infinity, the lower term goes to 0, completing

the proof of the lemma. □

Note that the worst-case probability when 𝑛1 − 1 ≥ 𝑛2−1
𝑒 hap-

pens when 𝑛1 = 𝑛2, and
𝑛1

𝑛 (2−𝐻𝑛
2
+𝐻𝑛

1
) = 1

4
. This result matches

the results from [6] and indicates that when the queues are more

balanced, the chance of success gets lower.

Combining the above lemmas and Lemmas 1, 2 and 3, our algo-

rithm has success probability as large as𝑂𝑃𝑇LP and thus is optimal

when 𝑛 gets sufficiently large.

5 Conclusion
In this article, we initiate the study of the distributed secretary

problem with multiple uneven queues. Our model is well justified

by real-world problems. For the case of two queues, we show how

to use linear programming techniques to design the optimal algo-

rithm. Our paper uncovers many interesting research problems.

For example, it is intriguing to extend our model to more than two

queues and the selection of multiple candidates.
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