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Abstract 

Accurate wind speed prediction is crucial for conserving power resources and enhancing power utilization efficiency. 
However, deviations from typical wind patterns can introduce errors into predictions, potentially leading to imbal‑
ances between wind power supply and demand. Consequently, developing a model to forecast abnormal wind 
speeds is essential. To address this, we leverage the microcanonical multifractal formalism algorithm to detect abnor‑
mal wind speeds. In this paper, we integrate ensemble empirical mode decomposition, phase space reconstruction, 
and long short-term memory (LSTM) networks to predict these anomalies. Initially, wind speed data is meticulously 
pre-processed to generate datasets for one-hour, one-day, and non-zero wind speeds. Subsequently, LSTM networks 
are used to forecast abnormal wind speeds. Evaluations of our methodology across different datasets demonstrate its 
effectiveness, particularly excelling in one-hour forecasts.

Keywords  Long short-term memory, Phase space reconstruction, Ensemble empirical mode decomposition, Time 
series, Dynamic analysis

1  Introduction
Wind energy utilization has become increasingly popu-
lar owing to its environmental benefits, global appli-
cability, and cost-effectiveness (Nelson 2009; Bórawski 
et  al. 2020). Wind power generation systems are cru-
cial for harnessing wind energy and converting it into 
usable power, with their capacity influenced by weather 
conditions and generator states (Che et  al. 2016; Liu 
et  al. 2016). The relationship between wind energy and 
wind power is inherently nonlinear, often represented 
by a cubic function of wind speed. Recent studies have 
developed more sophisticated algorithms to elucidate 

the conversion process between wind energy and wind 
power (Lei et  al. 2018). Accurate wind power forecast-
ing is vital for wind power systems as precise forecasts 
enable timely decision-making, reducing operational and 
resource costs (Lange and Focken 2006; Choi et al. 2009; 
Li et al. 2013).

Wind speed serves as the fundamental input for wind 
power forecasting, with predictions spanning various time 
scales: medium (weekly), long-term (monthly), short-
term (daily), and ultra short-term (hourly). Medium- and 
long-term forecasts primarily inform instrument main-
tenance planning, wind farm planning, and annual gen-
eration planning. However, the accuracy and reliability 
of short-term predictions are crucial for mitigating wind 
curtailment and optimizing power generation plans 
(Neshat et al. 2020; Kamath and Senapati 2021). Further-
more, ultra short-term predictions provide essential infor-
mation for optimizing frequency regulation, managing 
reserve capacity, and real-time wind power optimization 
and scheduling (Wang and Yang 2021).
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Given the intermittent nature of wind speed fluc-
tuations caused by sudden changes and potential gen-
erator failures, there is a critical need to ensure the safe 
and efficient operation of wind power systems. This 
paper proposes using the LSTM model (Hochreiter and 
Schmidhuber 1997) for predicting abnormal wind speeds, 
leveraging historical wind speed data. Renowned for its 
effectiveness in addressing regression problems, LSTM 
demonstrates promise in handling inherent sequential 
regularities within wind speed time-series data (Lin et al. 
2020; Shahid et al. 2021; Li and Yang 2023). Recent stud-
ies have further validated the efficacy of LSTM’s efficacy 
in wind speed forecasting. For instance, Demirtop and 
Sevli (2024) proposed a hybrid model combining LSTM 
with the ARIMA approach to enhance forecasting accu-
racy, leveraging LSTM’s capability to capture long-term 
dependencies while ARIMA addresses linear patterns. 
Additionally, Leme  Beu and Landulfo (2024) applied 
LSTM networks to estimate wind speed profiles over 
complex terrains, demonstrating superior performance 
over traditional methods, such as the power law, particu-
larly at higher altitudes. This indicates LSTM’s potential 
in modeling intricate wind patterns. Moreover, Mohapa-
tra et al. (2023) proposed a hybrid approach integrating 
ARIMA, Kalman filter, and LSTM to effectively capture 
both linear and nonlinear patterns in wind speed data, 
resulting in improved prediction accuracy. Nonetheless, 
LSTM’s susceptibility to local minima remains a chal-
lenge. To address this, we propose a hybrid approach that 
combines time-series-based and spatial correlation-based 
methods with LSTM to enhance prediction accuracy. The 
proposed methodologies are detailed in the following 
section. Experimental results and corresponding analyses 
are presented in Section 3, followed by a comprehensive 
summary of the contributions of this paper in Section 4.

2 � The proposed method
This paper addresses the challenge of accurately predict-
ing abnormal wind speeds by proposing a novel approach 
that integrates ensemble empirical mode decomposition 
(EEMD) (Wu and Huang 2009), phase space reconstruc-
tion (Packard et al. 2008), and LSTM networks. The pro-
posed prediction model encompasses several key steps, 
commencing with data pre-processing to prepare the 
wind speed data for different prediction tasks. EEMD 
is then employed to mitigate noise by decomposing the 
time-series data into simpler components. This step is 
crucial for managing the inherent complexity of wind 
speed data. Following this, we determine the optimal 
embedding dimension and delay time to reconstruct the 
time series, further refining the data by minimizing noise. 
The LSTM model is then applied to forecast wind speeds 
based on the processed data. Lastly, we employ rigorous 

evaluation methods to assess the model performance of 
the proposed methodology. By integrating these tech-
niques, we aim to enhance the accuracy and reliability of 
abnormal wind speed predictions, thereby contributing 
to the optimization and efficiency of wind power systems.

2.1 � Data pre‑processing
Utilizing wind speed data gathered every 10 min over a 
year, we have constructed three distinct datasets to pre-
dict abnormal wind speeds: the one-hour, one-day, and 
non-zero wind speed datasets. This strategic segmenta-
tion is crucial for capturing the diverse temporal patterns 
in wind behavior, as abnormal wind speed events can 
occur over varying time scales. By structuring our data-
sets in this manner, we aim to identify subtle patterns 
and fluctuations in wind behavior across different time 
intervals. This meticulous dataset enables us to account 
for the diverse temporal characteristics of abnormal wind 
speed events, facilitating the development of robust pre-
dictive models tailored to specific forecasting horizons. 
Consequently, our approach enhances the accuracy and 
adaptability of abnormal wind speed predictions, thereby 
boosting the efficacy and reliability of wind power 
systems.

The one-hour wind speed dataset is constructed based 
on wind speed data sampled every 10 min. By extracting 
readings at six intervals, we create a dataset that captures 
wind speed dynamics over one-hour periods, as illus-
trated in Fig.  1b. This segmentation allows for analyz-
ing fine-grained variations in wind speed dynamics over 
hourly wind variations.

By contrast, the non-zero wind speed dataset is intro-
duced for comparative analysis. Zero entries are replaced 
to maintain consistency, and similar to the one-hour 
dataset, readings are sampled at six-point intervals to 
form one-hour segments. Subsequently, for the non-
zero wind speed dataset, we sample wind speed readings 
at six-point intervals to create one-hour segments. This 
dataset allows for comparative assessments of wind speed 
behaviors under varying conditions, thereby enriching 
our understanding of wind dynamics and improving pre-
dictive models. This meticulous dataset design supports 
robust analyses and fosters advancements in wind power 
forecasting methodologies.

The one-day wind speed dataset, depicted in Fig. 1c, 
is devised to provide insights into wind speed patterns 
over extended time intervals. Starting with data col-
lected at six-point intervals to form the one-hour data-
set, we aggregate 24 consecutive data points to create 
a comprehensive view of wind speed dynamics over a 
24-hour period. By delineating wind speed variations 
across daily time scales, this dataset offers valuable 
insights into the long-term behavior and trends of wind 
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patterns. Such insights are crucial for informing strate-
gic decisions related to energy planning, resource allo-
cation, and operational scheduling within wind power 
systems. It also supports comprehensive analyses and 
model validations, thereby enhancing the accuracy and 
reliability of wind speed forecasting methodologies.

We also employ the MMF to detect abnormal wind 
speeds (García-Marín et  al. 2013). MMF, renowned 
for its efficacy in identifying irregular structures and 
chaotic systems, presents a robust framework for dis-
cerning anomalous wind speed behaviors (Suman and 
Hussein 2019). By analyzing variations between adja-
cent points within wind speed time-series data, MMF 
facilitates the detection of singular exponents (SEs). 
SE values quantify the magnitude of variations in 
the wind speed time-series, with higher SE fractions 
greater heightened variability. In our methodology, 
we designate the top 20% of SE values as indicative of 
abnormal wind speeds. By implementing MMF-based 
detection techniques, we enhance the ability of our 
predictive models to identify and anticipate anoma-
lous wind speed events accurately. Consequently, this 
approach refines wind power forecasting methodolo-
gies, leading to more informed decision-making and 
improved operational efficiency in wind power systems. 
This step prepares the data for subsequent phase space 
reconstruction.

2.2 � EEMD
Empirical mode decomposition (EMD) is well-suited 
for arbitrary data as it decomposes signals based solely 
on their inherent characteristics without relying on 
predefined basis functions. EMD operates under the 
assumption that signals comprise intrinsic mode func-
tions (IMFs) with both linear and nonlinear traits. This 
assumption allows EMD to extract a series of IMFs from 
the input signal, each capturing specific temporal and 
frequency components, providing a comprehensive rep-
resentation of the signal’s underlying dynamics. This 
adaptive nature of EMD enables it to effectively capture 
and isolate the varying modes of an input signal, regard-
less of its complexity or structure. This makes EMD a 
versatile and powerful tool for signal decomposition 
and analysis across a wide range of applications and data 
types.

EEMD (Wu and Huang 2009) enhances the conven-
tional EMD algorithm (Wu and Huang 2004) by offer-
ing improved noise reduction capabilities. Unlike EMD, 
which decomposes the input signal into IMFs (Chang 
et  al. 2009) using a single deterministic process, EEMD 
conducts multiple tests. Each test applies EMD to a 
duplicate of the input signal with added noise. While 
individual tests may yield noisy results, the aggregated 
IMF components from multiple tests facilitate noise can-
cellation as the added white noise is evenly distributed 

Fig. 1  Wind speed time series used in this paper. a Wind speed data collected every 10 min. b Sampled every 6 points from the wind speed data a. 
c Summation of every 24 adjacent points from b 
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across the time-frequency space. By employing a filter 
bank, the time-frequency space is decomposed into IMF 
components of varying frequencies. Averaging these 
results cancels out noise, leaving a pure signal decom-
position. Importantly, as the number of tests conducted 
increases, additional noise is progressively eliminated, 
preserving only the persistent signal component. This 
iterative process enables EEMD to effectively suppress 
noise while maintaining the integrity of the underlying 
signal, thereby improving the reliability and accuracy of 
subsequent wind speed predictions. A series of IMFs can 
be obtained by decomposing the signal using the EEMD 
method as follows:

where IMFi(t) is the i-th IMF obtained by EEMD decom-
position at t time step. The component r(t), often denot-
ing the trend of the signal, represents the residual after 
decomposing n− 1 IMFs. The number of IMF terms 
is determined by the signal itself, with decomposition 
continuing until the residual meets specified criteria. 
In our experimental setup, the wind speed time series 
undergoes EEMD decomposition, resulting in 15 distinct 
terms. The first 14 terms represent the IMFs, arranged in 
descending order of frequency, while the final term cor-
responds to the residual component, encapsulating the 
information not captured by the preceding IMFs. This 
decomposition scheme enables a comprehensive analysis 
of the wind speed time series, facilitating the identifica-
tion and characterization of its underlying temporal and 
frequency components with enhanced granularity and 
fidelity. EEMD effectively addresses noise issues inherent 
in wind speed time-series data, providing a foundation 
for reliable predictions.

2.3 � Phase space reconstruction
Phase space reconstruction is crucial for analyz-
ing chaotic time-series data, which can be viewed as 
a sequence of observations evolving over time. To 
extract meaningful insights from such data, Packard 
et  al. (2008) introduced two methods for phase space 
reconstruction: the derivative reconstruction method 
and the coordinate delay reconstruction method. The 
coordinate delay reconstruction technique represents 
the underlying dynamics of the time series in a higher-
dimensional space, revealing patterns and structures 
not apparent in the original one-dimensional data. By 
leveraging phase space reconstruction, analysts can 
gain deeper insights into the underlying dynamics of 
chaotic systems and improve the accuracy of subse-
quent analyses and predictions. This reconstruction 

(1)x(t) =

n−1

i=1

IMFi(t)+ r(t),

technique involves constructing a d dimensional 
phase space vector y(t) from a one-dimensional time-
series x(t), utilizing a specified delay time τ . This tech-
nique can be operationalized by using the subsequent 
formula:

where 1 ≤ t ≤ n− (d − 1)τ . This phase space recon-
struction technique relies on two crucial parameters: the 
embedded dimension d and the delay time τ . Embed-
ding theory suggests optimal values for these param-
eters; however, specific expressions are not provided. 
In practice, time-series data are finite sequences often 
noisy, requiring a careful determination of suitable val-
ues for the embedding dimension and delay time based 
on the characteristics of the specific time series. In this 
study, we employ the mutual information (MI) method 
to compute the optimal time delay and utilize the false-
nearest method (FNN) algorithm to ascertain the appro-
priate embedding dimension (Wallot and Mønster 2018). 
By leveraging these techniques, we ensure that the phase 
space reconstruction accurately captures the underly-
ing dynamics of the time-series data, thereby enhancing 
the robustness and reliability of subsequent analyses and 
predictions.

In probability theory and information theory, MI 
serves as a pivotal metric that quantifies the degree of 
interdependence between two random variables. To 
determine the optimal time delay for multiple embed-
ded time series, the average mutual information (AMI) 
method is employed, allowing the visualization of MI 
across multiple time series. Conceived by Wallot and 
Mønster (2018), AMI offers insights into how one ran-
dom variable informs us about another. In time-series 
analysis, AMI is crucial for quantifying the information 
gained about x(t + τ ) when observing x(t). By leverag-
ing AMI, analysts can better understand the relation-
ships between variables in time-series data, thereby 
enhancing the accuracy and reliability of analyses and 
predictions. In this paper, we define,

where 1 ≤ t ≤ n− τ , S represents the value of x at time t, 
and Q denotes the value of x at time t + τ . Then, I(S, Q) 
is a function of the delay time τ , which can be written as 
I(τ ) . I(τ ) = 0 indicates that x(t) and x(t + τ ) are com-
pletely unrelated. The first minimum of I(τ ) shows that 
x(t) and x(t + τ ) have the highest probability of being 
uncorrelated, which is also the optimal delay time τ.

From a geometric perspective, a chaotic time-series 
can be seen as the projection of the intricate trajectory 
of chaotic motion in a high-dimensional phase space 

(2)y(t) = (x(t), · · · , x(t + (d − 1)τ )),

(3)I(S,Q) = (x(t), x(t + τ)),
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onto a simpler one-dimensional space. This projec-
tion degrades the original trajectory of chaotic motion, 
causing non-adjacent points in the high-dimensional 
phase space to appear adjacent in the one-dimensional 
space.

Phase space reconstruction aims to restore the origi-
nal trajectory from the observed chaotic time-series. 
As the embedding dimension increases, the structure 
of the chaotic motion orbit is clarified, reducing fault 
adjacent points. Consequently, the entire trajectory of 
chaotic motion can be more accurately recovered. This 
fundamental concept is central to the FNN algorithm.

In this study, we employ the FNN algorithm, initially 
proposed by Wallot and Mønster (2018), to determine 
the optimal embedding dimension (Kennel et al. 1992). 
The method operates on the principle that truly adja-
cent points in the original phase space should remain 
nearest neighbors even after embedding. If their dis-
tance significantly changes, they are deemed false-
nearest neighbors, indicating an insufficient embedding 
dimension d. Consequently, the embedding dimension 
d is iteratively augmented until the number of false-
nearest neighbors is sufficiently minimized.

Our implementation entails gradually increasing the 
embedding dimension d until the proportion of false-
nearest neighbor points falls below 5% or their count 
stops decreasing. This iterative approach ensures that 
the embedding dimension d is appropriately deter-
mined, facilitating a more accurate representation of 
the underlying dynamics within the chaotic time-series 
data.

2.4 � MMF
For calculating the singular exponents (SEs), we utilize 
an innovative framework called the MMF. This formal-
ism leverages the magnitude of fluctuations observed 
among neighboring pixels within sea surface temperature 
(SST) images. By assessing these fluctuations relative to 
the scale of oceanographic features, such as fronts and 
eddies, MMF facilitates their efficient detection. A key 
aspect of MMF lies in the accurate determination of SE 
values.

A technique delineated in Pont et  al. (2013) offers a 
robust approach for numerically computing SE values 
h(
−→
x ) at each pixel. This method is founded on the wave-

let projection of the measure, ensuring computational 
stability. By employing this approach, we achieve a reli-
able assessment of SE across the SST images, thereby 
enhancing our ability to accurately discern and charac-
terize oceanographic phenomena. The computational 
formula employed in this methodology is articulated as 
follows:

The scale r0 is used for image normalization, given an 
image with size N ×M corresponds to size 1 so that 
r0 =

1
N×M . τψµ(., r0) is chosen as the average value of 

the wavelet projection over the entire signal. Accordingly, 
τψµ(x, r0) corresponds to the wavelet projection at point x. 
A fraction of the smallest SE values, also known as the most 
singular manifold (MSM), indicates the highest strength of 
variations among pixels in the SST image. Furthermore, 
owing to intermittency and multiscale organization, the 
MSM is composed of the most unpredictable points, char-
acterized by the least values of SE. The MSM is defined as 
follows:

2.5 � The long‑short‑term memory
The LSTM network represents a specialized variant of 
recurrent neural networks engineered specifically to 
address long-term dependency challenges. Initially pro-
posed by Hochreiter and Schmidhuber (1997), with subse-
quent enhancements by Alex Graves (Shi et al. 2021; Tao 
et al. 2021; Chi et al. 2022), LSTM has garnered widespread 
adoption across various domains. Central to LSTM is the 
cell state, which serves as its core functionality.

LSTM architecture comprises four distinct gates: the 
forget gate, input gate, output gate, and update gate. These 
gates enable LSTM to selectively retain or discard informa-
tion within the cell state through a meticulously crafted 
structure referred to as a ‘gate’. Each gate operates as a con-
duit for information, incorporating a functional layer and 
point-wise multiplication.

The use of sigmoid and hyperbolic tangent (tanh) func-
tions is fundamental to LSTM’s gate mechanisms. Spe-
cifically, sigmoid functions are typically applied to the 
forget, input, and output gates, whereas tanh functions 
are employed with the update gate. These functions yield 
outputs ranging from 0 to 1, delineating the degree to 
which each component contributes to information passage 
through the gate structure, thus providing LSTM networks 
with adaptive learning capabilities. These functions are 
defined as follows:

where gf  , gi , go , g are the forget, input, output, and 
update gates, and Ct−1 and Ct represent the previous and 

(4)h(
−→
x ) =

log(τψµ(
−→
x ,r0))

<τψµ(.,r0)>

log r0
+ o(

1

log r0
).

(5)F∞ =
−→
x : h(

−→
x ) = h∞ = min(h(

−→
x )).

(6)Ct
= gf · Ct−1

+ gi · g ,

(7)ht = go · tanh(Ct),
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current cell states, respectively. ht denotes the current 
hidden state.

In the LSTM architecture, the input time-series data, 
alongside the previously stored cell state, are concur-
rently directed to the input gate gi , forget gate gf  , and 
update gate g. These gates function as selective filters, 
allowing only pertinent portions of the input information 
to traverse through. The retained information, along with 
the previous cell state Ct−1 , is updated to yield the cur-
rent cell state Ct . Using the output gate, the current cell 
state is utilized to compute the current hidden state ht.

The computed hidden state, along with the current cell 
state, is passed to the subsequent LSTM cell. This mech-
anism enables the cyclical circulation of information 
within the LSTM network, allowing for partial retention 
and dissemination of information across iterations. Con-
sequently, the LSTM framework orchestrates a dynamic 
interplay between input data and internal states, thereby 
facilitating effective information flow and retention 
throughout the network operation.

3 � Experimental results and analysis
In this paper, we propose an integrated approach that 
combines EEMD, phase space reconstruction, and LSTM 
networks for predicting abnormal wind speeds. EEMD is 
employed to mitigate noise in the wind speed time-series 
data, thereby enhancing the signal-to-noise ratio. Con-
currently, phase space reconstruction techniques distill 
essential information from the time-series data, provid-
ing a more insightful representation of the underlying 
dynamics.

LSTM networks are employed for wind speed predic-
tion owing to their inherent capability to model sequen-
tial dependencies effectively. Notably, LSTM outperforms 
traditional linear methods and feed-forward networks 
in sequence prediction tasks, demonstrating its efficacy 
across diverse research domains. The LSTM model archi-
tecture is implemented using the Keras-LSTM package, 
with the mean absolute error as the loss function and the 
Adam optimization algorithm for model training.

The proposed approach is validated using a dataset 
comprising 35000 wind speed observations for model 
training and 10000 observations reserved for model test-
ing. This rigorous methodology aims to provide insights 
into predicting abnormal wind speeds, offering potential 
applications in various fields such as renewable energy, 
weather forecasting, and environmental monitoring.

3.1 � Experimental data
The wind speed dataset used in this study originates 
from the Huangxian wind tower situated in China 
recorded in 2017, where measurements were recorded 
at 10 min intervals, resulting in a comprehensive time 

series spanning 52560 data points. Measurements were 
taken from an array of anemometers at various heights: 
10 m, 50 m, 80 m, 90 m, 100 m, 110 m, and two at 120 
m. Consequently, this dataset comprises eight distinct 
wind speed time series, each covering a one-year period, 
forming the foundation for all experimental analyses con-
ducted in this study.

Wind speed measurements are susceptible to fluctua-
tions due to atmospheric dynamics such as air pressure 
differentials, precipitation, wind direction variability, and 
potential anemometer malfunctions, leading to aber-
rant data. These anomalies manifest in two primary 
forms: deviations identified using the MMF method and 
instances of zero wind speed readings.

In this paper, prediction efficacy is evaluated using two 
established metrics: RMSE and the F_Score . These ana-
lytical tools facilitate a rigorous assessment of predictive 
accuracy, offering insights into the robustness and reli-
ability of the proposed forecasting methodologies.

3.2 � Evaluation methods
RMSE is used to measure the performance of the wind 
speed prediction model and is expressed as follows:

where Xmodel,i and Xobs,i represent the predicted wind 
speed and the expected wind speed, respectively.

Furthermore, PREzero and PREab denote the prediction 
accuracy of abnormal and zero wind speeds, which are 
computed as follows:

where TPzero and TPab indicate the counts of predicted 
wind speed samples identified as zero and abnormal 
when the true wind speed sample is indeed zero and 
abnormal. Conversely, FPzero and FPab represent the 
counts of predicted wind speed samples classified as 
zero and abnormal, respectively, while the true wind 
speed sample is non-zero and not indicative of abnormal 
conditions.
RECzero and RECab represent the recall rate and are 

computed as follows:

(8)RMSE =

√∑i=1
n (Xobs,i − Xmodel,i)

2

n
,

(9)PREzero =
TPzero

TPzero + FPzero
,

(10)PREab =
TPab

TPab + FPab
,

(11)RECzero =
TPzero

TPzero + FNzero
,
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In speed prediction, TPzero and TPab denote the counts 
of predicted wind speed samples identified as zero and 
abnormal, respectively, when the actual wind speed sam-
ple is zero and abnormal. Conversely, FNzero and FNab 
represent the counts of predicted wind speed samples 
classified as non-zero and not indicative of abnormal 
conditions, respectively, while the true wind speed sam-
ple is zero and abnormal.
F_Score is proposed to simultaneously evaluate the 

recall rate and correct prediction rate (Fourure et  al. 
2021), which is computed as follows:

where Fzero and Fab are used to evaluate the predic-
tion performance for zero and abnormal wind speeds, 
respectively.

In this paper, three sets of experiments are conducted 
to evaluate the performance of our proposed prediction 
model for one-hour, one-day, and non-zero wind speed 
predictions.

3.3 � The performance evaluated on one‑hour wind speed 
time‑series

In this experiment, the LSTM network is used for one-
hour wind speed prediction. As shown in Table  1, the 
prediction accuracy of zero wind speed Fzero is lower 
than 19.67%, and the prediction accuracy of abnormal 
wind speed Fab is lower than 37.34%. In the table, pos_i, 
i = 1, · · · , 6 , represents the anemometers at heights of 

(12)RECab =
TPab

TPab + FNab
.

(13)Fzero = 2 ∗
RECzero ∗ PREzero

RECzero + PREzero
,

(14)Fab = 2 ∗
RECab ∗ PREab

RECab + PREab
,

10 m, 50 m, ···, 110 m, respectively. pos_7 and pos_8 rep-
resent the two anemometers at the height 120 m in two 
different directions. The results show that the LSTM net-
work can hardly predict zero and abnormal wind speeds.

For comparison, we propose integrating EEMD, phase 
space reconstruction, and LSTM techniques to forecast 
one-hour abnormal wind speeds. Initially, the one-hour 
wind speed time series is decomposed using EEMD, fol-
lowed by reconstruction with phase space reconstruc-
tion. Subsequently, the LSTM model is deployed for wind 
speed prediction. As delineated in Table 2, the RMSE val-
ues across all eight positions using the proposed meth-
odology remain below 0.8878. Notably, while the RMSE 
for the proposed method on the one-hour dataset slightly 
exceeds that of the standalone LSTM model, it performs 
better in terms of Fzero and Fab metrics. Specifically, the 
proposed method yields Fzero values surpassing 32.00% 
and Fab values exceeding 59.85% across all eight posi-
tions, outperforming the LSTM approach. These find-
ings suggest that our proposed methodology enhances 
the accuracy of ultra-short-term prediction for zero and 
abnormal wind speeds.

3.4 � The performance evaluated on one‑day wind speed 
time‑series

As illustrated in Table  3, the RMSE values achieved by 
the proposed methodology on the one-day dataset con-
sistently exceed 13.0654 across all eight positions, sig-
nificantly higher than those obtained on the one-hour 
dataset. Furthermore, the Fab metric computed on the 
one-day wind speed dataset falls below 53.15% across 
all positions, notably lower than its counterpart derived 
from the one-hour wind speed dataset. These outcomes 
collectively suggest that predicting abnormal wind speeds 
over a one-day period is more challenging than forecast-
ing over a one-hour duration.

Table 1  Prediction performance on one-hour wind speed dataset using LSTM model

pos_1 pos_2 pos_3 pos_4 pos_5 pos_6 pos_7 pos_8

RMSE 0.5633 0.6709 0.7703 0.8003 0.7964 0.8317 0.8313 0.8268

Fzero (%) 14.29 13.79 12.90 17.74 19.67 16.95 17.74 16.00

Fab (%) 33.97 33.12 35.43 35.38 36.68 37.34 37.14 37.19

Table 2  Prediction performance on one-hour wind speed dataset using the proposed method

pos_1 pos_2 pos_3 pos_4 pos_5 pos_6 pos_7 pos_8

RMSE 0.6035 0.7022 0.7835 0.8102 0.8375 0.8751 0.8772 0.8878

Fzero (%) 44.92 38.85 36.59 36.23 34.53 32.00 45.33 48.32

Fab (%) 59.85 60.45 62.76 62.26 62.96 62.96 61.36 60.65
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The LSTM model is also employed for one-day wind 
speed prediction, serving as a benchmark against the pro-
posed method. As delineated in Table 4, the RMSE values 
obtained across the eight positions consistently remain 
below 7.6748, underscoring superior performance com-
pared to the proposed methodology. These findings sug-
gest that the LSTM model possesses a distinct advantage 
in forecasting short-term wind speeds. Additionally, the 
Fab achieved by the LSTM model exceeds 67.41%, sig-
nificantly surpassing the values attained by the proposed 
method. These results provide compelling evidence of 
LSTM’s efficacy in predicting short-term abnormal wind 
speeds.

3.5 � The proposed method applied to one‑hour non‑zero 
wind speed prediction

The pre-processing of the non-zero wind speed time 
series involves applying EEMD and phase space recon-
struction methods, followed by prediction using an 
LSTM network. Analysis of the results presented in 
Table  5 reveals that the proposed methodology yields 
higher RMSE values across the eight positions when 
applied to the non-zero wind speed dataset compared 
to its performance on the one-hour wind speed data-
set. Moreover, the Fab metric achieved on the non-zero 
wind speed dataset surpasses that of the one-hour data-
set. These findings collectively suggest that the proposed 
method demonstrates superior performance in predict-
ing abnormal wind speeds within non-zero wind speed 
data.

3.6 � The comparison of prediction performance on wind 
speed time‑series datasets

Table  6 presents a comparative performance analysis of 
the LSTM model and the proposed methodology. Nota-
bly, the LSTM model achieves the lowest RMSE of 0.7614 
on the one-hour wind speed dataset.

In evaluating prediction performance, the F_Score 
metric is employed, where higher scores denote superior 
performance. For abnormal wind speed prediction, as 
shown in Fig.  2, LSTM attains a Fab score of 35.78% on 
the one-hour wind speed dataset. This is surpassed by the 
proposed method, which yields Fab scores of 61.66% and 
61.92% on the one-hour and non-zero wind speed data-
sets, respectively. These results suggest that incorporating 
non-zero data marginally enhances abnormal wind speed 
prediction performance and underscores the proposed 
method’s advantage in ultra-short-term abnormal wind 
speed predictions. However, on the one-day wind speed 
dataset, the proposed method achieves a lower Fab score 
of 51.62% compared to LSTM’s score of 71.92%. This 

Table 3  Prediction performance on one-day wind speed dataset using the proposed method

pos_1 pos_2 pos_3 pos_4 pos_5 pos_6 pos_7 pos_8

RMSE 13.0654 14.0184 16.8574 17.8972 16.8697 18.8935 19.8352 20.2148

Fab (%) 49.32 51.18 51.44 50.93 51.79 53.05 52.09 53.15

Table 4  Prediction performance on one-day wind speed dataset using LSTM model

pos_1 pos_2 pos_3 pos_4 pos_5 pos_6 pos_7 pos_8

RMSE 5.9319 6.3825 6.7907 6.9861 7.0275 7.2854 7.5753 7.6748

Fab (%) 67.41 70.73 71.03 72.24 73.70 73.05 73.80 73.40

Table 5  Prediction performance on one-hour non-zero wind speed dataset using the proposed method

pos_1 pos_2 pos_3 pos_4 pos_5 pos_6 pos_7 pos_8

RMSE 0.8898 1.0917 1.2199 1.2510 1.2580 1.2908 1.3311 1.3355

Fab (%) 58.39 60.10 63.37 62.81 63.77 63.67 62.11 61.16

Table 6  Comparison of average performance at eight 
anemometers

Algorithm Data RMSE Fab (%) Fzero (%)

LSTM One-hour 0.7614 35.78 16.14

One-day 6.9567 71.92 -

Proposed One-hour 0.7971 61.66 39.60

Non-zero 1.2092 61.92 -

One-day 17.2064 51.62 -
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discrepancy highlights LSTM’s advantage in short-term 
abnormal wind speed prediction. The superior perfor-
mance of LSTM in short-term prediction may be attrib-
uted to the reduced noise in short-term wind speed data.

In the context of zero wind speed prediction, as shown 
in Fig. 3, the proposed methodology yields Fzero metric of 
39.60% on the one-hour wind speed dataset, outperform-
ing the LSTM model, which achieves a Fzero of 16.14% on 
the same dataset. This outcome underscores the efficacy 
of the proposed method in enhancing prediction perfor-
mance for zero wind speed scenarios.

4 � Conclusions
This study introduces a novel approach that integrates 
EEMD, phase space reconstruction, and LSTM net-
works for predicting abnormal wind speeds. We evalu-
ate the method using three distinct wind speed datasets: 
one-hour wind speed, non-zero wind speed, and one-
day wind speed scenarios. The comparative analysis of 

experimental results demonstrates the effectiveness of 
our proposed methodology in significantly enhancing the 
prediction accuracy of ultra-short-term abnormal wind 
speeds. Furthermore, these experiments confirm the 
superior performance of the LSTM model in short-term 
abnormal wind speed prediction. However, it is note-
worthy that both the proposed method and the LSTM 
model achieve F_Score values below 71.92% in abnormal 
wind speed prediction, and the F_Score for zero wind 
speed prediction by the proposed method remains below 
39.60%. Future work will focus on integrating wind pres-
sure and direction as input variables, potentially through 
a multivariate prediction model and refining the model 
architecture.
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