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Abstract

Secretary problem is one of the most widely studied online stochas-
tic models, in which an employer wants to hire the best candidate
from n candidates who arrive in a random order. It is well-known
that the optimal success probability is %. However, in reality, things
are more complex because employers often have interviewers in
different cities, interviewing candidates in a distributed manner.
This motivates us to study the secretary problem with multiple
queues. Feldman and Tennenholtz [EC 2012] studied this assuming
the candidates are distributed evenly. In particular, when there are
two even queues, the optimal success probability is %. In this work,
we move to the general problem when the queues are arbitrary and
design the optimal online algorithm for the case of two queues. Our
results characterize the exact success probability curve, connecting
the cases of a single queue and two equal queues. Our technique
is grounded on the linear programming framework introduced by
Buchbinder et al. [Math. Oper. Res. 2014] and a novel analysis.
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1 Introduction

In the classical secretary problem, an employer would like to select
the best candidate among n comparable candidates. The candidates
are assumed to arrive in a random order. After each interview, the
employer must decide whether to select the current candidate or
reject her irrevocably. The objective is to hire the best candidate
with the largest probability. A simple well-known two-phase algo-
rithm interviews but rejects the first 2 candidates and then hires
the first candidate who is better than all previous candidates. This
algorithm is optimal and hires the best candidate with probability
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% [5, 8]. In practice, the problem can be more complicated. The
employer may assign different interviewers to different cities, and
the best candidate may appear in any city. The interviews in each
city are simultaneous and independent until one candidate is hired
by some queue, and all interviews halt. For example, in a job fair
scenario, different recruiters are assigned to booths in various cities
or sections of the venue. The best potential employee could be
present at any of these booths, and recruiters conduct interviews
independently until a hiring decision is made, thereby halting the
process for the others. We refer the readers to Feldman and Ten-
nenholtz [6] for more examples. This motivates us to study the
distributed secretary problem with multiple queues.

In the distributed setting, the candidates in different cities are not
directly comparable. There are several reasons. The interviewers
may not have instant communications (for example, due to effi-
ciency concerns) and their scores may not be comparable (for exam-
ple, they may adopt different questions or have different evaluation
criteria). Further, the interview speeds of different interviewers are
the same. This is because each interview is usually given a fixed
amount of time. When one of the interviewers decides to hire a
candidate, she can notify the other interviewers to halt further inter-
views. The interviewers’ joint objective is to hire the best candidate
with the largest probability.

1.1 Our Model

This model has been studied by Feldman and Tennenholtz [6],
where they assume the candidates are evenly and randomly par-
titioned into multiple queues. This may not be true in practice as
different cities have different populations and different preferences.
Thus, in the current work, we consider the general case when the
candidates are not evenly partitioned. For the case of two queues
with uneven n; < ny, we prove that a simple stopping strategy is
surprisingly optimal:

o If the two queues differ a lot (i.e., ny is much larger than
n1), we simply reject all candidates in the shorter queue,
and adopt the optimal two-phase algorithm for the longer
queue (i.e., interviewing the first % fraction of candidates
without selection, and selecting the first best-so-far candidate
thereafter).

o If the two queues are similar in length (i.e., n; is at least a
large fraction of nz), we adopt two-phase algorithms for both
queues. Interestingly, the first phase in both queues has the
same length. This may not be expected since the two queues
still have different lengths in this case.

The success probability curve is illustrated in Figure 1 when
ny and ny change. It is worth noting that the classic problems of
a single queue and two even queues are exactly the two extreme
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Figure 1: Success Probability. In this curve, we set n = nj + ny
and n; ranges from 0 to 5. When n; = 0, our model degen-
erates to the classic one-queue model and has success prob-
ability of % ;s When n; = %, our model degenerates to the
two-even-queue model [6] and has success probability of %.

cases in our model with ny = 0 and ny = ny. Our results connect
these two models and demonstrate how the success probability
shifts as the two queues become increasingly more balanced. We
prove the optimality of the algorithm using the linear programming
technique introduced by Buchbinder et al. [3].

1.2 Related Work

The classic secretary problem was introduced in a puzzle by Gardner
[7]. Later, Dynkin [5], Lindley [8] gave the optimal strategy — the
two-phase algorithm. Subsequently, many variants of the secretary
problem have been studied in the literature. For example, Correa
et al. [4] considered the fairness of the secretary problem, where the
candidates are classified into different groups. There is also a line
of literature that extends the single selection to multiple selections
under various constraints, such as Matroids [2] and Knapsack [1].
Buchbinder et al. [3] first proposed the linear programming tech-
nique for the secretary problem, and reduce designing optimal
algorithm to computing the optimal solution for LP. This approach
is powerful and has been applied to more complicated settings, such
as [4, 6]. Our work is most closely related to the work by Feldman
and Tennenholtz [6], who proposed the secretary problem with mul-
tiple queues. They assume the candidates are evenly and randomly
partitioned into d queues, and designed the optimal algorithm with
success probability d —d/(d-1) jf selecting one candidate. Later, Sun
et al. [9] considered a more general problem called the Q-queue
J-choice K-best, but the candidates are still evenly distributed.

2 Preliminaries

In a distributed secretary problem, a set N of n comparable can-
didates (i.e., there is a strict total order over them) are randomly
partitioned into two queues, denoted by Q; and Q» with length ng
and ny, where n1 < ny and n1 + ny = n. The candidates within each
queue are ordered randomly. Two interviewers interview Q; and
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Q2 simultaneously and independently. They do not communicate
with each other (so that the candidates in different queues are not
directly comparable) until one of them decides to hire one particular
candidate. The interview speeds are the same and normalized to 1
so we use integers t = 1,2,...,ny to denote the time stamp when
the interviewers are interviewing the ¢-th candidate Q;[t] in each
queue i = 1,2, or only the second queue if t > n;. Throughout the
paper, we assume n is sufficiently large.

An algorithm 7, given its input ny, ny, describes a hiring strategy
for each of the two queues. The algorithm considers the candidates
sequentially. For each t = 1,2, ..., nj, the algorithm observes values
Q1[t] and Q2 [t] and their relative ranks so far in their own queues.
The algorithm makes an irreversible decision whether to hire Q1 []
or Qz[¢] (in which case the algorithm terminates) or reject both
and move to the next time stamp. We break ties in favor of Q; so
that within each time stamp, the decision is first made on Q; and
then Q. If ny # ny, for each t = ny + 1,...,ny, no new candidate
exists in queue 1 and the algorithm only observes Q2[¢] and its
relative ranks so far in queue 2 in case that the algorithm still not
terminates. When t = ny but the algorithm has not hired any candi-
date, the algorithm outputs empty. The objective is to maximize the
probability of hiring the best candidate. We call an event in which
the best candidate is hired a success event, and the probability of
hiring the best candidate success probability.

3 Linear Programming Representation

In the following, we use the linear programming technique intro-
duced by Buchbinder et al. [3] to solve the distributed secretary
problem. Feldman and Tennenholtz [6] applied this technique on
the case when the queues have identical lengths and we further
extend it to uneven lengths.

We first assume that the algorithms we consider do not hire
one candidate if she is not the best so far in its queue at every
time stamp. This assumption is without loss of generality since,
otherwise, the probability of hiring the globally best candidate is
0. Given an algorithm, we use f; ; to denote the probability that
candidate j in queue i = 1,2 is selected, given that it is the best
overall. Then we have the following linear program LP shown atop
the next page.

LEMMA 1. The optimal value of LP is an upper bound on the success
probability of any algorithm.

Proor. Consider an arbitrary algorithm 7. Let f; ; be the proba-
bility that s hires the candidate at position j in queue i, given it is
the best overall. Since the best candidate appears in each position
(i,j),i=1,2and j = 1,...,n;, with probability % the probability
that 7 can hire the best candidate at (i, j) is % fi,j- Thus the total
probability of hiring the best candidate is % Yi=12 27;1 fi,j» which
is exactly the objective of LP.

To prove the lemma, it remains to prove that x satisfies all the
conditions of LP. We first consider candidates (1, j) for j = 1,...,nj.
Given candidate (1, j) is the best overall, The probability that =
hires her should not be greater than the probability that 7 rejects
all candidates in previous time stamps [ = 1,..., j — 1 for both two
queues Q;, i =1,2.
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. )
(LP) max —ZZﬁj
i=1 j=1
2 j-1 .
st fij+ ), 1%31, Vi<j<m
i=1 [=1
2 j—-1
) »
fz)j+Z f%+f¥§1, Vi<j<m
i=1 1=1 J
2 n j-1
- -
fz,j+z f%+ %Sl, Vny <j<ng
i=1 1=1 I=m+1
ﬁ,jZO, v j<
fj 20, V2<j<ny

One crucial observation is that, the algorithm’s behavior depends
only on the relative ranks of previously interviewed candidates.
Thus, at position (i, j) the algorithm acts the same if candidate (i, j)
is the best overall, or is the best among the first j candidates in Q;.
As we fixed candidate (1, j) being the best overall, the probability
that  hires (i, [) at some previous time stamp equals

Pr[ hires (i,1) | (1, j) is the best overall]
=Pr[x hires (i,1)]
=Pr[x hires (i,1) | (i,]) is the best so far in Q;]
- Pr[(i,]) is the best so far in Q;]
=Pr[x hires (i,1) | (i,]) is the best overall]
- Pr[(i,1) is the best so far in Q;]

1
=fir- 7

which gives the first constraint f ; < 1— Z ZJ ! f’ for Q1.
Since Q7 makes a decision before Q2 withm each tlme stamp,
for the candidate at (2, j) we also need to consider the probability
that 7 does not hire at time stamps prior to (2, j). Thus, for (2, j),
jzl,...,nl,wehavefz,jSI—Z Z] lfl—fl]’
the second constraint. Similarly, when J > ni, only Q2 remains in
the algorithm, and we have the third constraint, which completes
the proof of the lemma. O

which gives

To bound the optimal value of LP, denoted by OPT| p, we consider
its dual DP shown atop this page, and denote the optimal value of
DP by OPTpp. Note that OPTip = OPTpp.

We use the indices (i,j),i = 1,2 and j = 1,...,n;, of the first
variable to refer to each constraint in DP. Further, for simplicity,
letHk:1+%+--~+%ande: 1+2l2+---+éforanyinteger
k > 1.Let Hy = Gy = 0.

nz

n-e’

LEMMA 2. Ifmy

Proor. To prove the lemma, it suffices to construct a feasible
solution whose objective value is %.
Denote by T the integer that satisfies

2—1 2—1
ny 1 ny 1
SlacS
. 1 < 1
i=T+1 i=T
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ni ny
(DP) min le,j+2x2,j

J .
s.t. x1,j+ X1+ Xo] = =, Vi<j<n
Jx1j Z 1l Zz =0 =] 1
I=j+1
J .
Jxgj+ Zx11+ szl = V1<j<m
I=j+1 I=j+1 n
J ,
R xz,]+2x2 > =, Vny <j<ng
I=j+1 n
x1,j 20, Vi<j<m
X252 0, Vi<j<n
Sinceln"f;ll<1,wehaveT>%—1>(n1—1)—lsothat

T > nj — 1. Consider the following solution:
x1,7 =0, forall j=1,...,nq,

and

0, for1<j<T
X2j =31 P .
w(1=Hy,—1+Hj1), forT < j<ny.

The non-negativity of x; ; directly follows from the definition
of T. We prove that the solution is feasible via backward induction.
First observe that forall T +1 < j < ny — 1, xp,j decreases as j
increases, and in particular,

X2,j = X,j41 = —

The constraint (2, n2) holds since x2 , = % In fact, this constraint
is tight where equality holds. Given that constraint (2, j) holds with
equalities for T + 1 < j < ny, for constraint (2, j — 1), we have

(—1) x25- 1+szl

I=j

(-1 (xZJ

) szl
Jx2j+ Z X2,1 —;

_]+1
j—-1

Jj 1
n n

n

where the second last equality holds because of the induction step
for constraint (2, j). For the remaining constraints j < T, we note
that the value of the left-hand side of the inequality increases but
the value of the right-hand side decreases as j decreases, we directly
have the correctness of these inequalities.

Next, we verify the objective value of this solution.
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obj = Zx1]+2x2,]— Z X2,j

j=T+1
ny
=-T-xor41+(T+1) X211 + Z X2,j
j=T+2

T T+1
=——(1—Hpy—1+Hp)+ ——
n n

T

=;(Hn2—1 - Hr_1)
T, nyp—1 no

~—In r—,
n T-1 n-e

where the fourth equality holds because constraint (2, T + 1) holds
with equality, i.e.,

U]

(T+1)-x9741 + Z x2,j =
j=T+2

n
The last two approximations hold when n goes large. O

ny—1
LemMma 3. Ifng — 12 2—,
ni

OPTpp <
bP n- (Z—an_l +Hn1—1)

+o(%).

Proor. Similar to Lemma 2, it suffices for us to construct a fea-
sible solution with the desired objective value. Denote by T the
integer that satisfies the following condition,

Ml 1—Hp g +Hpo S
P T2
i=T+1 i=T
We try to bound the value of T. Since HE +1) <= l)z
have
1 1 1-Hp,—1+Hp, -1 1 1 < 1 1
T+1 n ni T-1 n-1 T—-1 m
n n
! -1<T< ! + 1.

Z_Hn2—1+Hn1—1 Z_Hn2—1+Hn1—1

ny—1

Note that whenn; —1 > ,0 < Hp,—1—Hp,—1 <1,and thus
T < n1 < ny. Consider the following solution:
e Fori=1,2and1<j<T,x;;=0.
° ForizlandT+1§an1,

1]
Xij = (1_Hn2 1+ Hp 1 )——(Gnl—l—G] 1)-

. Forl:2andT+l$]§n1,
1 J
Xij = ;n_l(l — Hpy-1+ Hpy-1) — ;(Gnl—l -Gj-1)
e Fori=2andn; < j < ny,
1
Xi,j = ;(I—an_l +Hj_1).

We first prove the feasibility of the solution. For i = 2 and
ny < j < ny, constraints (i, j) hold with equality since the values
of x; j (note that this includes j = n1) are the same as the solution
constructed in the proof of Lemma 2.
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For T +1 < j < np, by the design of the solution, we have
ji-t 1

X1,j = X2,j ° and x2 j-1 =X1,j — — .-

J J J J n(] _ 1)

We continue to prove by backward induction and recall that the
(2, n1) constraint holds with equality. Given constraint (2, j) holds
with equality for ¢t + 1 < j < ny, for constraint (1, j),

] X1,J+ Z xll+ZX21

I=j+1
=j- X2,j * —+ Z xll+ xzj+ Z X2 1
I=j+1 I=j+1
=jxgjt Z X+ Z le—
I=j+1 I=j+1

where the last equality holds because of the induction on constraint
(2, ). Next, given constraint (1, j) holds for t + 1 < j <
constraint (2, j — 1),

ni ny
(J=1)-xzj-1+ qu + sz,l
I=j I=j
. 1
=(]—1)(x1,j nG-1 )+ x1,j + Z X1, +szl

I=j+1

ni, for

=j-x,j+ Zx11+2x21——:_._l j;l’

I=j+1

where the last equality is by the induction on constraint (1, j).
The remaining constraints for j < T are satisfied via a similar
argument in the proof of Lemma 2.
Secondly, to see the non-negativity of the solution, we only need
to show the non-negativity of x; 7,1 due to the monotonicity of x,

1T T
X1,T+1 = ;n—l(l —Hp,—1+Hp,-1) - ;(Gnl—l -Gr)

ni—1
_ T |1-Hpy-1+Hp L 1
R 2
n n
1 i=T+1 !
> 0,

where the inequality follows from the definition of T.
We finally upper-bound the objective value of the above solution,

ny ny ny ny
obj=) Myt ) xj= ) xjt ) x
Jj=1 Jj=1 j=T+1 j=T+1
ny n3
=[(T+1) %1741 + Z x1,j+ Z x2j | =T - x1,141
j=T+2 j=T+1
T+1 T+1
= =T -x1,1741 £ ——
n n

ni 1
= +o0(-),
n-(2-Hp,—1+Hp,-1) n

where the second last inequality holds because the (1, T + 1) con-
straint holds with equality and x; 741 > 0, and the last equality
follows from the bound of T. O
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4 The Optimal Algorithm for Two Queues

We now design the optimal algorithm for two uneven queues.

Algorithm 1: The optimal algorithm for two queues

Input: ny and np, where n; < ng and ny +nz = n.
1ifn;—-1< nze—l then
2 Reject all candidates in Q;.

3 Reject the first [%J candidates in Q5. For the remaining
candidates in Qo, hire the first one who is better than
all previous candidates in Q.

4 else

5 Reject the first Lz—fl,zlﬁj candidates in Q1 and Q.

6 For the remaining candidates in Q1 and Q, hire the first
one who is better than all previous candidates in its
queue. If two candidates are hired at the same time,
hire the one in Q;.

THEOREM 4. Algorithm 1 is optimal for any two-queue instance.

The proof of Theorem 4 relies on the following Lemmas 5 and 6.

ny—1
e

LEMMA 5. Ifn; —1< , Algorithm 1 has success probability

ny 1

n-e e+1

Proor. If we always reject all candidates in Qj, the success
probability is

Pr[the best in Q3] - Pr[select the best in Q2 | the best in Q2].

Itis clear that Pr{the best in Q3] = %, and Pr[select the best in Q3 |

the best in Q3] = % as this degenerates to the classic single-queue
problem, which proves the lemma. O

ny—1
LEMMA 6. Ifng —1 > 22

, Algorithm 1 has success probability

ni S 1
n(2 = Hp,—1+Hp,-1) — 4

Proor. Whenn; —1 > "Ze_l , Algorithm 1 sets threshold T < nj.

We use the probability method to calculate the success probability.
We claim that our algorithm hires the best candidate at position
i > T in queue Qj, j = 1,2, if the following three conditions hold
simultaneously:

o The best candidate appears at position i in Q j, which happens
with probability %;
e The best candidate in Q;[1,...,i — 1] appears in the first T
positions, which happens with probability %;
e The best candidate in Q3—j[1,...,i] appears in the first T
positions, which happens with probability %
Our analysis here ignores the ties, which happens with probability
0(1). Summing over all i = T + 1,...,n3, we have the success
probability of Algorithm 1 being
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1 T T 1 T T
Y Y T I
fie e L e B
272 1 1 T2 &1
=i ——( ) =)

n T m n-ny . i—1

i=n;+1

2T T?
= - (2 - an—l +Hn1—1)

n n-m

T 1 ni 1
>——o(-)= ————— —o(-).
n n°  n-(2—-Hp, +Hp,) n

When n goes to infinity, the lower term goes to 0, completing
the proof of the lemma. O
# hap-
= 4—1. This result matches

Note that the worst-case probability when n; — 1 >

n
n(2—Hp,+Hp, )

the results from [6] and indicates that when the queues are more
balanced, the chance of success gets lower.

Combining the above lemmas and Lemmas 1, 2 and 3, our algo-
rithm has success probability as large as OPT] p and thus is optimal
when n gets sufficiently large.

pens when ny = ny, and

5 Conclusion

In this article, we initiate the study of the distributed secretary
problem with multiple uneven queues. Our model is well justified
by real-world problems. For the case of two queues, we show how
to use linear programming techniques to design the optimal algo-
rithm. Our paper uncovers many interesting research problems.
For example, it is intriguing to extend our model to more than two
queues and the selection of multiple candidates.
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