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ABSTRACT

Floating barriers installed along the riverbanks block floating debris (water trash) from contaminating marine
environments. Regular removal of accumulated trash before reaching weight capacity is crucial to maintain
structural integrity and prevent trash overflow. However, research on the costs of collecting floating debris in
water infrastructure has been insufficient. To fill this knowledge gap, this study investigates the costs of pro-
cessing water trash at multiple floating barriers and presents a novel water trash processing framework
comprised of trash detection, valuation, and collection planning. The proposed framework (1) detects the types
and mass of collected trashes using computer vision, (2) evaluates the process cost of the water trashes, and (3)
derives an optimal garbage collection path planning. Monte Carlo Simulation is employed to simulate water trash
collection and processing scenarios for estimating the total associated costs. Experimental results showed that the
proposed framework achieved a 10% to 30% cost reduction compared to conventional time-based collection
methods. The proposed water trash processing framework and the findings will contribute to our understanding
on the costs of processing water trash at floating barriers to prevent ocean pollution, thereby facilitating the
implementation of such infrastructure and planning the budgets required for their operation and maintenance.

1. Introduction

Marine debris in the ocean and coastal areas around the world pol-
lutes marine environment and eventually gives detrimental effects to
human beings via the trophic transfer phenomenon (Agamuthu et al.,
2019). The negative impact of marine debris is becoming more serious,
drawing global attention and posing a threat to the sustainability of
humanity (Sharma et al., 2024). Plastic, one of the main components of
marine debris, was produced at around 390 million tons in 2022, which
is much higher than the 230 million tons produced in 2009(Plastics
Europe, 2019, 2022). Most plastic-based products are disposed of as
landfill or recycling. Each year, however, an increasing number of
plastics are flowing into the ocean due to illegal dumping, littering, or
insufficient waste management infrastructure (Hopewell et al., 2009;
Barnes et al., 2009; Lee et al., 2013). Moreover, other types of marine
debris such as wood, bottles, papers, styrofoam, and vinyl are also
increasing.

Rivers, streams, and tributaries are major pathways for land-based
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debris, which account for 80% of the total marine debris (Jambeck
et al., 2015). Rivers transport 5.8 million tons of plastic waste annually,
with 1000 small urban rivers responsible for 80% of ocean-bound plastic
pollution (UNEP, 2025). While 19-23 million tons of plastic enter
aquatic environments each year, much of it remains trapped in river
systems (UNEP, 2025). Floating barriers can intercept trash from rivers,
stopping it before it reaches the ocean. By collecting debris early, these
barriers make removal less costly and more efficient than if the trash
were to drift further downstream or into the ocean. To block the most of
floating marine debris, floating barriers can be installed at riversides or
tributaries. Floating marine debris is collected at the upstream side of a
floating barrier before it is collected and processed by a responsible
governmental agency. An important issue to manage the water infra-
structure is to monitor the quantity of collected floating debris, as the
barrier could break due to the excessive load. Therefore, it is crucial to
empty the floating barrier in a timely manner. However, it is not trivial
to timely monitor and collect floating debris as floating barriers are
widely distributed along the streams of rivers. Therefore, it entails a lot
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of costs and time to manage floating barriers and process the collected
water trash. There have been attempts to create a systematic strategy for
collecting urban waste on land. However, to the best of the authors’
knowledge, there has been no research on developing an appropriate
framework for collecting water trash over a wide area, such as along the
streams of rivers. Moreover, no cost-benefit analysis has been conducted
on the collection of water trash from widely spread floating barriers in
previous research. Consequently, the current administrators of floating
barriers rely solely on their personal experience to determine the
collection plan, which could be costly and inefficient. This is a critical
knowledge gap that hinders the implementation of floating barriers to
prevent ocean pollution.

To fill this knowledge gap, this experiment proposes a cost-efficient
framework for processing water trash accumulated at floating barriers
and assesses its economic advantages compared to conventional time-
based collection methods. The proposed framework consists of three
key components: trash detection, trash valuation, and trash processing
cost estimation. Firstly, the trash detection step utilizes an object
detection model, YOLOV7, to identify each type of piece of trash in
images. Second, the trash process cost valuation step calculates the cost
of collection the trash on the floating barriers through a quantity-weight
conversion process based on statistical data about marine debris in
South Korea. Lastly, the trash processing cost estimation step simulates
the total cost by finding an optimal path to collect trash through
combining dynamic programming and heuristic approaches. The pri-
mary research question of this study is: Does the proposed framework
offer a greater economic advantage than the conventional time-based
collection method, and to what extent does it improve cost efficiency?
The experimental results demonstrate the effectiveness of the proposed
method compared to the traditional approach. The main contributions
of this study are as follows:

e Presenting a novel cost estimation framework for processing water
trash using trash valuation with Monte Carlo Simulation.

Providing cost estimations for processing trash at floating barriers
under different conditions and strategies.

Presenting a novel water trash processing strategy integrating water
trash detection and path finding to process accumulated water trash
at floating barriers, using vision-based object detection and optimi-
zation methods.

Demonstrating the benefits of the novel water trash processing
strategy to reduce the total costs for operating and maintaining
floating barriers compared with the current practice.

The initial idea of this research was presented in our previous pub-
lications (Kim et al., 2024a; Kim et al., 2024b). Compared to those
publications, this paper significantly enhances the content, proposes
more advanced methodologies, conducts rigorous experiments and
simulations, and provides a thorough discussion for academic rigor.

2. Related work
2.1. Water trash monitoring

Trash classification plays a crucial role in vision-based trash moni-
toring because it helps to identify different types and sources of trash,
prioritize cleanup efforts, and monitor the effectiveness of trash man-
agement strategies. In the field of construction site monitoring, Davis
et al. (2021) utilized a deep convolutional neural network to classify
construction site trash into seven categories. Similarly, in the context of
water trash, Marin et al. (2021) identified six categories of water trash in
the Adriatic Sea, including rubber, plastic, metal, glass, other trash, and
no trash. Similarly, Wolf et al. (2020) employed image analysis tech-
niques to classify six types of floating debris as water, vegetation, sand,
litter-high, litter-low, and others. Jang et al. (2014) used six categories
of water waste, such as hard plastic, film, fiber (fabric), styrofoam, other
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foamed, and other polymer. Panwar et al. (2020) employed a deep
learning model to automate the detection of waste in water bodies and
classify them into four categories such as glass, metal, paper, and plastic.
Likewise, the previous studies defined different numbers of water trash
categories for monitoring. Considering the types of water trash
commonly found in the target monitoring area, this study defines six
categories of floating trash: plastic, vinyl, styrofoam, paper, bottles, and
wood.

2.2. Object detection

Object detection algorithms are widely used for localizing and cat-
egorizing objects of interest in the form of bounding boxes in images,
with the YOLO series being the most popular models in civil engineering
(Marin et al., 2021; Wolf et al., 2020; Jang et al., 2014; Panwar et al.,
2020; Chern et al., 2023). For instance, YOLOv5 has been adapted to
detect personal protective equipment like hooks and helmets in the
context of worker safety at construction sites (Chern et al., 2023).
Additionally, YOLOVS5 has been used to enhance the sorting accuracy of
recycling at construction sites in China (Zhou et al., 2023). YOLOv7
which is more advanced architecture than YOLOv5 (Wang et al., 2023)
is a novel one-stage object detection algorithm and is now being actively
applied to various applications and research. For example, YOLOv7 has
been used to rebuild 3D shapes of buildings by detecting and classifying
their rooflines from 2D maps with satellite images (Barranquero et al.,
2023). It has also been used to detect potholes on roads using a smart-
phone, providing useful information for road maintenance (Reddy and
V, 2022). These studies demonstrate the benefits of applying novel ob-
ject detection models in the civil infrastructure domain. Inspired by the
previous studies, this study also adopts YOLO models to detect water
trash by each category in images.

2.3. Remote weight estimation

Accurately estimating the weight of each type of accumulated water
trash on floating barriers is essential for calculating processing costs,
identifying benefits of recycling, and optimizing the collection pathway
to minimize these costs. However, estimating the weight of each type of
trash can be challenging due to the following reasons. First, the
composition of floating trash can vary, with different types of waste
having different densities and water absorption properties. Second, the
location of floating barriers and the waterway can be remote, making it
challenging to access and carry out weight measurements. Third,
manual weight measurements can be costly and time-consuming,
particularly if the collection site is remote and requires specialized
equipment for weight measurements.

Previous studies suggested non-contact weight measurement
methods which can address the challenges in the weight estimation. For
instance, Ly et al. (2020) proposed a non-contact approach to estimate
human body weight by measuring volume and multiplying it by the
average density factor. Yu et al. (2022) developed a non-contact weight
estimation system using instance segmentation based on a computer
vision algorithm that recognizes the perimeter of fishes and estimates
their weight. These studies use statistical relationships between
appearance and weight to enable non-contact weight estimation tech-
niques. Inspired by the previous approaches, this study estimates the
weight of water trash by recognizing the regions of water trash in im-
ages, counting the number of each trash units, and multiplying weight
conversion factors.

2.4. Multi-dimensional scaling

A transportation cost for collecting water trash is significant
considering the large number of floating barriers and their locations. To
estimate it, one cycle of collecting water trash with a collection vehicle
should be predicted based on the selected nodes (locations of floating
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barriers and a water trash processing facility) to be visited. Nodes are
selected based on their proximity and accumulated trash amounts to
minimize the traveling cost. Euclidean distance between original nodes’
coordinates is unrealistic as it does not consider actual road networks.
To consider existing road networks to reflect realistic proximity between
nodes, Multi-Dimensional Scaling (MDS) techniques can be employed to
represent nodes based on the actual proximity considering existing road
networks and select nodes to visit using clustering algorithms.

MDS is a mathematical technique for representing high-dimensional
data in two dimensions, which is primarily used for visualizing complex
data (Torgerson, 1958). MDS is largely divided into Metric MDS which
uses Euclidean distance as a measure of similarity between data
(Martinez et al., 2017), and Nonmetric MDS which uses non-Euclidean
distance measures. That is, Metric MDS can measure Euclidean dis-
tance between floating barriers in actual road networks. It is primarily
used for tasks that involve adjusting the locations of nodes based on the
actual proximity, which are dimensionally complex (Kruskal and Wish,
1978).

Utilizing Metric MDS simplifies clustering among adjacent nodes,
even in scenarios such as pathfinding problems where there are differ-
ences between the straight-line distance and the actual path distance
between nodes. Shang and Ruml (2004) proposed the
Multi-Dimensional Scaling MAPping using Patch (MDS-MAP(P)) tech-
nique for determining locations using signals instead of Global Posi-
tioning System (GPS) when the distance between any two signal devices
is nonlinear. Similarly, Wang et al. (2019) adopted the MDS method to
determine the installation locations of sensors in wireless sensor net-
works, considering network shadow areas. Both calculated the 2D lo-
cations of sensors from distance matrices, such as signal strength
information between wireless sensors, which are not straight-line
distances.

In most cases, the locations of floating barriers and water trash
processing facilities (nodes) are connected by road networks that are not
straight. Therefore, this study adopts Metric MDS to represent the lo-
cations of nodes considering the actual path distances. Clustering is
conducted on this adjusted node distribution to calculate the traveling
cost of a processing vehicle.

2.5. Vehicle routing

Finding an optimal trash collection route is important to efficiently
process water trash at floating barriers. To this end, vehicle routing al-
gorithms can be utilized. Previous studies proposed various approaches
to find the optimal routes for their problem. For example, the traveling
salesman problem (TSP) (Jiinger et al., 1995)—which is a well-known
optimization problem that seeks to find the shortest possible route
that a salesman can take to visit a given set of cities exactly once and
return to the starting node—is particularly relevant to the context of
water trash collection. Since TSP is a well-known NP-hard combinatorial
optimization problem, alternative approaches were proposed to solve
the problem in finite time (Razali and Geraghty, 2011).

Cheikhrouhou and Khoufi (2021) argued that the routing approaches
should vary by the types of vehicles (e.g., ground vehicles or unmanned
aerial vehicles). For ground vehicles, there are three main ways to solve
vehicle routing such as (1) deterministic, (2) metaheuristic-based, and
(3) market-based approaches. Deterministic approaches in vehicle
routing optimization offer several advantages, including guaranteed
solution quality, faster computation times, deterministic convergence,
easier implementation and interpretation, and reduced computational
complexity. For example, Vali and Salimifard (2017) proposed a routing
method using constraint programming, a subtype of deterministic ap-
proaches, which took over two hours to yield an optimal visit route
between 51 cities with three salesmen. Metaheuristic-based approaches
are optimization methods that use high-level strategies to find approx-
imate solutions to complex optimization problems. The
metaheuristic-based approaches mostly consist of a genetic algorithm
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and swarm intelligence such as ant colony optimization, particle swarm
optimization, and artificial bee colony algorithm. While these tech-
niques do not guarantee a true global optimized solution, many studies
have shown that the results are reasonable to use (Venkatesh and Singh,
2015; Lu and Yue, 2019; Xu et al., 2008; Wei et al., 2020; Zhou et al.,
2018). Market-based approaches in vehicle routing involve the use of
market mechanisms to allocate transportation resources such as vehicles
and routes to customers, with the goal of optimizing overall system ef-
ficiency and reducing transportation costs (Sariel et al., 2007). That is, it
involves modeling vehicles as buyers and collection sites as sellers,
assigning a cost to each site, and having vehicles choose the sites with
the lowest cost to visit first. Duan et al. (2021) proposed an optimal
vessel route using a hybrid heuristic approach for debris vessels oper-
ating in the ocean and achieved a 6.38% cost reduction.

In this study, the optimal route for water trash collection is predicted
by combining dynamic programming (Bouman et al., 2018) and 2-opt
(Croes, 1958). Dynamic programming is categorized as a deterministic
approach, while 2-opt is classified as a heuristic approach that falls
under the category of local search methods, which are considered
non-deterministic. Using dynamic programming and 2-opt in water
trash collection vehicle routing can provide benefits such as obtaining
an optimal solution, faster computation, and robustness. Dynamic pro-
gramming can ensure the best possible solution, while 2-opt can itera-
tively reduce the overall distance. Dynamic programming involves
breaking down a problem into smaller subproblems and solving them in
a recursive manner to obtain the optimal solution, while 2-opt is a local
search algorithm that iteratively improves a given solution by swapping
two edges to reduce the overall distance. The integration of dynamic
programming and 2-opt requires fewer iterations, and is less computa-
tionally intensive.

2.6. Monte Carlo simulation

There are various factors related to costs of processing water trashes,
such as a distance between a floating barrier to a disposal site, a trash
accumulation speed, amounts of water trash, and etc. Each variable is
not a constant, rather a value determined by probabilistic distributions.
Therefore, it is not a trivial task to estimate the water trash processing
cost in a deterministic way. Monte Carlo Simulation (MCS) is a widely
used computational technique to simulate the randomness of variables
that arise from uncertainties. Due to the complexity of calculating the
probability of an event in a real-world system, researchers have
employed simulations using random sampling of variables based on
probability density functions during the MCS process to draw reliable
conclusions (Harrison, 2010).

To name a few studies, Lin et al. (2021) used the MCS to generate
sample datasets with a normal distribution to address the uncertainties
of soil property data collected from an excavation site. Similarly, Xie
et al. (2022) considered the randomness of soil properties, such as
cohesion and sensed data from Random Field (RF) sensors attached to
the soil wall, to determine the maximum ground surface settlement and
wall deflection at a subway station excavation field using the MCS. Shi
et al. (2020) proposed a novel construction planning scheme that uti-
lized the Monte-Carlo Tree Search algorithm to divide a rectangular
floor. Rausch et al. (2019) developed a tolerance simulation system for
prefabrication and offsite construction using the MCS to account for the
manufacturing error of each member as a repeated random variable,
which could induce assembly problems. These studies demonstrate the
applicability of MCS in construction fields with acceptable reliability.
Furthermore, Xu et al. (2020) used the MCS to perform an adaptive
optimal energy demand limiting strategy, considering the
exploration-exploitation tradeoff, which is related to the information
acceptance rate between predicted and actual loads. Arnold and Yildiz
(2015) and Naderpour et al. (2019) analyzed the economic feasibility of
infrastructure construction projects using the MCS approach to consider
the risk derived from financial uncertainty. These studies highlight the
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Fig. 1. A floating barrier on the river to collect plastic waste and debris, pre-
venting pollution from spreading downstream.

scalability of the MCS approach, making it a valuable tool for a wide
range of applications, simulating and analyzing complex systems with
inherent randomness and uncertainty. However, there have been no
attempt to utilize MCS or similar approaches to estimate water trash
processing costs. This lack of knowledge hinders a decision on the
implementation of floating barriers, as the cost projection is critical for
establishing viable budget plans for municipalities.

2.7. Knowledge gap

While the previous studies have made significant strides in water
trash monitoring, object detection, remote weight estimation, vehicle
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routing for trash collection, and optimization with MCS, a knowledge
gap still exists in estimating water trash processing costs and the inte-
gration of these methodologies for automated water trash collection and
processing. Most existing work has focused on detecting floating trash
on the water rather than on floating barriers, where trash actually ac-
cumulates. Additionally, current detection models have not been fully
incorporated into the maintenance workflows of these barriers, limiting
practical applicability. Furthermore, little attention has been paid to the
financial feasibility of trash collection in river tributaries, leaving a
significant void in the literature regarding cost assessment. Critically, no
prior research has proposed a comprehensive end-to-end framework
that seamlessly connects trash detection, valuation, route optimization,
and overall collection. As a result, current administrators of floating
barriers depend on their personal experiences, leading to suboptimal
decisions in the collection and processing of water trash.

This knowledge gap emphasizes the significance of the research
problem to be addressed in this study, which is to develop an integrated
framework that automates water trash detection, valuation, and
collection planning in water infrastructure. In addition, the framework
estimates the expected costs associated with collection routes. This study
represents the first attempt to analyze the anticipated economic benefits
of applying state-of-the-art deep learning techniques to the maintenance
of floating barriers. By bridging this gap, the study aims to provide a
systematic and data-driven approach to improve the overall efficiency of
water trash management in water infrastructure. Fig. 1

5(4) Route Optimization (5) Processing Cost

! Estimation

[

. | Get distance matrix
between nodes

Reposition nodes
using MDS

Calculate cost

TSP based optimal

Node clustering path planning

E e N 4

v

a
For each day during the simulation

Nodes
(Floating
barreirs)

1~3 days remains
to overflow

|

A

Y

4> day remains
to overflow

e ) '
| I<dayremains | o000 ey Collection queue
to overflow :

| — '
Same cluster in queue? T

Add to queue

If node from same cluster in the queue

If no node from same cluster in the queue
T

Non-collection queue

Fig. 2. Overview of the adaptive water trash collection strategy.
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Fig. 3. Prediction process of a trash accumulation speed at a floating barrier using MCS. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article).

3. Adaptive water trash collection strategy

The proposed adaptive water trash collection strategy optimizes the
allocation of collection vehicles to floating barriers based on real-time
trash accumulation, as illustrated in Fig. 2. Unlike traditional methods
that rely on pre-determined time intervals or civil complaints to dispatch
collection vehicles, this strategy dynamically responds to actual trash
accumulation levels. By ensuring timely collection, the proposed
approach minimizes water trash processing costs and protects the
functionality of floating barriers by preventing excessive accumulation.
This strategy consists of five key steps that enable adaptive collection
and cost estimation:

e Trash Detection — Detects accumulated water trash at floating bar-
riers and estimates its volume.

e Trash Overflow Prediction — Predicts when the trash will exceed a
floating barrier’s capacity based on the current accumulation rate.

o Floating Barrier Selection — Identifies which floating barriers should
be prioritized for collection, considering actual travel distances.

e Route Optimization — Determines the most efficient collection route
by clustering selected floating barriers to minimize travel distance.

e Processing Cost Estimation — Calculates total processing costs based
on travel distance and the rental cost of the collection vehicle.

By integrating these steps, the proposed method optimizes collection
efficiency, reduces operational costs, and prevents floating barriers from
becoming overloaded, ensuring their sustained effectiveness in water
trash management.

3.1. Trash detection

Water trash detection is a crucial step for the automated manage-
ment of floating barriers, to identify water trash by its type, such as
plastic, vinyl, styrofoam, paper, bottles, and wood in images. The
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detection results are used to estimate the amount of water trash in each
category. To achieve this purpose, a deep learning-based computer
vision model, YOLOV7, is employed. YOLOv7 (You Only Look Once
version 7) (Wang et al., 2023) is one of the most advanced real-time
object detection models available today, exhibiting impressive accu-
racy in localizing and classifying objects within images.

Many variants of YOLOv7 exist with different hyperparameters,
which result in different performance and computational efficiency.
Generally, an increase in the depth of layers in deep learning models
typically boosts performance but also increases computational demands,
often slowing processing speed. YOLOv7, however, strategically navi-
gates this trade-off. While YOLOv7 employs a complex structure during
training to identify intricate patterns in images, its ‘Bags of freebies’
technique during inference ensures both high performance and rapid
processing speed. This distinctive approach optimizes the balance be-
tween model complexity and computational efficiency, making YOLOv7
an ideal choice for real-world applications requiring both precision and
speed. For this reason, the YOLOv7x model was finally selected for water
trash detection.

3.2. Trash overflow prediction

It is assumed that trash accumulates daily at each floating barrier,
and this daily accumulation is modeled with a Gaussian distribution.
The accumulation rate differs for each barrier because it is significantly
affected by site-specific upstream conditions, resulting in unique accu-
mulation characteristics at each barrier. To reflect these variations, the
mean and standard deviation of the Gaussian distribution are not fixed
to all the floating barriers as same; instead, they are drawn as random
values following uniform distributions within a specified range that
captures the typical conditions of each floating barrier’s location.

MCS is used to account for the multi-level variability and uncertainty
in trash accumulation rates due to different barrier locations and tem-
poral environmental changes, as illustrated in Fig. 3. In this two-step

MDS based Unsupervised

clustering

g Resut based on MOS

Fig. 4. Floating barrier (node) selection and clustering with Multi-Dimensional Scaling (MDS).
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Fig. 5. Visualization of MDS process. (a) Euclidian clustered nodes. (b) Actual road network with blue line. (c) Node repositioning with MDS and clustered nodes.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

approach, the mean and standard deviation of the Gaussian distribution
for each barrier are sampled from uniform distributions to represent the
barrier-specific and relatively constant upstream influences. Then, using
these sampled parameters, daily fluctuations in trash accumulation are
simulated multiple times for each barrier, producing possible daily
accumulation patterns.

Each node (a floating barrier) has a recorded history of trash accu-
mulation, and this information is utilized to predict the trash overflow
(saturation) timing using linear regression. The trash overflow timing,
when the accumulated trash reaches a full capacity of a floating barrier
(y = 100%), is predicted based on a trash accumulation speed that is
derived from the past three days. After the trash collection, a trash
accumulation amount, y, is set to 0.

3.4. Floating barrier selection

Generally, a crane truck for trash collection can visit a limited
number of floating barriers in a day due to its loading capacity and
traveling time. Therefore, it is efficient to visit adjacent floating barriers
that need to be emptied to reduce the processing cost. The floating
barrier selection and clustering process is illustrated in Fig. 4. Firstly, the
locations of floating barriers and a trash processing facility are deter-
mined to be represented as nodes. The nodes are stored as a shapefile of
a geographic information system program such as Q-GIS.

3.4.1. Determination of a distance matrix with node-to-node path finding
For route optimization, a distance matrix, which has traveling dis-
tances between nodes, should be prepared. In this study, the traveling
distances between nodes are obtained using Naver Maps API
(NAVERCLOUD PLATFORM, 2023). The distance matrix for MDS re-
quires the traveling distance between two locations. The optimal routes
of traveling from node A to B and from node B to A could be different
depending on traffics conditions or road networks. Therefore, an
average of the round-trip distance is used as the traveling distance.

3.4.2. Node repositioning with MDS

To group adjacent floating barriers into a single cluster, their node
locations are rearranged using a MDS algorithm. The reason for con-
ducting MDS is that the Euclidean distance between the nodes is
frequently not same as the actual traveling distance, leading to unreal-
istic situations such as an example shown in Fig. 5. Circles labeled as 1,
2, 3, and 4 represent nodes (floating barrier or a trash processing fa-
cility). Due to the obstacles, the distance between nodes 1 and 4 is the
farthest. However, if the Euclidean distance is used, nodes 1 and 4 could
be clustered together due to the mis-calculated Euclidean distance
without considering the obstacles as shown in Fig. 5. (a, b). After MDS,
the node arrangement would look like Fig. 5. (¢). As a result, nodes 1 and
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Fig. 6. Greedy clustering flowchart for floating barriers to be emptied.

4 would not be grouped together. In this way, clustering can consider an
actual road network topology.

3.4.3. Greedy clustering for floating barriers

A greedy clustering algorithm is a method for grouping floating
barriers, with the process comprising initialization, cluster formation,
repetition, and termination. It operates by iteratively adding floating
barriers to a cluster based on a similarity measure until no further
floating barrier meet the specified criterion, thereafter, proceeding to
form new clusters with the remaining floating barriers. As shown in
Fig. 6, the greedy clustering technique starts with a random floating
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Table 1
Variables for cost calculation.

Variable Value

Crane truck with 2 Gas fee (Diesel) 1.5$/litter

workers Fuel efficiency of a crane truck 2 kmy/litter
Average speed of a crane truck 30 km/
hour
Operation cost 60$/hour
25t dump truck Rental cost of 25-ton capacity dump 600$/EA

truck

barrier and make it an initial cluster center. Then, the closest another
floating barrier to the initial floating barrier is added to that clusters,
and this repeats until either the pre-set maximum cluster size is reached
or there are no remaining floating barriers. Once the addition of floating
barriers for each cluster is complete, the distances between floating
barriers within the cluster are measured. This measurement serves as a
quantitative metric for the cluster. Depending on a pre-determined
number of iterations, this clustering process is continuously repeated.
The clustering result with the smallest score is finally used.

3.5. Route optimization

As the cost of collecting water trash at floating barriers can be large
according to the number of floating barriers and traveling distances, it is
crucial to find the optimal traveling path of a processing machine such as
a crane truck. This study explores path optimization algorithms, spe-
cifically focusing on dynamic programming and the 2-opt technique.
Dynamic programming is a method for efficiently solving a broad range
of search and optimization problems which exhibit the property of
overlapping subproblems. It systematically breaks the problem into
smaller, more manageable subproblems, solves each subproblem just
once, and stores its solution for future reference. On the other hand, the
2-opt algorithm is a simple and effective local search method for solving
the traveling salesman problem and related network optimization issues;
it works by iteratively removing two edges from the tour and recon-
necting the paths in a different way to yield a shorter tour. In the context
of this study, which aims to develop a shortest path for collecting water
trash at floating barriers, dynamic programming is employed when the
number of locations of these barriers is less than 17. However, consid-
ering the computational burden associated with dynamic pro-
gramming—which grows exponentially with the number of
locations—the 2-opt algorithm is used when the number of barrier lo-
cations is equal to or greater than 17.

3.6. Processing cost calculation

The standard practice in South Korea for collecting floating trash
from water surfaces involves a crane truck with two workers(KOEM,
2023). This study calculates the total processing cost by estimating both
equipment rental and labor costs. It assumes the use of a typical dump
truck with a dump capacity of 25 tons and a truck-mounted crane
capable of lifting 2 tons(KOEM, 2023). A single crane truck can process
approximately six floating barriers per day, based on the data from
(KOEM, 2023)and considering the labor hours (with a maximum of 52
working hours per week in South Korea). Assuming each floating barrier
accumulates 12.5 tons of trash, it is estimated to take about an hour to
collect water trash at a floating barrier. Additionally, if the average

Totalcost =

(NumberofNodesVisited(EA)) = (CraneOperatingCostperHour(USD per hour)) * (CraneOperatingEfficient(Hours per EA))

+(TotalTravelDistance(km)) * (TruckOperatingCostperDistance(USD per km))
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Fig. 7. Locations of floating barriers (dots) in the Geum River and a trash
processing facility (a red star). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

travel distance and time to each barrier are estimated to be around 30
min, a single crane truck can service up to six barriers in a day.

The price for cost calculation is shown in the Table 1. The crane truck
costs about $60(USD) per hour, including labor, and renting a 25-ton
truck costs about $600 per day, according to 2023 market survey by
this research team in South Korea. The cost for operating a crane truck
was determined using standard price data from the Korea Hydraulic
Machinery Association(Ganacranes Rental Rates, 2023). These prices
may vary by on-site access conditions, location, and the task’s difficulty
level at each site. A 2-ton crane truck has a monthly rental fee of 12
million KRW, which translates to 400,000 KRW (approximately $307
per day. Given six collection trips per day, the cost per trip is 66,000
KRW (approximately $50). Factoring in additional operational costs
(labor, maintenance), this rounds off to $60 per trip. The cost for renting
a 25-ton truck was referenced from the Korean Specialty Construction
Association’s 2023 first half standard labor rate and construction ma-
chinery hourly usage fee(Korea Specialty Contractors Association Jeju
Special Self-Governing Province Chapter, 2023). A 25-ton dump truck
costs 139,543 KRW (approximately $103) per hour, totaling approxi-
mately 1116,344 KRW (approximately $827) for an 8-hour day. How-
ever, considering it takes about 5-6 h, including breaks, to collect waste
from 2 to 3 barriers and transport it back to the waste processing facility,
the rental price for one truck was set at $600 per day.

The travel costs are calculated using Eq. (1). The diesel price is set at
$1.5 per liter (as of March 4th week of 2024), reflecting the average
price of South Korea and Germany(Find Cheap Gas Stations Opinet,
2023). For a maintenance vehicle, typically a truck with a 2-ton ca-
pacity, the assumed fuel efficiency is 2 kilometers per liter. The total cost
is subsequently determined using Eq. (2)

Gas fee(USD)

Traveli t = 1
ravesing cos Fuel efficiency of a maintenance car(USD/km) M

(2

+ (Required Number of Dump Trucks(EA)) = (Dump Truck Rental Cost(USD per EA per day))
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Fig. 8. Flowchart of traditional time-based route planning for water trash collection.

4. Case study: water trash processing cost simulation

In a case study, two collection strategies—the adaptive water trash
collection strategy and the traditional time-based water trash collection
strategy—were compared. This study considers a virtual scenario that
the Geum River has floating barriers for cost simulation. MCS was
employed to make an accurate comparison between the collection
strategies. This allows for a more objective comparison between the two
strategies by considering uncertainties using probability distributions,
such as different trash accumulation rates at each floating barrier.

4.1. Case study region

The proposed strategy was applied to the Geum River basin, located
in North Jeolla Province in South Korea. The Geum River is one of the six
major national rivers in Korea. When combining all the river systems in
the Geum River basin, it spans 3739.59 km, with the main course being
397.79 km long, and it encompasses a massive river system with 468
tributaries (Korea River Association, 2023). For the cost simulation, this

study selected locations where the river width is less than 50 m, suitable
for the installation of floating barriers, as illustrated in Fig. 7.

4.2. Case study settings

All simulations were conducted using a desktop equipped with an
AMD Ryzen 7 5800X processor, 64GB of RAM, and an NVIDIA GeForce
RTX 3090 GPU operated on Ubuntu 18.04 LTS. All algorithms ran in
Python, utilizing libraries including NumPy, SciPy, Matplotlib, PyTorch,
and Sklearn. Variables such as fuel costs, travel distances, fuel effi-
ciencies, amounts of collected water trash, rental costs of trash collec-
tion vehicles, hourly crane rental costs, and the average travel speed
were considered as independent variables of MCS to estimate the total
cost of water trash processing.

4.3. Control group: time-based water trash collection route planning

The traditional method of water trash collection route planning
operates on a fixed time schedule as illustrated in Fig. 8. Firstly, floating

/
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Fig. 9. Imaging conditions to construct a water trash dataset and the instance statistics.
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Table 2
Applied augmentation techniques and hyperparameters.

Image Augmentation Parameters Hyperparameter for Training

Types Value Variables Value
Hue 0.015 Initial learning rate 0.01
Saturation 0.7 Final learning rate 0.001
Value 0.4 Momentum 0.937
Degrees 5.0 Weight decay 0.0005
Flip up-down 0.3 Focal loss gamma 1.5
Flip left-right 0.5 Warmup epochs 3
Mosaic 1.0 IoU threshold 0.2
Paste in 0.15 Anchor threshold 4.0

barriers to be visited are determined as nodes and the distances between
these nodes are calculated. A route-finding API by Naver was utilized to
create the distance matrix which contains distance information between
nodes (NAVERCLOUD PLATFORM, 2023). The locations of the nodes
are adjusted using MDS considering the actual path distance between
them. Subsequently, nodes are clustered using the greedy clustering
method based on their distances, grouping nearby nodes together. Once
clustered, groups are visited sequentially according to a predetermined
timetable for collection which contains the garbage collection sched-
uling information. Each cycle includes a sequence of group visits and
rest days. If there are n groups and m rest days, a cycle takes m + n days,
and one group is visited per day. Thus, a floating barrier visits once
every m + n days. This interval is referred to as the ‘cycle’. For instance,
if the cycle is 5 days, it means the trash is collected once every 5 days.
Once the visiting group order is determined, the shortest path is calcu-
lated using the TSP method. Floating trash is collected following this
path, and costs are calculated accordingly. The cost calculation is con-
ducted using Eq. (2).

4.4. Water trash image dataset

Since no public dataset currently exists for detecting floating water
trash in rivers and streams, a new water trash dataset was collected from
an experimental floating barrier site in Incheon, South Korea to test the
feasibility of employing deep learning-based object detection models.
The dataset was introduced in details in the authors’ previous confer-
ence paper (Kim et al, 2024a). Images were captured under 120
different environmental conditions reflecting five factors: the shape of
the floating barrier, filming time, water color, shooting angle, and trash
density. (see Fig. 9 for details). The images were captured in the RGB
format with a resolution of 3024 by 3024 pixels. The dataset consists of
7960 images labeled with six classification categories (plastic, vinyl,
styrofoam, paper, bottle, and wood) in the form of bounding boxes to
train the YOLOv7x algorithm. In total, the dataset contains 162,552
bottles, 124,186 styrofoam items, 74,542 pieces of plastic, 60,034 items
of wood, 44,144 vinyl items, and 34,171 pieces of paper.

4.5. Training detection model

The dataset was divided into training, validation, and testing sets
with an 8:1:1 ratio. During the training process, the stochastic gradient
descent (SGD) algorithm was used as the optimizer and a cosine
annealing strategy was used as the learning rate scheduler. In addition,
the model was pre-trained with the MS COCO dataset and transfer
learning was applied to fine-tune all weights in the model for ensuring
high performance and generalization capability, along with a fast
convergence rate. A set of image augmentation techniques and the
hyperparameters of YOLOv7x used in the experiments are listed in
Table 2.
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4.6. Evaluation metrics for the water trash detection model and the trash
overflow date prediction model

The mean Average Precision (mAP) was used as a detection perfor-
mance indicator in identifying floating trash. To compute the Average
Precision (AP) score for each class, precision and recall values were
calculated at various confidence thresholds, and the area under the
precision-recall curve was determined. The true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) were
determined based on the Intersection over Union (IoU) between the
ground truth and predicted bounding boxes for each classification
category. The IoU threshold was varied from 0.5 to 0.95 with a step size
of 0.05. A detection result was considered as TP if the intersection over
union between a predicted bounding box and a ground truth bounding
box was greater than the threshold. Recall and precision were then
calculated using Eq. (3) and Eq. (4) respectively.

TP
Recall = m (3)
TP
Precision = —— 4
recision P + P 4)

Linear regression was used to predict the trash overflow date. The
accuracy of linear regression is typically evaluated by the Mean Square
Error (MSE), therefore, it was used as the loss function to train the
prediction model. Additionally, R?, the coefficient of determination, was
employed to assess the model’s ability to explain the variance in the
data. A higher R? indicates that the model can better account for the
variability observed in the data.

Once the trash overflow date was predicted using the linear regres-
sion model, this paper employed a quantitative metric that uses the time
difference between the predicted date and the actual trash overflow
date, to measure the error. For instance, if the prediction was in 1.3 days
and the actual overflow date was in 1 day, the prediction error is
calculated as |1.3-1.0| = 0.3. If the actual overflow occurred in 2 days,
the error is calculated as |1.3-2.0| = 0.7.

4.7. Quantity-Weight conversion matrix

It is necessary to estimate the weight of detected water trash as it can
be used to estimate the water trash overflow and the timing of floating
barrier collapse. Therefore, quantity-weight conversion factors for water
trash categories are required. This study referenced these factors for
Styrofoam(Appendix 1), wood(Appendix 2), and paper(Appendix 3),
and from a national costal trash(National Coastal Trash, Marine Envi-
ronment Information Portal, 2023). This dataset encompasses water
trash related information collected from 2009 to 2017, detailing the
count, weight, and volume of marine litter surveyed six times annually.
Averages of these metrics (count, weight, volume) were used for anal-
ysis. For the remaining categories — plastic(Appendix 4), bottle
(Appendix 5), and vinyl(Appendix 6), from Korea standard specifica-
tions and design criteria for marine debris cleaning projects(KOEM,
2023) was referenced.

4.8. MCS for water trash processing cost estimation

To compare the adaptive water trash collection strategy and the
time-based water trash collection strategy, MCS was utilized. The
simulation environment incorporates several assumptions due to a lack
of real data and to prevent the simulation from becoming overly com-
plex, focusing solely on comparing the collection strategies. The as-
sumptions were as follows:

EnclosedCirclel The maximum capacity of a floating barrier is assumed
to be 12.5 tons. There are no established references
that define a universal maximum capacity for floating
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Quantity-Weight conversion matrix

2
N
MCS
Adaptive water trash collection strategy Time-based water trash collection strategy
Start on Day 1 Start on Day 1
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Predict trash overflow time v
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List of average delay time
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Fig. 10. Flow chart of MCS to compare water trash collection strategies.

barriers. In this study, 12.5 tons is adopted because it
represents half the load of a 25-ton truck, thereby
allowing efficient single-trip operations. While this
serves as a practical starting point for our simulations
and cost analyses, the actual capacity may vary
depending on the floating barrier’s material, design,
and environmental conditions.

EnclosedCircle2 A single crane truck can service up to six waste barriers

in one day. It is assumed that collecting water trash at a
single location requires approximately one hour, with
an average travel time of 20 min between locations.
Factoring in typical labor law constraints, a single
crane truck can service a maximum of six barriers in

10

one day. This assumption is for research purposes and
may differ from real-world operating conditions.

EnclosedCircle3 The locations of nodes remain constant throughout the

simulation. Each floating barrier is physically fixed at
its installation site, so its coordinates do not change
during operation.

EnclosedCircle4 The barriers reached the maximum trash accumulation

amount must be emptied within one day. Once a bar-
rier is at full capacity, there is one additional day to
service it. This approach assumes that most barriers
can tolerate a short-term overflow, although the actual
safety margin may depend on the specific design.
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Table 3

Location of floating barriers in the simulation.
List of Geum River Tributaries Longitude Latitude
Guryongcheon 127.5148 35.82777
Jeoksangcheon 127.6269 35.99291
Namdaecheon 127.6287 36.0045
Bonghwangcheon 127.5652 36.1195
Hotancheon 127.6418 36.13175
Chogangcheon 127.7132 36.23188
Bocheongcheon 127.6906 36.29407
Gasancheon 127.5842 36.41819
Samseongcheon 127.3029 36.50041
Daegyocheon 127.2444 36.46253
Jeongancheon 127.1252 36.47102
Eocheon 127.0233 36.3977
Jicheon 126.9251 36.3163
Eunsancheon 126.8899 36.27734
Geumcheon 126.8999 36.2525
Yeomchangcheon 126.9405 36.25381
Nonsancheon 127.01 36.16488
Gilsancheon 126.7462 36.02841
Wonsancheon 126.865 36.07354
Impocheon 126.88 36.1325
Mihocheon 127.3212 36.5201

EnclosedCircle5 Removing water trash at a floating barrier is charged at
a fixed rate - 60$/hour.

EnclosedCircle6 The cost calculation follows Eq. (2), excluding other
expenses that might incur during the trash processing.

EnclosedCircle7 The amount of trash increases daily at a floating
barrier.

If the assumptions change, the collection cycle, collection time, and
overall costs would also change, which may lead to different results. For
instance, increasing the floating barrier’s capacity could reduce how
often collections are needed, thereby decreasing operational frequency
and cost. Similarly, any changes in labor or equipment rental costs
would alter per-hour or per-trip charges, influencing the total cost.

Based on these assumptions, the structure of MCS was defined as
illustrated in Fig. 10. Essential inputs for the MCS encompass the
geographical locations of nodes, clustering information, a distance
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matrix, equipment rental costs, the designed capacity of the floating
barriers, and the probabilities such as uniform and gaussian distribution
(described in Section 3.2) that dictate the rate at which floating water
trash accumulates at each node. These input variables were established
before executing the simulation to ensure a realistic simulation of water
waste collection and processing. The simulation outputs two key met-
rics: the total cost and the delay in water trash collection.

The locations of the floating barriers are listed in Table 3. These
locations were chosen to derive the distance matrix and clustering re-
sults. The exact locations of the floating barriers are specified by their
longitudinal and latitudinal coordinates. The unit costs associated with
processing vehicles are listed in Table 1.

Each simulation in the MCS was set to run over a period of 365 days.
During these 365 days, trash accumulated daily followed the probabil-
ities illustrated in Fig. 3. The cost incurred in the process of collecting
water trash was summed up as the output of the simulation. During the
simulation, delay time was measured. The delay time refers to the time
gap between the moment when the floating barrier becomes filled with
trash and the actual emptying of the trash. It is calculated and recorded
for each simulation to indicate the timeliness of the trash collection
strategy in dealing with floating trash at the barriers. This simulation
was repeated 10,000 times to obtain 10,000 individual sets of costs and
delay times. A frequency analysis was followed among the obtained
data.

5. Case study results and discussion
5.1. Water trash detection results

The training process of the detection model was monitored by 10
learning curves in Fig. 11. Each graph shared a common x-axis denoting
the number of epochs and a distinct y-axis quantifying various metrics.
The curve ‘Box’ means the box loss, which quantifies the error in the
predicted bounding boxes compared to the ground truth. The curve
‘Objectness’ measured the objectness loss, which evaluates the perfor-
mance of the model to distinguish between the presence of an object
versus background or no object. The curve ‘Classification’ depicts clas-
sification loss, representing the model’s errors in categorizing the ob-
jects within the bounding boxes.

Box Objectness Classification Precision Recall
—e— results 0.9
0.05 0.020 0.004 08 0.8
0.04 0.018 0.003 ® 0 97
3 . % % 3 0.6 =
3 3 3 0.002 g g o
0.03 0.016 : 0.4 0.5
0.014 0.001 0.4
0.02 0.2
0.3
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val Box val Objectness val Classification mAP@0.5 mAP@0.5:0.95
. 0.8
0.08 0.0045
0.032
0.07 0.0040 08 0.6
2 0.06 ©0.030 ©0.0035 806 e
8 8 8 @ T
- - -} > > 0.4
0.05 0.0030 0.4
' 0.028 !
0.0025 0.2
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Fig. 11. Learning curves of YOLOv7x during the training process.
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For the training dataset, a steady decrease of the Box, Objectness,
and Classification losses was observed over time, while the Precision,
Recall, and mAP values consistently increased throughout the training
process. These results indicate that there were continuous learning and
improvement of the model during the training process. For the valida-
tion dataset, the Box, Objectless, and Classification losses initially
decreased similar to the trend observed in the training dataset. However,
after 40 epochs, these loss values started to increase, which was a sign of
overfitting. Therefore, the model parameters at epochs 40 was selected
as optimal for the detection model to maximize the detection perfor-
mance on unseen data while mitigating the risk of overfitting.

Following the optimal parameter selection, the model’s perfor-
mance, mAP at IoU threshold of 0.5, on different categories of water
trash was recorded. As shown in Fig. 12, the model demonstrated
impressive results across all categories. For the ‘Wood’ category, the
mAP was 0.9, while for ‘styrofoam’, it was 0.974. ‘Plastic’ and ‘vinyl’
were mAP of 0.952 and 0.940 respectively. For ‘bottle’ and ‘paper’, the

Table 4
Quantity-Weight conversion matrix.
Category Weight(kg)/EA
Wood 0.8037
Paper 0.0829
Styrofoam 0.2794
Plastic 0.2881
Vinyl 0.0102
Bottle 0.2421

BomE 0.9
VINYL,_ 0.7

VINYL 0.33]

woop 0.75g
'WOOD 0.4 PASTIC 8«, 4

’VINIL

Fig. 13. Examples of detection results on test data.
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Fig. 14. Visualization of water trash weight(g) estimation results.
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Table 5
Evaluation of the linear regression model’s performance in predicting overflow
day for floating barriers.

Days ahead of overflow  MSE R? Errors in prediction
Mean  Stds Mean  Std Mean Std

1 2.09 4.84 0.93 0.16  0.41 4.63

2 9.09 11.72  0.78 0.29 -0.03 16.91

3 14.48 1279 0.68 0.27  0.19 5.93

4 7.45 11.15  0.83 0.25 1.28 10.71

model achieved a higher mAP of 0.978 and 0.974, respectively. The
overall mAP was 0.951, indicating that water trash can be identified
with high accuracy using a state-of-the-art object detection model across
different types of waste materials. Fig. 13 shows its effectiveness not just
in theoretical terms, but also in practical, real-world scenarios. This
highlights the model’s potential utility in an adaptive water trash pro-
cessing system, capable of reliably identifying and categorizing various
types of floating water trash.

5.2. Integration of trash detection and weight estimation

Table 4 presents a conversion matrix used for quantity-to-weight

13
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conversion. This conversion matrix was used to estimate the weight of
water trash based on quantity identified by the object detection model.
The trash detection model was successfully integrated with the quantity-
weight conversion matrix, creating a seamless pipeline. Floating trash
estimation results were simultaneously derived with the trash detection
as shown at the top left of Fig. 14.

5.3. Results of water trash accumulation speed estimation

Fig. 15 shows the MCS simulation results. The results suggest that it
takes an average of about 5 days for the floating barriers to reach its full
capacity from an empty state. Subsequent frequencies indicate that 4
days and then 6 days are the next common durations for accumulation,
with most trash collection occurring within 20 days.

5.4. Performance of the trash overflow prediction model

The regression model’s performance in predicting the water trash
overflow day was evaluated at different days before the expected
overflow, with the results summarized in Table 5. It is evident that the
model shows a high degree of accuracy, particularly when predictions
were made one day before the expected overflow, as indicated by the
high R? mean value of 0.93. This implies that the model can reliably
forecast the overflow day with minimal deviation from the actual day.
However, as the prediction window increases (2 to 4 days before over-
flow), the model’s accuracy, as indicated by the R? value, shows a
gradual decline. This is particularly noticeable in the increase in MSE
and the decrease in R? values. For instance, the MSE mean increases
from 2.09 to 14.48, and the R? mean decreases from 0.93 to 0.68 as we
move from a 1-day to a 3-day prediction window. This demonstrates the
potential of using overflow prediction models for effective management
of floating barriers. Future work could focus on refining the model to
improve its predictive power over longer time for more dynamic and
responsive trash management strategies.

5.5. MCS results of comparing trash collection strategies

Fig. 16 and Table 6 presents a comparative analysis in terms of costs
and delay time for an adaptive trash collection strategy versus a time-
based strategy over various collection cycles (4 to 10 days). The adap-
tive approach reveals a mean cost of $493,284 with a standard deviation
(Std) of $44,385, suggesting a relatively lower variability in costs. The
time-based strategy exhibits a gradual decrease in the average cost from
$640,578 to $465,494 as the cycle lengthens from 4 to 10 days. The
associated standard deviations range from $49,067 to $43,416, sug-
gesting a somewhat consistent variance across different cycle lengths.

Regarding delay time metrics, the adaptive strategy maintains a
lower mean of 0.938 days with a standard deviation of 0.133, implying a
quicker response to the risk of overflowing barriers. The time-based
strategy shows an increasing trend in the average delay time from
0.185 to 3.285 as the cycle length extends, with corresponding standard
deviations increasing from 0.073 to 0.575. This indicates that the longer
the cycle, the higher the likelihood of delays in trash collection, which
could result in barrier collapse. Therefore, cycles more than 6 days,
where the mean delay time exceeds 1, are considered impractical.

As shown in Fig. 16(a), if the collection cycle in the time-based
strategy exceeds six days, a severe delay occurs. When the collection
cycle is six days or less, the adaptive strategy is more cost-effective than
the time-based strategy. Compared with the adaptive strategy, the four-
day cycle in the time-based approach results in a 30% increase in costs,
and extending the cycle to six days results in an additional 10% cost
increment. These findings highlight the inefficiencies of the time-based
approach. Although the cost can be reduced with the increase in the
cycle length, it is not desirable due to the risk of a structural failure
leading to higher costs of reconstruction and adverse environmental
effects. The adaptive strategy, tailored specifically to real-time trash



KSCE Journal of Civil Engineering 29 (2025) 100238

800

S. Kim et al.
(a) ; ; ; ;
Cost Comparison Between Adaptive and Time-Based Strategies
700 A
Severe Delay Zone
650 - of
time-based strategy
o
600 -
s
-
x
@ 5501
@
8 500
& Adaptive Strategy Cost ($)
450 —4— Time-based Strategy Cost ($)
Adaptive 4 5 6 7 8 9 10
Collection Interval of time-based strategy(day)
Adaptive Time-based (4) Time-based (5) Time-based (6)
100 Mean: 493284, Std: 44387 100 Mean: 640578, Std: 49069 Mean: 582057, Std: 45726 Mean: 543660, Std: 44473
\
80 A 80 4 80 80
- 60 A 60 4 60 4 60 1
2
g |
g
T 40 - 40 40 40 4 ‘
1
20 20 4 20 20 4
0 T o T N 0+ .
300 400 500 600 700 800 300 400 500 600 700 800 300 400 500 600 700 800 300 400 500 600 700 800
Cost ($ x1000) Cost ($ x1000) Cost ($ x1000) Cost ($ x1000)
Time-based (7) Time-based (8) Time-based (9) Time-based (10)
100 Mean: 514435, Std: 43035 Mean: 494460, Std: 43467 Mean: 478340, Std: 43360 Mean: 465494, Std: 43419
80 80 - 80 - 80
- 60 60 60 - 60
e
g
T 40 40 - 40 - 40 -
20 1 20 A 20 1 20 4
0 — 0+ 0 -
300 400 500 600 700 800 300 400 500 600 700 800 300 400 500 600 700 800 300 400 500 600 700

Cost ($ x1000)

Cost ($ x1000)

Cost ($ x1000)

Cost ($ x1000)

Fig. 16. Cost analysis results comparing adaptive and time-based strategies using Monte Carlo Simulation (MCS): (a) Average operational costs of adaptive and time-
based strategies at varying collection intervals (4-10 days). Error bars indicate standard deviation from simulated data. Any interval resulting in delays exceeding one
day is classified as a ’severe delay zone,” marked by the gray-shaded region (>7 days). (b) Histograms illustrating cost distributions from MCS for the adaptive
strategy and each fixed-interval time-based strategy (intervals 4-10 days).

Table 6
Trash collection cost and delay time derived from MCS.
Adaptive Time-based
Collection Cycle (day)
4 5 6 7 8 9 10
Cost ($) Mean 493,284 640,578 582,057 543,660 514,435 494,460 478,340 465,494
Std 44,385 49,067 45,723 44,471 43,033 43,465 43,357 43,416
Delay time (day) Mean 0.938 0.185 0.514 0.954 1.468 2.031 2.645 3.285
Std 0.133 0.073 0.155 0.243 0.327 0.413 0.496 0.575
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accumulation rates, not only optimizes resource utilization but also
significantly curtails unnecessary expenses and mitigates delays in trash
collection. As depicted in the cost distribution histograms (Fig. 16(b)),
the adaptive strategy exhibits lower mean costs and reduced variability
compared to fixed-interval time-based methods, reflecting greater eco-
nomic efficiency and reliability. These results underscore the critical
importance of adopting adaptive scheduling strategies in waste man-
agement, particularly within dynamic environments characterized by
variable trash generation rates.

6. Conclusion

This study has successfully demonstrated the feasibility of con-
structing a comprehensive pipeline that integrates trash detection and
valuation, indicating the capability to estimate the weight of trash from
its quantity. A significant challenge is the absence of benchmark data to
verify the accuracy of our system’s output against real-world datasets.
Without these comparative measures for the weight or value of floating
trash, the study’s scope is constrained to presenting the integrated
model as a proof-of-concept. It is important to acknowledge that the
conversion values can vary with the location and time of data collection,
indicating a need for site-specific indicators to ensure precision in future
applications of our model.

Our research sought to develop a novel collection strategy to auto-
mate one of the fundamental solutions to floating trash, i.e., trash
collection from rivers. We proposed a computer vision-based framework
and constructed a practical pipeline to verify its feasibility.

Our proposed collection process is segmented into three distinct
functionalities. The first function, trash detection, is based on computer
vision. By utilizing YOLOv7, we were able to identify six categories of
floating trash with a performance of 95.1% mAP. This demonstrates the
application potential of object detection algorithms to analyze trash
accumulated by river barriers.

The second functionality entailed remote weight estimation and
economic analysis of the detected trash. Our approach for this function
relied on statistical data. We proposed a quantity-weight conversion
formula based on credible sources, specifically, the marine waste
investigation data from the Korean government. Using this formula, we
were able to derive an estimated weight and subsequent valuation of the
detected trash.

Through Monte Carlo simulations, we assessed the potential cost-
effectiveness of our proposed trash collection strategy. Specifically, we
aimed to answer two key research questions: (1) Does the proposed
adaptive trash collection framework offer greater economic advantages
compared to the conventional time-based collection method? and (2) If
so, to what extent can it enhance cost efficiency? The experimental re-
sults clearly answered these questions by demonstrating that the adap-
tive trash collection strategy achieves approximately a 10% to 30%
reduction in operational costs compared to the conventional approach.
This confirms that adopting our adaptive framework significantly en-
hances economic efficiency in managing water trash collection.

This study represents a significant advancement in automating
floating trash collection through a computer vision-based system. One of
the most notable contributions is the use of MCS to quantitatively vali-
date the superiority of the proposed frameworks. While MCS was
instrumental in demonstrating its effectiveness, it is not required for
actual implementation, significantly reducing execution time to just 3 to
5 s. Another key strength of the system is its ease of deployment, as it
requires only video equipment and a desktop computer for processing.
This minimal hardware requirement makes it highly adaptable and
applicable in various river environments without the need for special-
ized infrastructure.
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Beyond its technical contributions, the study highlights the potential
for shifting floating trash collection from experience-based management
to data-driven decision-making. By optimizing collection routes through
automated analysis, the system could improve both operational effi-
ciency and cost-effectiveness. The research also holds broader implica-
tions for environmental sustainability, as its widespread adoption could
lead to a significant reduction in waste leakage into natural water
bodies, contributing to ecosystem preservation while offering economic
benefits for municipalities and organizations responsible for waterway
maintenance.

Despite these contributions, certain limitations must be acknowl-
edged. The absence of benchmark datasets presents challenges in veri-
fying the accuracy of the system’s output. Additionally, the study relies
on assumptions and variables specific to South Korea, limiting the
generalizability of the findings to other regions. Since all experiments
were conducted in laboratory conditions and through simulations, real-
world testing remains essential to assess the system’s adaptability in
diverse environmental contexts. Variations in water conditions across
different locations could impact detection performance, making it
necessary to validate the approach with real-world data.

Future research should focus on collecting and analyzing real-world
data to enhance system robustness, testing the framework in diverse
water environments to evaluate its performance under different condi-
tions, and further optimizing collection route planning to determine
whether the proposed approach truly outperforms existing methods in
practical applications. Addressing these challenges is crucial for tran-
sitioning from a proof-of-concept model to a fully operational automated
trash collection system. If successfully implemented, this research could
provide a scalable solution for improving waste management efficiency
worldwide, offering a new technological pathway for reducing water
pollution and protecting aquatic ecosystems.
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Appendix 1. Styrofoam

KSCE Journal of Civil Engineering 29 (2025) 100238

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Sum
1st Count(EA) 1396 1255 899 922 1467 429 1236 987 947 9538
Weight(kg) 132.1 189.4 108.8 410.4 213.3 490.1 328.9 307.3 162.6 2342.9
Volume(?) 2876.5 1349.3 2538.3 1566.2 2212.3 2229.1 4230.1 3677.5 2536.2 23,215.5
2nd Count(EA) 1804 1131 1175 1115 744 634 1283 1498 1330 10,714
Weight(kg) 173.3 110.7 88.3 181 164.3 58.1 310.2 309.9 164.1 1559.9
Volume(?) 2419.5 1328.3 2004.5 1895.5 1036 1803.4 4268.9 4147 2794.4 21,697.5
3rd Count(EA) 1213 1415 1141 1426 893 804 2087 2129 1497 12,605
Weight(kg) 149.4 174.6 177 245.4 247.7 83.9 5906.1 535.2 285.2 7804.5
Volume(?) 2918.6 3675.4 2157.2 2389.5 2502.5 1614.2 22,812.3 4988.8 5347.9 48,406.4
4th Count(EA) 1556 6521 2617 1926 1431 704 1954 1848 1237 19,794
Weight(kg) 458 426.6 301.4 414.6 414 356.6 363.6 505.4 590.8 3831
Volume(?) 3595.1 4587.5 3545.3 2744.5 1505.8 3322.4 4230.6 4880.1 5077.5 33,488.8
5th Count(EA) 1490 2817 2108 1611 2301 2367 2301 2386 1624 19,005
Weight(kg) 112.8 468.3 452 486.6 1722.8 609.5 482.2 579.2 262 5175.4
Volume(?) 1803.9 3450.6 3419.8 4719.6 5238.2 3448.8 7198 3951.3 4113.1 37,343.3
6th Count(EA) 1570 1982 1995 1001 839 1157 1816 989 1061 12,410
Weight(kg) 186.8 101.6 341.4 278 357.8 423.8 441.9 170.2 477 2778.5
Volume(?) 4254.2 1479.6 2850.4 3545.5 2145.3 4923.7 5773.5 2478 4569.5 32,019.7
Appendix 2. Wood
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Sum
1st Count(EA) 667 313 372 329 277 218 827 498 458 3959
Weight(kg) 550.3 274 225.2 167.1 216.5 386.1 320.3 300.9 244.3 2684.7
Volume(?) 2657.7 977.5 745.5 1016 594.5 910.8 1492.7 1130.9 763.1 10,288.7
2nd Count(EA) 804 428 310 328 268 281 427 851 520 4217
Weight(kg) 758 345.6 304.1 222.7 230.8 161.7 201.4 415.5 297.6 2937.4
Volume(?) 2193 1015.5 1231.9 706.7 360.8 646.7 872.9 1071.8 1395.9 9495.2
3rd Count(EA) 821 636 544 395 338 199 480 444 492 4349
Weight(kg) 659.5 495.3 423.2 473.8 338.4 139.3 535.7 306.7 272.5 3644.4
Volume(?) 2937.8 1670.1 1267.4 1179.3 920.2 359.5 1639.7 1049.5 787.1 11,810.6
4th Count(EA) 550 601 503 361 361 274 665 704 429 4448
Weight(kg) 602.1 779 867.3 388.8 324.5 201.4 343.1 414 437.3 4357.5
Volume(?) 2001 2319.2 1789.5 1086.9 766.5 403.5 1410.2 1369.8 1041.3 12,187.9
5th Count(EA) 333 558 354 829 393 717 525 463 1449 5621
Weight(kg) 417.9 1117.1 727.7 524.5 615.7 542.3 324.4 360.2 442.9 5072.7
Volume(?) 1092.2 1958.7 1457.6 1762.4 1422.7 2265.9 1522.2 1043.9 1722.7 14,248.3
6th Count(EA) 869 1043 356 230 228 550 546 530 615 4967
Weight(kg) 625.3 614.2 266.5 199.8 362 346.9 322.6 364 351.7 3453
Volume(?) 2249.5 1323.8 777.5 465.8 664.4 1046 1078.2 1417.6 1292.3 10,315.1
Appendix 3. Paper
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Sum
1st Count(EA) 111 143 85 134 109 114 304 171 165 1336
Weight(kg) 3.7 1.5 4.6 2.9 12,5 5 12.1 9.2 12 63.5
Volume(?) 18.7 23.3 27.9 29.8 46 19.9 69.4 67.6 76.1 378.7
2nd Count(EA) 164 178 108 261 124 129 304 469 229 1966
Weight(kg) 4 8.6 2.8 204.9 4.6 8.9 16.1 14 13.6 277.5
Volume(?) 41.2 118.5 25.6 103.3 17 32.5 104.2 62.8 93.5 598.6
3rd Count(EA) 249 164 289 280 237 146 313 435 330 2443
Weight(kg) 5.2 4.2 11.6 6.8 5.6 45 14.6 10.7 11.9 75.1
Volume(?) 62 50.4 102.5 116 44.8 18.2 70.5 115 78.6 658
4th Count(EA) 135 386 190 216 139 144 344 303 305 2162
Weight(kg) 9.4 9.3 6.6 8.9 10.5 7.4 12,6 15.2 18.6 98.5
Volume(?) 467.6 122.6 101.3 40.9 90.1 40.5 166.6 84.9 136.3 1250.8
5th Count(EA) 63 361 179 107 122 373 267 214 288 1974
Weight(kg) 12,5 13 10.4 12.7 207.8 22 53.4 11.8 26.5 370.1
Volume(?) 20.8 120.4 48.7 43.3 1269.7 60.4 118.4 55.4 204.4 1941.5
6th Count(EA) 92 105 98 134 94 251 167 347 179 1467
Weight(kg) 3.8 3.3 2.4 5.9 4.6 9.9 4.3 11.8 9.5 55.5
Volume(?) 25.8 16.4 31.5 35.5 37.8 28.1 34.4 57.3 113.4 380.2
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Appendix 4. Plastic

KSCE Journal of Civil Engineering 29 (2025) 100238

Item

Weight per count (kg/EA)

Banana milk bottle

Paint can

Plastic milk jug

Pen belt

Lid of side dish container
Side dish container
Mean

0.036
1.128
0.0025
0.384
0.12
0.0581
0.2881

Appendix 5. Bottle

Item

Weight per count (kg/EA)

PET bottle

Soju bottle

Beer bottle
Beverage bottle
Small beverage bottle
Makgeolli bottle
Yogurt bottle

Drink bottle

2 L Water bottle
350 ml Water bottle
Soy sauce bottle
Plastic water bottle
Mean

0.108
0.432
0.6336
0.6336
0.216
0.072
0.024
0.1584
0.135
0.075
0.0576
0.36
0.2421

Appendix 6. Vinyl

Item

Weight per count (kg/EA)

Ramen bag

Plastic bag

Kim packaging bag
Envelope

Snack bag

Mean

0.01
0.018
0.003
0.01
0.01
0.0102
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