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The ultra-widefield (UWF) fundus image is an attractive 3D biomarker in
Al-aided myopia screening because it provides much richer myopia-related
information. Though axial length (AL) has been acknowledged to be highly
related to the two key targets of myopia screening, spherical equivalence (SE)
measurement and high myopia diagnosis, its prediction based on the UWF
fundus image is rarely considered. To save the high expense and time costs of
measuring SE and AL, we propose the Copula-enhanced Convolutional Neu-
ral Network (CeCNN), a one-stop UWF-based ophthalmic Al framework to
jointly predict SE, AL, and myopia status. The CeCNN formulates a mul-
tiresponse regression that relates multiple dependent discrete-continuous re-
sponses and the image covariate, where the nonlinearity of the association is
modeled by a backbone CNN. To thoroughly describe the dependence struc-
ture among the responses, we model and incorporate the conditional depen-
dence among responses in a CNN through a new copula-likelihood loss. We
provide statistical interpretations of the conditional dependence among re-
sponses and reveal that such dependence is beyond the dependence explained
by the image covariate. We heuristically justify that the proposed loss can
enhance the estimation efficiency of the CNN weights. We apply the CeCNN
to the UWF dataset collected by us and demonstrate that the CeCNN sharply
enhances the predictive capability of various backbone CNNs. Our study sup-
ports the ophthalmology view that, besides SE, AL is an important measure
of myopia.

1. Introduction. An important trend in ophthalmology research is to apply deep learn-
ing (DL) techniques to fundus images to aid the diagnosis and assessment of ophthalmolog-
ical diseases (Cen et al. (2021), Kim et al. (2021), Li et al. (2021), among others). There
are two main types of fundus images: traditional fundus images and advanced ultra-widefield
(UWF) fundus images (Midena et al. (2022)). Compared to the former that measures a nar-
row visual range of 30°-75° (the orange dashed circle in Figure 1), the UWF fundus images
offer a much broader 200° view of the fundus. These images are much more informative in
myopia screening (e.g., the ellipsoids in Figure 1 reflect lesions associated with myopia that
are outside the traditional image), although they require more advanced equipment.

In myopia screening the spherical equivalence (SE) acts as the gold standard for the de-
gree of myopia; the larger the magnitude of SE, the higher the myopia status; the cut-off for
high myopia is —8.0 dioptres (Kobayashi et al. (2005)). High myopia status is another impor-
tant concern in myopia screening because high myopia can substantially increase the risk of

Received August 2024; revised November 2024.
Key words and phrases. Copula, convolutional neural network, multitask learning, myopia, ultra-widefield
fundus image, 3D medical image object.

1292


https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/24-AOAS1996
https://www.imstat.org
https://orcid.org/0000-0003-3702-0980
https://orcid.org/0009-0000-8185-0872
https://orcid.org/0000-0003-3410-445X
https://orcid.org/0000-0002-3165-9559
mailto:chzhong@polyu.edu.hk
mailto:macliu@polyu.edu.hk
mailto:18110980006@fudan.edu.cn
mailto:fu@fudan.edu.cn
mailto:docdanjuanyang@126.com
mailto:limeiyan0406073@126.com
mailto:doctzhouxingtao@126.com
mailto:Alan.Welsh@anu.edu.au

COPULA ENHANCED CNNS 1293

FI1G. 1. Advantages of UWF imaging in myopia-related pathology. The orange dashed circle represents the area
covered by regular fundus images. The area within the dashed circle indicates lesions caused by peripheral laser
spots, the region within the real circle shows extreme peripheral chorioretinal atrophy, and the area within the
two ellipsoids contains pigmentary degeneration lesions.

blindness (Iwase et al. (2006)). Ophthalmological practitioners have also recognised that the
axial length (AL) may be meaningful to myopia screening, since AL is a crucial ocular com-
ponent which combines information on anterior chamber depth, lens thickness, and vitreous
chamber depth (Meng et al. (2011), Tideman et al. (2016)). Therefore, we are motivated to
develop a one-stop scheme that jointly predicts SE and AL and diagnoses high myopia status
based on UWF fundus images.

1.1. Motivations. There are two motivations for the present study: the ophthalmic need
to integrate AL information into myopia prediction and our desire to model conditional de-
pendence among responses in convolutional neural networks (CNN).

Motivation 1: Integrating AL into myopia prediction. The existing ophthalmology litera-
ture usually employs AL to predict SE or high myopia status (Mutti et al. (2007), Haarman
et al. (2020), Zhang et al. (2024)), indicating that integrating information from AL should
enhance myopia prediction. Nonetheless, precisely measuring AL in practice is costly and
time-consuming (Oh et al. (2023)). This drives us to jointly predict SE and AL from the
UWF fundus image biomarker. Specifically, we relate the bivariate responses to a tensor ob-
ject (image) covariate through a CNN, the most widely used DL technique for multitask
learning in computer vision.

Motivation 2: Modeling conditional dependence among responses in a CNN. A CNN
naturally incorporates the dependence among responses that is explained by the common fea-
tures from the image covariate. However, it is unclear whether a CNN learns the remaining
unexplained conditional dependence among responses given the image covariate. Generally,
a CNN is trained under an empirical loss that is the sum of mean squared error (MSE) losses
or the sum of cross entropy losses for regression and classification tasks, respectively. Such
empirical losses treat the responses as conditionally independent, given the image covariate;
refer to our discussion in Section 4 for more details. Such a conditional independence as-
sumption may be violated in practice. In our application there is a strong correlation between
SE and AL (see Figure 2), and this strong correlation may not be completely explained by the
UWF fundus image covariate. This drives us to model, interpret, and incorporate the condi-
tional dependence among responses, given the image covariate into a CNN within the context
of multitask learning for the purpose of enhancing the prediction of myopia.

1.2. Related work.

Multiresponse learning in statistics. In multiresponse models, multivariate classification
and regression tree (CART) and its variants are widely used (De’ Ath (2002), Loh and Zheng
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FI1G. 2.  Left: Scatter plot; Right:Contour plot; x axis: AL; y axis: SE.

(2013), Rahman, Otridge and Pal (2017), among others), although they do not take the de-
pendence among responses into consideration. To model the dependence among responses,
copula models (Sklar (1959)) have been used in various joint regression analyses (Song, Li
and Yuan (2009), Panagiotelis, Czado and Joe (2012), Yang, Frees and Zhang (2020), among
others). However, the methodologies in the above literature only study the influence of scalar
covariates on multiple responses and may not be applicable to image (tensor) covariates.
Recently, there has been some literature studying multiresponse tensor regression models
(Raskutti, Yuan and Chen (2019), Chen et al. (2019), Zou, Ke and Zhang (2022), among oth-
ers); such works tend to ignore one or more of the nonlinear associations, the dependence
among responses, and the mixture of discrete-continuous responses.

Studies on dependence among responses in deep learning. In the field of computer vi-
sion, the existing DL literature rarely considers the conditional dependence among multiple
responses, given the image covariate. In multitask learning, most of the literature either uses
a simple empirical loss or uses a weighted sum of marginal MSE or cross entropy losses
(Kendall, Gal and Cipolla (2018), Lin et al. (2019), among others). Neither of these two prac-
tices incorporates the conditional dependence structure of the responses. Meanwhile, those
weights assigned to each marginal loss may not be well explained and may be difficult to
learn from the data. In multiinstance learning the existing literature considers the spatial cor-
relation between labels determined by small patches/instances of the image covariates (Song
et al. (2018), Lai et al. (2024), among others). In multilabel learning the existing literature
models the partial correlation among labels to guide the information propagation through
graph convolutional networks (Chen et al. (2019), Sun et al. (2022), among others).

1.3. CeCNN: Copula enhanced CNN framework. Let Y = (¥1,..., Ypi» Ypi+1s---»
Ypi+p,) be a (p1 + p2)-dimensional response vector that allows both continuous and binary
entries. We call such responses mixed-type responses. Without loss of generality, assume
yj € Rfor j < pyand y; € {0, 1} for p; < j < p1 + p2. That is, the pending ophthalmologi-
cal multitask learning problem includes p; regression tasks and p» binary classification tasks
simultaneously. Let X' € R¥1X%k/ be a Jth-order tensor and G : RK1>*ki s RP1 x {0, 1}72
be an unknown nonlinear function that maps a high order tensor to a (p; 4+ p2)-dimensional
outcome. We formulate the following multiresponse mean regression that associates re-
sponses Y with a tensor object covariate X':

(1)  EX|X):=GX) ={g1(X),....8p,(X),S0gp+1(X),....80gp1p(X)},
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where g; : R¥1>xks 5 R are unknown single output nonlinear functions for j =1,...,
(p1 + p2), o denotes composition of two functions, and S(z) = 1/(1 4+ ¢7%) is the sigmoid
function that maps the real line to (0, 1).

We model the unknown nonlinear regression functions G through a backbone CNN with
(p1 + p2) outputs. Although there are various types of backbone CNNs, such as LeNet (Le-
Cun et al. (1998)), ResNet (He et al. (2016)), and DenseNet (Huang et al. (2017)), they share
a similar architecture. Usually, the architecture of a CNN consists of many hidden layers, in-
cluding convolution, pooling, and fully connected layers (LeCun, Bengio and Hinton (2015)).
Fitting a CNN is then equivalent to optimizing a specific loss over the parameters contained in
these hidden layers. In this paper we propose a new copula-likelihood loss to train backbone
CNNs with mixed-type outputs. Specifically, to meet the emergent needs of ophthalmology
practice, we focus on two sets of ophthalmic Al tasks arising from myopia screening, the
regression-classification (R-C) task and the regression-regression (R-R) task, and derive the
form of the proposed copula-likelihood loss in each task, respectively. The R-C task aims to
jointly predict the AL and diagnose the high myopia. The proposed loss and the accompany-
ing training procedure create a new Al framework called Copula-enhanced CNN (CeCNN).
From a statistical perspective, we attempt to interpret the conditional dependence, modeled
by CeCNN, and justify the enhancement in estimation brought by the proposed loss.

1.4. Our contributions. In this paper, motivated by incorporating AL into myopia screen-
ing to enhance myopia prediction, we present a nonlinear multiresponse regression where SE
(or the Bernoulli variable of myopia status) and AL are associated with UMF fundus images
(mode-3 tensors) through a backbone CNN. Specifically, we train the backbone CNN by op-
timizing a proposed copula-likelihood loss so as to accommodate the conditional dependence
among responses that may not be captured by the backbone CNN itself. We now highlight
our main contributions.

Our contributions are trifold. In ophthalmology we might be the first to jointly predict SE
and AL in myopia screening based on UWF fundus images. The present study allows for
one-stop measurement of SE, AL, and diagnosis of high myopia through one scan, saving
manpower and time costs for the precise measurement of SE and AL. Numerical experi-
ments demonstrate that, by incorporating the conditional correlation between SE and AL,
our method enhances myopia prediction. In this sense our study might be seen as providing
the first evidence of the ophthalmological view that, besides SE, AL is also an important
measure of myopia.

In deep learning we contribute a new loss, which might be the first to model and use
the conditional dependence among responses given the image predictor. We show that the
traditional CNN with empirical loss naturally learns the dependence contributed by the com-
mon image predictor but ignores the conditional dependence among responses. In contrast,
our proposed loss captures both dependencies; refer to equations (6) and (9) for illustration.
Numerical results demonstrate that the proposed loss leads to better predictive performance
compared to the empirical loss and the uncertainty loss for multitask learning (Kendall, Gal
and Cipolla (2018)). It is anticipated that the proposed loss can be applied to other similar
multitask applications in computer vision.

In statistics we might be the first to apply a CNN to relate multiple mixture-type responses
to a tensor object covariate nonlinearly and also model the dependence among responses
thoroughly. We show heuristically that optimizing the proposed copula-likelihood loss leads
to lower estimation risk for the CNN weights in the asymptotic setting. Our study illustrates
statistics harnessing Al through extracting more information within data objects.

The rest of the paper is organized as follows. Sections 2 and 3 introduce how the CeCNN
works in regression-classification (R-C) and regression-regression (R-R) tasks, respectively.
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Section 4 rethinks the copula-likelihood loss from the perspective of higher relative effi-
ciency in estimation of CNN weights. Section 5 presents the performance of the CeCNN in
myopia prediction on our UWF fundus image dataset. Section 6 carries out simulations on
synthetic datasets for illustration. Section 7 concludes the paper with brief discussions. For re-
producibility the computer code is available on GitHub https://github.com/Charley-HUANG/
CeCNN.

2. Regression-classification task. We start with our R-C task in myopia screening. That
is, under model (1), the response vector is Y = (y1, y2), where y; € Ry and y; € {0, 1} de-
note the AL and the status of high myopia (1: high myopia or greater than eight diaoptres;
zero, otherwise), respectively. The explanatory variable is X' € R?*#*224x3 3 UWF fundus
image stored in red and green with 224 x 224 channelwise pixels. We construct the copula-
likelihood loss for the R-C task in Section 2.1 and summarize the whole CeCNN procedure
for the R-C task in Section 2.2. To characterize the joint distribution of the mixed-type re-
sponses (y1, ¥2), we adopt the commonly used copula model (Sklar (1959)), which models a
joint distribution through a copula and the marginal distributions.

Without loss of generality, a two-dimensional (p-dim) copula C is a distribution function
on [0, 1], where each univariate marginal distribution is uniform on [0, 1]. One can always
express a joint distribution F through a copula C and the marginal distributions as

F(y1,y2) =C{Fi(y1), F2(»)},

where F; denotes the jth marginal cumulative distribution function (CDF) of y; for j =
1, 2. Let ® be the CDF of the standard normal distribution N (0, 1). The joint CDF under a
Gaussian copula is

F(y1,y2) =C(yID) = ®2(@~ {Fi1(yn)}, 7 {R(m)}IT), F=(;1> /1))’

where ®;(-|I") denotes the CDF of the two-dimensional (p-dim) Gaussian distribution
MVN(0,, I') with correlation matrix I' € R?*2, and p € (—1, 1) characterizes the depen-
dence between (y1, y2). In the presence of the covariate X', the conditional joint CDF, given
X, is naturally written as

2 F(y1,121X) = CIT, X) = &2(@7 {Fi (|}, @~ H{F (021 0)}IT).

When both y; and y, are continuous, the closed form of the joint density function
f(y1, y21X) is straightforward; refer to expressions (12) and (13) in Section 3. In this section
we derive the closed form of the joint density when y; € R and y; € {0, 1}.

2.1. Copula-likelihood loss. 'We begin by modeling the marginal distributions Fi(y(|X)
and F>(y2|X). Note that the contour plot Figure 2(b) yields that y; is approximately normal
on its margin. Meanwhile, y; is naturally Bernoulli. Therefore, under a CNN G = {g1, Sog»},
we model the marginal distributions of (y, y2), given &, as

(3) y11X ~ N(g1(X),02),  y2l&X ~Bernoulli{S o g2(X)}.

Let n be the size of the training data. For i = 1,...,n, let ;1 = g1(X;) be the marginal
expectation of y;1, given &j, w2 = Pr{yj2 = 1|X;} =S o g2(AX}) be the marginal probability
of yio =1, given X}, and z;1 = (y;1 — mi1)/o be the standardized residual of y;;. Let u;; =

F>(yio—) be the left-hand limit of the CDF F; at y;» and u;o = F>(y;2). Let N(|pn,o?)
denote the density of N (i, ). The joint density for bivariate discrete-continuous variables

(y1, y2), given X;, is

2
(4) FGitsyial &) = N(vitluit, 0%) Y (=D Cl(zin, uir D),

r=1
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where (C% is the partial derivative of the Gaussian copula (2) with respect to the continuous
coordinate y;1. The joint density (4) is consistent with the bivariate version of Song, Li and
Yuan ((2009), equation (9)).

Specifically, for y;» = 1 in our case, up to a normalized constant ¢y, we have

1 /‘P_I(I—Miz)
/1 — ,02 —00
—® (ki) z —2pzns +57 7 } ds

1
I L L
12 ) 20— p7) 2

:¢<—¢1(Mi2) —Pm) _q _¢<¢1(Mi2)+pzn)’

V1= p? J1—=p?

1 1
CH(zi1, ui1|T) = co exp{_i(zil, M @i, )T + —z,-zl}ds

2

and

1 B 1
C2(zin, uiaT) = co exp{—5<z,~1, O G 9 + 222, } ds=1.

1 +00
/1 — ,02 /;oo 2
Consequently, we have the conditional probability

O~ (win) + pzit

J1=p2

Hence, by taking the value of y;; to be either 0 or 1, corresponding to (4), the closed form of
the conditional joint density of (y;1, yi2), given X}, in our case is

I(yi1, yial X)) = N (i1; g1(X), 02)C* (iin, zi110)2 (1 = C* iz, zi1 |,0))1_m-

Finally, we obtain the copula-likelihood loss, which is minus the log-likelihood for the train-
ing data

Pr{yi2=1|yi1=0Zi1+,ui1}=¢< )EC*(Miz,Zill,O)-

ﬁl(gla g2|{Yl}:l:1» {‘X'l}?:l’ 107 G)

1 & 2
(5) —Fg()’ll_ﬂtl)

n
- Z[yizlog C*(wi2, zi1lp) + (1 — yin) log{1 — C* (ui2, Zi1|,0)}]}~
i=1

Note that on the right-hand side (RHS) of (5), the first summand is related to g; only, while
the second summand associates ;1 and ;> or, equivalently, g; and g» through a parame-
ter p. Mathematically, when p =0, C*(u;2, zi1|p) becomes ;2 = S o g2(X;), implying that
the second summand in the RHS of equation (5) reduces to a pure cross entropy loss of g»
only. Thus, loss (5) is a more general form of the empirical loss. Both p and o have explicit
statistical interpretations. The scale parameter o represents the standard deviation of y;|X,

acting as the weight balancing the MSE loss and the cross-entropy-like loss. Let X 2Ly de-
note the equality in distribution between random variables X and Y. We rely on the following
theorem to interpret o in the R-C task.

THEOREM 2.1. Suppose the joint distribution of Y = (y1, y2) is given by the Gaussian
copula (2) with correlation matrix I, where the marginal distributions of y; and y) are
given by (3). Let 1 = g1(X) and pur = S o g2o(X) be the conditional mean of y1 and y;,
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given image covariate X, respectively. Let z1|X = (y1 — 1) /o be the standardized version
of y1|X. Let 72| X ~ N(@ (), 1) be a latent Gaussian score such that (z1,z2)T |X ~

MVN({[0, CID_I(,uz)]T, I'}. Then we have y, 4 I(zp > 0).

Theorem 2.1 tells that the discrete response y» is distributionally identical to the continu-
ous latent Gaussian score z> under the Gaussian copula (2). It is validated by showing that
Pr{y, = 1|X} = Pr{zp > 0|X} and Pr{y, = 1|X, z1} = Pr{zz > 0| X, z1} in Section A.1 of the
Supplementary Material (Zhong et al. (2025)). As a result, the theorem indicates that the asso-
ciation matrix I of the Gaussian copula (2) becomes the correlation matrix of the conditional
Jjoint distribution of 71 (standardized y1) and the latent Gaussian score z5, given the image X.
Our result is motivated by the Gaussian score correlation (Song (2007), Definition 6.3) that
characterizes the association between two continuous variables. In the presence of a discrete
Bernoulli variable y,, we extend the concept of Gaussian score correlation from continuous-
continuous cases to continuous-binary cases by the constructing a continuous latent variable
72 as a replacement for y,.

In summary, p = corr(y;, z2|X’). From Theorem 2.1 and after some algebra, the full co-
variance structure between the two Gaussian variables (y1, z2) is

(6) Cov(y1, z2) = po + Cov(gi (X), @S 0 g2(X)}).

The latter summand in the RHS, Cov(g;(X), <I>_1{8 0 g2(X)}), is determined by the image
X and is captured by the CNN. However, the conditional correlation p between y; and z»,
given X, is beyond the dependence/correlation explained by the image covariate.

The covariance structure (6) inspires natural estimators of p and o. Once the marginal
estimators of g1 and g;, denoted as g? and gg , respectively, are obtained, one may: (i) estimate
p as the Pearson correlation between y; and o HSo §g (X)}, by treating o HSo gg (X))}
as a realization of z|X and (ii) estimate the scale parameter o as the standard deviation of
the residuals from g?(x ). In summary, let X denote all the images X in the training set. The
estimators of the copula parameters (p, o) are

(7) p=corr(y;, @ S0 gd(X)})), 6=sdly, —&dx)}.

Consequently, the proposed copula-likelihood loss (5) is specified by using the estimators
(p, &) in place of the unknown (p, o).

2.2. End-to-end CeCNN. In Section 2.1 we formulated the proposed copula-likelihood
loss accompanied by the estimators of the copula parameters. In this subsection we illustrate
how statistics harnesses Al through the proposed CeCNN framework. The overall CeCNN
framework has three modules, the warm-up CNN, copula estimation, and the C-CNN. The
warm-up CNN module is basically a backbone CNN trained under the empirical loss, provid-
ing the marginal estimators needed for copula parameter estimation. The copula estimation
module estimates the parameters (o, o) based on the marginal estimators obtained by the
warm-up CNN. The last C-CNN module is the core of the whole CeCNN framework where
the backbone CNN is trained under the proposed copula-likelihood loss to incorporate the
conditional dependence information. The three modules are summarized in Algorithm 1.

In Module 1, without loss of generality, we assume that the backbone CNN G has k;
convolution (Conv) layers, k; pooling (Pool) layers, and one fully connected (F-C) layer
(e.g., the LeNet and the ResNet backbone CNNs). The regression and classification tasks
differ only in the F-C layer and share the Conv and Pool layers. All the numerous parameters
included in the very deep hidden layers are updated by the Adam algorithm (Kingma and
Ba (2014)) to optimize the empirical losses presented in lines 2 and 3, respectively, until
convergence.
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Algorithm 1 End-to-end CeCNN (regression-classification task)

Input: Training images X = {X; }?=l and training labels {Y; = (y;1, }’iZ)}Ly

Output: CeCNN estimator G = (81, S 0 82).

Module 1: The warm-up CNN

1: Design a bivariate-output backbone CNN G = (g1, S o g»), where gj = F-Cj o Pool(l,..., kp) o Conv(l, ..., k1),
F-Cj@) =wlz+bj, for j=1.2.

2: Obtain marginal estimator §(l) = argming, n~l Y it — a1 (X))2.

3: Obtain marginal estimator g‘z’ =argming, — Y7 [¥i210g(S 0 g2(X;)) + (1 — y;) log(l — S 0 g2(X;))].

Module 2: Copula estimation

4: Obtain estimators (9, &) of the copula parameters by (7).
Module 3: The C-CNN

5: Determine the copula-likelihood loss £ (g1, g2|X, Y, p, &) in the form of (5).
6: Obtain G = (g1, §o) = argming o, Ly.

We view the outputs of the warm-up CNN as the marginal estimators ) and 9 (&) is
the classification output before the sigmoid transformation). Then in Module 2, we obtain
estimators (p, &) following (7) and thus determine the copula-likelihood loss (5). In Module
3 we fix (p, 6) and only update the weights in the backbone CNN. This module fine-tunes
the pretrained warm-up CNN. More detail about the training procedure in Module 3 is given
in Section 7.

3. Regression-regression task. This section treats the specific regression-regression (R-
R) task of predicting the clinically important, highly correlated responses SE and AL, using
the proposed CeCNN.

Let Y € R?. We rewrite model (1) as the following equivalent multiresponse regression
model:

®) Y =G(X) +e,

where € = (€1, ..., €)) is a p-dimensional noise vector, € L X, E(e;) =0forall 1 < j < p.
For any p > 2, (8) expresses multiresponse regression in a unified form. Expression (8) yields
the following covariance structure among (y1, ..., Yp):

(9) COV(ys»yl‘)=COV(€S561‘)+COV{gS(X)9gl’(X)}’ S,t:L---,p-

Here Cov(e;, €;) characterizes the conditional dependence among Y, given X, which origi-
nates from the model error € and is beyond the images; Cov{g,(X), g;(X)} characterizes the
dependence of Y, which is learned by the CNN and contributed by the image X

Under (8) the distribution of ¥ — G(X')|X is the same as that of €, and it is notationally
convenient to express things in terms of €. Thus, in Gaussian copula modeling, we first have
to specify the marginal CDF, and the density of €;, for j =1,..., p, is simpler than stating
we have to specify the conditional CDF and density of ¥; — g;(X)|X. In this section we
study two types of marginal densities.

Nonparametric error. We start from a general case where the marginal density of the
error €; is unspecified. In this case we estimate the marginal CDF F¢; (and density f;)
first for j =1,..., p, then estimate I', and finally we combine them to derive the copula-
likelihood loss.

We begin with the warm-up CNN, equipped with the empirical MSE loss, and obtain the
residuals (e;1, ..., e;p) on the training dataset, for i =1, ...,n. To make sure E(e;) =0,
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we use the mean-centered residuals ¢;1, ..., €;), to estimate the marginal empirical CDF (and
pdf) of €; by Gaussian kernel smoothing

~ 1 n ~ 1 n
10 Fy(n=- Yoo{—eip/bo}. S, )= o > o —éij)/vo}.
i=1 i=1

where Yo > 0 is a tuning parameter acting as the bandwidth for both CDF and density esti-
mation.

Once we obtain the estimates 15'6 i the correlation matrix ' in the Gaussian copula (2) is
estimated using

(11) Pyj = corr({@ 7 (Fe, @)}y @ (B, @)}y). s j=1.....p,

the Pearson correlation between the two Gaussian scores of the smoothed empirical CDFs of
the centered residuals.

With the above estimates and under the Gaussian copula, based on Song, Li and Yuan
((2009), equation (7)), the copula-likelihood loss is given by

n 1 n 14 o
(12) Lo({g o VN X) = =254 (1, =T7)a: =2 3 log{ fe; (i — 8, (XD)},
i=1 i=1j=1

where g; = (O~ (F,[yi1 — g1(XD1), ..., ™ Fe, [yip — gp(XDIDT. Obviously, if ' =1,
(no correlation between the responses), loss (12) reduces to the sum of minus the log densi-
ties fe;.

Gaussian error. Since both SE and AL look normally distributed (based on the contour
plot in Figure 2), we may simply adopt the Gaussian model error €; ~ N (0, o?), where o j
is a scale parameter. With Gaussian error the likelihood contribution of Y;|A; reduces to
the multivariate Gaussian density directly. Thus, for training data ({Y;}?_,, &), the copula-
likelihood loss is

(13)

n
La({g; o1 Y ilioy: X) = = 3 logMVN,{(yi1 — g1[(A)]. ... yip — 8p[(X)]): 0. Z}.
i=1

where ¥ = diag(oy,...,0,)"diag(oy,...,0p,) = (01j) pxp is the covariance matrix of €.
Specifically, in our bivariate application, if o = 0 (i.e., I is the identity), the copula-likelihood
loss (13) simply reduces to the sum of the empirical MSE loss and some constant. Therefore,
the copula-likelihood loss (13) is a generalization of the empirical MSE loss.

With Gaussian errors we only need to estimate the covariance matrix X or, equivalently, the

correlation I' and the marginal standard deviations (o1, ..., 0p). Intuitively, their estimates
can be obtained from the empirical correlation matrix and marginal standard deviations of the
residuals from warm-up CNNs. Let (go1, ..., €0 ») be p-dimensional outputs of CNNss trained
with the empirical MSE loss for (g1, ..., gp) on the training dataset. Using the residuals
(ei1, ..., eip) for each observation, where e;; = y;; — 20 j(X;), we obtain estimates of the
copula parameters I' and o as

(14) = ();tj)pxp = Corr({eit}?:p {eij}?zl)a 5] = Sd({eij}?:ﬂ-

Finally, we summarize the CeCNN for the regression-regression task in Algorithm 2. In
this task the CeCNN again has the three-module structure with different copula parameters.
For Gaussian error the copula parameters are the marginal SDs o; and the Pearson corre-
lations y;;; for nonparametric error the copula parameters contain an infinite dimensional
parameter fe; and the transformed correlation y;;.
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Algorithm 2 End-to-end CeCNN (regression-regression task)

Input: Training images X = {A;}/_, and training labels {¥; = (yi1, ..., Yip)Vi;-

Output: CeCNN estimator G = (21, . .., &p)-

Module 1: The warm-up CNN

1: Design a multi-output backbone CNN G = (gi, ..., gp), where gj= F-Cj oPool(l,..., ky) o Conv(l, ..., k1), F-Cj ()=
ijerbj,forj:l ..... p.
2: Obtain marginal estimators gr(} =arg mingj nl Y-8 (X)), for j=1,...,p.

Module 2: Copula estimation

3: if Non-Gaussian then

4: Estimate copula parameter I" based on (11).

5: else if Gaussian then

6: Estimate copula parameters (I', ') based on (14).
7: end if

Module 3: The C-CNN

8: if Non-Gaussian then

9: Define the loss £, as (12). Obtain G = (21, .. ., gp) =argming; ¢, L.
10: else if Gaussian then

11: Define the loss £3 as (13). Obtain G = (31, ..., gp) =argming; o, L3.
12: endif

4. Rethinking the copula-likelihood loss: Relative efficiency. An interesting question
raised by the reviewers is what kind of “dependence” is learned by the copula-likelihood
loss in addition to the “dependence” explained by the image covariates, which is learned
automatically by the “baseline.” Here the baseline refers to a reasonable backbone CNN
equipped with the empirical loss. Our understanding is the proposed copula-likelihood loss
incorporates the conditional dependence among responses, given the image covariate. Such
conditional dependence cannot be learned by the backbone CNN equipped with the empirical
loss. As a result, the estimators of the weights in the last fully-connected (F-C) layer of a
CNN are asymptotically more efficient under the copula-likelihood loss than those under the
empirical loss. In the following we confine our discussion to the bivariate-response learning
task, considering our application to the UWF dataset.

In both R-C and R-R tasks, the backbone CNN with the empirical loss can only capture
the correlation between y; and y», explained by the image covariate X, and misses the condi-
tional dependence structure given X'. This is evidenced by the fact that the CNN fitted under
the empirical loss is the nonparametric maximum likelihood estimator on the space of CNNs
under the conditional independence model assumption y; L y|X, that is, the special case
o = 0 in our Gaussian copula modeling; referred to Propositions A.1 for R-R tasks and A.2
for R-C tasks in the Supplementary Material (Zhong et al. (2025)), respectively. Therefore,
the baseline with the empirical loss may suffer from the risk of model misspecification if the
true p # 0, incurring suboptimal prediction.

In contrast, the copula-likelihood loss delivers the conditional dependence information to
the CNN through the correlation parameter p in the Gaussian copula. Specifically, in the R-R
task, the loss incorporates the covariance structure of the model error as expressed in (9); in
the R-C task, the loss incorporates p = corr(z1, z2|X), where z; is the standardized residual
and z, is the latent Gaussian score defined in Theorem 2.1.

Suppose the depth of a backbone CNN is L = k| +k, + 1. Recall that, in Algorithms 1 and
2, the last F-C layer can be expressed as H = (F-Cy, F-C»); the stacking of (1,...,L — 1)
hidden layers can be expressed as D = Pool(l, ..., k») o Conv(l,..., ky). Therefore, G =
H o D. By definition, D : R4*?*¢ — RX is a nonlinear function mapping a tensor X to K
feature maps, where K is the width of the last F-C layer of the CNN. The width K varies
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among different backbone CNNs (e.g., K =512 in ResNet and K = 4096 in DenseNet).
With K feature maps D(X), the last F-C layer H : RK — R? is defined by

(15) HoDX)=(G1, )", 3=Aj{wD@X) +b;}, j=1.2,

where A; are some specific activation functions and w; € RX and b j € R are the weights
and bias of the jth output neuron, respectively. In the R-R task, the two activation functions
A are both the identity projection; in the R-C task, the .4; are the identity projection and the
sigmoid function, respectively.

Fitting a CNN is equivalent to optimizing some loss between y; in (15) and the training
responses y;. In the R-R task, we denote by ﬁzjmp the estimate of w; under the empirical

loss and denote by ﬁ)j.OP the estimate of w; under the copula-likelihood loss. We make the
following assumption.

ASSUMPTION 1 (Uncovered feature maps). Let 1wj = {k : wjx # 0} be the index set of
nonzero entries in weights w ;. Assume that 1, \ 1y, # @ and 1y, \ 1y, # @.

Assumption 1 assumes that the two outputs y; and y, in the R-R tasks share different fea-
tures of X’ extracted from the convolutional layers. This assumption naturally holds for those
backbone CNNss that assign different F-C layers to different outputs (e.g., Liu et al. (2019),
Lian et al. (2022)). For general backbone CNNs like ResNet and DenseNet, Assumption 1
may be examined by significance tests for black box learners (Dai, Shen and Pan (2024)) or
by visual explanations for neural networks (Selvaraju et al. (2017)).

Let wj; be the pth element of w;, for k =1,..., K. We are in a position to provide the
following theorem on estimation of the weights in the last F-C layer of a CNN. The proof
relies on transforming the linear model (15) into a seemingly unrelated regression model
(Zellner (1962)); details are deferred to Section A.3 of the Supplementary Material (Zhong
et al. (2025)). The theorem is confined to the R-R task; similar results may also hold on the
R-C task, but the techniques are much more complicated.

THEOREM 4.1 (Relative efficiency). Let X be the samples of the image covariates in the
training set. In the R-R task, under Assumption 1 and other technical assumptions in Section
A of the Supplementary Material, if 1, N1y, =@, asn — oo, fork =1, ..., K, we have

Pr{Var(ﬁ);Zp|X) < Var(zi)jll?pl.?()} —-1,j=1,2.

Note that both Var(w52p|X ) and Var(tbj;{an’ ) are determined by the feature maps of
the training image samples, and thus they are indeed stochastic. Theorem 4.1 shows that, in

the asymptotic setting, the former is dominated by the latter. Since both ﬁ);zp and ﬁ)‘?,?p are

unbiased for w i, Theorem 4.1 indicates that, with probability tending to 1, wjzp is more
efficient than wjf,?p. Therefore, compared with the empirical loss, in the R-R task, the copula-
likelihood loss reduces E||w ; — i | |%, the estimation risk of the weights within the jth output
neuron in the last F-C layer of a CNN.

5. Application to the UWF fundus image dataset. We apply the proposed CeCNN to
myopia screening based on our UWF dataset. To evaluate the predictive capability of CeCNN,
we conduct 10 rounds of five-fold cross-validation on the dataset.

5.1. Data preparation. The data collection process involved capturing 987 fundus im-
ages from the left eyes of 987 patients using the Optomap Daytona scanning laser ophthal-
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moscope (Daytona, Optos, UK). All enrolled patients sought refractive surgery treatment
and were exclusively myopia patients. To ensure homogeneity and accuracy, individuals with
other ocular conditions, such as cataract, vitreoretinal diseases, or glaucoma as well as those
with a history of trauma or previous ocular surgery, were excluded from the dataset. For im-
age selection we required the fovea to be positioned at the center of the image and applied
the criterion of gradability. Images were considered gradable if there was no blurring in the
optic disc or foveal area and if less than 50% of the peripheral retinal area was obscured
by eyelids or eyelashes. The UWF fundus images obtained during the study were exported
in JPEG format and compressed to a resolution of 224 x 224 pixels to facilitate subsequent
analysis.

Response variables. As stated before, the response variables considered include two con-
tinuous responses, SE and AL, and a binary myopia status response indicating whether the
patient has high myopia or not. The ground truth values for AL and SE in our study are ob-
tained through standard clinical procedures by professional ophthalmologists from the Eye
& ENT Hospital of Fudan University, ensuring that our ground truth values are accurate and
reliable. High myopia is defined according to SE value with a cut-off of —8.0 D. We will
predict both AL value and myopia status (the R-C task) and predict SE and AL values (the
R-R task).

5.2. Structure of backbone CNNs. To validate the generality of CeCNN, we select LeNet,
ResNet-18, and DenseNet as our backbone CNNs. LeNet represents one of the simplest,
original CNNs, while ResNet and DenseNet are acknowledged as two of the most effective
and prominent CNN models in the field of computer vision.

Simplify backbone CNN to avoid overfitting. The conventional ResNet-18 and DenseNet
models contain over ten million parameters, and the original LeNet model has over five mil-
lion parameters. However, the size of our UWF dataset is quite limited, comprising a data
size that is smaller than 1000. This discrepancy posed a significant challenge in the form of
severe overfitting, which results in a large gap between the losses on the training set and the
validation set (Goodfellow, Bengio and Courville (2016)). As a result, the predictive perfor-
mances on our UWF test set are unsatisfactory, no matter what kind of loss is used to train
the backbone CNN.

To mitigate the overfitting issue caused by the overparameterized backbone CNNs, we
adopt the common strategy to reduce the number of the learning parameters by simplifying
the neural network architecture (Han et al. (2015), Keshari et al. (2018), among others).
Specifically, we removed the last two CNN blocks from ResNet18, removed the last dense
block from DenseNet, and increased the filter sizes of the convolutional and pooling layers
of LeNet. This substantial reduction in the parameter count effectively prevented overfitting.
After simplification, for example, the parameter count of ResNetl8 reduced from over ten
million to around six hundred thousand. Figure 3 shows the architectures of the simplified
versions of LeNet, ResNet18, and DenseNet. These simplified backbone CNNs are also set
as the baselines for comparison.

Simplifying the backbone CNNs on our UWF dataset does NOT indicate that CeCNN has
limitations in the choice of backbone CNN. In practical applications, if the dataset size is
sufficient or if appropriate measures to address overfitting are implemented, it would not be
necessary to use a simplified backbone CNN.

Architecture of the CeCNN. The complete architecture for applying the CeCNN model
to the UWF dataset is illustrated in Figure 4. We begin with a warm-up CNN module where
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we train the backbone CNNs under empirical loss (Module 1). Then we estimate the copula
parameter based on the residuals and Gaussian scores obtained in the warm-up CNN (Mod-
ule 2). Finally, with the estimated copula parameter, we proceed to train our CeCNN models
with the proposed copula-likelihood loss (Module 3).

5.3. Results on the UWF dataset. To evaluate the predictive capability of CeCNN, we
consider two competitors for comparison. The first competitor is the baseline, where the
backbone CNN is equipped with the empirical losses for the R-C and R-R tasks, respectively.
The other competitor is the uncertainty loss (Kendall, Gal and Cipolla (2018)), a commonly
used multitask learning loss in the DL community. Comparison with the uncertainty loss
is deferred to Section B of the Supplementary Material (Zhong et al. (2025)). We do not
compare with the Pareto weighted loss (Lin et al. (2019)) due to the high computational
burden in tuning the weights.

We partition the full UWF dataset into the training data set, the validation set, and the
testing set with a ratio of 6:2:2. In the R-C tasks, we evaluate predictive performance by
classification accuracy and AUC for the classification task, and the root mean square error
(RMSE) for the regression task; in the R-R tasks, we use the RMSE and the mean absolute
error (MAE) as metrics.

Results on the R-C task. We present the boxplots of the evaluation metrics for the R-C
tasks in Figure 5. Compared with the baseline, with a significance level of 0.05, the CeCNN
significantly improves the AUC with both the DenseNet and the ResNet backbones. Further-
more, the CeCNN with the DenseNet backbone absolutely reduces the average regression
RMSE by 2.887% and slightly improves the classification accuracy by 0.516%; the CeCNN
with the ResNet backbone slightly reduces the RMSE by 0.120% and absolutely increases
the classification accuracy by 0.994%; CeCNN with the LeNet backbone reduces the RMSE
by 1.223% and increases the AUC by 1.227%, while slightly sacrificing classification ac-
curacy by 0.145%. In summary, the CeCNN enhances the baseline in almost all tasks with
various backbone CNNs; the enhancement on the DenseNet and the ResNet backbones is
more significant than that on the LeNet backbone. We conjecture that this phenomenon may
be caused by the different width of the last F-C layer of different CNNSs, that is, the number
K in Theorem 4.1. Recall that Assumption 1 in Section 4 requires the activated feature maps
for the two tasks to be uncovered. When K is relatively small (e.g., K = 12 in the LeNet),
this assumption may be violated, limiting the possible enhancement by the copula-likelihood
loss. In contrast, for ResNet and DenseNet where K, the input dimension of the last F-C
layer, is large, the enhancement from using the copula-likelihood loss is absolute.

Results on the R-R task. 'We present boxplots of the evaluation metrics for the R-C tasks
in Figure 6. On average, when using the Gaussian error, CeCNN reduces the RMSE of SE
by 0.717%, 2.232%, and 3.827% and reduces the RMSE of AL by 10.378%, 3.683%, and
5.262% on the LeNet, the ResNet, and the DenseNet backbones, respectively. With a signifi-
cance level of 0.05, the improvements in the AL prediction with all of the LeNet, the ResNet,
and the DenseNet backbones are significant, and the improvement in the SE prediction with
the DenseNet backbone is also significant. When using the nonparametric error, the predictive
performances of the CeCNNSs are similar to those using Gaussian error. It is not surprising that
the CeCNN enhances predicting AL more than it enhances predicting SE since the marginal
variance of AL is smaller than that of SE. In the joint Gaussian log-likelihood (13), a smaller
variance puts a larger weight on the corresponding loss, and hence the optimizer tends to
optimize more on AL than SE.
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FIG.5. Boxplots of RMSE, classficiation accuracy and AUC in 10 rounds of five-fold validation of the R-C tasks.
Top: With LeNet backbone; Middle: With ResNet backbone; Bottom: With DenseNet backbone.

6. Simulations on synthetic data. We carry out simulations on synthetic datasets for
both R-C and R-R tasks to illustrate the superiority of CeCNN compared with the baseline. To
match our application scenarios, in both R-C and R-R tasks, we consider correlated bivariate
responses and a single image covariate. We present the simulation details for the regression-
classification and regression-regression tasks in Sections 6.1 and 6.2, respectively.
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6.1. Simulated regression-classification task. On this task the synthetic image covariate
is generated as a grey matrix X; € R%*? that can be divided into nine independent blocks of
3 x 3 square block matrices X, s € R3x3,

(1,1) (1,2) (1,3)
X1 X122 X113 Xt,zsl Xtivz Xt,Zs
X=|X21 X22 X23], X5 = X,(!S’ ) X,(,S’ 4 X,(’s’3) , t,s=1,2,3.
X31 X332 X33 X(3’1) X(3’2) X(3’3)

1,8 1,8 1,8
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For k,1 =1,2,3, we set ngél) ~ N(1,0.5%) as elements of the dark block and Xt(f‘s’l) ~

N(0, 12) as elements of the bright blocks, for (¢, s) # (3,3). Based on this covariate, we
generated the synthetic continuous response y; € R and the synthetic binary response y; €
{0, 1} using model (1).

For each block X; s, we define the block operators S; g, S;'i ot R3*3 5 R for responses yi
and y,, respectively. Then the two responses were generated as

(16) y1~N{ > S,,S(X,,s),lz}, yszernoulli{S[ > S;fs(x,,s)]}.

1<t,s<3 1<t,5s<3

For the block operators S; , we set

k,l k,l k,l
Sl,l = Z tal’lh(Xi’l)), S2,2 = Z Xé,z)v S3,3 :tanh( Z X§,3 )>’
1<l.k<3 1<l,k<3 1<l,k<3

and S; y = 0 for other blocks. Under this setting the function g1 =) _; -, » <3 Sr,5 is a nonlin-
ear function that can be modeled by a CNN. For the block operators S;';, we set

* _ (k,1)
S5a=S0= )Y X5;
1<l,k<3

and ;' = 0 for other blocks so that E(y) = 1/2. The two responses are dependent in this
case since they share the same block operator on block X» ».

6.2. Simulated regression-regression task. For the regression-regression task, we gener-
ated the synthetic image covariate in a similar way to that of the regression-classification
task. For this task we set five dark blocks X,(’ks’l) ~ N(1,0.5%) for k,] =1,2,3 and (z,5) €
{(1, 1), (2,2),(3,3), (1, 3), (3, 1)}. The remaining blocks were set to be the aforementioned
bright blocks N (0, 12). The responses were generated from model (8), where the model error
€; = (€1, €2) ~ MVN(0,, X) with

5 _ 1 01 07\/1 O
—\0 2)\0.7 1)\0 2)°
This covariance setting yields a strong correlation and two different levels of marginal varia-

tion (variances of 1 and 4), corresponding to the AL and SE, respectively. We set the nonlinear
regression functions g and g» as the sum of block operators so that

giX)= Y Sis(Xis), @)= DY S (X
1<t,s<3 1<t,s<3
For y; the block operators S; s are given by
k.l k.l k.l
Sii= > tanh(X%yl )), Sap= > X;z), 833 = tanh( > X§,3)>’
1<1,k<3 1<1,k<3 1<1,k<3
and S; s = 0 for other pairs of (¢, s). For y, the the block operators S are given by
Sty= Y wmon(x(y), s = > x%) sis= tanh( 3 X§’f§”>,
1<1,k<3 1<1,k<3 1</,k<3

and S;f s = 0 for other pairs of (7, s). Under this setting, marginally, we have E(y;) = E(y2).
Note that the block operators S; ; and S/ can be viewed as the input feature maps of the last
F-C layer of the CNN. Then our setting guarantees that Assumption 1 holds.
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6.3. Simulation results. In total, we generated n = 10,000 synthetic images and the cor-
responding pairs of responses in our simulations. To save computation time, we adopt a sim-
ple backbone CNN in both the baseline and the CeCNN. The backbone model used in the
simulations consists of two basic convolutional layers and two fully connected layers. With
such a simple backbone CNN and the relatively large data size, the overfitting issue is not
severe in our simulations. The baseline is then defined as the same backbone CNN equipped
with the empirical loss. For the R-R task, we used MSE, AUC, and classification accuracy as
the evaluation metrics; for the R-R tasks, we use RMSE as the evaluation metric.

From Figure 7 we find that CeCNN improves the prediction performance of the baseline
in both R-C and R-R tasks. Recall that Assumption 1 holds under our R-C simulation setting.
The simulation result on the R-R task illustrates the improvement brought by CeCNN that
we established theoretically in Theorem 4.1.

7. Discussion. In this paper we propose the CeCNN, a new one-stop ophthalmic Al
framework for myopia screening based on the UWF fundus image. The CeCNN models and
incorporates the conditional dependence among mixed-type responses in a multiresponse
nonlinear regression through a new copula-likelihood loss to train the backbone CNN. We
provide explicit statistical interpretations of the conditional dependence and justify the en-
hancement in estimation brought about by the proposed loss through a heuristic inferential
procedure. In our UWF dataset, the CeCNN succeeds in enhancing the predictive capability
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of various deep learning models in measuring SE, AL, and diagnosing high myopia simulta-
neously.

Why not iteratively update the copula parameters. One referee questioned why we do
not iteratively update the estimates of the copula parameters I' and ¢ in module 2, during
each epoch updating of the backbone CNN in module 3 of the CeCNN. Indeed, we estimate
the copula parameter I from the outputs of the backbone CNN trained under the empirical
loss. It is called the warm-up CNN since we only train this CNN once to estimate I" and o.
We attempt to answer the reviewer’s question from the point of view of estimating w ;, the
weights in the last F-C layer of the backbone CNN.

In the CeCNN, by replacing the true I" with its estimate based on the residuals and Gaus-
sian scores obtained from the warm-up CNN, the induced estimator ﬁ)j.OP is the feasible gen-
eralized least squares (FGLS) estimator (Avery (1977)). Since the FGLS estimator is asymp-
totically equivalent to the GLS estimator using the true copula parameters (Prucha (1984)),
using the estimated copula parameters in the copula-likelihood loss will not lose estimation
efficiency asymptotically. This justifies our CeCNN architecture.

On the other hand, we conduct five runs of five-fold cross-validation to evaluate the idea of
iteratively updating the copula parameters; refer to Section C in the Supplementary Material
(Zhong et al. (2025)). Iteratively updating the copula parameters I" and o is closely related
to the alternating minimization (AM) algorithm for seemingly unrelated regression (Jain and
Tewari (2015)). The AM algorithm requires the optimizer to converge in each iteration of
updating the copula parameters. In deep learning, convergence of the optimizer is sensitive
to the choice of initial values. In our numerical studies, we find that: (i) iteratively updating
the copula parameters can converge very slowly when using the ImageNet pretrained initials,
(i) too frequently updating copula parameters may result in poorly trained epochs and lead
in wrong directions in training, and (iii) the weights trained by the warm-up CNN module are
good initial values to ensure convergence, while iteratively updating the copula parameters
does not enhance prediction in the R-C task and leads to mere progress in the R-R task. It
would be an interesting future direction to explore the performance of iteratively updating the
copula parameters on larger datasets.

Why only reduce the model size to avoid overfitting. Another referee questioned why we
do not consider other techniques to overcome overfitting, such as hyperparameter tuning,
regularization, and data augmentation.

The CeCNN framework relies on a backbone CNN. In both the warm-up CNN and the
C-CNN modules, we maintain the default settings for most of the hyperparameters in the
backbone CNN, allowing ophthalmic practitioners to use the CeCNN conveniently without
further tuning. We carefully tune the learning rate on the warm-up CNN such that the back-
bone CNN converges under the training loss and no longer improves in the validation loss.
Then in the C-CNN module, we reduce the learning rate of the warm-up module by multi-
plying by 0.1 to seek a more precise direction for optimization. We do not consider dropout
rate tuning of the backbone CNN since, unfortunately, we found that dropout leads to poor
prediction performance in both the R-C and the R-R tasks. We conjecture the reason is that
dropout cannot preserve the variance in each hidden layer after the nonlinear activation and
thus may not be suitable for regression tasks (Ozgiir and Nar (2020)).

Adding regularization to the CNN weights is generally thought to be a good way to over-
come overfitting. However, in practice, it is challenging to specify the tuning parameter A
for the regularization. In our practice we try several candidate values for the tuning parame-
ters and present two examples of the loss traces in Section D of the Supplementary Material
(Zhong et al. (2025)). We find that, on our UWF dataset, with a small A, the overfitting is-
sue is still serious. Otherwise, with a large A, the predictive performance on the test set is
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worse than that with no regularization. Therefore, we do not consider regularization in our
application to our UWF dataset.

Data augmentation is effective in improving DL models with limited data size. There are
a wealth of approaches to data augmentation in computer vision including image manipula-
tion, image eraser, and image mix, among others. We believe that suitable data augmentation
can lead to better predictive performance of both the baseline and the CeCNN. Nonetheless,
it is challenging to find “suitable” data augmentation methods since generalizing qualified
synthetic images based on the very limited data size is difficult (Yang et al. (2022)). To avoid
possible error induced by poorly generated images, we do not consider data augmentation
procedures in our application. Seeking an appropriate data augmentation approach for our
UWEF dataset is beyond the scope of the present study, but it deserves treating in separate
work.

Future work. The present paper has shown that the proposed copula-likelihood loss can
reduce the asymptotic estimation risk in the R-R task, while theoretically proving the en-
hancement in the R-C task is much more difficult, pending another separate work to resolve.
From the application perspective, this paper only considers bivariate myopia screening tasks
on a single eye. The proposed loss was successfully applied to a quadravariate case where
the images of left and right eyes are included to predict SE and AL for both eyes (Li et al.
(2024)). It is anticipated that, besides myopia screening in ophthalmology, CeCNN can also
be applied to other multitask learning scenarios. Furthermore, an interesting future direc-
tion is to associate the CeCNN framework with large models such as Vision Transformers
(Dosovitskiy et al. (2020)). This can be accomplished by replacing the backbone CNNs by
transformers if the overfitting issues are well resolved.

Acknowledgments. The authors are grateful for the instructive guidance from the Chief
Editor, the Associate Editor, and the two anonymous referees. The authors also thank Mr.
Qiuyi Huang for his help in programming.

Chong Zhong and Yang Li are the co-first authors.

Catherine C. Liu and Bo Fu are the co-corresponding authors.

Funding. Chong Zhong is partially supported by Postdoc Fellowship of CAS AMSS-
PolyU Joint Laboratory of Applied Mathematics and ZZPC, PolyU.

Bo Fu and Yang Li are partially supported by the National Natural Science Foundation of
China (12071089, 71991471).

Danjuan Yang and Meiyan Li are partially supported by the Shanghai Rising-Star Program
(21QA1401500). Meiyan Li is also supported by the National Natural Science Foundation of
China (82371091).

Catherine C. Liu is partially supported by a grant (GRF15301123) from the Research
Grants Council of the Hong Kong SAR, and ZZQ?2, PolyU.

A. H. Welsh is partially supported by the Australian Research Council Discovery Project
DP230101908.

SUPPLEMENTARY MATERIAL

Technical proofs and additional numerical studies (DOI: 10.1214/24-AOAS1996
SUPPA; .pdf). This file contains technical proofs and tables and figures that provide addi-
tional numerical studies.

Code for simulations (DOI: 10.1214/24-AOAS1996SUPPB; .zip). This file contains
Python code to reproduce the simulations on synthetic data.
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