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a b s t r a c t

Physics-informed neural networks (PINNs) have prevailed as differentiable simulators to investigate flow
in porous media. Despite recent progress PINNs have achieved, practical geotechnical scenarios cannot be
readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or
multi-layer strata when labeled data are missing. This work aims to develop a universal network
structure to encode the mass continuity equation and Darcy’s law without labeled data. The finite
element approximation, which can decompose a complex heterogeneous domain into simpler ones, is
adopted to build the differentiable network. Without conventional DNNs, physics-encoded finite element
network (PEFEN) can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.
PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training. Benefiting from
its discretized formulation, the discontinuous heterogeneous hydraulic conductivity is readily embedded
into the network. Three typical cases are reproduced to corroborate PEFEN’s superior performance over
conventional PINNs and the PINN with mixed formulation. PEFEN is sparse and demonstrated to be
capable of dealing with heterogeneity with much fewer training iterations (less than 1/30) than the
improved PINN with mixed formulation. Thus, PEFEN saves energy and contributes to low-carbon AI for
science. The last two cases focus on common geotechnical settings of impermeable sheet pile in single-
layer and multi-layer strata. PEFEN solves these cases with high accuracy, circumventing costly labeled
data, extra computational burden, and additional treatment. Thus, this study warrants the further
development and application of PEFEN as a novel differentiable network in porous flow of practical
geotechnical engineering.
© 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Deep neural networks (DNNs) have achieved remarkable prog-
ress in various domains including geoengineering (Chen et al.,
2024), large language models, and policy learning. Artificial intel-
ligence is acting like the “new electricity” to offer new power for
traditional domains in science and engineering. Conventional nu-
merical methods such as the finite element method (FEM)
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(Zienkiewicz et al., 2005), finite difference method (FDM) (Forsythe
and Wasow, 1960), material point method (Liang and Zhao, 2019;
Liang et al., 2024; Yu et al., 2024a), peridynamics (Silling and
Lehoucq, 2010; Ren et al., 2017; Yang et al., 2024a, 2024b), and
discontinuous deformation analysis (Shi, 1992; Wang et al., 2019,
2022) are important tools to analyze and predict complex natural
and engineering phenomena. Li et al. (2020a, 2021) proposed a
grain-based method (in hybrid finite discrete element method)
modeling rock microstructures, revealing how they affect crack
thresholds and nonlinear deformation, offering a new potential
solution and insights into fracturing and cross-scale mechanical
behaviors in rocks. Xu et al. (2019, 2020a) discovered mechanical
behaviors of isotropic rocks with the discrete element method and
blished by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Solving flow in discontinuous heterogeneous porous media using PINN.
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laboratory tests. Li et al. (2020a, b) and Wei et al. (2021) applied
FDM and FEM to analyze rock masses considering structural char-
acteristics. Recent trends show physics-based simulations
capturing solid skeleton behavior, offering a promising alternative
for multiphysics analysis without constitutive assumptions (Liang
et al., 2023; Yu et al., 2024b). DNNs, on the other hand, provide a
new paradigm for computational methods. DNNs have beenwidely
applied for constitutive modeling (Qu et al., 2023; Wang et al.,
2024), solid mechanics (Abueidda et al., 2021; Haghighat et al.,
2021b; Bai et al., 2023), and fluid mechanics (Mao et al., 2020;
Rao et al., 2023).

The physics we focus on is the fluid flow in porousmedia, which
plays a critical role in various engineering applications such as ur-
ban flood mitigation through porous asphalt pavement (Yang et al.,
2022), dam seepage, enhanced geothermal systems, geological
carbon storage, radioactive waste disposal (Zhuang et al., 2024),
and unconventional oil/gas reservoirs. The data-driven DNNs have
been applied to model fluid flow and transport in porous media.
Laloy et al. (2018) used a generative adversarial network to train a
very low dimensional parameterization for efficient sampling and
probabilistic inversion of complex geologic media. Kreyenberg et al.
(2019) trained a convolutional neural network (CNN) on numerical
5510
simulation to estimate velocity fields. Wu et al. (2019) trained a
CNN to map images to diffusivity of porous media computed with
lattice Boltzmann simulations. Sun et al. (2022) compared three
data-driven DNNs to predict groundwater levels. Rajabi et al. (2022)
investigated an encoder-decoder CNN to learn image-to-image
correlations for forward and inverse analyses of convection and
temperature distribution. Virupaksha et al. (2024) trained encoder-
decoder CNN and long short-term memory (LSTM) networks for
transient convection. Some other works also incorporate data-
driven DNNs as efficient surrogates for inverse analysis (Zhu and
Zabaras, 2018; Mo et al., 2019a; Tang et al., 2021) or uncertainty
quantification (Mo et al., 2019b).

As surrogate models, data-driven DNNs can efficiently alleviate
the curse of dimensionality (Mo et al., 2019a). However, an accurate
and robust data-driven DNN surrogate entails a large amount of
labeled data for training and testing. Acquiring enough labeled data
may be costly and time-consuming if relying on intensive compu-
tation with classical numerical methods. From engineering field
monitoring or scientific experiments, the labeled data may be even
unaffordable and inaccessible. Extrapolation and prediction of data
with unseen distributions are also nontrivial challenges for data-
driven DNNs because generalized physics is not honored.



Fig. 2. Overview of the physics-encoded finite element network (PEFEN) for porous flow.

Fig. 3. Configuration of the unidirectional flow in a heterogeneous domain.
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Recently, physics-informed neural networks (PINNs) have been
developed to incorporate the residuals of partial differential
equations (PDEs) into the loss function of DNNs (Raissi et al., 2019).
PINNs conform to physics by minimizing PDE residuals. Data and
physics are seamlessly combined by adding PDE residuals and data
losses together, thereby facilitating data assimilation and inverse
analysis (Karniadakis et al., 2021). For example, the temporal graph
neural network-based simulator enhances interpretability by
integrating physical information flow constraints into its architec-
ture (Zhao et al., 2024), unlike conventional methods focusing only
on loss functions. Physics-informed machine learning methods
have also been leveraged in structural health monitoring, inverse
analysis, and concrete optimization (Sun et al., 2023, 2024; Li et al.,
2024; Luo et al., 2024a, 2024b). Yang et al. (2024c) developed
adaptive task decomposition physics-informed neural networks to
solve complex time-dependent tasks.

PINNs are attracting increasing interest in modeling flow in
porous media. Wang et al. (2020) incorporated PDE residuals, data
losses, and engineering controls/expert knowledge (penalty for
out-of-range values) to learn the transient saturated flow. With
partial measurements and PDE losses, Tartakovsky et al. (2020)
trained DNNs for saturated and unsaturated flows. Bandai and
Ghezzehei (2021) constrained DNNs to be monotonic to learn
constitutive relations in unsaturated flow from noisy data and PDE
residuals. Almajid and Abu-Al-Saud (2022) found that PINN out-
performed the data-driven DNN when only partial data were
available in multiphase flow. Yeung et al. (2022) extended the
physics-informed conditional machine learning method for large-
scale data assimilation of Darcy flow. Guo et al. (2023) proposed a
hydraulic tomography-physics-informed neural network to invert
Gaussian transmissivity fields of Darcy flow with pumping. Based
on PINN, Elkhadrawi et al. (2024) solved unsaturated flow with
sparse labeled data to estimate homogeneous hydraulic conduc-
tivity. These examples validated PINNs as effective tools to reduce
data requirement and perform inverse analysis.

However, the performance of PINN is not perfect. There are
multiple terms in the loss function of PINN, including discrepancies
from labeled data, PDE residuals, and constraints of boundary
conditions. Varying the coefficient might lead to a complex loss
landscape, gradient pathology, and optimization issues
(Krishnapriyan et al., 2021; Wang et al., 2021). Spectral bias also
prevents PINNs with conventional DNNs from learning high-
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frequency functions (Rahaman et al., 2019). Moreover, most exist-
ing PINN studies entail enough labeled data, which can be inac-
cessible for science and engineering. In homogeneous porous flow,
it was reported that “training PINNs is very slow and control over its
accuracy is challenging” (Haghighat et al., 2022).

This study focuses on PINNs without labeled data. For example,
Daolun et al. (2021) added a gradient model as special neurons in
the hidden layer of PINN to solve Darcy seepage with source/sink
terms. Zhang et al. (2022) adopted locally refined sampling strategy
for spatial sampling and snowball-style two-stage training strategy
to divide temporal domain for Darcy flow. Hanna et al. (2022)
developed a residual-based adaptive PINN to better capture mov-
ing flow fronts with two phases in the absence of labeled data. Lan



Fig. 4. Loss convergence of mixed-form PINN, reprinted from Fig. 6 in Lehmann et al. (2023): Convergence of H-V-1-PINN, H-V-2-PINN, and H-V-3-PINN in the case of hetero-
geneous domain: Variation of the loss function with respect to the number of iterations with Adam optimizer (15,000 iterations) followed by LBFGS.

Fig. 5. PEFEN loss convergence in the case of unidirectional flow in a heterogeneous
domain.
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et al. (2023) used an augmented Lagrangian method to constrain
initial and boundary conditions without other labeled data for
unsaturated flow.

Despite the improvement of PINNs as forward solvers for porous
flow without labeled data, its application toward practical
geotechnical settings is prohibitive when considering (discontin-
uous) high heterogeneity. A probable reason is that discontinuous
hydraulic conductivity can result in the failure of automatic dif-
ferentiation. Thus, He et al. (2020) added an extra network to learn
heterogeneous hydraulic conductivity, in which the discontinuous
interface is smoothly approximated. An alternative is to use a
continuous analytical expression to control the heterogeneity or
use mild continuous heterogeneity (Tartakovsky et al., 2020; Wang
et al., 2020; Yeung et al., 2022; Secci et al., 2024).

Some endeavors are committed to solving discontinuous and
high heterogeneity without costly labeled data in porous flow. A
straightforward and effective way is to decompose the heteroge-
neous domain into homogeneous subdomains (Bandai and
5512
Ghezzehei, 2022). Diao et al. (2023) developed domain decompo-
sition technology to solve mult-material problems. In this method,
subnetworks should be defined on subdomains, and additional
treatments are necessary for interfaces. Zhang et al. (2022, 2023)
applied finite volume discretization to compute the derivatives
from CNN for Darcy flow, and a relatively low resolution was
adopted for efficiency. With extra variables, Lehmann et al. (2023)
developed a mixed-form PINN to simulate Darcy flow without
any additional treatments or assumptions.

The challenges associated with the performance of PINNs in
heterogeneous cases can also be attributed to the properties of
DNNs. The F-principle/spectral bias stated that “DNNs tend to fit
training data by a low-frequency function” and “F-principle results
from the smoothness/regularity of the commonly used activation
functions” (Xu et al., 2020b). Thus, this study employs a novel
physics-encoded finite element network (PEFEN), instead of con-
ventional DNNs, to approximate the field variable to handle
discontinuous and highly heterogeneous porous flow. PEFEN is
recently proposed to solve nonlinear elasticity (Wang and Yin,
2024). PEFEN decomposes highly heterogeneous domains into
simpler and less heterogeneous ones. It can also fit complex func-
tions without activation functions. Thus, PEFEN can naturally
encode heterogeneous hydraulic conductivity without additional
special treatment, extra variables, or labeled data. The Dirichlet
boundary conditions can be encoded into the discretized mesh in
PEFEN, and Neumann boundary conditions are considered by its
work. Importantly, no labeled data are required, and the loss
function consists solely of the functional. Thus, the problem of
imbalanced losses and gradient pathology can be alleviated in
PEFEN. Another challenge of AI is the computational cost and re-
sources. PEFEN can be considered as a sparse network that entails
much fewer iterations to converge. As suggested by Guan (2024),
development of PEFEN is beneficial for carbon neutrality. Compared
with existing works leveraging FEM with PINN (Gao et al., 2022;
Wang et al., 2024), PEFEN circumvents the dependence on con-
ventional DNNs and features sparse network for efficient training
and heterogeneous problems.



Fig. 6. Comparison of hydraulic head from FEM and PEFEN in the case of unidirectional
flow in a heterogeneous domain.

Fig. 7. Configuration of bi-directional flow in a heterogeneous domain.
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The paper is organized as follows. First, the fundamentals of
PINNs and the challenges associated with heterogeneous porous
domains are briefly reviewed. Next, the methodology of PEFEN is
introduced. Three numerical experiments are conducted to validate
the accuracy of PEFEN when dealing with heterogeneity. The
significantly faster convergence of PEFEN compared to the mixed-
form PINN is also demonstrated. The last two cases prove PEFEN
capable of solving more practical cases in single-layer and multi-
layer strata with an impermeable sheet pile.
2. PINN and challenges of simulating flow in heterogeneous
domains

Darcy’s law is the constitutive relation between hydraulic head
and Darcy velocity:

v¼Kðx; yÞVH (1)

where the hydraulic conductivity Kðx; yÞ (m/s) is a function of
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spatial coordinates, the gradient of hydraulic head H (m) consti-
tutes the driving force of fluid flow, and v (m/s) is the Darcy velocity.
According to the continuity equation, the divergence of the Darcy
velocity field is zero (assuming the sink/source is zero):

V$v ¼ 0 (2)

Substituting Eq. (1) into Eq. (2), the governing equation leads to

V$ðKðx; yÞVH Þ ¼ 0 (3)

Dirichlet boundary conditions on vUD and Neumann boundary
conditions on vUN are defined as follows:

Hðx; yÞ ¼ g ðon vUDÞ (4)

vðx; yÞ$n ¼ h ðon vUNÞ (5)

PINNs predict hydraulic head bHðx; yÞ approximately with neural
networks as follows:

bHðx; yÞ¼ �
Anl + snl�1 +Anl�1 +/+s1 +A1

�ðx; yÞ (6)

where ‘+’ is the composition operator, Ai ð1� i� nlÞ is the ith linear
layer, and si ð1� i� nl �1Þ is the neuron-wise activation function.
For a commonly used fully connected neural network, the linear
layer is as follows:

AiðxÞ¼Wixþ bi (7)

A commonly used activation function with continuous deriva-
tive is

siðxÞ¼ tanhðxÞ ¼ ex � e�x

ex þ e�x (8)

Substituting Eq. (6) into Eq. (3), the resulting residuals at
meshless sampling points are incorporated into the loss function of
PINNs. Residuals from boundary conditions in Eqs. (4) and (5)



Fig. 8. Loss convergence of mixed-form PINN, reprinted from Fig. 10 in Lehmann et al. (2023). Convergence of H-V-3-PINN in the case of bi-directional flow in a heterogeneous
domain: Variation of the total loss function and corresponding sub-terms (i.e. governing equation and boundary conditions) with respect to the number of iterations. Loss H-PINN-K
represents the total loss function. Loss-PDE, Loss B.C. Dirichlet, and Loss B.C. Neumann represent the contribution of the governing equation and the Dirichlet and Neumann
boundary conditions, respectively.

Fig. 9. PEFEN loss convergence of bi-directional flow in a heterogeneous domain.
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should also be collected. The loss function contains multiple terms
which are summarized as follows:

L ¼ LU þ lDLvUD
þ lNLvUN

LU ¼ 1
NU

XNU

i¼1

��V$�K�xUi
; yUi

�
VbH�

xUi
; yUi

� ���2

LvUD
¼ 1

NvUD

XNvUD

i¼1

��� bH�
xvUD i

; yvUD i

�
� g

���2

LvUN
¼ 1

NvUN

XNvUN

i¼1

���VbH�
xvUN i

; yvUN i

�
$n� h

���2

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(9)

where the total loss L contains LU (the PDE loss at interior collo-
cation points), LvUD

(the loss at collocation points on Dirichlet
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boundaries), and LvUN
(the loss at collocation points on Neumann

boundaries). LvUD
and LvUN

can also include the loss of labeled data.
Automatic differentiation of neural networks can be leveraged

to compute the derivatives in Eq. (3), in which second-order de-
rivatives are required. If a heterogeneous domain should be
considered, the function of hydraulic conductivity Kðx; yÞ would be
more complicated. The discontinuous heterogeneity leads to a
discontinuous Kðx; yÞ, and the automatic differentiation probably
fails (Lehmann et al., 2023). Conventional PINNs, thus, are con-
fronted with prohibitive challenges in more practical cases where
discontinuous heterogeneity is ubiquitous.

To demonstrate the failure mode of PINN, we utilize the pub-
lished library of PINN namedDeepXDE (Lu et al., 2021) to simulate a
heterogeneous case as shown in Fig. 1a. The specific setting follows
Lehmann et al. (2023). This PINN uses a neural network with three
hidden layers, 56 neurons per hidden layer, two inputs for co-
ordinates, and one output for hydraulic head. Fig. 1b presents the
FEM reference result. This PINN converges as shown in Fig. 1f. Its
result is depicted in Fig. 1c. The error distribution is shown in
Fig. 1d. Given that the result is essentially one-dimensional, the
hydraulic head along the horizontal cross-section is plotted in
Fig. 1e. It shows that PINN cannot easily learn the sharp/steep
gradients. Spectral bias or F-principle can explain this failure mode
(Rahaman et al., 2019; Xu et al., 2020b). Local fluctuations caused by
heterogeneity are more like high-frequency functions. However,
conventional DNNs tend to learn low-frequency functions, which
vary globally without local fluctuations as shown in Fig. 1e. Detailed
discussions of using PEFEN on this case will be presented in Section
4.1.
3. Methodology of the physics-encoded finite element
network

3.1. Functional losses

When the functional of a PDE exists, setting its first variation to



Fig. 10. Comparison of hydraulic head from FEM and PEFEN in the case of bi-
directional flow in a heterogeneous domain.
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zero is the first step to the strong form PDE as shown in Eq. (3)
under certain Neumann boundary conditions in Eq. (4). The
Dirichlet boundary condition in Eq. (5) is assumed to be satisfied in
advance. The corresponding functional PðHÞ of Eqs. (3) and (4) is

PðHÞ ¼
ð
U

1
2
KjVHj2dU�

ð
vUN

h$HdG (10)

where the derivative order with respect to H is one, lower than the
derivative order of two in Eq. (3).
3.2. PEFEN for porous flow

Fig. 2 gives an overview of the PEFEN for porous flow. The spatial
domain is discretized by a structured or unstructured mesh that is
composed of elements with no overlap. A standard nodal contin-
uous finite element approximation is used to compute the hy-
draulic head at arbitrary points in the target domain. The hydraulic
head H0 at nodes is defined as both target variables and trainable
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parameters. Since no labeled data are considered, H0 will be
initialized to zero at the outset.

For any point inside an element with nnode nodes fðx1; y1Þ; ðx2;
y2Þ;…; ðxnnode ;ynodeÞg, the nodal basis functions are fl1; l2;…; lnnodeg.
The nodal hydraulic heads are fH01;H01;…;H0nnode

g. The hydraulic
head H at a point ðx; yÞ inside the element is

Hðx; yÞ¼
Xnnode

i¼1

liðx; yÞH0i (11)

At the point ðx; yÞ, the derivatives vH=vx and vH=vy can be
calculated with the following linear operations on H0:

vH
vx

¼
Xnnode

i¼1

vliðx; yÞ
vx

H0i

vH
vy

¼
Xnnode

i¼1

vliðx; yÞ
vy

H0i

9>>>>>=
>>>>>;

(12)

PEFEN can embody powerful nonlinearity even without DNNs.
With respect to nodal H0, Eqs. (11) and (12) are linear trans-
formations. Eqs. (11) and (12), and nodal H0 of all discretized ele-
ments constitute the approximation function of hydraulic head H
and its gradients ðvH =vx; vH =vyÞ. The spatial nonlinearity of this
approximation function originates from the basis functions liðx;yÞ.
This study uses basis functions in quadratic serendipity elements. It
circumvents the usage of nonlinear activation functions in DNNs.
Combining nonlinear basis functions of connected finite elements,
PEFEN can easily approximate highly nonlinear H.

As illustrated in Fig. 2a, after obtaining the hydraulic head and
its derivatives with respect to x and y, the functional in Eq. (10) is
encoded into the network. No additional labeled data are required.
Neumann boundary conditions are naturally considered by its
work. Dirichlet boundary conditions, as presented in Fig. 2b, can be
strictly enforced by direct substitution. The hydraulic heads at these
two nodes on vUD are denoted H1 and H2. The Dirichlet boundary
value g directly substitutes these hydraulic heads like that in clas-
sical FEM (Zienkiewicz et al., 2005):

H1 ¼H2 ¼ g (13)

Setting the node value will take effect by influencing its sur-
rounding hydraulic heads H and gradients ðvH =vx; vH =vyÞ through
Eqs. (11) and (12), thereby altering the final target minimum of the
functional in Eq. (10). Since the loss function consists solely of a
functional over the domain, the problem of imbalanced losses and
gradient pathology can be alleviated in PEFEN.

The PEFEN in Fig. 2 is implemented inmainstream deep learning
frameworks as a differentiable computational graph. Like the
strategy in PINN, the problem can be solved by minimizing the
scalar functional energy. In contrast to blackbox DNNs, the differ-
entiable network in Fig. 2a is fully interpretable. If we aim to solve
PDEs for other problems, a similar computational graph can be
readily established like that in Fig. 2a. Operations to compute the
loss for a different PDE can substitute the computational graph after
getting ðH; vH =vx; vH =vyÞ. Moreover, we do not need to set the
number of layers and the number of neurons in each layer like that
in DNNs. These hyperparameters often necessitate intuitive trial-
and-error procedures. Guan (2024) suggested sparse neural net-
works for carbon neutrality. PEFEN can be viewed as a sparse neural
network, and it can significantly reduce the number of iterations to
contribute to low-carbon AI for science. Its superior performance
will be validated in the subsequent numerical experiments.



Fig. 11. Comparison of Darcy velocity from FEM and PEFEN in the case of bi-directional flow in a heterogeneous domain.
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4. Numerical experiments

Lehmann et al. (2023) applied mixed-form PINN to solve het-
erogeneous flow problems and achieved satisfactory results. They
utilized DNNs with three hidden layers and hyperbolic tangent
activation functions. The hydraulic head and Darcy’s velocity are
directly output from single or multiple DNNs. More specific settings
can be referred to in Lehmann et al. (2023). We reproduce the first
three experiments from Lehmann et al. (2023) to validate the ac-
curacy and much faster convergence of PEFEN. The last two cases
are designed to address more practical geotechnical engineering
problems, thereby showcasing the potential of PEFEN as an efficient
differentiable forward solver.

The Adam optimizer (Kingma and Ba, 2017) and LBFGS opti-
mizer (Liu and Nocedal, 1989) mentioned in this study refer to the
implementation in PyTorch (refer to the PyTorch documentation for
details on the LBFGS and Adam algorithms). The Adam optimizer is
typically employed prior to LBFGS to avoid saddle points. Compared
to conventional DNNs, PEFEN can be considered as a very sparse
network with much smaller search space. Consequently, PEFEN can
5516
converge rapidly to the target optimumwith LBFGS only. This study
utilizes CPU (Intel Core i9-14900KF) to train the PEFEN network.
The hardware used in Lehmann et al. (2023) is a GPU (NVIDIA
Quadro RTX 4000). The computational time and training time
mentioned in the subsequent experiments refer to wall-clock time.
Double-precision floating-point numbers are used.

The reference result vector is denoted as H*, and the result
vector obtained from PEFEN is denoted asH. The length ofH* orH is
n that denotes the number of collocation points (in this study, n is
the number of Gaussian points). Eq. (14) defines the relative L2 and
L∞ error norm (Haghighat et al., 2021a). Assuming ðH* �HÞ ¼ ðerr1;
err2;…;errnÞ, its L2 norm kH* � Hk2 is ðPn

i¼1err
2
i Þ

1=2
, i.e. this scalar

measures the error vector over the domain in Euclidean space. L∞

error norm kH* � Hk∞ is a scalar as max
i

jerrij that characterizes the
maximum absolute error over the domain. The corresponding
norm of H* is used for nondimensionalization and scales the error
norm. Thus, relative L2 error norm denotes the average error.
Relative L∞ error norm indicates the maximum error.



Fig. 12. Configuration of high heterogeneous domain with 16 regular blocks.

Fig. 13. Loss convergence of mixed-form PINN, reprinted from Fig. 13 in Lehmann et al. (2023). Convergence of H-V-3-PINN in the case of heterogeneous domain with 16 blocks:
Variation of the total loss function and corresponding sub-terms (i.e. governing equation and boundary conditions) with respect to the number of iterations.
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L2 relative error ¼ kH* � Hk2
kH*k2

L∞ relative error ¼ kH* � Hk∞
kH*k∞

9>>>=
>>>;

(14)
5517
4.1. Unidirectional flow in a heterogeneous domain

Fig. 3 presents the configuration of unidirectional flow in a
heterogeneous domain. Fig. 3a illustrates the geometry and
boundary conditions. The hydraulic head on the left is fixed as
Hleft ¼ 1 m, and the hydraulic head on the right is fixed as Hright ¼
0 m. The upper and lower boundaries are impermeable. This
domain is heterogeneous with a more permeable band in the
middle right. The hydraulic conductivities are K1 ¼ 1� 10�4 m=s
and K2 ¼ 1� 10�3 m=s. Fig. 3b displays the mesh in PEFEN and



Fig. 14. PEFEN loss convergence of high heterogeneous domain with 16 regular blocks.

Fig. 15. Comparison of hydraulic head from FEM and PEFEN in the case of high het-
erogeneous domain with 16 regular blocks.
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FEM, containing 128 quadratic serendipity elements. The fluid flow
in this case will be unidirectional, and the velocity direction is to-
wards the right. This case shares the same setting as those in
Lehmann et al. (2023), and it was reported that the conventional
PINN provided incoherent results due to discontinuity of the hy-
draulic conductivity. We have also discussed the failuremode of the
conventional PINN in Section 2.

Thus, mixed-form PINN was proposed to solve the heteroge-
neous problem (Lehmann et al., 2023). Fig. 4 reprints the loss
convergence of mixed-form PINN, in which 15,000 Adam iterations
and about 15,000 LBFGS iterations are consumed. Its training time
is about 10 min (600 s). In comparison, Fig. 5 illustrates the loss
convergence of the PEFEN. It converges in just 400 LBFGS iterations,
and only 0.5 s are consumed. It can be concluded that PEFEN con-
verges much faster than the mixed-form PINN (400 iterations vs.
30,000 iterations, 0.5 s vs. 600 s).

Comparison between PEFEN and FEM are elaborated in Fig. 6.
The hydraulic heads predicted by PEFEN align closely with refer-
ence FEM results. The relative L2 error norm of hydraulic head is
1:03� 10�4, and the relative L∞ error norm of hydraulic head is
2:62� 10�4. For Darcy velocity, relative L2 error norm is 2:25�
10�3, and relative L∞ error norm is 6:86� 10�3. To conclude,
PEFEN can efficiently handle this heterogeneous case that the
conventional PINN fails.

4.2. Bi-directional flow in a heterogeneous domain

Fig. 7 presents the configuration of bi-directional flow in a
heterogeneous porous domain. Fig. 7a gives the geometry and
boundaries. The hydraulic head on the left is fixed as Hleft ¼ 1 m,
and the hydraulic head on the right is assigned as Hright ¼ 0 m. The
upper and lower boundaries are impermeable. A block with
significantly lower hydraulic conductivity than the surrounding
porous media is located in the middle, with much lower hydraulic
conductivity than surrounding porous media, i.e. K1 ¼ 9� 10�5 m=

s and K2 ¼ 1� 10�6 m=s. Fig. 7b shows the mesh in PEFEN and
FEM, in which 1377 quadratic serendipity elements are discretized.
The conventional PINN also failed in this case. Thus, He et al. (2020)
used a DNN to approximate the discontinuous hydraulic conduc-
tivity field with a smoother one. Lehmann et al. (2023) adopted the
mixed-form PINN for a better reproduction of the discontinuous
heterogeneity.

Fig. 8 reprints the loss convergence of the mixed-form PINN. It
took 80,000 Adam iterations and about 70,000 LBFGS iterations to
reach the correct solution. About 2 h (7200 s) of computation time
was consumed. In comparison, as shown in Fig. 9, PEFEN only spent
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5000 LBFGS iterations and 17 s to reach convergence. It can be
concluded that PEFEN converges much faster than the mixed-form
PINN (5000 iterations vs. 150,000 iterations, 17 s vs. 7200 s).

Fig. 10 compares the hydraulic head from PEFEN and FEM.
PEFEN gives the same pattern as FEM. The L2 relative error of hy-
draulic head is 1:33� 10�3, and the L∞ relative error of hydraulic
head is 7:05� 10�3. The largest error is about 7:05� 10�3. For
mixed-form PINN, the largest error is about 1:2� 10�2 in the same



Fig. 16. Comparison of Darcy velocity from FEM and PEFEN in the case of high heterogeneous domain with 16 regular blocks.
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case (Lehmann et al., 2023). The largest error occurs around the
middle blockwith low hydraulic conductivity. Therefore, PEFEN can
compute the hydraulic head in this heterogeneous case with high
accuracy. Note that Fig. 9 presents quite a long plateau, during
which relative errors do not reduce much. After 1000 iterations, the
L2 relative error of hydraulic head is 2:49� 10�3, and the L∞ rela-
tive error of hydraulic head is 1:22� 10�2. The largest error is about
1:22� 10�2, which is quite close to the largest error of 1:2� 10�2 in
the same case of mixed-form PINN (Lehmann et al., 2023). Thus, the
efficiency of PEFEN can be more promising if we only want to reach
the same accuracy as mixed PINN (1000 iterations vs. 150,000 it-
erations, 7 s vs. 7200 s). The plateau exists because the default
convergence criterion of LBFGS in PyTorch is strict.

The previous mixed-form PINN did not give detailed quantita-
tive analysis of Darcy velocity (Lehmann et al., 2023). This study
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presents the Darcy velocity along x-axis and y-axis in Fig. 11. PEFEN
can reproduce the velocity pattern with high accuracy. The L2

relative errors of vx and vy are 1:25� 10�2 and 5:87� 10�2. The
average relative error is relatively low. The largest error occurs
around the discontinuous material interface. The L∞ relative errors
of vx and vy are 9:90� 10�2 and 1:15� 10�1. Due to the discon-
tinuous hydraulic conductivity, the maximum error is larger than
the average error, but the predicted pattern is not influenced.
4.3. Highly heterogeneous domain with 16 regular blocks

Fig. 12 presents the highly heterogeneous case. There are 16
discontinuous heterogeneous blocks, which emulate the zonation
techniques used for the identification of heterogeneous domains
(Lehmann et al., 2023). The lower left corner is assigned the



Fig. 17. Configuration of seepage flow with an impermeable sheet pile.

Fig. 18. PEFEN loss convergence of seepage flow with an impermeable sheet pile.

Fig. 19. Comparison of hydraulic heads from FEM and PEFEN in the case of seepage
flow with an impermeable sheet pile.

X. Wang, W. Wu and H.-H. Zhu Journal of Rock Mechanics and Geotechnical Engineering 17 (2025) 5509e5525
hydraulic head Hdown ¼ 1 m, and the upper right corner is assigned
the hydraulic head Hup ¼ 0 m. The remaining boundaries are
impermeable. Hydraulic conductivities in different blocks are: K1 ¼
9� 10�4 m=s, K2 ¼ 5� 10�4 m=s, K3 ¼ 1� 10�4 m=s, K4 ¼ 1�
10�5 m=s, K5 ¼ 3� 10�4 m=s. The mesh used in PEFEN and FEM
contains 2704 quadratic serendipity elements.

Fig. 13 reprints the loss convergence of the mixed-form PINN.
About 10,000 Adam iterations and 200,000 LBFGS iterations are
entailed to reach the correct solution, which consumes 5 h
(18,000 s). PEFEN loss in Fig. 14 reaches convergence in about 6000
iterations. PEFEN only takes 32 s. Thus, PEFEN demonstrates
significantly greater efficiency than the improvedmixed-form PINN
(6000 iterations vs. 210,000 iterations, 32 s vs. 18,000 s).
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Figs. 15 and 16 compare the hydraulic head and Darcy velocity
between PEFEN and FEM. The resulting pattern from PEFEN is
almost identical to FEM. The relative L2 error norm of hydraulic
head is 7:12� 10�3, and the relative L∞ error norm of hydraulic
head is 1:92� 10�2. The largest error is approximately 1:9� 10�2.
For mixed-form PINN, the largest error is about 4:0� 10�2 in the
same case (Lehmann et al., 2023). L2 relative errors of vx and vy are
4:44� 10�2 and 4:08� 10�2. The average relative error is quite low.
The largest error occurs around the discontinuous material inter-
face. The relative L∞ error norms of vx and vy are 1:3� 10�1 and
1:8� 10�1. Because of the discontinuous hydraulic conductivity,
the maximum error is larger than the average error, but the pre-
dicted pattern is not influenced. The velocity error is concentrated
around the neighboring domains of the discontinuous material
interfaces.

4.4. Seepage flow with an impermeable sheet pile

This study focuses on a more practical setting in geotechnical
engineering. Fig. 17 presents the configuration of seepage flowwith
an impermeable sheet pile. The hydraulic head on the left is Hleft ¼
10 m, and the hydraulic head on the right is Hleft ¼ 0 m. An
impermeable sheet pile is inserted in the middle to mitigate
seepage. The stratum in this case is homogeneous, with a hydraulic
conductivity 9� 10�4 m=s. Fig. 17b shows the mesh used in PEFEN
and FEM, containing 2160 quadratic serendipity elements.



Fig. 20. Comparison of Darcy velocity from FEM and PEFEN in the case of seepage flow with an impermeable sheet pile.
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Fig. 18 presents the loss convergence. PEFEN converges in 2500
LBFGS iterations, which takes 8.2 s. The hydraulic head in Fig. 19
validates the accuracy of PEFEN. Relative L2 error norm of hy-
draulic head is 1:49� 10�4, and relative L∞ error norm of hydraulic
head is 1:37� 10�3. The maximum error is larger than the average
error because of the heterogeneity brought by an impermeable
sheet pile. Fig. 20 gives the comparison of Darcy velocity compo-
nents. PEFEN can accurately reproduce the pattern of velocities. The
average error is small. Relative L2 error norms of vx and vy are 3:44�
10�2 and 2:34� 10�2. The largest error occurs around the
discontinuous material interface. Relative L∞ error norms of vx and
vy are 1:65� 10�1 and 1:65� 10�1. Because of the discontinuous
hydraulic conductivity, the maximum error is larger than average
error, but the predicted pattern is the same with FEM. The velocity
error is concentrated in the neighboring domains of the discon-
tinuous material interfaces.
4.5. Seepage flow in multi-layer strata with an impermeable sheet
pile

The former case studies the homogeneous stratum with an
impermeable sheet pile. This case advances further toward prac-
tical geotechnical engineering, by considering multi-layer strata
with discontinuous heterogeneity. Fig. 21 presents the configura-
tion, which consists of four different layers. The hydraulic con-
ductivities are as follows: K1 ¼ 9� 10�4m=s, K2 ¼ 5� 10�4m= s,
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K3 ¼ 1� 10�4m=s, K4 ¼ 1� 10�5m=s. Fig. 21b shows the mesh in
PEFEN and FEM. There are 3920 quadratic serendipity elements.
Fig. 22 presents the loss convergence of PEFEN. It converges in 3200
LBFGS iterations, and the wall-clock time is 28 s.

Fig. 23 presents the hydraulic head of PEFEN and FEM.
Compared with the hydraulic head of homogeneous stratum in
Fig. 19, the results of heterogeneous strata in Fig. 23 are very
different. Relative L2 error norm of hydraulic head is 1:45� 10�3,
and relative L∞ error norm of hydraulic head is 5:31� 10�3. PEFEN
demonstrates high accuracy in reproducing the hydraulic head.
Fig. 24 presents the Darcy velocity, and vx is significantly influenced
by discontinuous heterogeneity. Errors of vx and vy concentrate
around the bottom of the sheet pile. The average error is small.
Relative L2 error norms of vx and vy are 5:75� 10�2 and 4:42�
10�2. The largest error occurs around the discontinuous material
interface. Relative L∞ error norms of vx and vy are 1:87� 10�1 and
1:17� 10�1. Due to the discontinuous hydraulic conductivity, the
maximum error is larger than the average error, but the predicted
pattern is the same with FEM. The velocity error is concentrated
around the neighboring domains of the discontinuous material
interfaces.
5. Discussion

The failure mode of conventional PINN is illustrated in Fig. 1. It
fails probably because conventional DNNs struggle to adapt to local



Fig. 21. Configuration of seepage flow with an impermeable sheet pile.

Fig. 22. PEFEN loss convergence of seepage flow in multi-layer strata with an
impermeable sheet pile.

Fig. 23. Comparison of hydraulic head from FEM and PEFEN in the case of seepage
flow in multi-layer strata with an impermeable sheet pile.

X. Wang, W. Wu and H.-H. Zhu Journal of Rock Mechanics and Geotechnical Engineering 17 (2025) 5509e5525
fluctuations with steep/sharp gradients that feature high-
frequency functions (Rahaman et al., 2019; Xu et al., 2020b).
Moreover, automatic differentiation cannot handle discontinuous
parameters without proper approximation and special treatments.
In contrast, PEFEN proves capable of solving complex heteroge-
neous problems without labeled data or special treatment. Reasons
can be twofold: finite element decomposition and nonlinear
approximation without activation functions. The heterogeneous
domain is decomposed into discretized finite elements, decom-
posing the global heterogeneity to local homogeneity. It is much
easier to approximate simple functions on decomposed elements,
and thus PEFEN can solve discontinuous heterogeneity easily. On
the other hand, Xu et al. (2020b) illustrated that the spectral bias
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results from the smoothness/regularity of commonly used activa-
tion functions. In PEFEN, the finite element approximation can
accurately fit complex functions of field variables without activa-
tion functions. Consequently, PEFEN, as a sparse network, can avoid
the need to learn the blackbox weights/bias and efficiently solve
discontinuous heterogeneous problems.
6. Conclusions

Since conventional PINNs struggle to solve practical porous flow
problems with discontinuous heterogeneity without labeled data,
this study employs a novel PEFEN. PEFEN encodes the Darcy’s law
and continuity equation as a functional, including the Neumann
boundary conditions. The Dirichlet boundary conditions are also
encoded into the discretized network. Compared with the
improved PINN (mixed form), PEFEN does not predict additional
stress variables and does not require tuning of DNN structures.

Numerical experiments validate the superior performance of
PEFEN. The first three experiments demonstrate that PEFEN can
effectively handle the discontinuous heterogeneity where con-
ventional PINN fails. PEFEN converges much faster than the mixed-
form PINN. Extraordinary improvement of convergence rate is
achieved. Less than 1/30 iterations are entailed in PEFEN. It is
because PEFEN can be considered as a sparse discretized network
that features a much smaller search space, contributing to low-
carbon AI for science.



Fig. 24. Comparison of Darcy velocity from FEM and PEFEN in the case of seepage flow in multi-layer strata with an impermeable sheet pile.
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The last two cases further corroborate PEFEN’s capability for
practical geotechnical studies. PEFEN proves to perform much
better than PINN as an efficient forward solver for heterogeneous
porous flow problems. Like PINNs, PEFEN solves problems by
minimizing loss function that is flexible for different known and
unknown parameters. Thus, PEFEN is promising for efficient for-
ward and inverse analysis with limited labeled data, which is also
our current research focus.

For future studies, we are working on PEFEN for more diverse
applications on data assimilation and inverse analysis. This differ-
entiable and physics-encoded way to combine PINN and traditional
numerical methods proves quite promising. Further, it should be
combined with operator learning or ensemble learning to build
efficient surrogate models.
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