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Abstract Velocity incorporates user dynamic characteristics, facilitating more precise predictions

about the positioning. However, the positioning, velocity, and timing services derived from Global

Navigation Satellite System (GNSS) undergo accuracy degradation in urban environments due to

multipath/Non-Line of Sight (NLOS) effects. Fault detection and exclusion (FDE) methods can

mitigate these effects. However, the existing methods, such as the multi-hypothesis separation solu-

tion (MHSS), exhibit high computational burdens and cannot perform accurate exclusion due to

the excessive fault modes. In response, a fault detection and correction (FDC) method is developed

to address outliers arising from multipath/NLOS in the Doppler measurements. To alleviate com-

putational demands while simultaneously improving velocity estimation accuracy, multipath/NLOS

sparsity assumptions and grouping constraints are introduced. Specifically, the grouping-sparsity

enforcing Least Absolute Shrinkage and Selection Operator (GS-LASSO) is introduced to jointly

detect and correct multipath/NLOS-induced outliers. A grouping strategy based on sky-map and

carrier-to-noise ratio is introduced, which is coupled with a new cost function to improve sparsity

estimation. To facilitate the implementation, a solver and parameter-tuning method incorporating

false alarm rates are developed. The performance of GS-LASSO is compared with that of MHSS.
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The results show that GS-LASSO reduces greater velocity errors in the urban environment, while

requiring limited computational load.

� 2025 The Author(s). Published by Elsevier Ltd on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Thanks to the advancement of smart cities and intelligent
transportation, the Global Navigation Satellite System

(GNSS) is receiving increasing attention for its capability to
provide high-precision position, velocity, and time (PVT) solu-
tions.1,2 However, in urban environments, the accuracy of
PVT solutions is often compromised due to multipath/NLOS

effects.3 Velocity, which measures changes in user dynamics,
is crucial for ensuring accurate positioning. Inaccuracies in
velocity estimation can lead to degraded performance in posi-

tioning prediction. Additionally, velocity information can
serve as prior information for GNSS or other sensors, enhanc-
ing various PVT applications. Research has shown that

velocity-related information is beneficial in navigation tasks
such as GNSS integrity monitoring,4 GNSS-based position-
ing,5,6 stereo visual odometry localization,7 and initial align-

ment of Inertial Navigation Systems (INS).8 Thus, providing
high-precision GNSS velocity information in urban environ-
ments is vital.

For a stand-alone GNSS receiver, velocity can be estimated

using various measurements. Time-difference pseudorange,
time-difference carrier-phase, and Doppler measurements are
commonly employed.9 Among these, time-difference pseudor-

ange provides the lowest accuracy, making it impractical for
certain applications. Time-difference carrier-phase can theoret-
ically provide the highest accuracy, up to centimeter-per-

second, but the frequent occurrence of cycle slips disrupts
the continuity of the carrier phase, resulting in low availability.
Doppler measurements are the most robust, offering
decimeter-per-second accuracy. Furthermore, some studies

combined these measurements to compensate for their respec-
tive drawbacks.10–12 However, all these measurements are opti-
mized for users in open-sky environments. In urban areas,

multipath/NLOS effects are significant and can simultaneously
impact multiple satellites, causing the velocity accuracy
obtained from original measurements to occasionally fall short

of expectations.
Several studies have been conducted to address challenges

in urban environments regarding velocity determination.

Sparse kernel learning13 and Tikhonov regularized kernel
learning14 were utilized to enhance velocity determination
accuracy. However, the false alarm rate is not fully considered
in such kernel learning methods. These methods may provide

surplus correction information in the fault-free case. Auxiliary
information from the ray tracing was also harnessed to
improve velocity measurement accuracy.15 Another common

approach is fault detection and exclusion (FDE), which
involves detecting whether metrics associated with multipath
are statistically greater than predefined thresholds and exclud-

ing satellites contaminated by multipath/NLOS. For single-
satellite faults, the chi-square test was employed to eliminate
multipath/NLOS in Doppler and time-difference carrier-

phase measurements.16 For multi-satellite faults in urban
areas, Guo et al. employed the Random Sample Consensus
(RANSAC) method to estimate velocity estimation with a
prior dynamic model.17 The multi-hypothesis separation solu-
tion (MHSS) has also been utilized to conduct FDE on time-

difference carrier-phase measurements, particularly in rail
and road applications.18 Gao et al. extended MHSS to accom-
modate various measurements, including time-difference pseu-

dorange, time-difference carrier-phase, and Doppler
measurements.19 However, in urban environments, the pres-
ence of multi-fault modes leads to high computational com-

plexity for MHSS in practical applications. The real-time
computational burden of MHSS requires further evaluation.
To ensure the effectiveness of MHSS algorithm, it might be
necessary to compromise part of its exclusion performance.

Additionally, several issues have not been fully addressed,
necessitating theoretical optimization. For one thing, the spa-
tial correlation of multipath/NLOS in urban environments has

not been adequately considered. For another thing, some
scholars have observed that only a fraction of satellites may
be affected by multipath/NLOS in urban environments. Based

on the sparse estimation, the standard LASSO,20 Elastic Net,21

and re-weighted L1 regularization22 were employed to detect
the multipath/NLOS and optimize pseudorange-based posi-

tioning. However, this hypothesis is not fully considered in
the existing work on velocity determination. Thus, a research
gap exists in improving the accuracy of velocity measurement
in urban environments.

Inspired by FDE, a fault detection and correction (FDC)
strategy for velocity estimation in urban environments is
adopted. Rather than excluding satellites contaminated by

multipath/NLOS, correcting the outliers introduced by multi-
path/NLOS in the measurements is the focus. To facilitate this
approach, two key assumptions are introduced. The first

assumption, referred to as multipath/NLOS sparsity,20 sug-
gests that only a small fraction of GNSS measurements is
affected by multipath/NLOS interference. The second assump-
tion, known as fault or multipath/NLOS grouping,23 shows

that satellites with similar geometric distributions are often
affected collectively due to spatial correlation. This correlation
stems from the tendency of signals emitted by satellites with

similar elevation and azimuth angles to reflect from the same
reflector, thereby producing correlated signals. Additionally,
Carrier-to-Noise Density (C/N0), which reflects the extent of

signal fading and characterizes the impact of multipath/
NLOS,24 needs to be considered. Fig. 1 visually illustrates
these two assumptions through a map of multi-system satel-

lites. Satellites of the same group are marked by the same
color. Diamond, circle, and star shapes denote the constella-
tions for the three satellite systems (GAL, BDS, GPS). The
satellites of black and red groups are obscured, indicating that

the Doppler signals may contain outliers. According to our
assumptions, only a small fraction of satellites is subject to
multipath/NLOS contamination, and multipath/NLOS tends

to exhibit grouping behavior based on geometric conditions.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 An illustrative example of a multi-constellation map with

sparsity hypothesis and grouping hypothesis.
Based on the above assumptions, a grouping-sparsity
enforcing Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm named GS-LASSO is proposed. The
GS-LASSO is customized for achieving Fault Detection and
Correction (FDC) to enhance Doppler velocity accuracy in

the measurement domain. LASSO is recognized as a linear
estimator for regression problems with sparsity assumptions.25

By incorporating a sparsity-encouraging cost function on the

standard least squares, LASSO allows for joint detection and
amplitude estimation. The applicability of LASSO in the
GNSS domain has been validated, including cases of single-
point positioning,20 GNSS spoofing detection,26 cooperative

navigation,27 and integrity monitoring.28 LASSO, with the
sparsity assumption, enables users to focus on the limited satel-
lites potentially affected by multipath/NLOS, thereby reducing

computational load. Building on the grouping assumption, the
spatial correlation of multipath/NLOS is further considered,
and LASSO is extended to GS-LASSO. Grouping constraints

allow satellites likely affected by the same source to be simul-
taneously considered, thereby improving estimation accuracy.
By solving GS-LASSO, whether multipath/NLOS effects
are present can be determined. Then, outliers in Doppler mea-

surements can be synchronously estimated and corrected.
Therefore, FDC can be performed to obtain optimized velocity
solutions. GS-LASSO is compared with MHSS19 using data

from urban environments to validate effectiveness in terms
of accuracy and computation time.

Our technical contributions can be summarized as follows.

(1) Skyplot-assisted multipath/NLOS grouping for group-
ing constraints. Satellites are grouped based on elevation

and azimuth angles provided by the skyplot. Addition-
ally, C/N0 is considered as input for multipath/NLOS
grouping. By incorporating grouped constraints, the
LASSO model is enhanced to a group LASSO model,
which attenuates the influence of unimportant groups

to zero while preserving information from groups con-
taining faulty satellites.

(2) New cost function to ensure sparsity and estimation

accuracy. The estimation of a generic group LASSO
with traditional cost functions is prone to outliers and
has limited sparsity-holding capabilities. In response,
we introduce an inverse tangent cost function (arctan-

gent cost) to improve the sparsity of the estimation
results and enhance the accuracy of fault magnitude esti-
mation. Consequently, the GS-LASSO model with arct-

angent cost is developed.
(3) Efficient solver design for GS-LASSO. A closed-form

solution is absent for all LASSO-related problems. To

facilitate GS-LASSO, a solver for numerical solutions
is developed. Comprehensive steps with analysis are out-
lined to ensure that the estimation results converge to
the global optimum. Furthermore, computation time is

examined using complexity analysis and real data to
demonstrate the superiority of the GS-LASSO.

(4) Performance analysis of GS-LASSO covering false

alarm rate and detection ability. Aside from the accu-
racy, false alarm rate and detection ability are also con-
sidered. A parameter tuning criterion is proposed to

ensure the correction information is provided below
the false alarm rate in fault-free cases. A sufficient con-
dition for multipath/NLOS detection is also provided.

The structure of the remaining paper is as follows. In
Section 2, the preliminary knowledge regarding the Doppler
velocity and the LASSO is introduced. In Section 3, the

GS-LASSO model establishment and solver design are
presented. In Section 4, the performance of the proposed
GS-LASSO regarding the false alarm rate and detection ability

is examined. In Section 5, experimental results are analyzed.
Section 6 summarizes the paper.
2. Mathematics model for Doppler-based velocity determination

and LASSO-enforcing FDC

In this section, the mathematical model for the Doppler veloc-

ity determination is first presented, followed by the analysis of
the multipath/NLOS on the velocity estimation. Subsequently,
a constrained combinatorial optimization problem, analogous

to LASSO, is introduced for modelling the multipath/NLOS
sparsity.

2.1. Doppler-based velocity determination method

The frequency of the GNSS carrier signal received by the recei-
ver differs from the frequency of the carrier signal transmitted
by the satellite according to the Doppler effect. This occurs

when there is relative motion between the GNSS receiver
and the satellite. The difference in frequency is referred to as
the Doppler frequency shift. The Doppler effect can be

described as29

fd fr f s 1

where f s is the signal frequency transmitted by the satellite. fr
is the signal frequency received by the receiver. fd is the
Doppler frequency shift. The magnitude of the Doppler
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frequency shift is related with the change rate of ranges

between receivers and satellites. If q is the change rate and c
is the speed of light, Eq. (2) holds as

q
c

f s fd
c

f s fr f s 2

The Doppler frequency shift fd can be directly obtained by
the GNSS receiver. The velocity derived from the raw Doppler

frequency shift generated by the receiver is the instantaneous
one. The GNSS single-point positioning yields the Doppler
velocity determination mathematical formulations. Differenti-

ating the pseudorange concerning time introduces the follow-
ing equation

qj

rr rs

qj

rr rs c drc d
j

sc d
j

trop d
j

ion d
j

mp e j

3

where the symbol is the inner product between two vectors. qj

is the pseudorange between jth satellite and receivers. qj is the

change rate of pseudorange between the jth satellite and recei-

vers, which can be calculated from Eq. (2). d
j

ion and d
j

trop are the

jth change rate of the ionospheric and tropospheric delay,

respectively. d
j

MP NLOS are errors caused by the multipath/

NLOS. rr and rr denote the position and velocity vectors of

the receiver, respectively. rs and rs represent the position and

velocity vectors of the satellite, respectively. dcr and d
j

cs denote

the clock drifts of the receiver and the jth satellite, respectively.

e j signifies the noise rate. Satellite velocity and the clock speed

can both be directly obtained from navigation messages. Since
the time intervals for velocity measurements are typically tiny
in practical calculations, the variations in ionospheric and tro-

pospheric delays can be neglected. Eq. (3) involves only four
unknowns, including the three-dimensional velocity of the
receiver and its clock drift. Therefore, theoretically, if

n n P 4 satellites can be in view, aforementioned unknowns
can be reformulated as the following form as Eq. (4) with
the elements listed from Eqs. (5)–(7).

Z HX dMP NLOS e 4

X

vx

vy

vz

cdcr

5

H

ex1 ey1 ez1 1

ex2 ey2 ez2 1

exM eyM ezM 1

6

Z
rr rs

q
rs cdt q 7

where Z is the Doppler observation.X is the state to be esti-

mated containing the three dimension velocity and clock drifts.

exj , e
y
j and ezj are the elements of the three-dimensional line-of-

sight unit vector. H is the design matrix. Since the distance

between GNSS satellites and the earth is large, exj , e
y
j and ezj

do not change a lot for receivers within a hundred meters.
Therefore, estimation result from the single-point positioning

can be used to provide H matrix. Note that the e in Eq. (4)
does not follow a standard Gaussian distribution. To simplify
subsequent expressions, Eq. (4) are first normalized by the

standard deviation to make each element of e follow a stan-
dard Gaussian distribution.

dMP NLOS is small in the open-sky environment. However, in

the urban area, the multipath/NLOS is significant. On the one

hand, dMP NLOS will become large due to the rapid change of

the multipath/NLOS. On the other hand, the Doppler shift
is determined by the combined velocities of the wave source

and user, projected onto the line connecting them and aligned
with the wave propagation direction. However, Doppler mea-
surements are also highly affected by NLOS and multipath due

to the tall building. NLOS refers to situations where the direct
signal is blocked, and only reflected signals reach the
receiver.30 Multipath typically refers to scenarios where both
direct and reflected signals are received simultaneously.

Although the mechanisms underlying these two phenomena
are different, both NLOS and multipath effects change the
direction of wave propagation and introduce errors in the

Doppler shift received by the receiver, impacting the accuracy
of velocity estimation based on Doppler shift. Some literature
defaults to modeling both outliers caused by NLOS and mul-

tipath as an additive fault in Doppler measurements.17,19 We
follow this assumption and provide a preliminary analysis of
its feasibility in Appendix A. By rearranging the above equa-

tions, the model is

Z HX f 8

where f includes the outliers caused by the change rate and the
Doppler frequency shift. Note that we model the effects of
NLOS and multipath on Doppler measurements similarly.

Impacts of both NLOS and multipath on Doppler are taken
as outliers. This study does not necessarily make a distinction
between the two error sources. e denotes the noise. After

getting the approximate position and the design matrix H,
the estimated velocity can be estimated using the least square
(LS) as

X HTH
1
HT Z f 9

When multipath/NLOS is present, the estimation from

Eq. (9) deviates significantly from the ground truth. To miti-
gate the impact of multipath/NLOS, an effective approach is
to detect the existence of f and then correct it in Eq. (9).

2.2. LASSO-aware multipath/NLOS detection and correction

A commonly employed technique for identifying faults in
GNSS measurements involves the receiver autonomous integ-

rity monitoring (RAIM).31 The sum of squares for errors
(SSE) is as follows if the multipath/NLOS exists

SSE Z f
T

I H HTH
1
HT Z f

Z f
T
W Z f 10

where W I H HTH
1
HT is an idempotent matrix satisfy-

ing WTW W. If we hope to estimate f, an obvious method is

to solve the optimization problem formulated in Eq. (10). We
find f to minimize SSE 2:
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Fig. 2 GS-LASSO framework for enhanced Doppler velocity

accuracy.
argmin
f

1

2
Z f

T
W Z f 11

If complete information regarding potential multipath/

NLOS is available, the solutions of Eq. (11) can be attained
through exhaustive exploration using MHSS to try all feasible
solutions. However, users are often unaware of which satellites

are affected, significantly complicating the process of RAIM.
This issue becomes particularly challenging when multiple
multipath/NLOS occurs simultaneously. Therefore, this

method is complicated in practice.
To solve this, we hold that constraining the number of mul-

tipath/NLOS is imperative to yield a meaningful solution. This
constraint is feasible because, in urban scenarios, simultaneous

multipath/NLOS in all satellites is rare. Instead, a subset of
satellites typically exhibits dominant effect by the multipath/
NLOS. Under this assumption, we assume multipath/NLOS

in different GNSS signal channels are usually sparse in nature.
A new constraint is added and Eq. (11) is reformulated as

argmin 1
2

f

Z f
T
W Z f

s t f 0 6 x
12

where f 0 is the l0-norm and x is a user-specified constant to

judge the number of zero elements in f. However, the optimiza-
tion problem encompassing l0-norm is inherently non-convex
and non-smooth. Consequently, Eq. (12) is hard to solve. An

alternative is to consider the l1-norm instead of the l0-norm.
Therefore, Eq. (13) is considered

argmin 1
2

f

Z f
T
W Z f

s t f 1 6 d
13

where f 1 is the l1-norm and d is a constant given by user. Due

to the convex optimization, Eq. (13) can be tackled with supe-
rior computational efficiency. Using the Karush-Kuhn-Tucker
condition, Eq. (13) can be rewritten as a Lagrange multiplier-

driving unconstrained penalized optimization problem

argmin
f

1

2
W Z f

T
W Z f k f 1 14

where k 0 is the Lagrange multiplier. Eq. (14) shows a l1-
norm cost (or penalty) is added after the least square. This

aligns with the typical LASSO problem. LASSO is a linear
regression estimator to get the sparse regression result, widely
used in the domain of compressive sensing,32 chemical pro-

cess33 and mechanical engineering34. It can result in a shrink-
age of the estimated f, forcing some of them to be zero.
Therefore, only variables in f that have a significant impact

on the regression results will be selected. As a result, LASSO
facilitates automatic detection and magnitude estimation.
Using the algorithm in Ref. 25, Eq. (14) can be easily solved
and f is obtained. After getting f, it can be removed in

Eq. (9) and the velocity error is corrected. Hence, a better
solution can be expected.

3. GS-LASSO enforcing Doppler velocity determination design

To mitigate the impact of multipath/NLOS on Doppler veloc-
ity determination, a GS-LASSO approach, derived from

LASSO, is proposed for urban environments. GS-LASSO is
based on assumptions of multipath/NLOS sparsity and group-
ing. The flowchart is illustrated in Fig. 2. Our primary contri-
bution is to involve the sparsity-grouping enforcing velocity
determination optimization to jointly detect and estimate the

impact of multipath/NLOS on Doppler measurements. To
facilitate this, the steps are as follows. The first is to use the
geometric information of the sky map and C/N0 for grouping.

Second, we can calculate k based on grouping information and
false alarm rate requirements for parameter tuning, since the
distribution of the parameter k can be overbounded by the
weighted chi-square distribution. The third is to use the Alter-

nating Direction Method of Multipliers (ADMM) algorithm
to cyclically calculate Doppler outliers. Finally, correcting
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for the outliers induced by multipath/NLOS as estimated by
GS-LASSO can result in a higher estimation accuracy.

3.1. Grouping-sparsity-promoting multipath/NLOS mitigation
model establishment

Owing to the presence of flat point reflectors, direct signals are

affected to introduce the extra reflected signals arriving from
similar directions. Consequently, multipath/NLOS is pro-
voked by the associated measurements. In urban areas, the

common assumption of multipath/NLOS independence within
aviation domain lacks feasibility. Therefore, we adopt an
assumption that multipath/NLOS of different satellites are

interrelated if they share some identical characteristics.23

Under this assumption, satellites can be grouped based on
prior information. It is assumed that each group of satellites
is subject to multipath/NLOS simultaneously, while the pres-

ence of multipath/NLOS interference between different groups
is considered independent.

The generic group LASSO is introduced to incorporate the

group sparsity. Consider f is partitioned into B non-
overlapping groups, namely

f

f1

f2

fB

15

where the dimension of fi is mi, i 1 2 B. mi is the ith

group length. The summary of mi equals the dimension of f
as n. The split method can be done based on the prior knowl-
edge. Then, the multipath/NLOS mitigation method can be

cast as the following unconstrained optimization problem as35

argmin
f

1

2
W Z f

T
W Z f k

B

i 1

mi fi 2 16

where the generic group Lasso cost, represented as
B
i 1 mi fi 2, serves as an intermediary between the l1-norm

and l2-norm cost. It collectively diminishes group-wise contri-
butions {fi}, ensuring zero contributions from irrelevant
groups. Note that a special case is when mi 1 for

i 1 2 B, namely, each group contains only one element.
Eq. (16) returns with the LASSO problem. In instances where
observations suffer from contamination, only the grouping

substantial outliers are highlighted, while the uncontaminated
measurements in other groups are near zero.

Researches show that the cost functions in Eq. (16) tend to

underestimate the signal amplitude and sparsity in practice. 34

This will lead to inaccurate estimation and correction of f. As a
compensation, non-convex costs have gained popularity.36–38

It surpasses the l1-norm in promoting group sparsity and pro-

ducing more precise estimations of multipath/NLOS. In this
paper, we consider an arctangent cost to replace the generic

group LASSO whose cost is
B
i 1 mi fi 2. The optimization

problem in the GS-LASSO is

argmin
f

1

2
W Z f

T
W Z f k

B

i 1

miw fi 2 a

17
where a > 0 determines the non-convex degree of the cost. For

any constant t, the arctangent cost w t a and its first-order

derivative of w t a read 34

w t a
2

a 3
arctan

1 2a t

3

p
6

18

w t a
sgn t

1 a t a2t2
19

where sgn(t) is the sign function. Since t fi 2 here, sgn(t) is

always 1. When the scalar parameter a approaches zero, the
GS-LASSO approaches the generic group lasso. Fig. 3 depicts
the cost functions of the cost and the associated first deriva-

tives. Clearly, the one-dimension function profiles show the
arctangent cost has the better ability to approach the l0-
norm. Compared with the case where a = 0.1, when a is larger

(a = 1), the arctangent cost function approximates the l0-norm
more closely. Therefore, the solution of the non-convexity
optimization shares more similarity with the optimization as
Eq. (12). Overall, the non-convex cost cannot only enhance

the sparsity but also maintain the amplitude of the multi-
path/NLOS.

However, non-convex costs may make the overall problem

stuck in shallow local minima and results in inaccurate solu-
tion. To address this problem, we should notice that

W Z f
T
W Z f is a convex function. Since a parame-

terizes the non-convexity of the cost, if an appropriate value is

chosen, Eq. (17) can still be a convex function. Therefore, the
restriction of a can make the final solution converged,36 which
needs to be considered in the solver design.

3.2. Multipath/NLOS grouping strategy

A preprocessing strategy for multipath/NLOS grouping is pro-
posed to address the spatial dependence of multipath/NLOS in

urban areas. If redundant sensors such as fisheye cameras are
available, the integrated information can be utilized to design
the grouping strategy.39,40 However, since these sensors are not

always accessible to GNSS users, GS-LASSO focuses primar-
ily on grouping based on GNSS-only features.

Following insights from Ref. 23, elevation angle and azi-

muth angle are initially chosen as inputs for multipath/NLOS
grouping. These features are selected because satellites with
similar geometric positions may be obstructed simultaneously
by the same buildings. However, GNSS signals from satellites

with similar azimuth and elevation angles may still encounter
varying multipath/NLOS effects in dynamic environments.
The C/N0 values may significantly differ among satellites with

similar elevation and azimuth angle.24 This arises because C/
N0 is sensitive to whether GNSS signals are affected by reflec-
tion, refraction, diffraction, or non-line-of-sight reception.

Consequently, C/N0 serves as a third parameter for multi-
path/NLOS grouping. Significantly, C/N0, elevation angle
and azimuth angle are generally accessible at every receiver.

C/N0 is directly gauged by the receiver, while elevation angle
and azimuth angle are calculated by known satellite positions
using their present coordinates from the real-time ephemeris.
In summary, for GNSS-only users, three GNSS based features

are fully utilized. These three features have also been used
extensively in the identification of GNSS LOS and NLOS/mul-
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Fig. 3 Sparsity-inducing costs and the first-order derivatives of costs.
tipath in the previous references.41–43 If all the characteristics

of two satellites are similar, they will be likely to be contami-
nated at the same time.

Therefore, a preliminary sky-plot-based is implemented

with the following rule: (A) the satellites should be first sepa-
rated into segments according to the elevation angle,
i.e.hel 80 , 60 6 hel 6 80 , 40 6 hel 60 and hel 40 .

hel is the elevation angle in degrees. (B) For the case where
60 6 hel 6 80 , start counting in ascending order of the
PRN number and observe if there are any other satellites are
within the 25 azimuth range of the current satellite. If so,

group these satellites together. If not, repeat this process for
the next satellite until all satellites have been grouped. This
also applies to the case where hel 40 and 40 6 hel 60 .

(C) For all groups, the group needs to be split again based
on the C/N0. Satellites with C/N0 greater than the empirical
value are divided into sub-groups. Conversely, the remaining

satellites are divided into another group.
To facilitate the rule (C), the relationship between the signal

quality curve and elevation angle is fitted. Third-order polyno-
mials are applied to fit data using the least squares criterion,

with corresponding uncertainties then calculated. A trial detec-
tion threshold, comprising the mean plus standard deviation, is
computed. Similar approaches have been reported for such

threshold.44 If measurements fall above this curve, they are
considered unaffected by NLOS or multipath effects; other-
wise, they are deemed affected by NLOS/multipath. The

threshold TC N0
as a function of elevation angles is given by

TC N0
A Bhel C hel

2
D hel

3
20

where A, B, C and D are parameters to be fitted. Fig. 4 pre-
sents the C/N0 test results recorded over a 24 h period under
open-sky conditions. The signals utilized include those from

GPS L1, BDS B1I, GAL E1, GLONASS L1, and QZSS L1.
As B1C signal is currently unavailable in this paper, its poten-
tial use will be considered in future studies. Due to the varying

C/N0 distributions among different satellite constellations,
Figs. 4(a)–(e) presents the fitting results for each constellation.
Additionally, Fig. 4(f) shows the fitting result obtained by

combining all constellations. The values are dependent on
the specific antenna and receiver being used, meaning they will
vary based on the equipment.

The parameters of Eq. (20) for C/N0 grouping are outlined

in Table 1. In our ongoing experiment, the results from
Figs. 4(a–e) are employed in our subsequent Experiment 1,
yielding more precise results when the same receiver is used.

For the publicly available data in Experiments 2 and 3, the
results from Fig. 4(f) are utilized. This is because the C/N0 pat-
tern is related to the user receiver and antenna. Since the hard-

ware in the public dataset is different, we use data in Fig. 4(f)
for Experiments 2 and 3. Fig. 4(f) can illustrate the trend
between C/N0 and elevation angle, and it offers reliable veloc-

ity estimation when utilizing different hardware.
After multipath/NLOS grouping, it is assumed that the

multipath/NLOS across each group is independent.

3.3. Solver for GS-LASSO

GS-LASSO does not have a closed-form solution, necessitat-
ing the design of an appropriate solver. The alternating direc-

tion method of multipliers (ADMM) is employed for this
purpose.45 The whole target function expressed in Eq. (17)
can be decomposed into some sub-problems. This decomposi-

tion facilitates the optimization of one variable while holding
the others constant. The detailed derivation is provided below.

According to the ADMM, Eq. (17) is reformatted as a con-

strained optimization problem

argmin
f

1
2
uTu k

B

i 1

miw fi 2 a

s t u WZ Wf

21

Here u is the introduced variable for constructing the
ADMM formulation. The augmented Lagrangian function
of Eq. (21) is considered as

L f z u
1

2
uTu k

B

i 1

miw fi 2 a

zT Wf u WZ
g
2
Wf u WZ

2
2 22

where z denotes the Lagrangian multiplier vector.

Wf u WZ
2
2 is the squared l2-norm of Wf u WZ. The

parameter g is an auxiliary parameter.
Before the deviation, the meaning of the expression is clar-

ified to avoid ambiguity. First, f k, uk and zk are the results of
the kth iteration in the ADMM. They are constant vectors

whose values are fixed. Second, f, u, and z are vector-typed
random variables to be optimized in the k 1th iteration. Such

variables can be differentiated. Third, f k 1, uk 1 and zk 1 are

the results of the k 1th iteration. The f k 1,uk 1 and zk 1
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Fig. 4 Elevation angle - C/N0 curve with C/N0 threshold TC N0
and their source data.

Table 1 Parameters for elevation angle-C/N0 curve.

Parameter Constellation

BDS GAL GPS GLO QZSS All

A 34.57 33.22 30.30 29.46 35.70 31.17

B 0.31 0.33 0.39 0.46 0.40 0.39

C 10 3 3.9 1.1 3.1 4.9 3.0 3.5

D 10 5 2.10 1.10 0.58 1.50 0 0.84
are also constant vectors. Overall, f, u, and z without the super-

script k represent random variables, while those with the
superscript k. or k 1 represent constant vectors. Note the
random variable f to be optimized in the k 1th iteration is

independent from the constant vector f k. In other words,

f k f 0. In addition, subscripts i represent the ith group.

Taking fi as an example, this represents extracting the element
corresponding to the ith group in the random variable f.

Therefore, we can iterate f, u and z until the ADMM is
converged. The fundamental step is as follows. In the
k 1th iteration, we first substitute the random variables u

and z in Eq. (22) with the constant vectors uk and zk from
the kth iteration. Therefore, the multivariable optimization

problem is converted into a single-variable optimization prob-

lem regarding the variable f. The optimization solution is f k 1.
Subsequently, substitute the random variables f and z in Eq.

(22) with the known constant vectors f k 1 and zk. Therefore,
the multivariable optimization problem is converted into a
single-variable optimization problem regarding the variable

u. The optimization solution is u k 1. Similarly, we use the

known f k 1 and u k 1 to solve for z k 1. The specific process

is as follows.

Step 1. Update f with uk and zk

By making the values of u and z fixed, the optimization
problem of Eq. (22) can be transformed as

f k 1 argmin
f

k
B

i 1

miw fi 2 a

zk
T
Wf uk WZ

g
2
Wf uk WZ

2

2
23
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Fig. 5 Flowchart of fixed point iteration scheme to solve

Eq. (29).
Since the matrix W is not an identity matrix, f k 1 cannot be
directly decomposed into separated groups. To update f in a
simpler and easier manner, inspired by Ref. 45, a slack proxi-

mal term to Eq. (23) is added as follows:

f k 1 argmin
f

k
B

i 1

miw fi 2 a zk
T
Wf

g
2
Wf uk WZ

2

2

1

2
f fk

2

S
24

where S g rI WTW is a positive semidefinite matrix. r is

a weighted parameter to control the proximity of f to f k. r is

required to be not less than the spectral radius of WTW. Since
W is an idempotent matrix, therefore r can be chosen slightly

above 1 in practice. I is an identity matrix whose dimension

equals that of WTW. f f k 2

S
is the semi-norm introduced

by the seminner product related with S, given by

f f k 2

S
f f k T

g rI WTW f f k

gr f f k 2

2
g f f k T

WTW f f k
25

Therefore, we have

f k 1 argmin
f

k
B

i 1

miw fi 2 a gr
2
f Tf

fT WT zk
T

gWT uk WZ grf k gWTWf k

26

The term WT zk
T

gWT uk WZ grf k gWTWfk is

irrelevant with f because the constant vector fk is independent
of the random variable f.45 An auxiliary term

WT zk
T

gWT uk WZ grf k gWTWf k
2

2
gr can be

directly added to Eq. (26). A scaled term is reformulated as

f k 1 argmin
f

k
B

i 1

miw fi 2 a
gr
2

f ck
2

2
27

where ck f k WT gWZ gWfk guk zk gr f k

W gZ gf k guk zk gr . Compared with Eq. (23), the

matrix before f is an identity matrix instead of W. This drives
us to separate variables and obtain updates of each group as

fk 1
i argmin

fi
w fi 2 a

1

2l i

fi cki
2

2
28

where li k mi gr .There is no closed-form solution for

Eq. (28) because of the introduction of the arctangent cost.

Fortunately, guided by a recent research,37 Eq. (28) can be
solved by taking its first order derivative with respect to fi
and setting it to 0. The formulation is

li

fi
fi 2

w fi 2 a fi cki 0 29

A sufficient and necessary condition to make the solution fi
of Eq. (29) be the solution of Eq. (28) is that Eq. (28) is a con-
vex function. Fortunately, Eq. (28) is strictly convex if and

only if

lia 1 30

This property has been rigorously proven in Ref. 36 and
has been applied in several studies.34,37,38 With suitable
parameters, the calculated fi in Eq. (29) is the global optimal
solution. Herein, we can use the fixed-point method to handle

the problem in Eq. (29). The flowchart of fixed-point iteration
scheme can be seen in Fig. 5. We mark q in the superscript of
fi, representing the qth iteration in the process of solving the

fixed-point function. represents multiplying by elements
between two vectors. Due to the property of the fixed-point

iteration, f
q
i converges with a linear rate to the unique root

fki . The proof of the convergence of the fixed-point method

can be seen in Ref. 37.

After getting the final converged fki , this process is repeated

for elements in each group. Results of each group are stacked

together to form the final f k.

Step 2. Update u with f k 1 and zk

By making the values of f and z fixed, the optimization
problem can be transformed as

uk 1 argmin
u

1

2
uTu zk

T
Wfk 1 u WZ

g
2
Wfk 1 u WZ

2

2
31
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By adding zk
T
zk 2g , a scaled version can be obtained as

uk 1 argmin
u

1

2
uTu

g
2
Wfk 1 u WZ

zk

g

2

2

32

The minimum value is calculated when the derivation of
Eq. (32) equals zero. After simple manipulation, the solution is

uk 1 g
1 g

WZ
zk

g
Wfk 1 33

Step 3. Update z with fixed u k 1 and f k 1

By fixing u k 1 and f k 1, a simple criterion to update z is as

zk 1 zk g Wfk 1 uk 1 WZ 34

After conducting the three steps for all groups, we must

determine whether the used ADMM can present a reliable
result. Fortunately, the estimation can be ensured to
converge to the underlying ground-truth value, as shown in

Appendix B.46 Therefore, the stopping criterion can be

rk 1 uk 1 WZ Wfk 1

2
6 10 2

sk 1 f k f k 1
2

max f k 1

2
1

6 10 2
35

The first metrics measure the difference between u and
WZ Wf. The second metrics measure the differences

between f in adjacent loops. The upper bound of the iteration
number is chosen as 1 000. If the ADMM does not converge,
no output is presented. Overall, the procedure of the ADMM

to solve the GS-LASSO has been derived. To facilitate the
actual practice, the algorithm is listed in Algorithm 1. After
getting f, Eq. (9) is calculated to output X.

Algorithm 1. ADMM solvers for solving GS-LASSO.
Input: regularization parameter k, auxiliary parameter g, non-
convexity parameter a, weighted parameter r

Output:f k 1

1. Initialize: f 0 u0,z0

2. for k 0 1 2 1 000 until convergence do

3. ck f k W gZ gf k guk zk gr
4. for i 1 2 B do

5. li k mi gr
6. if a 0//GS-LASSO

7. f k 1
i solved according to Fig. 5

8. end if

9. end for

10. f k 1 stack f k 1
i , i 1 2 B//Step 1

11. u k 1 g WZ zk g Wf k 1 1 g //Step 2

12. z k 1 zk g Wf k 1 u k 1 WZ //Step 3

13. end for
3.4. Time complexity analysis

The time complexity of ADMM solvers is now examined. The
time complexity is dominated by three steps in each iteration.

For the Step 1, the time complexity to compute ck is O n2 and
the time complexity to solve Eq. (29) is O Nfixedn , where Nfixed

is the iteration number for the fixed-point method to converge.

Nfixed can be approximately estimated as Nfixed logL1
e1 ,

where 0 L1 1 is the Lipschitz constant and e1 is the
expected accuracy of the convergence error.47 In practice,
Nfixed is typically less than 30. For the Steps 2 and 3, the com-

putational cost is around O n2 . The time complexity cost in

an iteration for ADMM is O n2 Nfixedn . Therefore, the final

result using ADMM has a complexity of

O NADMMn
2 NADMMNfixedn . NADMM represents the number

of iterations required for ADMM to converge, typically scales
as O 1 e2 based on ADMM convergence theory.48 e2 is the
expected accuracy error of the ADMM. For moderate values

of Nfixed, the magnitude of NADMM significantly impacts the
computational efficiency of GS-LASSO. In practice, address-
ing ADMM problems does not demand heavy resources.

GS-LASSO simply includes executing a sequence of mathe-
matically tractable updates, rendering it computationally
feasible.

By comparison, the complexity of the standard LS is O n3 ,

which is generally smaller than O NADMMn
2 NADMMNfixedn .

The complexity of the MHSS can be noted as49

O n3 1
-

a 1

n

a n a
n 1

3
1

- 1

a 1

n 1

a n a 1

36

where - is the number of the satellites polluted by the multi-

path/NLOS. The greatest computational load comes from
the combinatorial numbers. In a typical urban environment
with multi-constellations, as - and n increase, the load intro-
duced by the combinatorial numbers will exceed that intro-

duced by NADMM. The computational burden for MHSS is
much higher than the GS-LASSO.
4. Performance analysis of GS-LASSO

As mentioned earlier, inspired by FDE, GS-LASSO can per-
form detection and correction operation. Therefore, similar

to FDE, false alarm rate and detection ability must be consid-
ered in the detection process. This section examines the rela-
tionship between the regularization parameter and the false

alarm rate, providing a parameter-tuning criterion. Due to
the complexity of GS-LASSO, directly analyzing the missed
detection rate is challenging. Thus, this section establishes suf-

ficient conditions of the minimum detectable multipath/NLOS.
Finally, situations where GS-LASSO performance may
degrade are discussed.

4.1. Parameter tuning of Lagrange multiplier k accommodating
false alarm rate

In the GS-LASSO, the Lagrange multiplier k works as a tuning
parameter. The value of k exerts heavy influence on the esti-
mated solution. An over-large k will make all regression coeffi-
cients tend to be zero. Conversely, an excessively small k will

make Z approaches f. Hence, many fault-free candidates will
be regarded as the faulty, making the FDC not reliable, which
is the case of false alarm. In the LASSO-related problems, there

are mainly twomethods to conduct parameter tuning. First, the
information criterion is intensely used to select real-time k, such
as the generalized cross-validation and Akaike information cri-
terion.13 Second, a fixed k can be calculated from the training

data collected before.20 However, as discussions in Ref. 50,
LASSO can also be seen as a progress containing detection.
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From this perspective, in the multipath/NLOS-free case, the
estimated f should be a zero vector. If this is not satisfied, a false
alarm event exists. Unfortunately, the currently tuning meth-

ods fail to consider this. Namely, the Required Navigation Per-
formance (RNP) is not fully considered.

Hence, for RNP, the relationship between k and the false

alarm rate is taken into account. k is tuned to ensure the false
alarm probability will not exceed the required value. This will
be beneficial to grant the user with sufficient continuity perfor-

mance in the navigation task.
In a multipath/NLOS-free case, to ensure no false alarm is

presented, the estimated f needs to be a zero-vector. There is a

finite sequence of transition points k1 k2 kn 0.51

When k exists between two adjacent transition points, the
number of non-zero elements in f keeps unchanged. A special

case occurs when k exceeds the largest transition point k1, the
estimation of f only contains zero. Namely, to avoid false
alarm, i.e., to ensure f is a zero-vector, a necessary and suffi-

cient condition is to make k P k1. Therefore, we can build

the relationship between k, k1 and f for GS-LASSO.

Our first aim is to find the critical k1 to ensure f is the zero

vector. The overall objective function of Eq. (17) is non-

smooth due to the non-smooth cost. However, the overall
objective is convex if Eq. (30) is satisfied. Therefore, instead
of the differentiation methods, the sub-gradient method can

be employed.52 For simplicity, we can write the convex objective
as

F f
1

2
W Z f

T
W Z f k

B

i 1

miw fi 2 a 37

According to the property of the sub-gradient, a point

f Rn minimizes F i.e., f is the solution to Eq. (17) if and only

if 0 F f at f.52 For group i 1 6 i 6 B , the gradient of F f

evaluated at f reads

F f WT f Z
i

ki miji 38

where ji denotes the sub-gradient of w fi 2 a as follows

ji

fi

1 a fi 2
a2 fi

2

2
fi 2

fi–0

ji ji 2 6 1 fi 0

39

Consequently, for each group, fi only contains zero ele-
ments if the following three conditions hold

F f WTZ
i

ki miji 40

fi 1 a fi 2
a2 fi

2

2
fi 2

ji 41

ji 2 6 1 42

Notice that Eq. (41) always holds if fi 0, we only need to

search k and ui to satisfy Eq. (40) and Eq. (42). The unique
solutions are represented as follows,

ki P k1 i WTZ
i

mi 2
43

ji WTZ
i

ki mi 44

Therefore, the equations represent the necessary and suffi-

cient conditions on k to make fi a zero vector. For all groups,
the required k should be the maximum value of all possible k1.
For further simplification, H is set as a B 1 vector whose ele-

ment contains k for i 1 2 B. The final k is11 i
2

k1 max
i

WTZ
i

mi 2
H 45

where max means the maximum element of a vector and H
is the infinite norm.

In summary, if k is tuned according to Eq. (45), f will
always be zero. Notice in practice, the specific value of H
changes with the observation. But the probability distribution

of H should be identical when there is no multipath/NLOS.

Therefore, attention is towards the probability distribution

function (PDF) of H . We can set the value of k according

to the quantile to the false alarm rate if the distribution of

H is available.

Therefore, the second aim is to find k to make

P k H f 0 at a value less than the required false alarm

rate. Before the ongoing derivation, finding the accurate distri-
bution of H is hard. A method using Monte Carlo and

extreme value theory can be used to estimate the distribution
of H in LASSO, but no method is extended for the GS-

LASSO.50 An alternative method is to consider the probability
distribution function of l2 norm of H on tuning k.53 According
to the norm inequality, the following holds

H 6 H 2 46

If k H , k must be lower than H 2. Consequently,

P k H 6 P k H 2 . This means we only need to assess

the value of P k H 2 P k2 H 2
2 . We further notice

H 2
2

B

i 1

WTZ
i

mi
2

2

B

i 1

I H HTH
1
HT Z

i
mi 47

If mi 1, H 2
2 follow a chi-square distribution with degree

of freedom (DOF) as n 3 ncons, where ncons is the used con-

stellation.53 However, if mi varies, the consideration of the real
DOF is not feasible. Consequently, we subsequently ignore
their effect, insisting that each element obtained from

I H HTH
1
HT Z in the multipath/NLOS-free case is

entirely independent. Fortunately, with this inflated DOF,
the quantile corresponding to the same false alarm rate also

increases and the computed k is larger. Namely, this guaran-
tees that the false alarm rate remains conservatively lower than
the expected performance requirement.

Now we can show the closed-form distribution of H 2
2.

Under the above assumption, the value of H 2
2 can be seen

as a summary of chi-square distribution with different weights.

Therefore, H 2
2 follows the weighted chi-square distribution.

The weights are related with the number of satellites in a
group. Its cumulative distribution function (CDF) is given in

the Appendix C.54 Therefore, the value of k can be obtained
as at the false alarm rate Pfa of the weighted chi-square distri-
bution, which is shown as

k h 1 Pfa a DOF 48
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where h 1 is the inverse CDF of the weighted chi-square distri-

bution. n is a vector containing weights for each group and
DOF is a vector signifying the DOF for each group. Some
methods to quickly estimate the quantile can be referenced

at Ref. 54. Finally, we can ensure P k H 2 f 0

P k2 H 2
2 f 0 P k H f 0 Pfa, which com-

pletes our derivation.
Finally, when no multipath/NLOS is detected, Eq. (17)

returns with the LS. This means the estimated result of the

group LASSO is identical to the least square in the
multipath/NLOS-free case. If the multipath/NLOS is detected
and corrected, then the improved estimation can be obtained
after removing the estimated outliers vector.

4.2. Sufficient detectability analysis

Given that GS-LASSO is applicable in FDC, the ability to

detect the magnitude of multipath/NLOS becomes a crucial
metric. This mirrors the concept of defining the minimum
detectable fault in chi-square RAIM FDE. However, due to

the complexity of GS-LASSO, determining the exact value of
the minimum detectable error is challenging. Therefore, this
paper presents a sufficient condition for GS-LASSO to detect

faults. It is important to note that in the presence of additive
multipath/NLOS, a detection event can be modeled as

H k f–0 . Using the norm inequality as

n H H 2 49

where n is the dimension of H. A sufficient condition to make

H k hold is to make H 2 nk. Note that when additive

multipath/NLOS exists, H WT Z f
1

m1 2

WT Z f
2

m2 2
WT Z f

B
mB 2

with Z is

the noise free from multipath/NLOS. Therefore, H 2 can be

shown as

H 2

B

i 1

WTZ
i

mi

B

i 1

WTf
i

mi 50

With the triangle inequality, we have

H 2

B

i 1

WTf
i

mi

B

i 1

WTZ
i

mi 51

Therefore, if H 2 nk holds, a sufficient condition is

B

i 1

WTf
i

mi

B

i 1

WTZ
i

mi nk 52

Since
B
i 1 WTZ

i
mi k holds in the multipath/

NLOS-free case with confidence level at 1 Pfa, the final suf-
ficient condition is

B

i 1

WTf
i

mi n 1
2
k2 53

In other words, if multipath/NLOS satisfies Eq. (53), it will

be sensed by the proposed GS-LASSO over the confidence
level at 1 Pfa.
4.3. Limitation

GS-LASSO lies on the assumptions of sparsity and grouping.
Consequently, the interruption of these two properties results
in performance degradation. For instance, when majority

satellites measurements are affected by multipath/NLOS, the
sparsity is not met. This compromises the reliability of the
results. Moreover, due to the oversight of the influence of dif-
ference between the real DOF and the inflated DOF in param-

eter tuning, when only a few satellites are visible, the relative
difference between n and n 3 ncons is large. Therefore, the
parameter k is too conservative to translate into the good esti-

mation performance. In such circumstances, MHSS emerges as
a preferable alternative. For urban users, occlusion from other
vehicles, trees, and small obstructions can disrupt the grouping

characteristics. In the future, we will consider incorporating
sparsity within groups to address this issue.

5. Experimental validation

5.1. Experiment in the typical urban environment

A vehicle field test was conducted to evaluate the performance
of the proposed GS-LASSO for Doppler velocity determina-
tion in Lujiazui CBD, Shanghai, China. The test took place

on September 3, 2022, covering a drive path of approximately
2 700 m. The vehicle mainly navigated in the typical urban area
and crossed through some dense urban areas. Some dense

urban areas are represented by street viewpoints A, B, and C
in Fig. 6(a). During the experiment, GNSS raw measurement
data were collected at a sampling rate of 1 Hz using a Terus

BX40C receiver. Single-frequency Doppler measurements
from multiple constellations, including GPS, Galileo, BDS,
and QZSS were utilized for velocity determination. The exper-

imental equipment layout with the used GNSS receiver is dis-
played in Fig. 6(b). The ground truth is provided by the high-
sampling-rate GNSS/INS integrated navigation system. The
raw measurements from the integrated navigation system are

post-processed by the Kalman filter to compute the ground-
truth value. Forward and backward processing are performed
to maximize trajectory accuracy. The employed INS is as

shown in Fig. 6(c). The GINAV software is used to process
all data in this section.55

To validate the performance of the proposed method, GS-

LASSO is compared with other velocity optimization methods.
While several existing algorithms10–15 have been developed,
these primarily focus on accuracy and do not adequately
address other RNP indices, particularly the false alarm rate.

Consequently, these algorithms are not directly comparable
to GS-LASSO. The algorithms considered for comparison
include the standard least squares method and MHSS19. The

false alarm rate for the evaluations is set at 0.05. As an indica-
tor of comparative performance, the velocity errors (vE) are
calculated. The velocity errors are differences between the

real-time output velocity and the post-processing true value.
In this section, to ensure practical execution of the MHSS,

two strategies are employed. First, chi-square metrics are used

to determine the exclusion order. Second, the number of fault
modes is constrained by setting an upper limit on the number
of simultaneously faulty satellites. This is to avoid unaccept-
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Fig. 6 Test scenario of vehicle test.

Fig. 7 Sign of exclusion ability of MHSS.

Fig. 8 vE distribution comparison in terms of polluted satellites

numbers of GS-LASSO.
able computational loads due to excessively large subsets. If
accurate exclusion is not feasible, the subset minimizing the

chi-square test statistic is used for velocity estimation. Other
parameters are consistent with those in Ref. 19. In addition,
GS-LASSO works as the FDC, while the MHSS works as

the FDE.
The impact of the sparse assumption on the proposed algo-

rithm is investigated. We use whether MHSS can exclude the
satellites as the criterion to rank whether multipath/NLOS

exists. This drives us to evaluate the performance of MHSS
in successfully excluding satellites affected by multipath/NLOS
under different maximum fault numbers. The results are

depicted in Fig. 7. Detection alarms are indicated by the green
background. It is evident that in urban environments, MHSS
issues alert messages at nearly all times. Marked points indi-

cate the successful identification of multipath/NLOS.
Unmarked points indicate the MHSS is powerless against issu-
ing a definite exclusion. The results demonstrate that as the

number of assumed fault modes nfault increase, the proportion
of successful exclusions by MHSS also increases. Specifically,
for nfault equal to 2, 3, and 4, the success rates are 6.9%,
24.0%, and 45.0%, respectively.

We utilize the case where nfault is set as 4 to investigate the
resultant estimations. If MHSS is capable of eliminating mul-
tipath/NLOS, only four or fewer satellites are concurrently

affected by multipath/NLOS. Otherwise, more than four satel-
lite measurements are contaminated by multipath/NLOS. We
compare the impact of sparsity on GS-LASSO under circum-

stances where the polluted measurements are either less than
or greater than four. A comparison of three-dimensional
(3D) velocity errors is presented in Fig. 8. When more than
four measurements are corrupted, the estimation deteriorates,

as indicated by a higher number of outliers in vE PDF distribu-
tions with wider cores and heavier tails. This suggests that the
violation of sparse assumption due to the quantity of multi-

path/NLOS has a noticeable effect on algorithm performance.
Subsequently, the combined impact of grouping-sparsity

and arctangent cost function is evaluated. We compare

GS-LASSO to the LASSO. LASSO here incorporates neither
a new convex cost function nor grouping information. Fig. 9
displays the empirical distribution functions of the vE error

for both methods. For the majority of epochs, the distribution
of GS-LASSO lies above that of LASSO, suggesting that GS-
LASSO achieves smaller vE. Statistical analysis further sup-
ports this, with LASSO yielding a root mean square error

(RMSE) of 0.453 m/s while GS-LASSO attains a smaller value
at 0.408 m/s. These results underscore the effectiveness of
incorporating group constraints and arctangent cost as prior

conditions.
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Fig. 9 Distributions of vE regarding LASSO and GS-LASSO.

Fig. 10 Doppler measurements-based velocity accuracy with

standard LS, MHSS and GS-LASSO.
The velocity estimation performance of the standard LS,
MHSS and GS-LASSO is evaluated and scrutinized in terms
of vE. In this sub-section, nfault is set three for the MHSS to

ensure the MHSS can be conducted in real-time. Fig. 10 pre-
sents the time series of vE after the optimization according to
the eastern, northern, and upward directions. The maximum

speed error is in the upward directions with obvious fluctua-
tion. After the optimization, the velocity errors of all three
methods demonstrates the enhancement. For MHSS, anoma-
lous velocity errors are detected and excluded through MHSS
hypothesis testing. For the GS-LASSO, after the detection and
correction, there is also a significant improvement in velocity

accuracy.
Since in the urban area, the eastern and the northern errors

are always focused on, the horizontal vE is analyzed. The two-

dimensional distributions of horizontal vE are plotted and fit-
ted with an elliptical curve corresponding to the 95% confi-
dence level in Fig. 11. The errors of GS-LASSO demonstrate

a great concentration, characterized by the shortest axis of
the ellipse. This suggests that GS-LASSO holds a significant
advantage in the horizontal dimension critical for vehicle nav-
igation. The box plot on the top and right side further rein-

forces this conclusion, with fewer outliers. The incompetence
of MHSS to meet performance expectations is due to its inabil-
ity to accurately exclude multipath/NLOS, particularly evident

at a ratio of 24.0% when nfault 3. Although enhancing nfault
can enhance performance optimization, as discussed later, the
computational demands are excessively high, rendering it

impossible to achieve real-time performance.
To visualize the advantages of the methods, the 3D velocity

error probability distribution in Fig. 12. The vE of the GS-

LASSO method has the steepest core and the thinnest tail,
highlighting the superiority of the proposed approach.
Fig. 13 further summarizes the absolute vE statistics of the
three velocity estimation methods, including RMSE, standard

deviation (STD), and absolute bias (MEAN). Across all met-
rics, MHSS demonstrates improvements of 17.1%, 15.5%,
and 18.7% in 3D velocity accuracy compared to the original

method, as measured by RMSE, STD, and absolute bias,
respectively. GS-LASSO method demonstrates significant
improvement, with enhancements of 54.6%, 62.5%, and

48.0% over the original velocity estimation method in terms
of RMSE, STD, and absolute bias, respectively.

Finally, Fig. 14 summarizes the percentages of various

ranges of vE. The rings, progressing from the inside out, sym-
bolize GS-LASSO, MHSS and standard Doppler method. Dis-
tinct colors signify the percentages of errors associated with
each method, falling within various ranges. As expected, due

to severe multipath/NLOS effects, the original method exhibits
the largest vE percentages, reaching 16.9% for vE exceeding
1 m/s. With the use of the GS-LASSO method, the percentages

are significantly reduced to only 2.0%, demonstrating the
smallest vE among the three methods. This indicates that after
optimization, velocity accuracy has almost improved from

meters per second to decimeters per second. For velocities
ranging from 100 cm/s to 50 cm/s, MHSS and the
GS-LASSO methods demonstrate vE percentages of over
19.9% and 13.6%, respectively. Conversely, for vE less than

50 cm/s, the percentages are notably higher, with values at
67.2% and 84.4% for MHSS and the GS-LASSO, respectively.
Overall, GS-LASSO outperforms MHSS in mitigating the

multipath/NLOS, because the MHSS method is hard to ensure
complete identification of multiple observations under multi-
path/NLOS contamination in urban areas all the time.

Comparing GS-LASSO with MHSS, their respective aver-
age computing times are calculated per epoch in this sub-
section. For MHSS, the hypotheses respectively involve a max-

imum of 2, 3, or 4 fault modes. Normalizing these times
against the standard least square method, as shown in Table 2,
reveals that GS-LASSO time remains consistent regardless of
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Fig. 11 vE distribution in eastern and northern directions andcorresponding box plot.

Fig. 12 Approximate probability distribution of 3D vE.
the number of affected satellites. Its longer processing time due
to its non-closed form equation is still less than that of the

MHSS, despite using chi-square metrics to optimize the exclu-
sion order. However, MHSS may become ineffective if the
number of heavily impacted satellites exceeds 4 in urban areas,

leading to a significant increase in processing time. The GS-
LASSO processing time is similar to time of MHSS
(nfault 2) and only about one seventh of MHSS (nfault 3).
If nfault is 4 or more, the MHSS method becomes intractable

in an urban area.53 This reinforces our earlier finding that
GS-LASSO has a lower computational burden than MHSS,
as discussed in Section 3.4.

5.2. Experiment in deep urban environment

We evaluate our proposed algorithm in the deep urban envi-

ronment in this subsection. The public data, UrbanNav, is
chosen to study the GNSS velocity determination in urban
canyons.56 The test takes place on May 21, 2021 with a travel

distance at 4.5 km lasting for over 1 500 s in Hong Kong,
China. During the experiment, GNSS raw measurement data
are collected at a sampling rate of 1 Hz using a ublox-f90P

receiver. Single-frequency Doppler measurements from five
constellations, including GPS, Galileo, BDS, GLONASS and
QZSS are utilized for velocity determination. During the pro-
cess, plenty of dynamic objects are present during data collec-

tion, approximately 60 s of no satellite reception occurred.
Positioning and velocity determination were not performed
in this period. The ground truth is provided by the high-

precision integrated navigation. More information can be seen
at reference.56.

Fig. 15 indicates the horizontal and vertical vE with differ-

ent methods. From the figure, the vE of the GS-LASSO in the
deep urban environment are always the lowest. The RMSE
values of the eastern and the northern vE are below 0.60 m/s,
with the upward vE being below 1 m/s. It should be emphasized

that the main source of the 3D vE reaching m/s-level is the
error in the upward components. GS-LASSO can help deter-
mine the velocity in the horizontal direction with an accuracy

in the order of dm/s. It is thus promising for real-time vehicle-
mounted applications. However, the vE obtained through
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Fig. 13 Statistical information on vE including the RMS, STD and Mean value.

Fig. 14 Percentage for various ranges of vE regarding three

methods.

Table 2 Computational time comparison of methods.

nfault Normalized computation time

GS-LASSO MHSS

3 341

4 1312
MHSS is a little worse than that from the standard Doppler.
This may be attributed to the excessive multipath-affected
satellites in deep urban environments compared to typical

urban settings. Hence, the accuracy of the MHSS detection
cannot be ensured, resulting in continued false or missed exclu-
sions. This suggests that further optimization is required when

applying MHSS for Doppler velocity determination in urban
canyon cases.
Table 3 summarizes the percentages across various ranges
of 3D-vE. The case where vE < 1 m/s for GS-LASSO accounts

for around 80% of the epochs, significantly outperforming
both MHSS and Standard Doppler. After GS-LASSO opti-
mization, vE can remain below 1 m/s in the majority of deep
urban environments. In addition, the percentages for the GS-

LASSO remain relatively lower than other methods when
vE > 1 m/s, indicating GS-LASSO strong performance in min-
imizing vE in this test.

5.3. Experiment in open-sky/suburban environment

In our past two experiments, we primarily examine situations

where the satellites used for vehicle positioning experience sig-
nificant multipath pollution. Here, the cases where the vehicle
is not substantially obstructed by buildings are focused on. We

use the dataset named CPT collected in the campus,55 mainly
containing open-sky and suburban environments to assess
the algorithm performance. Dynamic field data was collected
using a Trimble R10 receiver mounted on a tricycle on March

28, 2019 in the Nanhu Campus of China University of Mining
and Technology. The test lasted for 2 300 s, with the vehicle
remaining stationary for the first 600 s before transitioning
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Fig. 15 Horizontal and upward vE for three methods. The figure also provides corresponding RMSE.

Table 3 Sample numbers of different ranges of vE.

Velocity error (cm/s) Standard Doppler MHSS GS-LASSO

vE > 500 40 53 15

500 > vE > 200 305 296 83

200 > vE > 100 349 374 188

100 > vE 781 752 1 189
into driving mode. Throughout the test, the tricycle was only
slightly affected by trees and buildings, ensuring high-quality

GNSS observations. Doppler measurements from multiple
constellations will be used for velocity determination, includ-
ing GPS, GAL and BDS. The ground truth value is provided

by the high-precision integrated navigation. More information
can be seen at reference.55

We focus on the time series of three-dimensional velocity

errors. Fig. 16 presents the time series of the vE with time.
When the vehicle is stationary in an open-sky environment,
the velocity error is small. RMSE provided by the three meth-
ods are below 0.03 m/s, respectively. As the vehicle begins to be

dynamic, the vE increases due to thermal noise. RMSE pro-
vided by the three methods are 0.28, 0.23, and 0.21 m/s, respec-
tively. In the whole test, the RMSE of the standard Doppler

method is 0.24 m/s, while the RMSE of MHSS and
GS-LASSO are 0.20 m/s and 0.17 m/s, respectively. Our exam-
ination reveals that the standard Doppler still results in the
most significant vE. The estimation by GS-LASSO demon-
strates diminished error impacts after eliminating the potential

outliers.
We finally compare the computational load in this case.

Our results indicate that in open environments, the computa-

tional time for MHSS is roughly three times that of GS-
LASSO. This is because the chi-square statistic employed in
MHSS swiftly identifies satellites affected by multipath con-

tamination, thereby enabling MHSS practical. Consequently,
MHSS requires fewer computational resources than those in
the urban environments.

6. Conclusions and perspectives

This paper examines the optimization of Doppler-based veloc-

ity estimation for standalone receivers in urban areas through
FDC. The GS-LASSO was proposed by assuming multipath/
NLOS groupings and sparsity. Grouping constraints were
established using the sky-map and C/N0. A non-convex arct-

angent cost was introduced to encourage sparsity and mitigate
multipath/NLOS outliers. An efficient solution for GS-LASSO
was proposed using the ADMM solver, with the fixed-point

method accounting for the non-convexity of the arctangent
cost. Parameter tuning was facilitated by integrating GS-
LASSO with the false alarm probability bound. Our method

could significantly reduce velocity errors. In Shanghai, the typ-
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Fig. 16 Time series of 3D-vE in CPT test.
ical urban area, where exclusion cannot be ensured by MHSS,

GS-LASSO provided errors reduced by 35% with only 14% of
the computational load.

In future, the following three points should be noted. First,

we hope to try combining multi-source sensors such as fisheye
cameras or LiDAR with GS-LASSO to provide a more accu-
rate grouping solution. Second, integrity risk, as an important

metric for navigation systems, is not considered in this study.
Future research will incorporate integrity analysis. Third, it
is assumed the multipath/NLOS-affected satellites within a

group are dense, meaning that multipath/NLOS in one satellite
implies that other satellites in the group are also affected by
multipath/NLOS. In the future, this constraint will be relaxed
to allow for sparsity of multipath/NLOS-affected satellites

both within and between groups.
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Appendix A. Analysis of the Impact of NLOS and multipath on

Doppler shifts

For NLOS signals, the NLOS effect is related to receiver
motion’s impact. In the absence of NLOS, Doppler shift

fjr LOS can be shown as15

fjr LOS

rr 2cos hjs LOS cos uj
s LOS ur

kj
A1

where rr 2 is the velocity amplitude. hjs LOS and uj
s LOS is the ele-

vation angle and azimuth angle of the jth direct signals. ur is
the user heading. For NLOS satellites, assuming the reflection
is specular, namely the elevation angle remains the same before

and after reflection, the user’s Doppler shift reading15

fjr LOS

rr 2cos hjs LOS cos uj
s NLOS ur

kj
A2

where uj
s NLOS is the azimuth angle of jth reflected signal. The

sole distinction between Eqs. (A1) and (A2) lies in the azimuth
angle, which is related with the geometric configuration of the

reflecting point and the satellite. In theory, given a known

reflecting point, uj
s NLOS can be uniquely ascertained. When

additional data are available, such as a three-dimensional city
model,15 the NLOS Doppler error can be directly discerned.

Nonetheless, for an individual GNSS user, this information
is inaccessible, rendering unknown. Yet, the amplitude of the
Doppler error induced by NLOS adheres to

Df jr NLOS f jr NLOS f jr LOS

2 rr 2cos hjs LOS sin uj
s LOS 2 uj

s NLOS 2 ur

sin uj
s NLOS 2 uj

s LOS 2 kj A3

This indicates that the amplitude of the Doppler error can

be bounded by 2 rr 2cos hjs LOS kj. When the user moves

along a street and parallel to building point, i.e.

uj
s LOS 2 uj

s NLOS 2 ur approaches zero, Df jr NLOS is much

smaller than the upper limit 2 rr 2cos hjs LOS kj. In other

words, this inequality is conservative.

Unlike NLOS, the case involving multipath is significantly
more complex. In multipath scenarios, the receiver simultane-
ously receives both direct and reflected signals. Consequently,
even with knowledge of the reflecting points, it is challenging

to detect the direction of the multipath. The Doppler fre-

quency error Df jr MP caused by multipath can be described as 29
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Df jr MP f jr MP f jr LOS rr ejmp rr ejLOS kj A4

where ejmp means the unit vector from the jth satellite pointing

toward the direction of the strongest signal, which cannot be

measured in practice. f jr MP and f jr LOS are the Doppler shifts

in the multipath and nominal case, respectively. ejLOS means

the unit vector from the jth satellite pointing toward the direct
29signal. But we have the following inequality

rr ejLOS rr kj 6 Df jr MP 6 rr ejLOS rr kj A5

This implies that the Doppler outliers caused by multipath
can also be bounded by velocity and the LOS elevation angle.

According to the work,29 in practical experiments, Df jr MP is

also significantly smaller than bounds given in Eq. (A5).
In summary, through the analysis of the impact of existing

NLOS and multipath on Doppler observations, it can be
observed that both affect the Doppler shift of the receiver.
The difference between them lies in the fact that when prior

information (such as 3D maps) is known, the Doppler error
described in Eq. (A3) can be accurately estimated, whereas
the error caused by multipath Eq. (A4) cannot be determined

due to the inability to identify the direction of multipath sig-
nals, even when the reflecting point information is known.
The similarities between them are as follows: First, both Dop-
pler errors can be modeled as the additive. Second, when using

only GNSS measurements without external information, the
directions of NLOS and multipath signals are both unknown.
Consequently, some related optimization methods in the mea-

surement domain do not differentiate between the impacts of
NLOS and multipath on Doppler errors.17,19 We have adopted
this approach as well. More precise analysis will be conducted

in future.
Upon further analysis, it becomes evident that the upper

bound of the additive Doppler error is constrained by vari-
ables associated with velocity, and given the limited velocity

of vehicles in urban environments, this upper bound is conse-
quently smaller than the Doppler observations recorded at the
satellite end. As a result, the variation in Doppler error attribu-

table to the accuracy of velocity estimation is constrained.
Taking into account the coupling between velocity estimation
and the unknown directions of NLOS/multipath signals, for

the sake of estimation simplicity, we model Doppler outliers
as an additive fault that is independent of velocity.
Appendix B. Convergence analysis of ADMM solver

The convergence of the ADMM solver can be analyzed under
the framework proposed by Eckstein & Bertsekas.46 Consider
1
2
W Z f

T
W Z f k B

i 1 miw fi 2 a is closed,

proper, convex function. Consider arbitrary g 0, vector

u0 Rn and z0 Rn. Suppose ak P 0 k 0 1 and

bk P 0 k 0 1 are two sequences which are abso-

lutely summable, such that k 0a
k and k 0b

k .

Consider three sequences fk Rn k 0 1 ,

uk Rn k 0 1 and zk Rn k 0 1 satisfying

ak P fk 1 argmin
f

k
B

i 1

miw fi 2 a zk
T
Wf uk WZ

g
2
Wf uk WZ

2

2

B1
k k 1 1 T k T k 1 g k 1 2
b P u argmin

u 2
u u z Wf u WZ

2
Wf u WZ

2

B2

zk 1 zk g Wfk 1 uk 1 WZ B3

The theorem lies on the fact if there is a solution for Eq. (17),

the sequence f k converges to the unique underlying solu-

tion. On the contrary, if there is no solution for Eq. (17), then

at least one of the sequences uk or zk diverges.
This theorem sheds light on the fact that if the sub-

problems Eq. (23) and Eq. (31) has the exact solution, namely

the summary of error sequence is finite, convergence is
ensured. For Eq. (23), although w fi 2 a is non-convex, its

exact solution can still be ensured. Although a proximal term

has been introduced in Eq. (24), it can be strictly proven that
such a proximal term does not cause accuracy degradation.45

Therefore, the accuracy of the ADMM can be guaranteed.

Besides, the convergence of the fixed-point iteration is also
helpful to ensure solution of ADMM is exact. For Eq. (31),
a closed-form of solution is presented. Therefore, the conver-
gence of the ADMM solver can be guaranteed and the

sequences of ADMM converge to their optimal points.
Appendix C. CDF of weighted chi-square distribution

The goal of this subsection is to delineate the CDF of the of
the weighted chi-square distribution. Suppose a random vari-
able S can be seen as the weighted sum of K random variables

Xi 1 6 i 6 K following standard chi-square distribution as
follows

S a1X1 a1X2 aKXK C1

where ai is the input weight. The DOF of the Xi is vi. The dis-

tribution of S can be simplified as CDF s h s a DOF ,
where a covering all ai and DOF is a vector covering all vi.
The specific distribution is given as follows.54

Supposing s is the argument, the CDF of the weighted chi-
square distribution can be obtained as

CDF s
e s 2b

2b v 2 1

sv 2

C v 2 1

kP0

k nk
v 2 1 k

L
v 2
k

v 2 s

4bl0

C2

where b is a transformed coefficient to simplify the formula. v

is the sum of the DOF covering all groups. C is the Gamma

function. l0 is a positive coefficient related with v. L
m 2 1
k is

the kth generalized Laguerre polynomial. nk are the coeffi-
cients, reading as

nk
1

k

k 1

j 0

njdk j k P 1 C3

n0
q

l0

v 2
2bq

q l0

K

i 1

1
ai q l0

bl0

v 2

C4

dj
l0

q l0

j
1

2

K

i 1

vi
l0 b ai

bl0 ai q l0

j

j P 1 C5

where q v 2 1 is the convolution parameter.
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