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Abstract—False data injection attacks are commonly used to
evade the bad data detector in cyber-physical power systems.
This paper proposes an extended attack strategy and a deep
reinforcement learning-based detection method. Traditional false
data injection attacks aim to remain stealthy and avoid detection
by conventional detection mechanisms. An extended load attack
is introduced to increase the potential for damage. Directly
adding an extended component directly to the measurement
makes it easily detectable by bad data detector. Accordingly,
the extended attack integrates the added component into the
state variables to improve stealth. An optimization model for
the extended components of the proposed attack is developed,
along with a homologous matrix. Additionally, an online attack
detection scheme is formulated as a partially observable Markov
decision process problem. A deep reinforcement learning-based
detection framework is proposed, featuring a compound reward
designed to minimize false alarms and time delays. The proposed
online detector extracts state features under varying operating
conditions and generates a policy to determine whether the
power grid is under attack. An extended Euclidean distance
indicator and an adaptive weight matrix are also proposed in
the dynamic state estimation to improve estimation or detection
accuracy. Numerical experiments validate the effectiveness and
robustness of the proposed deep reinforcement learning-based
detection scheme in power systems.

Note to Practitioners

This paper is motivated by the lack of research on
modeling the destructive capabilities of cyber-attacks and
the inaccuracy of anomaly detection methods for data
integrity attacks. Existing approaches to modeling false
data injection attacks primarily focus on the hidden
features bypassing detection of bad data detection in
cyber-physical power systems. This paper proposes a novel
false data injection modeling approach, triggered by the
spinning reserves of power grids. The proposed false data
injection strategy mathematically characterizes extended
stealth attack mechanisms and introduces an extended load
attack to explore greater destructive potential. Consider-
ing the uncertain environments in perspective attackers
and defenders, this study formulates the attack detection
problem as a partially observable Markov decision process.
This study then characterizes how such metrics of detectors
can be efficiently computed, this can allow a defender to
automatically learn or generate a detection threshold policy
using the deep reinforcement learning, and distinguishes
real false data injection attacks from system noises. To im-
prove the detection performance, a novel indicator and an
adaptive weight matrix are proposed to enhance learning
efficiency of detectors. Numerical simulations suggest that
the proposed detection scheme is feasible to both traditional
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and extended false data injection attacks, though it does
not yet account for incomplete measurements. Future work
will focus on designing attack detection strategies under
conditions of incomplete knowledge of network topology
and measurements.

Index Terms—Deep Reinforcement Learning; Initial False Data
Injection Attacks; Extended False Data Injection Attacks.

NOMENCLATURE

A. Matrices

H, A Measurement Jacobian and system matrixes.
I, Iy Identity matrix with dimension M (N)x 1.
B. Parameters

M, N Number of measurements and system bus.
oy, 0y Standard deviations of process and measurement noises.
bij Susceptance of the line ij.

P% Power flow of line ij under normal condition.
P; 20 Power flow of line ij under I-FDIA condition.
6;,6; Phase angle at bus i and j under normal condition.

6?7, 9}". Phase angle at bus i and j under I-FDIA condition.
P[.D , Pl.G Load and generation at bus i under normal condition.

Pl.D *  Load at bus i under I-FDIA condition.

Pl.G’O Generation at bus i under I-FDIA condition.

Ir,r Stopping time and attack launching time.

a, € Learning rate and probability.

0,6" Current and target networks parameters.

r,ro, e Residuals under normal, I-FDIA, E-FDIA conditions.
75, g A detection threshold and relative cost.

T Maximum length of an episode.
Nm, Ng Number of transition samples and bus loads.
C. Vectors

Z;,Z{  Measurements under normal and I-FDIA at time ¢.
z{, §(-) Measurements under E-FDIA and output action.
w;, V; Measurement and process noise vectors.

X;, X; A state variable vector and its estimation.

a,,¢, I-FDIA and initial nonzero vector.

a., 0, E-FDIA and extended attack component.

S;, d; A state variable and action at time 7.

G;,r; A return and immediate reward.

¢, Cosine and Euclidean similarities.

K; Kalman gain.
Fy: State covariance matrix.
D. Abbreviations

BDD Bad data detector.
CKF Cubature Kalman filter.
CPS Cyber-physical system.
CUSUM Cumulative sum.

DQN  Deep Q-network.
DRL  Deep reinforcement learning.

© 2025 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



e

State Reward Action
Environment

b |

e A A )

Generation Power Transmission
systems

Distribution Consumption

4 d

Fig. 1. Flowchart of Markov reward process in a power system.

EDSR  Euclidian distance similarity ratio.

E-FDIA Extended false data injection attack.

FDIA  False data injection attack.

I-FDIA Initial false data injection attack.

KF Kalman filter.

NAD Neural attack detection.

POMDP Partially observable Markov decision process.

RL Reinforcement learning.
SE State estimation.
SR Spinning reserve.

SRCKF Square-root cubature Kalman filter.
UKF Unscented Kalman filter.
1. INTRODUCTION

HE smart grid is a typical Cyber-Physical System (CPS),
and its rapid development largely depends on advance-
ments in information and communication technology. However,
the reliance on information and communication technology [1]
makes smart grids more vulnerable to various cyber-attacks,
such as load redistribution attacks [2] and false data injection
attacks (FDIAs) [3, 4]. Although different attacks have varied
effects on power grids [5], FDIAs are particularly difficult to
detect due to strong stealthiness. Moreover, deliberate FDIAs
can cause significant economic losses to power grids and even
lead to the collapse of power systems. Therefore, it is crucial to
propose and design effective detection methods against FDIAs.
Recently, numerous studies have focused on detecting FDIAs
in power systems. For example, a resilience-enhanced scheme in
[6] has been presented to detect both conventional and collusive
FDIAs in power systems. Additionally, a semi-supervised deep
learning-based detection method was designed in [7], requiring
only a limited number of labeled data in the training dataset.
Other FDIA detection algorithms have also been designed, such
as adversarial machine learning-based detection methods [8] and
recurrent neural network-based attack detection [9]. Therefore,
current detection methods can be categorized into two types:
model-based methods [6] and data-driven algorithms [7 - 9].
For the latter method mentioned above, a flowchart illustrating
the Markov reward process is shown in Fig. 1.
Cumulative Sum (CUSUM)-based detector is a well-known
method for detecting FDIAs and other cyber-attacks in smart

grids. A real-time CUSUM-based detection algorithm was
proposed for FDIA and jamming attacks in [10], where the
probability density functions of measurements are modeled
using Gaussian distribution before and after the attack, and
the unknown attack parameters were obtained using maxi-
mum likelihood estimation. Due to the exponential increase
in calculation burden with the number of measurements, a
relaxed generalized CUSUM was presented to detect FDIAs
in power systems [11]. The computational complexity of this
method scales linearly with the measurement dimension. To
address the large calculation burden of the centralized CUSUM
algorithm, a consensus-based distributed implementation of
the generalized CUSUM was designed, requiring only local
communications [12]. In addition to conventional FDIA testing,
a coordinated cyber-physical attack was constructed in power
systems, and an adaptive nonparametric CUSUM was designed
to detect both coordinated attacks and FDIAs simultaneously
[13]. Furthermore, a novel normalized Rao-CUSUM detection
scheme was developed [14], enabling the proposed algorithm
to distinguish FDIAs from sudden changes in power systems.
Finally, other cyber-attack detections, such as replay attacks,
have also been conducted using the CUSUM test [15].

Compared with the CUSUM-based detector, the machine
learning-based detector for FDIAs is a promising technique in
smart grids. A Reinforcement Learning (RL) - based online
cyber-attack detection algorithm was formulated in [16]. The
detection problem is modeled as a partially observable Markov
decision process (POMDP), with an optimization objective to
minimize detection delay and false alarm rate. Attack strate-
gies including FDIA, jamming, denial-of-service, and network
topology attacks were modeled. Although the method in [16] is
relatively simple, it provides an important foundation for RL-
based cyber-attack detection research. Inspired by [16], a Deep
Reinforcement Learning (DRL)-based FDIA detection method
was proposed [17], where both the process and measurement
covariance matrices are unknown. The proposed detection
algorithm also explained how to guarantee the effectiveness of
the detection scheme by selecting appropriate DRL parameters.
Based on the data integrity attack in [16], FDIAs in unbalanced
distribution networks were further studied in [18, 19]. Various
other machine learning-based detection methods have also been
developed, including federated deep learning [20], Kalman
filter and recurrent neural networks [9], and wavelet transform
combined with deep neural networks [21]. The aforementioned
FDIAs primarily focus on adding deviation vectors to remain
undetected, without deeper design considerations for attack
capacity construction.

Inspired by the concept of FDIAs, blind FDIAs have been
developed in power systems [22], utilizing subspace estimation
and matrix reconstruction. However, a corresponding detec-
tion algorithm was not proposed. Furthermore, due to the
vulnerability of data-driven detection technologies, adversarial
examples of FDIAs have emerged, prompting the development
of DRL-based robust detectors [23, 24]. Both Kalman Filter
(KF) and Cubature KF (CKF) were used in the designed
detection scheme. The proposed detector can robustly detect
both FDIAs and their adversarial examples simultaneously.
However, the aforementioned attack vectors did not evaluate
their destructive potential and focused solely on success rate
and stealthiness. Additionally, a comparative study of various
FDIAs is summarized in Table 1. As illustrated in Table I,
existing FDIA studies either overlook attack stealth or does not
propose the load attack range and efficient detection methods.



TABLE I
COMPARATIVE STUDY OF DIFFERENT FALSE DATA INJECTION ATTACKS

Methods Problem Algorithm Contributions Limitations
An online attack detection e . The detection is modeled as a POMDP, The stealthy of cyber-attack
[16] using the RL RL-based algorithm and a robust detector is designed is not considered
A DRL-based discontinuous . Design the parameters of RL to The stealthy of cyber-attack
(171 attack detection DRL-based algorithm guarantee the validity of the detection is not ensured
(18] FDIA detection for unbalanced Generalized likelihood Design a square-root unscented Parameter adjustment is more
distribution networks ratio test Kalman filter based state estimator complicated for the detector
20] Detection of FDIA in smart grids Federated deep learning Propose a secure fed_ergted learning No further demgq for the
approach scheme by combing Paillier cryptosystem attack capacity
[22] Blind FDIA appr.oacl} against Matrix reconstruction Perform high successfulvrate of l.:D.IA when  No study or design on attack
the state estimation measurement data is very limited detection method
(23.24] Robust data-driven attack DRL-based algorithm The FDIA and its adversarial example No report on the potential

detection algorithm

are simultaneously and robustly detected attack capability for attackers

Accordingly, the motivation of this paper aims to construct
extended attack vectors based on traditional FDIAs, not only
to further exploit attack capability but also to maintain high
stealth against bad data detection (BDD). Second, due to the
limitations of traditional residual-based detectors, a novel DRL-
based detector is designed to improve the detection performance
against highly stealthy cyber-attacks. The key contributions of
this paper are threefold: (1) attack range estimation of the
extended FDIA (E-FDIA), (2) construction of the stealthy E-
FDIA model, and (3) development of a secure defense and a new
FDIA detector. The detailed innovation points are discussed as
follows.

(1) Attack range estimation of the E-FDIA. Based on the
DC power systems model, the initial FDIA (I-FDIA) aims to
remain stealthy while avoiding detection by the BDD. This study
proposes an E-FDIA to enhance destructive capabilities through
load attacks. The attackable load range is analyzed and estimated
under four scenarios, considering load spinning reserve.

(2) Construction of stealthy E-FDIA model. Directly adding
the extended component to measurements is easily detected by
the BDD. To avoid this, E-FDIA integrates the component into
state variables, enhancing stealth. Accordingly, an optimization
model for E-FDIA is developed to enhance stealth against
both neural attack detection (NAD) schemes and BDD. The
proposed E-FDIA model incorporates constraints derived from
system measurements (I-FDIA and E-FDIA), extended attack
components, and the output actions of the DRL-based approach.

(3) Secure defense framework and new FDIA detector. Given
the limitations of conventional detectors [16], [23], [25]-[27],
a Deep Q-Network (DQN)-based safe defense framework and
its detection algorithm implementation are proposed, including
training phase and online detection phase. A compound reward
is designed to minimize false alarm rate and detection delays,
incorporating a relative cost factor cg. Furthermore, an extended
Euclidean distance indicator and an adaptive weight matrix are
introduced in the dynamic state estimation to enhance detection
accuracy within the DRL framework. Experimental results on
IEEE-14, 30, 39, and 118 bus systems confirm the effectiveness
and robustness of the proposed detector.

The remainder of the paper is organized as follows. Section
IT describes the novel stealthy attack strategy. Section III and IV
establish detection metrics and DRL-based detection scheme,
and simulation results demonstrate its effectiveness in Section
V. Finally, the paper concludes in Section VI.

II. NovEL STEALTHY ATTACK MODEL

This section first introduces state estimation and I-FDIA, and
then the strategy of E-FDIA is proposed, respectively.

A. State Estimation

The control center uses collected measurements to estimate
the state variables, which is carried out by the state estimation
(SE). Accordingly, the measurement based on AC power systems
is represented by [24]

Z; = h(Xt) + W;.

ey

where h(.) represents a non-linear function from state variables
to measurements. w; = [wl,,, e W M,,]T is the measurement
error, which follows a Gaussian distribution N (0, R;), and
Rt =0 v2v 1 M-

Since AC state estimation is time consuming in large-scale
power grids, accordingly, the measurement based on DC model
of power grids can be formulated as follows [24]

X, = Ax;_1 + vy,

2

z, = Hx, + w;, Vt

Here v; = [vi,,.. .,vN,,]T denotes the process noise, which
is assumed to follow a Gaussian distribution N(0,Q,), and
0, = a'vzl ~. The optimal solution of state variable is denoted
by: %, = (H'TWH) '"H"Wz,, and the matrix W = diag(o,?)
is a diagonal matrix. In DC power flow, since the bus voltage
magnitude is set to 1.0 p.u, the state variable and measurement
include phase angles and active power flows.

B. Initial FDIA and Objective

When an FDIA is launched, false data is injected to manipulate
measurements while satisfying Kirchhoff’s law. However, load
changes generally remain within a predefined range. If this safe
range is exceeded, defenders might suspect anomalies in the
measurement data and trigger power flow recalibration.

Under normal conditions, the power flow PiLj is descried as
[28]: PiLj = b;;(6;—0;). The injection power of the bus i is repre-
sented by: Pinjem = PP - PS. Once the I-FDIA occurs, the power
flow PiLj’” is given by: P;7?? = b;;(67 — 69). The power flow
variation before and after an attack is: APl.Lj’” = b;j(A07 - AG;?).
AG? = 0;’—9i,A9; = 9;.’—6J-,and APiLj"’ = PiL."’—PiL..Moreover,

the variation of bus injection power before and after an attack is
described as AP?”ECt = APP - AP@, and APP = Pl.D - PP,
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Fig. 2. FDIA launched in a four-bus power system.

and APiG = PiG’O - PL.G. The power generation is generally
well defined by the operator, which is changed only if the grid
operator finds it necessary. It means APl.G = 0. Accordingly, the
variation of bus injection power is rewritten as AP} = APP.

The topology of a four-bus power system is shown in Fig. 2,
taking an attacked bus j; as an example (bus i is not attacked),

the variation of power flow for line ij; is represented by.

Lo _
AP = —byj, AGS,

3
a _ -1 L,o
= AGj, = =bi; AP
The initial load attack APjDI *° is defined as follows.
APP° 1 - FDIA,
AP =" T )
) 0, Otherwise.

According to the definition of I-FDIA, the initial attack vector
¢, = (HTH)"'H'APP (5)

Accordingly, the I-FDIA vector is described as follows

a, = HH"H) 'HTAPP-° ©
AP0 = [APP, - APY]T

C. Proposed Model of Extended FDIA and Objective

The I-FDIA aims to maintain the likelihood of a successful
attack, though its destructive capability may be limited. Ac-
cordingly, E-FDIA is introduced to increase destructive impact
while improving stealth. Given the initial false measurement
z{ = z; + a,, the attacker seeks to launch an E-FDIA that
introduces a load attack within the allowable safe range. The
final compromised measurement is expressed as: z{ = z{ +a, =
Z,+a,+a,. Thetotal injected false datais given by: a; = a,+a..
The corresponding optimization model is formulated as follows

P1: max p(z;, z;)
ae

st. 2 =10+a,, 1° =1, +a, @)
?(Zt + a()) = y(zt ta, + ae), Vi

The second constraint ensures that the residuals of [-FDIA and
E-FDIA are equal, indicating that both remain stealthy. However,
this optimization problem is incomplete, as the load attack range
has not yet been explicitly defined.

The initial attack vector is calculated as a, = Hc,,. To remain
undetectable by both BDD and NAD, the E-FDIA embeds the
extended component into the state variables, thereby expanding

Objectives
e Probability of successful attack
e Maintain stealthy of attack

>
‘ E-FDIA
Z‘FDIA Objectives

o Enhance undetectability

o Exploit further attack

capability

z > Network | Stealthy

I-FDIA
—_—

Z-FDIA
 —

X z° =z + He, + HI, O 6,)
o~He _ _[%=HIO%) __ _ 4 ___*_

3 Cg=[cal w coé] |
Se= [521 §e3]

I I-FDIA vector
| E-FDIA vector -

Hidden connections for I-FDIA
Hidden connections for E-FDIA

O Bus of a power grid ———  Line of a power grid

Fig. 3. Relationship between I-FDIA and E-FDIA.

the load attack range. First, a column vector I, is defined as

follows
1, ¢cpi 20,
I.); = ’ 8
(L) {0, o o ®)

The optimization problem in Eq. (7) can be represented by
P2: n}ax [|Ie © &cll2

St ZY =17 + a., 7} =12; + a, 9)
a, =H{, 06,)
V(z; +a,) =y(z; +a, +a.), Vvt

where © denotes the Hadamard product operation. The total
injected false data a; = a, + a. = He, + HI, © 6.) =
H(c, + I, © 8.) does not generate new residuals, ensuring the
final attack remains undetectable by the BDD. Furthermore,
according to [24], the stealthiness of the final injected data with
respect to NAD is guaranteed by the feasible solutions of Eq. (9).
As a result, a deeply stealthy FDIA capable of causing greater
load loss in power systems is constructed.

Generally, the variation range of the load is defined as follows

pD _ pD D
{Pj] = P2 + AP?

PL?,mm < Pl-) < Pl?,max
J1 J1 J1

(10)
Similarly, the extended load attack APJ[.I) "¢ is represented by

APP¢ E - FDIA,
APD¢ = { ; (11)

0, Otherwise.

Fig. 3 illustrates the relationship between E-FDIA and I-
FDIA. Z-FDIA denotes the combined attack composed of both
I-FDIA and E-FDIA, resulting in the total destructive impact on
the power grid. The choice of attack direction and magnitude is
also critical.



General speaking, if the actual load exceeds the predicted load
Pf.) f , positive spinning reserves (SRs) are dispatched. Other-
wise, negative SRs are used. From the attacker’s perspective,
the ideal strategy is to maximize damage while minimizing the
cost. The E-FDIA follows the same attack direction as the I-
FDIA, with the attack magnitude described in the following four
cases.

(1) The initial load attack exceeds the predicted load:
Pﬁ - Pﬁ’f . Positive SRs of power grids are required, and
APﬁ 0 = PD ? PD1 "/ To further widen the load gap or increase
positive SR demand the attacker continues the attack in the same
direction, with APD € PD e Pj) ¢

(2) The initial load attack is less than the predicted load
0 < PPe < PJ[.I)’f , and negative SRs are required. The
initial attack vector is described as: AP.D] 0 = Pl.?’f - Pﬁ 2,
To increase the power gap and demand for negative SRs, the
attacker continues the attack in the same direction, resulting in
AP = pPo _ pDomin,

J1 J1

(3) When the initial attacks satisfy: PjD]’O < Pjpl’f < 0,
the positive SRs occur The initial attack vector is given by:
APD0 = P22~ P27 then APD :Pﬁm'“—P]D”

4 When the m1t1a1 load attack satisfies P] S < PD ? <0,
the negative SRs of power grids are required. The initial attack
VeCtOl’APDO—P f—PDo thenAPDeszD]O— D.max

Accordlngly, the stealthy vectors of I-FDIA and E- FDIA can
be described as follows

¢, = (H'TH)"'H'APP°, a, = Hc,,
D,o _ D, D,
APP0 = [APP, . APR
c.=I,06.),a.=H(I, ©6,)
T © bell2 < [[APP#]|
D,e _ D, D,
APD = [AP1 e ... ,APN;]

12)

The residual between the measurement and estimated data
under normal conditions is denoted by

- Hx|[> <7 13)

r=||z

where 7, is a predefined threshold determined using a chi-square
distribution X%_g, where o represents the significance level.

Moreover, the residual under I-FDIA condition is represented
by

-HE& +c¢o)ll2
—He,)|la =7 <7y

o = ||Zt0 _Hﬁ?”Z = ||Zt +a,

(14)

= ||z, — H&; + a,

Dueto theresidual r, = r, accordingly, the [-FDIA can remain
stealthy to the BDD.

E-FDIA is launched through injecting a vector H(I, © é.)
into the state variable, and the residual is described as

re = ||z7 —HX7||2 = [z + a. —H(X} + L. © 6.)||2
= ||Zt+ao_H(Xt+co)||2:ro (15)
=z —Hx|[2 =7 <7,

According to Eq. (15), the attack vector a, of E-FDIA can
deceive the BDD. E-FDIA also qualifies as a highly stealthy
attack. In E-FDIA modeling, attackers must first determine load
attack range estimation through I-FDIA and subsequently solve
the extended component optimization model. Compared with
I-FDIA, E-FDIA exhibits enhanced stealth properties, thereby
demanding more resource allocation.

Power system
model

Prediction step

[ PMU J [Jacobi.anj
matrix
¢ H

State correction 1 X

\J

Axt1+v z, = Hx, +w,

KF/CKF/UKEF...

Fig. 4. Implementation flow chart of dynamic SE.

D. Dynamic State Estimation

The KF functions as an online estimator in SE, incorporating
both prediction and correction steps for improved accuracy.
Various KF variants are employed in this study for measure-
ment estimation, including the CKF, and UKF. The flowchart
illustrating the implementation of dynamic SE is presented in
Fig. 4. Here, the KF equations at slot 7 are presented as follows

1) Prediction Step

Xtr-1 = Axt—l|t—l

(16)
Fii-1 = AFz—llt—lAT +0;
2) Update Step
K, =F,,_H'(HF,, . H + R,)™"'
Xi)r = Xepr-1 + Ki (2, — HX; 5-1) (17)

Ftlt = Ftll—l - KtHFz|z—l

Here, the basic KF underpins all other mentioned KF methods.
In this study, CKF, SRCKF and UKEF, are applied to realize the
measurement estimation.

III. DETECTION METRICS OF FDIA

The conventional metrics of the detection algorithm is first
introduced. Then the novel metric is proposed.

A. Conventional Metrics

Conventional RL-based detection methods characterize the
operating state of power systems using the residual between
measured and estimated data obtained via the KF, as proposed
in [16, 23]. In [16], the residual-based estimation metric denoted
by Y, is described as: Y; = (z; — H)“(,|,)T(z, - HX,|;). A smaller
value of Y; indicates that the power system is operating under
normal conditions. Conversely, a larger Y, value suggests the
presence of a cyber-attack. However, stealthy FDIAs cannot be
detected solely based on the residual between measured and
estimated data. This is because attackers deliberately design the
false data to bypass the residual threshold of the BDD. Therefore,
to more accurately capture the system’s operating state, a cosine
similarity-based estimation metric was introduced in [25].

The predicted state variables at time 7 are modeled in Eq. (16)
and (17), and the cosine similarity estimation metric is given by

Zt|r—1 " Zt|r-1

—_—t=12,..T
Nzeje-11l - 121l

$r = (18)

where 0 < ¢, < 1. If there is no attack in the power systems, the
metric ¢, is nearly equal to 1.



B. Proposed Metrics

In this paper, an extended version of the Euclidean similarity
metric is established in Eq. (19).

[|z; _it\t—1||2

—_— )\ t=1,2,..T
121 = Z1joll2

mo=1- (19)

Here 7, represents the ratio of the Euclidean similarity at time
t. If there is no attack, the metric 7, is nearly equal to zero.

The proposed Euclidean similarity at initial moment can be
described as follows: n; = 1 — % = 0. Accordingly, if
there is no FDIA, then the actual and estimated measurements
exactly match. The value of 71 is equal to zero denoting there is
no FDIA. If an FDIA occurs in the power grids at time ¢, the ac-
tual measurement z, is immediately changed due to the injection
of FDIA and described as follows: z{! =z, + a =z, + a, + a..
The extended euclidean similarity is given by

ol —mgll

e =1 _||(Zt+a)_it|t—l||2
! [1z1 — Z1j0ll2

[1z1 — Z1j0ll2

(20)

Before time ¢, the power grids operate under normal condi-
tions, and the estimated state vector and measurement X;|;_; and
Z;,-1 are the normal state and prediction, thereby there is no
large spike for Euclidean similarity. However, the value of n{
sharply deviates from 0, then the stealthy FDIA is detected.

According to the dynamic state estimator shown in Eq. (17),
the estimated state variable is described as follows [29].

X, =A%, + K (z, + a — HX;,_1) 21

The estimated state after FDIAs at time ¢ is described as
X{ = X, + K,a, . The estimated state at the time ¢ + 1 can be

represented by

sa —_ oad a sa
R, = AR + K1 (z,, — HRY, )

t+1
=X,41 + AARY — K, HAARY (22)
+ K 110441
where AX¢ = X7 - X,.
Accordingly, the injected bias of X{ is given by
ﬁta+1 - il‘+1 = AA)’Z? - Kp;.lHAAﬁta + Kt+1at+1
= AR}, = (A - K; .\ HA)AX{ (23)

+ K 11041

As shown in Eq. (23), the injected bias at time ¢ + 1 consists
of both the accumulated deviations from previous steps and
the newly injected false data. During an FDIA, the historical
estimated data is adjusted during the dynamic estimation of
predicted measurements. To mitigate the influence of injected
deviations during dynamic estimation, the Kalman gain is
adaptively adjusted. When considering the injected deviation,
the noise covariance R, can be adaptively reduced to adjust
the previously accumulated deviations. Consequently, a higher
weighting factor is applied in the measurement prediction step.
Initially, the adaptive weight coefficient matrix Cpoy is defined
as follows

e |2 =21re-1]
Choy = (24

e—|ZMt_2Mt|t—1 ‘

Here, in original dynamic estimator, the error covariance matrix
R, = diag(o? -0y )~ Accordingly, the improved

w,l "
noise covariance Ry is given by
Rnov = Rt ' Cnov
0-2 e_|zll_2]t\t—l|
w,11
- ) o |( 5)
—|ZMt —ZMt|t-1
Oy .mm®

Therefore, in the dynamic state estimation, the Kalman gain
K, is updated using Ryov: K; = Fy,-iHT (HF, ;- {HT + Rpoy) 1,
then the updated measurements based on the dynamic estimator:
21 = HAX, 1| + HK; (z, — HX;;,_1).

IV. DRL-BASED EXTENDED FDIA DETECTION

The state and action space of detection scheme are defined,
and an DQN-based online detection scheme is presented.

A. State and Action Space

Online FDIA detection is formulated as a POMDP problem
because the change point from normal to attack state, as well as
the transition probabilities, are unknown. Generally, a POMDP
is represented by the quintuple (S, A.F,R, G,y), defined as
follows.

1) S represents the set of all hidden states. Given a state
variable s; of the power systems, then the s; € S.

2) A consists of all possible actions. Given a particular active
a;, and the active a, € A.

3) F represents the set of conditional transition probabilities
between all hidden states. 7 (s;+1|s,,4,) describes the transition
from s, to the s,.1.

4) R represents the set of all rewards. Based on the state s, and
action a, at the time ¢, the reward is expressed as r; € R(s;, a;).

5) G represents the set of conditional observation probability.

6) v represents a discount factor.

The exact launch time of an FDIA, represented by 7, is
unknown. Additionally, both the FDIA strategy and the state
transition probabilities remain unknown. Accordingly, the pre-
attack and post-attack are modeled as two hidden states in the
online detection process. The former represents normal system
operation, while the latter corresponds to abnormal (attacked)
conditions. Upon receiving power system measurements z;, the
defender chooses between two actions: stop and continue. If
the stop action is taken, an attack is declared. Otherwise, the
detection process continues.

B. Online FDIA Detection Based on Reinforcement Learning

Given the current state of the power, a state s; € S is observed.
Upon taking an action a, € A, the defender receives a reward
ry € R(sy,a;) from the power system. The next state s;.; is
then predicted with transition probability f € G. This process
continues until a predefined termination condition is met. The
cumulative rewards can be described as the sum of all discounted
rewards.

G; =14 +yr,+2+...=Zykr,+k+1, (26)
k=0
where y € [0, 1] is a discount factor, indicating the relative
valuation of immediate versus future rewards.
Based on [30], the POMDP problem of online FDIA detection

in power grids is characterized as follows.
min  E[G(#)]
nS—A

@27
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Fig. 5. Transitions between the hidden states.

In the proposed stealthy attack detection framework, the
objective is to detect FDIAs while minimizing both the false
alarm rate and detection delay. Because the attack launch time 7
is unknown, two hidden states are defined: pre-attack and post-
attack. A false alarm occurs when the system is in a normal
(pre-attack) state but is incorrectly classified as being under
attack (post-attack). Conversely, the system may also incorrectly
indicate a pre-attack state during an actual attack. Detection
delay arises when the defender identifies the FDIA only after it
has occurred, rather than at the exact moment of the attack. The
state transition process during detection is illustrated in Fig. 5.
As illustrated in Fig. 5, an FDIA is launched at ¢ = 7, causing the
system state to shift from pre-attack to post-attack. If the defender
chooses the action continue, the corresponding rewards are 0 in
the pre-attack state and cg in the post-attack state. If the defender
selects the action stop, the respective received rewards are 1.0
and 0, respectively. The detection objective function minimizes
a weighted sum of the false alarm rate and detection delay. If the
detector prioritizes minimizing detection delay, a higher value
of cg (e.g., cg=1) can be assigned. Otherwise, a smaller cg is
used to reduce the penalty on delay.

r
P3:E{G,} =E {lp(r«) P cﬁ}
=E{y(T<n)}+ g E{(T - 7)*}
where the first item is a false alarm event, and the second item
is the time delay. Note that (¢)* = max(q,0).

The optimization model for online FDIA detection problem
is formulated as follows.

(28)

P4 : m]_in E{y(I<t)} + cg E{(T-1)*} (29)
The attack detection method described applies universally to
any FDIA, including I-FDIA and E-FDIA.

C. Reinforcement Learning

The RL-based algorithm is a powerful tool for addressing
attack detection in cyber physical systems, even with large-
scale action spaces and state spaces. Accordingly, our proposed
method for stealthy attack detection can be formulated as an
RL problem aimed at minimizing the cumulative cost function.
In Eq. (26) and (27), calculating the return G, is complex.
The return for all trajectories starting from the current state

s is calculated, followed by the calculation of corresponding
expectations. The state value function is represented as follows.

V(S) = Es,a [G(I)]
= Z n(arls)p(seelse, a)G (1)

(sz.ar,...)

=Ex [ree1 + ¥V (se41) 8041 = 5]

(30)

The action-state function, Q(s;, a;), given action a and state
s, is defined in [31] as follows.

O(si,ar) = Br{ris1 +v0(si41, ar1)|se = s,a, =a}  (31)

By maximizing action-state function, the optimal Q*(s;, a;)
is determined as follows.

Q" (sr,ar) =Eq {Vt+1 + 7y max Q(St+1,a/)|st =s8,a; = Cl} .
a
(32)
Consequently, the optimal policy, based on the optimal action-
state value function, is described below.

1, a=argmax Q*(s;,a),
n*(als) = acA (33)
0, Otherwise,
The Q(s;, a;) is updated according to Eq. (31).
Q(ss,ar) « Q(ss,ar) + afri+
(34)

Y n,la;[ Q(siv1,d) = Q(se a)]

D. Deep Q-Network

During DQN training, the loss function is utilized to update
the parameters of the evaluation network. The loss function is
generally defined as follows.

Loss(0) = NL Z [0} = Q(s1,a1,0))?]

m

(35)
and

e ri +y max Q(s;,a;;ef), a; #1
Qe = (36)
r;, otherwise.

where (s;, a;, r;, s;.) represents the ith experience.
Therefore, with respect to 8, the gradient is given by

v = [0 = O(si,a:;0) Vo Q(s, a; 0).
where VyQ(s, a; 0) is the gradient descent of Q(s, a; 6).

(37)

E. Detection Algorithm Implementation

This paper proposes an E-FDIA and its corresponding
detection countermeasures based on a DRL framework. As both
the exact attack launch time and attack strategy are unknown,
the key challenge lies in designing a DRL-based detector that
can effectively detect both I-FDIA and E-FDIA. The proposed
framework is detailed in Algorithms 1 and 2. The DQN-based
FDIA detection algorithm generally consists of two phases: a
training phase and an online detection phase, each covering
both I-FDIA and E-FDIA. The available actions are continue
and stop. As shown in the optimization objective Eq. (29),
the defender aims to take appropriate actions in both pre-
attack and post-attack underlying states, minimizing false
alarm rate and detection delay. During training, a simulation
environment based on the DC power system model is created
to generate measurement data. The defender applies dynamic
state estimation to estimate state variables and compute the



Algorithm 1: DQN-based FDIA learning phase

Algorithm 2: DQN-based FDIA online detection

Input: Initialize network Q(s, a) and target network
Q' (s,a). The matrix A and H.
Output: Learned policy of Q network.

for i=1:T do

while # < max_time do

Based on dynamic SE, obtain the input state s,;
With probability € select a random action a;,
Otherwise execute a, = argmax,,Q(s;, a; 9)
Sample random minibatch of {sl, a;,ri,S; }

if r<attack time then

At time ¢ collect measurement vector z;;

Obtain the estimated values Z,|;—1 and Z;o;
|1z, *it|t—l [I2 .
[1z1-2Z10ll2 °

Calculate , = 1 —

else

Collect the measurements ¢ z{ = z; + a,;
Calcuate extended attack vector H(I, © 6.);
Obtain z{ =z, + a, + H(I, © d.);

Calcualte the metrics of E-FDIA

||zg _Zt\t 112
=1 = W& 21l
= ;210112 . .
Achieve the measurement noise matrix Rqy;

Update the Kalman gain K;:

K, = Ft\t—lHT(HFzU—IHT + Ruov) ™1
Calculate the updated measurements:

2;:-1 = HAR, ;| + HK; (z; — H&;|;_y).
Non-terminal s;: y; = r; + y max_/ Q,(s;., a;b);
Terminal s;: y; = r;;
Compute the loss function as:
Loss(6) = 5~ [(Qt‘jlrget

L Parameter 0~ = 9 is set.

O(si a;0))*];

evaluation metric 77,. For 7>attack _time, the measurements z{
and z{ corresponding to I-FDIA and E-FDIA, respectively, are
obtained. The defender then calculates n; and evaluates the
system’s current operating status. Note that 7, for I-FDIA is
calculated using the measured z{ . During each training iteration,
the defender selects an action and receives a reward or penalty
based on the current system state. After M training episodes,
the defender learns a policy for detecting FDIAs. As described
in Algorithm 1, F denotes the state covariance matrix, and K,
represents the Kalman gain. The detailed procedure for online
detection is presented in Algorithm 2. The optimal action is
determined using the policy learned in Algorithm 1. If the output
action is continue based on 7, detection continues. Otherwise,
the defender declares an attack, and the detection process
terminates. After completing all online detection experiments,
detection performance metrics, such as false alarm rate and
detection delay, are statistically evaluated.

V. SIMULATION STUDIES

The performance of the proposed DRL-based algorithm is
verified against existing works. Furthermore, the impacts of
model parameters and various attack scenarios on the detection
are evaluated.

A. System Setup and Parameters

A comprehensive set of case studies is performed to validate
the effectiveness of the proposed FDIAs and their detection
schemes. The experiments are conducted on the IEEE-14, 30,

Input: Learned Q ntwork under FDIA conditions.
Output: False alarm, detection delay, etc.

fori=1:7T do

while < max_time do

Obtain the state s; based on SE;
if r<attack time then

Collect the measurement z;;

Obtain the estimated values Z;|;—1 and Zjo;
||Zt_ir\tfl”2 .
[1z1=Z10ll2 °

Calculate ; = 1 —

else

Collect z¢ =z, + a, + H(I, © 8,);

According to the updated the measurement
noise matrix R, and Kalman %aln K;,

: _ |[zf HZy =Zj-1112 112 .
calcualte the metrics n; = 1 TE 2l >

Based on learned Q network, obtain an action;

if action # stop then
te—t+1;

| Re-collect measurements and perform SE;

else
| Declare an FDIA and end this cycle.

39, and 118 bus power systems, based on the DC model of
power systems, the state variables denoting the phase angles,
can be obtained for case-14, 30, 39, and 118 in MATPOWER,
respectively. As illustrated in the SE, the system matrix A and
measurement matrix H are selected to be an identity matrix
and derived from the power flow calculations. Moreover, the
parameters of noise variances are chosen as follows: a'v2 =104,
and 0' =2x107%, and cg = 0.02 as noted in [16, 23]. For the
variation range of load, it can calculated as: PJD min /lminPle ,
and Pj[]’ - /lmaxPj], where Apa = 1.15 and Apin = 0.85.
The episodes of trained and tested phases are 1.0 x 10*. The
launch time of attack follows a geometric random variable
with the parameter p, and p represents an uniform random
variable in [1072, 10~']. The hyperparameters of stealthy FDIA
detection algorithm are detailed in [23]. All simulations have
been conducted in MATLAB 2021b on a system configured with
an Intel® Core™ i9-11900K processor (11th Gen, 3.5 GHz).

B. Performance Comparisons of Different Methods

The performance of the presented DRL-based detector is
validated and compared with the other detection schemes. The
original metrics, such as precision, recall, F-score, false alarm,
and detection delay, have been proposed in [16, 23]. Here,
another metric, called Ratio-at-time (RAT), presents that the
defender can immediately detect the attack/ anomaly events once
an FDIA is launched.

#rrials[(I == 71)]
#Total-trials

where #trials[(I" == 7)] represents the number that the defend-
ers immediately detect attacks when the FDIAs are just launched.
#T otal-trials represents the total number of trials. This metric
does not consider data transmission time in the simulation.

The DRL-based attack detection is also proposed. A ran-
dom noise attack is performed to verify the availability of
proposed scheme (trained and tested under cg=0.02). A small
amplitude vector is assumed and initialized as ¢ = (0.001+
0.001*rand(M,1)). Subsequently, the attack vector is modeled

Ratio-at-time =

(38)



TABLE 1T
DEeTECTION RESULTS OF I-FDIA USING DIFFERENT METHODS

Methods Time delay (s)  Rate-at-time  False alarm rate  Precision = Recall ~ F-score
RBA-based detector [16, 23] 0.00 0.00% n.a. n.a. 0.00 n.a.
EDBD-based detector 0.0818 95.19% 0.25% 0.9975 0.9998  0.9986
CSBD-based detector [25] 0.2358 79.28% 0.10% 0.9990 0.9999  0.9994
SRA-based detector [26] 0.1116 93.34% 0.00% 1.000 0.9999  0.9999
Proposed method 0.0152 98.56% 0.00% 1.000 1.000 1.000
TABLE III

DEeTECTION RESULTS OF E-FDIA USING DIFFERENT METHODS

Methods Time delay (s)  Rate-at-time  False alarm rate ~ Precision = Recall =~ F-score
RBA-based detector [16, 23] 0.00 0.00% n.a. n.a. 0.00 n.a.
EDBD-based detector 0.0576 96.20% 0.11% 0.9989 0.9998  0.9993
CSBD-based detector [25] 0.1078 90.66% 0.07% 0.9993 0.9999  0.9995
SRA-based detector [26] 0.1085 93.70% 0.00% 1.000 1.000 1.000
Proposed method 0.0141 98.59% 0.00% 1.000 1.000 1.000

as a multivariate Gaussian distribution N (zeros(M,1), diag(¢)).
Here, diag(-) denotes a diagonal matrix. The achieved RAT and
detection delay are 99.36% and 0.0064. There is no false alarm
rate. Focusing on the detectors, the proposed detection method
is compared with the existing benchmark algorithms as follows.

1) Residual-based attack (RBA) detectors [16, 23]. Both the
SARSA and DRL were used for detecting the random attack.

2) Cosine similarity-based detection (CSBD) scheme [25].
The cosine similarity metric and Chi-square detector are used ]
for the detection of smart grids, and the KF was adopted. T TTT ? T

3) State residual analysis (SRA) method is designed to detect 1* ﬁ’ *‘#. Jos l ttle '*g"’
FDIA in power systems [26]. l i

4) Euclidean distance-based detection (EDBD) indicator, and l
the KF is used in dynamic estimation.

During training and testing phases, it consists of 10,000 :
trials each, false alarm rates and average detection delays are 0 5 10 15 20 25 30
calculated for the existing detectors and the proposed detection Number of measurement
scheme on the IEEE-14 bus system. Detection results for I- (a)

FDIA and E-FDIA, including metrics such as precision, recall,

F-score, false alarm rate, and time delay, are reported in Tables 5 X 104 ‘

IT and III. Here, the attacked buses are randomly selected from
all buses, excluding slack and generator buses. Fig. 6 illustrates 1.5+ =Fggﬁl
the measurement and residual results under normal, I-FDIA and 1l [_JE-FDIA
E-FDIA conditions (Amax = 1.05 and Apin = 0.95). According
to Tables II and III, traditional residual-based attack detectors
fail to identify any attack vectors because the stealthy attacks
are designed to maintain the same residuals before and after
attack, which are shown in Fig. 6. Furthermore, the proposed
DRL-based detector outperforms existing detection schemes
for I-FDIA and E-FDIA. This obtained superior performance
is attributed to the proposed detector’s ability to distinguish 0
between noise and persistent attacks in smart grids, facilitated by

enhanced noise covariance. Additionally, the proposed similarity

metrics effectively highlight the distinctions between high-level (b)

noise and actual stealthy attacks. Fig. 6. Results for normal, I-FDIA and E-FDIA: (a) measurement, (b) residual.

Among all 33 measurements, the first 13 correspond to bus real power injections,
while the remaining 20 represent branch real power flows.

—* Normal
—© I-FDIA | |
—%* E-FDIA

Active power measurements (p.u.)
]
—a

Residual

5 10 15 20 25 30
Number of measurement

C. Results and Analysis

1) Performance using Different Filters
Initially, KF, CKF, SR-CKF, and UKF are employed in the
detectors tested on the IEEE-118 bus power system, with results
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Fig. 7. Detection results using different filter: (a) detection delay, (b) RAT, (c)
false alarm rate, (d) precision.
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Fig. 8. EDSR results using different standard deviation: (a) 0']2 =0.2x 1074,
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displayed in Fig. 7. According to Fig. 7, the KF-based detector
exhibits the poorest performance, with detection delays and false
alarm rates of 0.3096 and 0.00% for I-FDIA, and 0.3606 and
0.00% for E-FDIA, respectively. However, false alarms were
observed with CKF and SR-CKF- based detectors, registering
false alarm rates of 3.7% and 1.71% for I-FDIA, respectively.
The reason is that the defender cannot well differentiate high-
level noises from real attacks. In our proposed detectors, the time
delays and false alarm rates were 0.0415 and 0.00% for I-FDIA,
and 0.044 and 0.00% for E-FDIA, respectively. Therefore, filter
selection varies based on the power system’s requirements for
real-time performance and detection accuracy.

2) Performance of standard deviation of covariance matrix

According to Eq. (25), the proposed detector’s performance in
dynamic estimation correlates with the standard deviation of the
measurements. How the measurement standard deviation affects
the detection performance under E-FDIA condition is analyzed
on the IEEE-39 bus system. Fig. 8 illustrates the detection indi-
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Fig. 9. Detection results using different standard deviation: (a) RAT, (b) false
alarm rate, (c) precision, (d) recall.

cator from the initial moment up to the launch of E-FDIA, with
four set standard deviations, o2 = 0.2x 1074, 07 = 0.6 x 1074,
o7 =1.4x107* and o] = 1.8 x 1074, respectively. Since the
Euclidian distance similarity ratio (EDSR) value is negative,
whose value at time ¢ = 20 is presented as its absolute. In Fig.
8(a), the EDSR value abruptly drops to 0, generating a false
alarm at r = 2, no stealth E-FDIA occurs, yet the defenders
mistakenly believe a FDIA have been detected. Increasing the
measurement’s standard deviation to o7 = 0.6 x 107 results
in a similar outcome, with a false alarm occurring at ¢ = 6. At
standard deviations 0'32 =1.4%x10~* and o'f =1.8x107% no
false alarms are recorded.

Furthermore, Fig. 9 details the detection results under five dif-
ferent standard deviation settings. As the measurement standard
deviation increases from o to o, the false alarm rate gradually
decreases, and the detection accuracy improves to 100%. This
improvement occurs because an increase in the measurement’s
standard deviation leads to a higher coeflicient in the covariance
matrix, preventing the detector from mistaking measurement
noise for an attack.

3) Performance of Different Power Systems

In this subsection, the performances on the IEEE-14, 30, and
118 systems are compared. In Fig. 10, the proposed detector
consistently achieves lower time delays without any false alarms.
When the network scale is expanded to the 118 bus system,
the time delays and false alarm rates for I-FDIAs are 0.0415
and 0.00%, respectively, which is consistent with E-FDIAs as
well. As the network scale increases from 14 to 118 buses, the
operational complexity of the power grids and the substantial
increase in measurements and control variables add complexity
to detection algorithm. The calculations indicate that a larger
network scale slightly increases the detection delay. Therefore,
these results validate the scalability of the proposed detection
algorithm in large-scale power grids.

4) Performance of Different Weight Coeflicient cg

To evaluate the impact of weight coeflicient cg on detection
performance, cg is varied in the proposed detector on the 14
bus system for I-FDIAs. The results for false alarm, detection
delay, and precision are presented in Table IV. In all scenarios,
an increase in the relative cost coefficient cg correlates with a
decrease in detection delay. For instance, the minimal detection



TABLE IV
DETECTION RESULTS USING DIFFERENT Cg FOR I-FDIA

cg Time delay (s) RAT False alarm  Precision
cp =0.02 0.0252 97.56% 0.00% 1.000
¢z =0.20 0.0035 99.66% 0.00% 1.000
cp =040 0.0031 99.69% 0.00% 1.000
cg =0.80 0.0024 99.76% 0.00% 1.000

delay observed is 0.0024 when cg = 0.80, with the correspond-
ing RAT increasing to 99.76%. According to Eq. (29), this
occurs because a larger the relative cost coefficient means the
defender prioritizes reducing detection delays in smart grids.
Consequently, based on the operational requirements of power
systems, schedulers may opt for a smaller cg to enhance attack
detection precision and reduce time delay, or conversely, a larger
¢p to decrease sensitivity.
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Fig. 10. Results obtained on different network scale: (a) detection delay, (b)
RAT, (c) precision, (d) recall.

VI. CoNCLUSION

This paper proposes an extended false data injection attack (E-
FDIA) strategy and deep reinforcement learning (DRL)-based
detection method. First, building on initial false data injection
attack (I-FDIA), the optimization model about the extended
components of E-FDIA is established, and a homologous matrix
is constructed to extended attack vector avoiding detection by
neural attack detection. In our proposed optimization model,
the extended injection components are minimized, which are
stealthy to neural attack detection scheme and bad data detec-
tors. Moreover, avoiding residual-based detection, this paper
proposes an extended Euclidean distance indicator to distinguish
the measurements and dynamic state estimations. To improve
detection accuracy, an adaptive weight matrix is proposed
in dynamic state estimate, which is integrated into the DRL
approach. Experimental results have validated that, compared to
state-of-the-art detection methods, the proposed detectors have
better performance, and the minimal detection delay can be
obtained with strong robustness of I-FDIA and E-FDIA. As
for future work, when the grid topology is partially unknown,
a DRL-based detection strategy will be proposed under the
condition that the grid state observations are subjected to
adversarial perturbations.
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