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Abstract. To accommodate the large-scale integration of renewable energy, and 
enhance the utilization efϐiciency of multiple energy types , such as electricity, gas, 
cooling, and heat, the Integrated Energy System (IES) has emerged in recent years.  
The forecasting of multiple loads, is a key challenge in guiding the operational 
strategies of IES, and the development of deep learning (DL) technology, with its 
advantages in efϐiciency and accuracy, provides an effective solution. This review 
ϐirst explains the uniqueness and challenges of IES multi-load forecasting, which 
involves predicting load time series while accounting for the temporal 
characteristics of each load and their interdependencies. It then summarizes 
traditional forecasting methods and analyses the advantages of DL-based methods, 
focusing on key aspects of the capability of dealing with load time series 
characteristics, load coupling, multi-task learning, and privacy protection. Finally, 
future challenges and trends in DL for IES multi-load forecasting are discussed. 

1. Introduction  

With the continuous growth of global energy demand and the rapid development of renewable 
energy, the introduction of renewable energy such as photovoltaic, wind energy, and hydrogen 
energy provides clean and sustainable energy options, the energy transition creates opportunities 
for low-carbon development but also poses challenges to traditional energy system operations 
and balance because of the volatility and instability of renewable energy[1][2]. Under the 
traditional energy system, due to the lack of effective integration, the utilization rate of electricity, 
heat and other energy is low, which leads to the loss of overall economic beneϐits. The utilization 
of renewable energy is restricted if electric power networks and district heat networks are not 
optimally coordinated[3]. Meanwhile, the uncertainty of wind and solar is prone to cause the risk 
of both power shortage and part-load operating [4]. IESs are an effective way to adapt to the 
penetration of renewable energy and improve energy efϐiciency [5][6]. By coordinating the supply 
and demand of various energy, it improves energy utilization efϐiciency and promotes the 
development of energy systems in a more interconnected and complementary direction. 

 The core of IES operation is to maintain the balance of energy supply and demand, among 
which accurate load forecasting is one of the most critical cornerstones [7]. However, in IES, the 
interdependency among heterogenous energy systems is becoming more and more prominent[8], 
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due to its inherent multi-energy coupling characteristics, the prediction problem of IES is very 
complex and difϐicult. If unresolved, this issue will severely impact the stable operation of IES, 
leading to economic losses and energy waste.  

In recent years, with the rapid advancement of AI, data-driven load forecasting has gained 
attention for its accuracy, scalability, and ability to handle complex, nonlinear relationships. 
Traditional methods, while effective in speciϐic cases, struggle with the complex coupling of 
multiple loads in IES. In contrast, DL excels in multi-energy load forecasting due to its strong 
nonlinear feature extraction and high-dimensional spatiotemporal data processing capabilities. 

 Figure 1 outlines the review structure. Chapter 2 covers the background, physical problem 
model, and challenges in multi-load joint forecasting. Chapter 3 introduces DL methods for IES 
forecasting, focusing on timing characteristics, load coupling, multi-task learning, and multiple 
IESs. Chapter 4 addresses key challenges: data insufϐiciency, real-time performance, 
computational complexity, and energy policies. Chapter 5 provides the conclusion.  

2. A clariϐication of the multi-load forecasting problems in IESs  

2.1 Background and motivation of multi-load forecasting in IES 
The IES integrates power, gas, and thermal systems for multi-energy complementarity, 
coordinated supply, and efϐicient utilization via energy conversion and storage [7]. It encompasses 
energy production, conversion equipment (e.g., Combined Heat and Power (CHP), Combined 
Cooling, Heating and Power (CCHP), Power to Gas (P2G)), transmission and distribution networks, 
energy users, and storage systems [9]. Accurate multi-load forecasting in IES is vital for optimal 
operation, cost reduction, and integrating renewable energy [12]. However, it faces challenges like 
high data dimensionality, complex spatiotemporal correlations, and nonlinear relationships 
between energy loads, worsened by renewable energy volatility. [10][11].  

 

Figure 1. The structure of this review. 
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2.2 IES multi-load forecasting physical problem model 
This forecasting problem is essentially a multivariate time series forecasting problem that 
considers the dynamic coupling and randomness between variables.  

1) Objective Function 
The load forecasting problem can be formulated as a regression problem, where the goal 
is to minimize the error between the actual load value and the predicted load value. The 
actual load at time t  can be expressed as: 
 ( ) [ ( ), ( ), ( )]e h ct L t L t L tL  (1) 

where ( )eL t  is the power load, ( )hL t  is the heat load, and ( )cL t  is the cooling load. 

The predicted load at time t  can be expressed as:  

 ]ˆ ˆ( ˆ ˆ( ) () [ , ( ),)e h cL t L t Lt tL  (2) 

where ˆ ( )eL t , ˆ ( )hL t , ˆ ( )cL t  are the predicted electricity, heat, and cooling loads. 

The goal is to ϐind a model that minimizes the sum of the errors of all loads: 

  
1 1

1 1 ˆmin ( ), ( ; )
T N

i i
t i

L t L t
T N


 

    (3) 

where T is the time steps for prediction, and N is the load types, and   is the 
loss function used to measure the prediction error.   are the parameters of the 
model, which are optimized during minimization. 

2) Input 
The model input at time t can be expressed as follows： 
 ]:( ) [ ( ( ),)1tt t n t X L W  (4) 

where ):( 1t n t L   represents the historical load within the past n  time steps, ( )tW  

represents the other factors such as temperature, humidity, wind speed and typical days. 
3) Load Forecasting Model 

The relationship between input features and predicted values can be modeled by a 
mapping   that captures the relationship between load and other inϐluencing factors.  

 )ˆ ( ) ( ( )t tL X  (5) 

The mapping  is parameterized by a set of trainable parameters  , which are optimized 

during model training to minimize the prediction error. 

2.3 Challenges in current multi-load joint forecasting 
Multi-load forecasting in IES is faced with unique challenges due to the diverse characteristics of 
different loads and the complex coupling between them in both time and space. Electricity load is 
affected by economic activities and user behavior, while heat and cooling loads are more sensitive 
to seasonal changes and weather conditions [13]. Additionally, the system's multi-energy 
coupling, where energy is converted between forms, creates intricate interdependencies between 
loads, requiring accurate modeling of these relationships to improve forecasting accuracy. 

Traditional forecasting methods, such as ARMA[14], ARIMA[15], and SARIMA[16], are widely 
used due to their simplicity but face limitations in multi-load forecasting. These methods assume 
linear relationships and rely heavily on historical values, making them inadequate for capturing 
the nonlinear and dynamic characteristics of IES loads. For example, linear regression models are 
static and fail to adapt to changing conditions, reducing forecast accuracy over time [17]. While 
machine learning models, such as SVMs and ensemble methods, offer improvements in capturing 
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nonlinear and multi-dimensional patterns [18][19][20], which still struggle to fully account for 
the complex coupling relationships between different energy forms in IESs. 

3. DL methods for multi-load forecasting in IESs  

3.1 Advantages of DL in IES Multi-energy Forecasting 
DL methods provide notable advantages over traditional approaches in IES multi-energy 
forecasting. They excel at handling complex nonlinear relationships and can automatically extract 
features from multi-source data, enabling uniϐied modeling[21]. Furthermore, DL is highly 
effective for real-time predictions and managing the volatility of renewable energy. These 
advantages make DL widely used in multi-energy forecasting. Table 1 summarizes key references 
that showcase representative applications of DL methods in IES load forecasting.   

3.2 DL multi-load forecasting method considering timing characteristics  
Considering the time series and periodic characteristics of load data in IESs, DL models such as 
LSTM and GRU, which are well-suited for processing temporal features, have been widely used in 
various studies to model both long-term and short-term dependencies within load proϐiles[22]. 
Reference [23] identiϐies typical load days, extracts dynamic similar day features, and builds an 
LSTM-based multi-feature IES load forecasting model, which predicts load using the 

Table 1. Representative DL methods applications in IES load forecasting. 

Ref. Lead times Input variables Feature 
engineering 

Models Augmentatio
n strategies 

Target 
variables 

[26] Short-term Electric, cooling and heat loads MIC BiLSTM MTL Electricity, heat,  
cooling loads 

[27] Ultra-short 
term and 

short-term 

Electricity, cooling, and heat loads, 
weather data 

_ LSTM, Encoder-
Decoder, GBDT 

Logarithmic 
transformation 

Electricity, heat,  
cooling loads 

[31] Short-term Electricity, cooling, and heat loads, 
weather data, calendar information 

CNN, 
pixel reconstruction 

BiLSTM MTL Electricity, heat,  
cooling loads 

[13] Short-term Electricity, gas, cooling, heat loads, 
weather data 

CNN, PCC GRU, Transfer Learning MMD Electricity, gas, 
cooling, heat 

loads 

[34] Short-term Electricity, cooling, and heat loads, 
weather data, calendar information 

CNN, ICA, PCC  BiGRU, Attention MTL, GWO Electricity, heat,  
cooling loads 

[35] Short-term Electricity, cooling, and heat loads, 
weather data 

CNN, PCC BiGRU, Attention Multi-task loss 
weight  

Electricity, heat,  
cooling loads 

[36] Short-term Electricity, cooling, and heat loads, 
weather data, calendar information 

GRA, PCC Transformer, Multi-
head attention 

_ Electricity, heat,  
cooling loads 

[37] Short-term, 
mid-term 

Electricity, cooling, and heat loads, 
weather data, calendar information 

reversible instance 
normalization, MIC 

DTformer 
(Transformer-based) 

_ Electricity, heat,  
cooling loads 

[38] Short-term Electricity, cooling, and heat loads, 
weather data 

PCC, GRA, seasonal-
trend loss,  

Bayesian Multiple-
Decoder Transformer  

_ Electricity, heat,  
cooling loads 

[41] Short-term Electricity, cooling, and heat loads, 
weather data, calendar information 

_ ComNN Geometric loss 
function 

Electricity, heat,  
cooling loads 

a MIC(Maximum Information Coefficient), CNN(Convolutional Neural Networks), PCC(Pearson Correlation Coefficient) 

ICA (Influencing Factors Correlation Analysis), GWO(Improved Gray Wolf Algorithm), GRA(Grey Relational Analysis) 
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characteristics and meteorological data of adjacent and similar days. Reference [24] adds multiple 
layers of LSTM units to build a model, and realizes short-term prediction of multiple loads based 
on deep LSTM. Reference [25] considers the different time scales of different loads in the system 
and proposes a multi-stage LSTM model based on the interpolation method for load forecasting 
on multiple time scales. Reference [26] uses bidirectional LSTM(BiLSTM) to process time series 
bidirectionally, accounting for seasonal load characteristics and predicting the coupled load of 
multi-energy systems. Reference [27] proposes an LSTM-based encoder-decoder (LSTMED) 
model to capture high-dimensional time dynamics of historical load series. Reference [28] 
considers the dynamic coupling characteristics of loads, extracts deep features of multi-energy 
loads through deep belief network (DBN), and uses GRU to predict time series from these features.  

Compared with traditional recurrent neural networks (RNN) and LSTM, the temporal 
convolutional network (TCN) can ensure the causality of time series data through extended causal 
convolution and has good time series processing capabilities. Reference [29] introduces 
participation factors to represent different load proportions and proposes a method combining 
multi-task learning (MTL) with temporal convolutional networks (TCN) for multi-load prediction. 
Reference [30] proposes a QTCN framework based on TCN, combining attention mechanism and 
quantile regression for probabilistic multi-energy load forecasting. 

3.3 DL multi-load forecasting method considering load coupling characteristics  
Considering the coupling between loads in the IES, reference [31], based on BiLSTM, draws on the 
distribution pattern of static image pixels, reconstructs irregular multi-energy load data into a 3D 
pixel matrix, retains its spatiotemporal correlation. Reference [32], based on the LSTM model, 
uses CNN to extract the spatial coupling features of data, and adopts the Auto-Regression (AR) 
model to capture the autocorrelation features of loads in an ultra-short time range. Reference [33] 
builds a CNN-LSTM-BiLSTM short-term power load prediction model, and assigns weights to the 
extracted features through the attention module. Reference [13] uses CNN-GRU to extract the 
coupling characteristics between different loads and the correlation between meteorological 
variables. Reference [34][35] adds attention mechanism in the forecasting model based on CNN-
BiGRU, and constructed a multi-task learning model to improve prediction accuracy.  

In recent years, models based on attention mechanisms, such as Transformer, have gradually 
become important in load forecasting due to their powerful ability to capture global dependencies 
and dynamic associations. Reference [36] proposes MultiDeT based on Transformer to solve the 
problem of difϐicult parallel training of neural networks. It uses a uniϐied encoder and multiple 
task-speciϐic decoders to achieve joint forecasting of loads; Reference [37] proposes a DTformer 
model by optimizing transformer terminal attention mechanism and use a time window attention 
module (TWA) to capture long-term dependencies and reduce computational complexity; 
Reference [38] integrates a Bayesian neural network into the attention mechanism within a 
Bayesian Transformer framework to generate load probability distributions, assigning trainable 
weights to subtasks to quantify uncertainty. Reference [39] proposes a coupling auxiliary 
transformer (CAFormer) model based on Transformer model, which extracts the temporal 
features of each sequence and maps them into a coupling space. A coupling auxiliary sequence is 
constructed in the coupling space to capture the interdependence between the original sequences. 

3.4 DL multi-load forecasting method considering multi-task learning(MTL) 
The idea of MTL is to simultaneously train several related tasks with shared information, so that 
the hope is to improve the generalization performance of each task by the assistance of other 
tasks[40]. Reference [36] proposes a MultiDeT method, which uses multiple decoders to handle 
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each sub-task separately and jointly trains multiple tasks through an end-to-end training 
approach. Reference [38] introduces a multi-task balancing method, where trainable weights are 
assigned to different sub-tasks to quantify uncertainty. Reference [41] proposes a complex neural 
network (ComNN) with a geometric loss function (GLF) to balance multi-task training and 
prevent domination by tasks with large losses. The GLF is extended to a geometric quantile loss 
function to capture uncertainty in load prediction. Reference [42] proposes a neural network 
Gaussian process (NNGP) method for multi-task learning with small-sample data, reducing 
computational complexity and sharing information across different loads. 

3.5 DL multi-load forecasting method of multipleIESs  
For multi-load forecasting across multiple IESs, centralized forecasting methods require the 
collection of raw data from multiple IESs, which poses a risk of data privacy leakage. Reference 
[43], from the perspective of privacy protection, proposes a Spatial-Temporal Adaptive 
Personalized Federated Learning Approach. This approach achieves privacy protection by sharing 
local model weights through a decentralized framework. It captures the complex dynamic 
dependencies between different energy load demands using a spatial-temporal transformer with 
a self-attention mechanism. Reference [44] proposes another federated learning-based model to 
address privacy protection issues. This model uses a distributed approach to train the forecasting 
model within the federated learning framework and considers false data injection attacks. 
 
4. Challenges and Perspectives 

4.1 Data missing and insufϔiciency  
IES load forecasting with DL typically requires extensive historical data, which may be unavailable 
in newly built systems or during disasters. Reference [42] employs a neural network Gaussian 
process model to enhance prediction on small datasets, bypassing matrix operations and 
compensating for the lack of large-scale historical data in IES. Transfer learning holds signiϐicant 
potential in IES load forecasting, as it transfers knowledge from a well-established source domain 
to a target domain with limited data. Reference [13] proposes a CNN-GRU-based multi-energy 
load forecasting model using transfer learning, ϐine-tuning it during training to enhance accuracy.  

4.2 Real-time performance and computational complexity  
For large IESs, load forecasting requires rapid response to system changes to achieve timely 
system energy dispatch and optimization, therefore real-time prediction is very important. 
However, DL methods often use more complex models, which have higher computational costs. 
Therefore, how to reduce the computational complexity of the model and improve the real-time 
prediction capability of the model while ensuring the prediction accuracy is a signiϐicant challenge. 

4.3 Energy policies and market mechanisms  
Changes in energy policies and market mechanisms are also one of the major challenges for IES 
multi load forecasting. Carbon emission policies, renewable energy subsidy policies, market 
electricity price ϐluctuations, etc. will directly or indirectly affect users' energy consumption 
behavior, thereby affecting the system load. If the impact of policies and market mechanisms is 
ignored during forecasting, the model's forecasting effect may deviate from the actual situation. 

 
5. Conclusion 
In summary, with the rapid development of IES, efϐicient and accurate multi-energy forecasting 
became important and challenging. This review offers a comprehensive overview of DL methods 
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for IES multi-energy forecasting, detailing the problem's background, motivation, modeling, and 
key challenges. It also examines various DL forecasting methods, analyzing their applicability, 
advantages, and limitations based on factors like time series and coupling characteristics. 
Moreover, this review also proposes possible future development trends and challenges for the 
multi-energy forecasting problem in IES, and provides some directions worth exploring. 
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