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Te integration of wireless power transfer (WPT) and vehicle-to-grid (V2G) technologies is essential for the sustainable operation
of lunar multienergy virtual power plants (MEVPPs), where rovers, habitats, and in situ resource utilization (ISRU) facilities rely
on adaptive energy management. Unlike terrestrial systems, lunar environments present extreme challenges, including long-
duration night cycles, regolith dust accumulation, severe temperature fuctuations, and dynamic rover mobility, all of which
disrupt efcient power delivery. Tis paper proposes a reinforcement learning–based adaptive beam steering framework to
optimize WPT scheduling, ensuring continuous and efcient energy transmission for both mobile and stationary lunar assets.
Unlike traditional fxed-beam or heuristic-based WPTmethods, the proposed system utilizes deep reinforcement learning (DRL)
with proximal policy optimization (PPO) to autonomously adjust beam direction, power intensity, and charging priority in
response to real-time rover movements, V2G interactions, and fuctuating energy demands. Te proposed framework models
WPT optimization as a Markov decision process (MDP), where the agent learns to dynamically adapt beam steering based on
rover speed, response delay, solar power availability, and charging station congestion. Te reward function penalizes energy
misallocation and misalignment losses while maximizing charging efciency and systemwide energy resilience. A case study
simulating a 30-day mission near Shackleton Crater evaluates the efectiveness of the AI–driven WPT system, demonstrating
a 54.6% reduction in energy downtime and a 41.3% improvement in beam alignment efciency compared to static power
scheduling methods. In addition, the system reduces latency-induced power defcits by 39.8%, ensuring reliable power distri-
bution for ISRU oxygen extraction, habitat life support, and rover recharging stations. Tis study represents a novel advancement
in lunar power infrastructure, integrating AI–driven adaptive WPT with intelligent energy scheduling to enhance V2G in-
teractions in extraterrestrial environments. Te results validate the feasibility of DRL–based WPT control, paving the way for
scalable, resilient, and self-optimizing wireless power grids on theMoon. Future work will explore the integration of hybrid energy
storage models, quantum-inspired optimization for real-time decision-making, and predictive beamforming algorithms to further
enhance the reliability and efciency of lunar energy networks.
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1. Introduction

Te development of sustainable energy infrastructures for
extraterrestrial habitats is a critical challenge in modern
space exploration. Future missions to the Moon, Mars, and
other celestial bodies require robust, autonomous, and
adaptable energy management systems capable of supplying
continuous power to a diverse set of infrastructure, in-
cluding lunar habitats, rovers, in situ resource utilization
(ISRU) facilities, and scientifc instruments [1]. Unlike
terrestrial power grids, which beneft from well-established
generation and distribution networks, lunar energy systems
face signifcant operational constraints, such as prolonged
lunar nights, extreme temperature fuctuations, regolith dust
accumulation, dynamic power demand, and the absence of
an atmospheric medium for convection-based cooling [2].
Among the various energy distribution strategies for lunar
missions, wireless power transfer (WPT) has emerged as
a transformative technology capable of enabling efcient and
fexible energy transmission without requiring a physically
connected power grid [3]. Several experimental demon-
strations have validated the feasibility of space-based power
beaming, bridging the gap between theoretical models and
practical deployment. NASA’s Space Solar Power Explor-
atory Research and Technology (SERT) program has in-
vestigated microwave power transmission (MPT) for
extraterrestrial applications, demonstrating the ability to
beam energy across long distances with high efciency [4].
Similarly, JAXA’s WPT experiments have successfully
transmitted microwave energy over hundreds of meters on
Earth, providing critical insights into beamforming pre-
cision and transmission losses in space environments. Tese
prior studies establish a strong foundation for implementing
WPT in lunar missions. Te proposed reinforcement
learning (RL)–based framework builds upon these ad-
vancements by introducing adaptive beam steering and real-
time energy optimization, ensuring efcient power alloca-
tion despite environmental uncertainties. By leveraging
artifcial intelligence (AI)–driven dynamic control, this
study aims to further advance the feasibility of WPT for
future lunar energy networks. Among the various energy
distribution strategies for lunar missions, WPT has emerged
as a transformative technology capable of enabling efcient
and fexible energy transmission without requiring a phys-
ically connected power grid. Several existing power trans-
mission technologies have been explored in space missions,
each with unique advantages and limitations [5].
Microwave-based WPT, which is the focus of this study, has
been widely considered due to its high transmission ef-
ciency, long-range capabilities, and ability to operate in
a vacuum without signifcant atmospheric attenuation.
However, beam divergence increases over long distances,
necessitating adaptive beam steering techniques to maintain
efciency. Alternatively, laser-based WPT ofers a highly
collimated energy beam, minimizing dispersion and en-
abling long-range energy transmission beyond 5 km, which
is a limitation of microwave-based approaches. However,
laser WPT sufers from lower energy conversion efciency,
higher sensitivity to dust accumulation, and the risk of

optical misalignment in dynamic environments. Another
method, that is, inductive coupling–based WPT, has been
successfully used in low-power space applications, such as
satellite docking stations and proximity power transfer
systems. While highly efcient for short distances, inductive
WPT is not well-suited for large-scale lunar energy distri-
bution due to its limited range and reliance on close physical
proximity between the transmitter and the receiver. By
positioning the proposed RL–based microwave WPT
framework within the broader spectrum of space-based
power transmission techniques, this study highlights the
advantages of adaptive beam steering and intelligent power
scheduling, ensuring reliable and scalable energy distribu-
tion in extraterrestrial environments [6]. While this study
primarily focuses on microwave-based WPT, alternative
approaches such as laser-based power transmission have also
been explored in space applications. Microwave WPT is
advantageous due to its high transmission efciency in at-
mospheric and vacuum environments, but its beam di-
vergence increases beyond 5 km, signifcantly reducing
energy reception efciency. Conversely, laser-based WPT
ofers a highly collimated beam, minimizing energy dis-
persion over long distances and making it a promising al-
ternative for power delivery to distant lunar assets beyond
5 km. However, laser-based systems face higher conversion
losses at both transmission and reception stages, and their
performance is highly sensitive to regolith dust accumula-
tion and beam obstruction. Given these trade-ofs, a hybrid
WPT approach combining microwave for midrange power
transmission and laser for long-range energy beaming could
potentially enhance lunar power distribution efciency. Tis
study focuses on microwaveWPToptimization, while future
work will explore the feasibility of integrating laser-based
transmission for extended-range energy delivery [7]. WPT
enables the direct beaming of energy to mobile and sta-
tionary units, allowing for seamless power delivery across
a distributed lunar network. However, existing WPT
frameworks primarily rely on fxed-schedule power trans-
mission, failing to account for real-time variations in power
demand, environmental interference, and dynamic move-
ment of energy receivers (e.g., rovers and autonomous ISRU
units). Te lack of intelligent, adaptive scheduling mecha-
nisms signifcantly reduces energy efciency, introduces
transmission losses, and leads to suboptimal resource al-
location in complex lunar environments. Recent advances in
AI and RL provide an opportunity to revolutionize WPT
scheduling, allowing the system to autonomously learn
optimal power allocation strategies and adapt in real time to
dynamic mission conditions. Tis paper proposes
a RL–based adaptive beam steering framework to optimize
WPT scheduling, ensuring continuous and efcient energy
transmission for both mobile and stationary lunar assets. To
address the challenges posed by lunar dust accumulation,
extreme temperature fuctuations, and potential signal in-
terference, the proposed system integrates an adaptive
recalibration mechanism that dynamically adjusts beam
alignment and power intensity in response to environmental
uncertainties, thereby mitigating long-term efciency
degradation [8].
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Te proposed framework employs a RL–based approach
to optimize WPT scheduling within a lunar multienergy
virtual power plant (MEVPP). Te system is modeled as
a Markov decision process (MDP), where the state space
includes real-time information on receiver positions, battery
charge levels, solar energy availability, charging station
occupancy, and regolith dust accumulation. However, given
the high variability inmission tasks and energy consumption
patterns, relying solely on real-time data may lead to sub-
optimal long-term decision-making. To enhance scheduling
stability, the framework integrates historical mission data
and predictive analytics, allowing the system to anticipate
future energy demands based on past operational trends. By
incorporating these predictive elements, the model can
proactively adjust power allocations, mitigating the impact
of sudden energy fuctuations and improving overall system
resilience. Te action space consists of power allocation
decisions, beamforming adjustments, and charging priori-
tization, while the reward function is designed to maximize
energy efciency while penalizing energy defcits and
transmission losses [9]. A deep RL (DRL) model based on
proximal policy optimization (PPO) is developed to train an
adaptive policy for WPT scheduling. Te PPO algorithm is
selected due to its ability to handle high-dimensional state-
action spaces and provide stable convergence, making it
ideal for large-scale, data-driven energy optimization
problems [10]. Te DRL agent learns optimal power
transmission policies by interacting with a simulated lunar
environment, continuously refning its decisions through
policy gradient updates [11]. To ensure scalability, multi-
agent RL (MARL) principles are integrated into the
framework, allowing multiple power nodes to collabora-
tively optimize energy distribution. To prevent conficting
energy allocation decisions among agents, the framework
employs a hierarchical coordination mechanism, where
a global energy dispatcher acts as a supervisory agent,
providing high-level constraints on total power availability,
transmission priorities, and fairness constraints. Each in-
dividual WPT node functions as an independent agent,
learning to optimize local power transmission while ad-
hering to global consensus rules enforced by the dispatcher.
In addition, interagent communication is facilitated through
a decentralized consensus protocol, where agents exchange
real-time energy demand, power congestion status, and
beam alignment updates to ensure nonconficting power
allocations. A soft-update rule is incorporated to prevent
abrupt fuctuations in transmission assignments, ensuring
that energy distribution remains stable across the system.
Tis coordinated MARL approach allows each node to
dynamically adapt to fuctuating energy demands while
maintaining systemwide stability and fairness in power al-
location. Te introduction of global supervision and
decentralized agent communication signifcantly enhances
the robustness of RL–based WPT scheduling in lunar en-
vironments [12]. Tis multiagent architecture ensures that
power transmission decisions remain decentralized yet co-
ordinated, allowing for scalable deployment across future

lunar base architectures [13]. Te proposed approach is
evaluated through a high-fdelity case study, simulating
a lunar mission scenario near Shackleton Crater, where the
system’s performance is tested against variable solar power
availability, extreme temperature gradients, and diverse
rover mobility patterns. Comparative results with fxed-
schedule WPT and rule-based heuristic scheduling dem-
onstrate the superior efciency, adaptability, and resilience
of the proposed DRL–based model. Tis paper introduces
a novel DRL–based WPT scheduling framework for lunar
energy management, presenting four major contributions as
follows.

1.1. RL–Based Adaptive WPT Model. Unlike traditional
WPT systems that rely on static transmission schedules, this
paper introduces a learning-based adaptive model that
dynamically adjusts power allocations in real time,
responding to changes in energy demand, receiver mobility,
and environmental conditions.

1.2. MDP Formulation for Lunar WPT Optimization. Te
proposed system is formulated as a complex, high-
dimensional MDP, integrating power allocation, beam
steering, and charging prioritization into a single optimi-
zation framework. Tis allows for holistic decision-making,
where themodel learns the most efcient energy distribution
strategy under uncertain and dynamic lunar conditions.

1.3. PPO–Based DRL for Real-Time Learning. Tis paper
leverages PPO–based DRL training, enabling the WPT
system to learn optimal policies through continuous in-
teraction with the lunar environment. Te use of PPO en-
sures stable convergence, robust performance under
stochastic conditions, and computational efciency suitable
for large-scale deployment in future lunar bases.

1.4. Comprehensive Performance Evaluation With a 30-Day
Lunar Mission Simulation. Te proposed model is rigor-
ously tested in a realistic lunar mission environment, where
the DRL–optimized WPT scheduling strategy is compared
against conventional fxed-schedule and heuristic-based
methods. In addition, an extended experiment evaluates
the impact of integrating historical mission data into the RL
framework. Te results indicate that incorporating pre-
dictive analytics improves power scheduling efciency by
17.3% and reduces emergency power defcits by 12.6% over
a 30-day mission. Te fndings demonstrate that leveraging
past operational data enhances long-term energy manage-
ment, reducing unexpected fuctuations and ensuring more
consistent power delivery for critical lunar operations [14].
Te results demonstrate that the proposed system reduces
energy downtime by 52.4%, improves power transmission
efciency by 38.9%, and decreases energy congestion by
41.2%, making it a groundbreaking advancement for lunar
energy management.
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2. Literature Review

Te development of sustainable power infrastructure is
a critical challenge for space exploration, particularly for
long-term lunar and Martian missions. Unlike terrestrial
energy systems, which beneft from a stable grid in-
frastructure, extraterrestrial environments require highly
fexible, autonomous, and efcient power management
strategies [15]. Te need for adaptable energy distribution is
amplifed by the unique constraints of lunar operations,
including prolonged night cycles, extreme temperature
variations, regolith dust interference, and the absence of
a stable atmosphere for heat dissipation. Traditional wired
power grids are impractical in such environments due to
deployment challenges, vulnerability to environmental
hazards, and the difculty of maintaining permanent in-
frastructure on rugged and dynamically evolving surfaces
[16]. As a result, WPT has emerged as a promising solution,
ofering the capability to beam energy efciently to mobile
and stationary units without the limitations of physical
wiring [17]. Existing WPTresearch has primarily focused on
terrestrial applications such as electric vehicle charging,
consumer electronics, and medical implants. However, the
extension of WPT technology to space applications in-
troduces additional complexities, such as energy beam
alignment in the absence of atmospheric stabilization,
transmission losses due to dust accumulation, and the need
for real-time power optimization to accommodate fuctu-
ating energy demands [18]. Several studies have investigated
the feasibility of microwave and laser-based energy beaming
for lunar applications, demonstrating the potential of WPT
as a viable power distribution method [19]. However, these
approaches generally assume static power transmission
schedules and fail to incorporate intelligent decision-making
frameworks capable of dynamically adjusting energy allo-
cation in response to real-time mission requirements. Tis
limitation underscores the necessity for an adaptive,
RL–based approach to WPT scheduling, capable of auton-
omously optimizing power distribution under varying lunar
conditions [20].

Traditional energy distribution for space missions has
relied on wired power grids, battery storage, and nuclear
reactors to ensure continuous power availability. Battery-
based energy storage, such as lithium-ion, lithium-sulfur,
and solid-state batteries, has been widely employed in
planetary rovers and landers, including NASA’s Curiosity
and Perseverance missions [21]. Tese storage systems
provide a reliable energy source but are inherently limited
by capacity constraints, degradation over multiple charge
cycles, and the inability to dynamically reallocate power to
mobile units. Wired power grids, as proposed for lunar
habitats under NASA’s Artemis program, ofer a structured
energy distribution mechanism but face signifcant de-
ployment challenges, particularly in harsh extraterrestrial
environments [1]. Te installation of wired transmission
lines on the lunar surface is impractical due to frequent
regolith displacement, potential mechanical failures, and
the infexibility of fxed-position infrastructure. In addition
to battery and wired grid solutions, nuclear power has been

explored as a long-term energy source for extraterrestrial
applications. NASA’s Kilopower project and similar ini-
tiatives have investigated small-scale nuclear fssion re-
actors designed to provide continuous power for lunar and
Martian bases. While nuclear reactors ofer a reliable en-
ergy supply independent of solar availability, their in-
tegration into a fexible, decentralized energy distribution
system remains an unresolved challenge. Tese conven-
tional power solutions, while valuable in isolated appli-
cations, lack the adaptability and scalability required for
complex multienergy systems where power demands
fuctuate dynamically [22].

WPT has gained considerable attention as an alternative
to traditional wired energy distribution, particularly for its
potential applications in extraterrestrial environments. Te
primary advantage ofWPT lies in its ability to deliver energy
without requiring fxed transmission infrastructure, making
it particularly suitable for mobile assets such as lunar rovers,
ISRU units, and scientifc instruments deployed across vast
surface areas. Among the various WPT technologies ex-
plored for space applications, MPTand laser energy beaming
have demonstrated signifcant potential. Studies on
microwave-based WPT have highlighted its efciency in
transmitting energy over long distances with minimal loss,
with proposals such as Japan’s Space-Based Solar Power
(SBSP) system envisioning the deployment of geostationary
satellites to beam energy directly to lunar surface operations
[23]. Similarly, laser-basedWPTsystems have been explored
as a means of high-precision, long-range energy delivery,
with experimental demonstrations showing promising re-
sults in achieving targeted power transmission. Despite the
potential benefts of WPT for extraterrestrial energy dis-
tribution, existing studies remain largely theoretical and do
not account for the operational complexities involved in
real-time lunar power scheduling. Most WPT research as-
sumes fxed energy allocation strategies, failing to in-
corporate adaptive optimization frameworks that respond
dynamically to fuctuating power demands, environmental
disruptions, and mobility patterns of energy receivers. Te
lack of intelligent control mechanisms capable of optimizing
beam alignment, prioritizing critical energy loads, and dy-
namically adjusting transmission parameters in response to
real-time mission conditions represents a major gap in the
current literature. Tis gap highlights the need for an ad-
vanced WPT scheduling framework that integrates
RL–based optimization techniques to enable autonomous
decision-making in complex extraterrestrial power
networks [24].

3. Mathematical Modeling

Te optimization of WPT scheduling and adaptive beam
steering for lunar MEVPPs requires a robust mathematical
framework that accurately models energy dynamics, receiver
mobility, and beam alignment efciency. Unlike terrestrial
grid–based power distribution, lunar environments in-
troduce unique constraints such as high-energy latency due
to long transmission distances, fuctuating solar availability,
regolith dust–induced power losses, and extreme thermal
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variations afecting energy conversion efciency. In addi-
tion, the mobility of rovers and ISRU units necessitates real-
time adjustments in beam direction and power allocation,
ensuring minimal energy wastage while maximizing oper-
ational reliability. Tis section formulates the WPT beam
steering and energy scheduling problem as a multiobjective
optimization model, integrating spatiotemporal energy
distribution constraints, battery state-of-charge (SoC) evo-
lution, power balancing conditions, and transmission ef-
ciency degradation due to misalignment efects. To
systematically address these challenges, we defne a set of
objective functions and constraints that govern the adaptive
WPT system, considering factors such as beamforming
precision, real-time power redistribution, charging priori-
ties, and system resilience under dynamic conditions. Te
frst objective function focuses on maximizing total WPT
efciency by optimizing beam alignment and minimizing
transmission losses, ensuring that both stationary and
mobile receivers receive power in a timely manner. Te
second objective aims to reduce energy downtime, miti-
gating the risk of power shortages due to misalignment
errors or response delays. Te third function minimizes
overall transmission losses by accounting for beam di-
vergence, lunar terrain interference, and thermal efects.
Lastly, we introduce an optimization function that priori-
tizes power allocation based on receiver criticality, ensuring
that high-priority systems, such as habitat life support and
ISRU operations, maintain uninterrupted power even under
fuctuating energy conditions. To enhance real-world ap-
plicability, the model also incorporates emergency response
mechanisms that dynamically adjust energy priorities in
response to critical failures or rapid operational changes.
Specifcally, in the event of a sudden communication failure,
energy allocation shifts toward autonomous system resil-
ience, prioritizing onboard energy storage for essential
functions such as navigation and hazard detection until
communication is restored. Similarly, during rapid rover
redeployment for urgent scientifc tasks or terrain changes,
the WPTscheduling framework reallocates power to mobile
units requiring immediate charging, ensuring uninterrupted
operation while maintaining sufcient reserves for sta-
tionary assets. Tese adaptive adjustments are encoded
within the DRL–based policy network, enabling real-time
energy redistribution that aligns with evolving mission
demands. Te energy allocation model employs a hierar-
chical prioritization framework to diferentiate between
essential and nonessential loads. Mission-critical systems,
such as ISRU oxygen extraction, habitat life support, and
rover mobility, are assigned higher priority weights in the RL
reward function, ensuring that they receive uninterrupted
power. Lower-priority loads, such as scientifc instruments
and secondary charging stations, are allocated energy

dynamically based on systemwide availability. Te RL
framework continuously adjusts power distribution using
real-time system state data, ensuring adaptive prioritization
that responds to dynamic mission conditions. By in-
corporating this prioritization mechanism, the model op-
timizes power allocation efciency while preventing
disruptions in critical lunar operations.

Te constraints of the model ensure physical feasibility,
energy conservation, and system efciency under uncertain
environmental and operational conditions. Given the pro-
longed exposure to lunar regolith dust accumulation and
extreme thermal variations, the proposed framework in-
corporates periodic recalibration of power transmission
parameters. Tis mechanism continuously monitors ef-
ciency losses and applies adaptive beam realignment strat-
egies to compensate for performance degradation, ensuring
sustained WPT efciency throughout the mission duration.
Tese constraints include power balance equations ensuring
that transmitted energy equals received energy plus losses,
beam steering limitations based on rover speed and angular
deviation, upper and lower power thresholds preventing
overloading or underutilization, and dynamic power allo-
cation rules for adaptive scheduling in real-time scenarios.
Te formulation incorporates nonlinearities in beam mis-
alignment–induced losses, energy latency efects, and
optimization-driven power prioritization, ensuring a com-
prehensive mathematical foundation for intelligent
WPT–based lunar power distribution systems. Te
RL–based scheduling model dynamically adjusts power al-
location based on real-time solar availability, rover mobility,
and energy demand variations to maintain efcient WPT
performance. In scenarios where solar power generation
drops signifcantly due to extended lunar night conditions,
regolith dust accumulation on photovoltaic surfaces, or
unexpected mission constraints, the model integrates an
emergency energy management strategy to prioritize critical
loads over secondary energy consumers. Te prioritization
mechanism operates through a tiered RL approach, where
mission-critical systems such as habitat life support, ISRU
operations, and primary rover navigation receive higher
priority weights in the reward function, ensuring sustained
energy supply under extreme energy-defcit conditions. Less
essential loads, such as secondary scientifc instruments or
low-priority charging stations, experience adaptive power
reduction to prevent complete system failure. In addition,
the model employs a predictive load-shedding mechanism,
where RL agents anticipate prolonged power shortages and
proactively redistribute available energy based on system-
level priorities. Tis ensures that power outages do not
immediately impact essential lunar operations, enhancing
the resilience of the WPTnetwork under unpredictable solar
energy variations.

max
Φ,Ψ,Ξ

􏽘

T

t�1
􏽘
ι∈N

Θrxι,t
Θrxι,t

·
􏽐κ∈KΥ

beam
ι,κ,t · Γalignκ,t · Λmob

κ,t

Ωossι,t + 􏽐ζ∈Zβ
reg
ζ,t

⎛⎝ ⎞⎠ · exp −αtemp
ι,t􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦ − 􏽘

T

τ�1
􏽘
]∈M

σidle],τ + ϖlatency],τ􏼐 􏼑. (1)
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Equation (1) formulates the maximization of total power
efciency in the lunar WPT system. Te term Θrxι,t/ Θ

rx
ι,t

represents the efciency ratio between received and trans-
mitted power. Te fraction accounts for beam alignment
efciency Γalignκ,t , receiver mobility factor Λmob

κ,t , and energy
attenuation from regolith dust βregζ ,t

, which are crucial for

dynamic power transmission under extreme lunar envi-
ronmental conditions. Te exponential decay term
exp (−αtemp

ι,t ) captures temperature-induced efciency loss,
while the penalization term σidle],τ + ϖlatency],τ accounts for
power wastage and latency issues in WPT scheduling.

min􏽘
T

t�1
􏽘
ι∈N
Ψdeficitι,t + Θoutageι,t + 􏽘

κ∈K
Ξrechargeι,κ,t ·

1
λchargingκ,t + ϵwaitκ,t

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (2)

Equation (2) minimizes energy downtime by ensuring
continuous availability for critical lunar systems. Te term
Ψdeficitι,t represents power shortage events, while Θoutageι,t
models complete failures in wireless power reception. Te
fraction inside the summation penalizes recharging in-
efciencies, where λchargingκ,t accounts for charging time per
unit energy and ϵwaitκ,t represents waiting time due to power
congestion. Tis function ensures that energy interruptions
for life support and ISRU systems are minimized, improving
mission reliability.

min􏽘

T

t�1
􏽘
ι∈N

􏽘
κ∈K

Υbeamι,κ,t · Γalignκ,t

Ωlossι,t + 􏽐ζ∈Z βregζ,t

· exp −ξangleκ,t􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (3)

Equation (3) minimizes power transmission losses, en-
suring efcient energy delivery. Te numerator represents
beamforming power efciency Υbeamι,κ,t and alignment accu-
racy Γalignκ,t , while the denominator accounts for energy ab-
sorption losses Ωlossι,t and regolith interference βregζ,t

. Te
exponential decay term −ξangleκ,t penalizes beammisalignment
errors, ensuring precise wireless energy targeting.

max
Θ,Ξ

􏽘

T

t�1
􏽐
ι∈N
Λpriorityι,t ·

Θcriticalι,t

􏽐κ∈K Ξ
allocation
ι,κ,t + ϵsurplusι,t

⎡⎢⎣ ⎤⎥⎦ − 􏽐
T

τ�1
􏽘
]∈M

σdelay],τ + ϖineff],τ􏼐 􏼑. (4)

Equation (4) optimizes charging priorities to ensure
continuous energy delivery to high-priority lunar systems.
Te term Λpriorityι,t acts as a priority weighting factor, ensuring
that critical loads (e.g., life support and ISRU oxygen ex-
traction) receive power frst. Te denominator accounts for
the total energy allocation Ξallocationι,κ,t , with a penalty ϵsurplusι,t for
overallocation. Te last term penalizes delays ϵsurplusι,t and
inefciencies ϖineff],τ , ensuring optimal power scheduling.

While the existing formulation incorporates real-time
solar energy availability, it does not explicitly model seasonal
variations in solar fux, which could signifcantly impact
long-term scheduling, particularly under extended lunar
night conditions. By integrating a seasonality-aware
scheduling strategy, the system can anticipate extended
low-energy periods and allocate resources proactively, en-
suring continuous power supply for mission-critical sys-
tems.Te DRL–basedWPTmodel can leverage this factor to
refne policy learning, dynamically adjusting power alloca-
tion in response to expected seasonal energy fuctuations,
further improving resilience in long-duration lunar
operations.

􏽘
ι∈N
Θtxι,t � 􏽘

ι∈N
Θrxι,t + 􏽘

κ∈K
Ωbeamι,κ,t + 􏽘

ζ∈Z
βregζ ,t

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, ∀t ∈ T.

(5)

Equation (5) enforces the total power balance constraint,
ensuring that the sum of all transmitted power Θtxι,t across all
nodes matches the total received power plus all losses from
beam attenuation Ωbeamι,κ,t and energy absorption due to
regolith dust accumulation βregζ,t

. Tis prevents energy dis-
crepancies in WPTsystems, ensuring an efcient power fow
across the lunar grid.

S
bat
ι,t+1 � S

bat
ι,t +Θrxι,t · ηconvι − Λdisι,t · ηdisι − σ lcakι,t , ∀ι ∈N,∀t ∈ T.

(6)

Equation (6) governs the evolution of battery SoC across
all mobile and stationary units. Te battery charge level Sbatι,t
is updated dynamically based on the received power Θrxι,t
(converted at efciency ηconvι ), discharge rate Λdisι,t (with
efciency ηdisι ), and self-discharge losses σ lcakι,t .Tis constraint
ensures that all energy storage operates efciently while
compensating for self-discharge and conversion in-
efciencies. To account for extreme thermal variations on
the Moon, a temperature-dependent degradation factor is
introduced to model the impact of lunar temperature
fuctuations on battery performance and energy storage
capacity. Tis factor represents temperature-induced ef-
ciency degradation, which follows an exponential decay
trend based on deviations from an optimal reference

6 International Transactions on Electrical Energy Systems
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temperature. It refects the way prolonged exposure to high
temperatures reduces battery efciency, while extreme cold
increases self-discharge rates. By incorporating this factor,
the RL–based scheduling model can dynamically adjust
energy allocation to compensate for temperature-induced
storage losses. Tis enhancement ensures more accurate
energy storage predictions under varying lunar conditions,
improving the resilience and reliability of the WPT
framework in long-duration missions.

􏽘
κ∈K
Υbeamι,κ,t · Γalignκ,t � 1, ∀ι ∈M,∀t ∈ T. (7)

Equation (7) ensures that wireless power beams are
correctly aligned with moving receivers by enforcing that the
total alignment factor across all beam sources sums to unity.
Tis guarantees that rovers and mobile energy units receive
precisely targeted beams, minimizing power leakage and
inefciencies.

􏽘
ι∈N

δoccupiedι,t ≤ δmax
, ∀t ∈ T. (8)

Equation (8) limits the number of charging units that can
be accommodated simultaneously, preventing overcrowding
at charging stations. Here, δoccupiedι,t is a binary indicator of
whether a charging station is in use, and δmax represents the
total capacity limit.

Θtx,min
ι,t ≤Θ

tx
ι,t ≤Θ

tx,max
ι,t , ∀ι ∈N,∀t ∈ T. (9)

Equation (9) enforces upper and lower limits on power
transmission, ensuring that energy is neither overloaded nor
underutilized. Tis protects the WPT system from excessive
energy losses while maintaining transmission stability. To
enhance the robustness of power transmission constraints in
equation (9), the model incorporates real-time environmental
disturbances, particularly charged lunar dust particles that can
interfere with WPT. Lunar regolith is known to become
electrostatically charged due to solar wind interactions, creating
a dynamic dust environment that afects beam propagation and
power reception. To model this efect, an environmental at-
tenuation factor is introduced, which dynamically adjusts
transmission efciency based on real-time dust density and
charge distribution. Tis factor is derived from empirical data
on lunar dust behavior and electrostatic charging models,
ensuring that WPTscheduling remains adaptive under varying
environmental conditions. In addition, the RL–based opti-
mization framework continuously refnes transmission pa-
rameters by integrating sensor feedback on dust concentration,
allowing for real-time compensation strategies such as adaptive
power adjustments and beam steering corrections. Tese en-
hancements improve system resilience and maintain stable
energy delivery despite unpredictable lunar dust disturbances.

Θsolarι,t � Θmax
ι · ξsunt , ∀ι ∈N,∀t ∈ T. (10)

Equation (10) models the variability of solar power
availability due to lunar night cycles. Te power generation
Θsolarι,t is scaled by the solar availability factor Θsolarι,t , which
accounts for sunlight intensity and lunar positioning.

􏽘
ι∈N
Θrxι,t ≥Θ

critical
, ∀t ∈ T. (11)

Equation (11) ensures an uninterrupted power supply for
critical life support systems, enforcing that the total received
power never drops below a predefned critical threshold
Θcritical.

􏽘
ι∈N
Θrx,ISRU

ι,t ≥Θmin
ISRU, ∀t ∈ T. (12)

Equation (12) ensures sufcient energy allocation to
ISRU facilities, guaranteeing uninterrupted operation of
oxygen extraction and material processing units.

τdelayι,t ≤ τ
max

, ∀ι ∈N,∀t ∈ T. (13)

Equation (13) enforces an upper bound on power
transmission latency, ensuring that energy delivery is fast
enough to maintain system stability.

Θrxι,t � Θtxι,t · exp −βregι,t􏼐 􏼑, ∀ι ∈N,∀t ∈ T. (14)

Equation (14) models the impact of lunar dust on power
reception, applying an exponential decay function to ac-
count for dust accumulation on receivers. Te degradation
function is based on both empirical data and theoretical
modeling. Empirical data from past lunar missions, such as
Apollo surface experiments and the Lunar Surveyor pro-
gram, provide measured insights into dust adhesion, particle
density, and optical degradation efects. In addition, theo-
retical models incorporating electrostatic dust transport
mechanisms and surface adhesion physics have been used to
extrapolate long-term dust accumulation trends. To validate
this degradation model, simulated dust deposition tests have
been conducted based on established lunar regolith particle
size distributions and electrostatic charging efects. Te
exponential decay function in equation (14) is parameterized
using these empirical references, ensuring that the model
accurately refects progressive power losses observed under
varying dust accumulation rates. Tis combined empiri-
cal–theoretical approach enhances model’s reliability,
allowing the DRL–based WPT scheduling strategy to adapt
dynamically by compensating for degradation over time.

Θrxι,t � Θtxι,t · exp −αtemp
ι,t􏼐 􏼑, ∀ι ∈N,∀t ∈ T. (15)

Equation (15) captures the efciency degradation due to
extreme lunar temperature variations.

􏽘
ι∈N

Θrxι,t
􏽐κ∈KΘ

rx
κ,t

�
1

|N|
, ∀t ∈ T. (16)

Equation (16) ensures fair power distribution among all
receivers within the lunar WPT system. Tis constraint
enforces an equitable allocation of received energy, pre-
venting situations where certain energy receivers (e.g., high-
power–demanding ISRU systems) consume a dispropor-
tionate share of power, while others (such as low-power
robotic agents) are left with inadequate energy.Te left-hand
term represents the proportion of received power at node ι
relative to the total available received energy, ensuring that
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every node gets an equal share when summed over all re-
ceivers. Tis constraint is crucial in multiagent energy
networks to avoid resource monopolization and ensure
systemwide resilience.

􏽘
ι∈N
Υbeamι,t ≤Υ

max
, ∀t ∈ T. (17)

Equation (17) enforces bandwidth limitations on wire-
less energy transmission, ensuring that the total number of
simultaneous charging beams does not exceed system ca-
pacity.Te left-hand term represents the summation over all
active WPT beams at time t, while the right-hand term Υmax

defnes the upper bound on the number of simultaneous
transmissions allowed. Tis constraint is particularly critical
in high-density lunar power grids, where excessive con-
current WPT operations may cause interference, signal
degradation, or power inefciencies due to limited spectral
bandwidth.

S
bat
ι,t � S

bat
ι,t−1 · 1 − λdecayι􏼐 􏼑 + Θrxι,t , ∀ι ∈N,∀t ∈ T. (18)

Equation (18) governs the degradation of battery storage
units over time due to repeated charge–discharge cycles. Te
frst term models the natural capacity decay of the energy
storage device (e.g., lithium-sulfur batteries, solid-state
batteries, or other space-rated power units), characterized
by an aging factor λdecayι . Te second term accounts for the
energy received at time t, which replenishes the storage
capacity. Over multiple cycles, this equation ensures that the
battery degradation efect is realistically modeled, preventing
overoptimistic assumptions about energy retention in lunar
power storage systems.

Θrxι,t −Θrxι,t−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Δmax
, ∀ι ∈N,∀t ∈ T. (19)

Equation (19) prevents drastic power fuctuations in
energy allocation, ensuring stable WPT performance over
time. Te absolute diference term quantifes the change in
received power between consecutive time steps, and the
upper bound Δmax constrains the maximum allowable
change. Tis constraint is crucial for mission-critical lunar
operations, as sudden shifts in the power supply can lead to
electrical failures, inefcient charging cycles, or unintended
system shutdowns.

􏽘
T

t�1
􏽘
ι∈N
Θinterruptedι,t · πpenaltyι,t ≤Π

max
. (20)

Equation (20) imposes penalties on charging in-
terruptions, ensuring that abrupt energy disconnections
remain minimal. Te left-hand side represents a cumulative
penalty function, where every instance of interrupted
charging (denoted by Θinterruptedι,t ) is assigned a severity
weight πpenalty

ι,t . Te right-hand term Πmax limits the overall
disconnection impact. Tis constraint is critical for main-
taining a continuous energy supply to life support systems
and essential lunar infrastructure, preventing power failures
due to unstable WPT scheduling.

S
bat
ι,t ≥ S

min
, ∀ι ∈M,∀t ∈ T. (21)

Equation (21) guarantees that lunar rovers always retain
a minimum energy threshold for mobility. Tis constraint
prevents scenarios where a rover completely depletes its
battery and becomes stranded on the lunar surface, unable to
return to a charging station.

Θrxι,t � Θtxι,t · exp −ξmob
ι,t􏼐 􏼑, ∀ι ∈M,∀t ∈ T. (22)

Equation (22) accounts for receiver mobility efects,
ensuring that the power received is adjusted based on
movement patterns. Te exponential decay function models
energy attenuation as a function of displacement speed ξmob

ι,t .
To enhance the adaptability of the model, an additional
adjustment mechanism is incorporated to dynamically
update beam tracking in response to unexpected disruptions
in rover trajectories. Te model integrates a predictive
motion compensation approach that estimates short-term
rover trajectory deviations using historical mobility patterns
and real-time sensor data. Tis allows the RL–based WPT
scheduling system to anticipate abrupt movement variations
and preemptively adjust beam alignment parameters. In
addition, terrain-aware constraints are introduced to ac-
count for environmental factors such as steep inclines,
regolith density, and surface irregularities, which infuence
rover speed and maneuverability. By incorporating these
adaptive mechanisms, the model improves resilience against
sudden trajectory changes, ensuring stable and efcient
power transmission even under unpredictable mobility
conditions. Tis enhancement strengthens the robustness of
the RL–basedWPTframework, making it more applicable to
real-world lunar operations.

Υbeamι,t ≤Υ
safe

, ∀ι ∈N,∀t ∈ T. (23)

Equation (23) ensures that beam intensity does not
exceed safety thresholds, protecting both human operators
and electronic equipment.

τdelayι,t �
d
dist
ι,t

vlight
, ∀ι ∈N,∀t ∈ T. (24)

Equation (24) models latency in energy transmission for
WPT systems operating over long distances. Since lunar
WPT relies on high-frequency electromagnetic waves (such
as microwave or laser beaming), the time delay τdelayι,t in
power delivery is a function of the transmission distance ddist

ι,t
and the speed of light vlight. Tis constraint is critical for real-
time power delivery scheduling, ensuring that remote re-
ceivers account for energy arrival delays before making
power allocation decisions. If latency becomes too high,
power misalignment may occur, leading to inefciencies in
beamforming, increased energy losses, and potential receiver
overheating due to unintended overcharging.

􏽘
ι∈N
Θrxι,t � 􏽘

κ∈K
Θtxκ,t, ∀t ∈ T. (25)

8 International Transactions on Electrical Energy Systems
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Equation (25) enforces dynamic energy load balancing
across multiple MEVPP nodes, ensuring that the total re-
ceived power matches the total transmitted power. In a lunar
WPT environment, power transmission must be dynami-
cally allocated based on real-time demand fuctuations
across diferent subsystems, including life support, ISRU
processing, scientifc instruments, and robotic exploration
units. Tis constraint is particularly important in decen-
tralized, distributed WPT networks, where energy sources
(such as solar farms or nuclear batteries) must redistribute
power equitably among competing loads. Failure to properly
balance the load could lead to excessive power allocation to
less critical units while more essential functions sufer power
shortages.

Θsurplusι,t � max Θrxι,t − Θdemand
ι,t , 0􏼐 􏼑, ∀ι ∈N,∀t ∈ T.

(26)

Equation (26) manages excess power redistribution,
ensuring that any received power exceeding local demand is
redirected to storage or secondary loads. Te function inside
the maximum operator ensures that only positive energy
surpluses are considered, preventing negative power allo-
cations. Tis constraint is crucial in lunar WPT systems
because solar farms generate highly intermittent power
outputs, leading to periodic energy surpluses that must be
properly managed. Uncontrolled surplus power could lead
to overheating, equipment degradation, and excessive dis-
charge cycles on energy storage units, signifcantly reducing
the overall lifespan of lunar microgrid infrastructure. Te
model now supports real-time redistribution of surplus
energy to improve WPT efciency. Instead of solely storing
excess power, surplus energy is dynamically allocated to
receivers based on priority, real-time demand, and battery
SoC. A priority-based surplus allocation function has been
introduced to ensure that mission-critical systems receive
additional energy when available. Furthermore, the RL
framework continuously updates allocation decisions based
on systemwide power availability, optimizing distribution
efciency.

􏽘
ι∈N
Θsecureι,t ≥Θ

min−secure
, ∀t ∈ T. (27)

Equation (27) ensures that power signals maintain
cybersecurity integrity, preventing unauthorized or mali-
cious energy redirection due to cyber-physical attacks. In
a wireless energy system on the Moon, adversarial attacks
could include signal spoofng, interference jamming, and
power hijacking, where rogue receivers manipulate theWPT
network to divert energy away frommission-critical systems.
Tis constraint enforces that the minimum fraction of en-
ergy transmitted remains protected by encrypted control
channels, ensuring power delivery is authenticated, trace-
able, and resilient to cyber threats. Tis is particularly crucial
for multiuser lunar energy-sharing models, where power is
transmitted to multiple independent scientifc or industrial
operations.

Θrxι,t � Θtxι,t · exp −αtemp
ι,t􏼐 􏼑, ∀ι ∈N,∀t ∈ T. (28)

Equation (28) models the impact of extreme lunar
temperature variations on power transmission efciency. On
the Moon, surface temperatures can fuctuate between
−180°C during lunar nights to over 120°C under direct
sunlight, signifcantly afecting semiconductor-based rec-
tennas and photovoltaic receivers. Te exponential decay
term −αtemp

ι,t accounts for the temperature-induced degra-
dation of energy absorption efciency, ensuring that power
allocations adapt dynamically to environmental conditions.
Without this constraint, receivers could overheat or
underperform, leading to permanent damage or failure in
lunar energy subsystems.

Λpriorityι,t �
Θcriticalι,t

􏽐κ∈KΘ
rx
κ,t

, ∀ι ∈N,∀t ∈ T. (29)

Equation (29) enforces mission adaptability by dy-
namically prioritizing power allocations to critical systems.
Te fraction represents a real-time priority scaling factor,
where each unit’s energy share is weighted by its criticality
level. Tis ensures that life support systems, astronaut
habitats, and safety mechanisms receive guaranteed energy
allocations before nonessential research instruments or
backup storage units. Tis constraint is essential for adaptive
resource management, ensuring that lunar energy opera-
tions remain resilient to unexpected mission changes, di-
sasters, or reconfgurations.

lim
t⟶∞

􏽘
ι∈N
Θoptι,t − Θoptι,t−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (30)

Equation (30) serves as the fnal convergence condition
for the overall WPT optimization algorithm, ensuring that
power allocations reach a stable, steady-state solution over
time. Te summation quantifes the variation in optimized
power transmission levels, and the limiting behavior guar-
antees that as time progresses, fuctuations vanish. Tis is
particularly important for real-time RL–based scheduling
models, ensuring that optimization processes do not os-
cillate indefnitely or converge to suboptimal solutions.

4. Methodology

To solve the complex, nonlinear, and dynamic optimization
problem formulated in the previous section, this study le-
verages DRL with PPO for adaptive beam steering andWPT
scheduling. Unlike traditional rule-based WPT control
mechanisms, RL enables the adaptive optimization of power
allocation and beam positioning based on real-time state
observations, allowing the system to self-learn and optimize
power dispatch strategies under varying environmental and
operational conditions. Tis methodology integrates a RL
framework with MDPmodeling, ensuring that the agent can
continuously learn optimal power distribution strategies
based on receiver mobility, energy demands, and real-time
solar power fuctuations.

International Transactions on Electrical Energy Systems 9
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Te proposed learning model represents theWPTenergy
scheduling problem as aMDP, where the state space consists
of rover positions, battery SoC levels, charging priorities,
and beam alignment conditions. Te action space includes
power allocation decisions, beam steering adjustments, and
priority-based power scheduling updates. Te reward
function is carefully designed to maximize overall WPT
efciency, minimize energy downtime, and penalize un-
necessary idle time or misalignment-induced losses. Te RL
agent utilizes a policy gradient–based optimization approach
with PPO, ensuring that the model converges rapidly while
maintaining exploration–exploitation balance. A key en-
hancement of the proposed framework is its ability to dy-
namically reallocate power during emergency conditions.
When a communication failure or loss of sensor data occurs,
the DRL model immediately shifts energy resources toward
local autonomy, ensuring that rovers and stationary units
can operate independently until normal operations resume.
In addition, in scenarios requiring rapid rover re-
deployment, the model learns to prioritize power delivery to
high-mobility receivers while adjusting static unit power
budgets to prevent disruptions in habitat support and ISRU
operations. Tis adaptive response capability signifcantly
enhances the framework’s resilience in unpredictable lunar
mission environments. To further enhance decision-making
stability, the framework integrates a predictive analytics
layer that utilizes historical mission data to refne power
scheduling strategies. By analyzing past rover mobility
patterns, energy consumption trends, and environmental
variations, the model adjusts its policy updates to in-
corporate anticipated future demands. Tis allows the sys-
tem to proactively allocate energy resources, reducing the
likelihood of sudden shortages or excessive allocations. Te
incorporation of historical insights enables the RL model to
balance real-time adaptability with long-term optimization,
signifcantly improving system efciency and reliability. Te
policy network continuously refnes decision-making
strategies, adjusting beam intensity and power scheduling
in response to real-time environmental changes. Te policy
network continuously refnes decision-making strategies,
adjusting beam intensity and power scheduling in response
to real-time environmental changes. Given the intermittent
connectivity and potential signal delays in lunar environ-
ments, the proposed framework incorporates fail-safe
mechanisms to maintain stable power delivery during
communication disruptions. Specifcally, each mobile re-
ceiver is equipped with a local predictive model trained
using historical mission data and on-site observations to
estimate power requirements in the event of temporary
communication loss. Tis allows the receiver to autono-
mously adjust beam alignment and energy scheduling based
on its last known state. In addition, the transmitter utilizes
an adaptive scheduling bufer, where power transmission
decisions are precomputed based on predicted rover tra-
jectories and energy demand trends. Tis ensures that even
during short-term signal outages, energy delivery continues
without major interruptions. Furthermore, a hierarchical
decision-making approach is employed, where high-priority
receivers (such as habitats and ISRU units) are given

redundant transmission paths through relay-based WPT
stations, ensuring reliable power allocation even under
extreme conditions. Tese fail-safe mechanisms enhance the
system’s resilience to sudden communication failures, en-
suring continued energy availability for mission-critical
operations while maintaining overall power efciency. For
real-world deployment, the DRL model must operate within
the computational constraints of space-grade embedded
hardware. To address this, the proposed framework employs
a hybrid on-device and ground-assisted learning approach,
where the training phase is conducted ofine using high-
performance computing clusters, while the trained model is
compressed and optimized for onboard execution. Model
reduction techniques such as quantization, pruning, and
knowledge distillation are applied to minimize memory
footprint and computational overhead, ensuring feasibility
for low-power, radiation-hardened processors used in space
missions. In addition, the framework leverages edge AI’s
inference techniques, where policy updates are efciently
executed on embedded processors without requiring full-
scale deep learning model retraining. Tis allows the
DRL–based energy scheduling system to dynamically adjust
power allocation in real time while minimizing computa-
tional latency. Te framework integrates an adaptive reca-
libration mechanism that dynamically updates WPT
parameters based on real-time sensor feedback. By peri-
odically assessing power transmission efciency and envi-
ronmental disruptions, the system proactively mitigates
degradation due to dust accumulation and thermal varia-
tions, ensuring stable and reliable energy delivery.

To address the potential electromagnetic interference
(EMI) risks associated with high-power WPT, the proposed
framework incorporates multiple mitigation techniques to
ensure electromagnetic compatibility (EMC) in lunar energy
systems. First, frequency modulation (FM) and frequency
hopping techniques are implemented to dynamically adjust
transmission frequency, ensuring minimal interference from
nearby communication and sensor networks. By actively
shifting operating frequencies, the system prevents pro-
longed exposure within any single frequency band, reducing
EMI persistence and cross-system disturbances. Second,
adaptive beamforming is employed to optimize phase
control in the transmitting array, ensuring precise di-
rectional energy transmission while minimizing unintended
radiation spillover. Tis technique signifcantly reduces EMI
leakage to nontargeted zones, making the system more
suitable for operation in lunar environments where sensitive
scientifc instruments and habitat electronics must be pro-
tected from electromagnetic disturbances. Tird, electro-
magnetic shielding and antenna pattern optimization are
integrated into the system. High-conductivity shielding
materials are applied around the transmitting and receiving
units to mitigate electromagnetic leakage. Moreover, low-
sidelobe antenna designs are employed to further reduce
unintended emissions, ensuring that most of the transmitted
energy is confned within the desired beam path. Lastly,
power density constraints are introduced within the WPT
optimization framework to ensure compliance with in-
ternationally recognized EMI safety standards, such as IEEE
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 itees, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/etep/9877968 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



C95.1 and ICNIRP guidelines. Tese constraints prevent
excessive electromagnetic feld strength in human-occupied
zones and high-sensitivity scientifc areas, enhancing the
safety and reliability of the proposed WPT system.

To further enhance training efciency and computa-
tional scalability, this study employs MARL, where multiple
WPT transmitters and receivers act as independent agents,
collaboratively learning optimal power allocation and
beamforming strategies. Te training process is conducted
over a simulated lunar environment, integrating realistic
energy consumption models, mobility constraints, and
power degradation efects due to lunar terrain interference.
Te optimization process follows a two-stage RL pipeline,
where the frst stage focuses on pretraining the model with
the historical WPTdata, while the second stage incorporates
real-time adjustments using live mission telemetry. Tis
hybrid approach ensures that the system achieves both long-
term learning stability and real-time adaptability, making it
a robust solution for autonomous WPT–based lunar energy
distribution systems.

M � 〈S,A, P, R, c〉. (31)

Equation (31) defnes the MDP formulation for WPT
scheduling in lunar energy networks. Te MDP framework
is a fundamental mathematical representation used in RL to
model sequential decision-making problems, where the goal
is to optimize long-term rewards. Te tuple M consists of
the following:

- S: State space: It represents the system’s current state,
including energy levels of receivers, rover positions,
charging station availability, and environmental fac-
tors such as lunar dust accumulation and temperature
fuctuations.

- A: Action space: It defnes available decisions, in-
cluding beam steering, power allocation, charging
prioritization, and scheduling strategies.

- P: Transition probability model: It describes the dy-
namics of the system, governing how the environment
evolves after taking an action.

- R: Reward function: It encodes the optimization ob-
jective, typically maximizing power efciency while
minimizing energy defcits and unnecessary charging
cycles.

- c: Discount factor: It controls the importance of future
rewards, ensuring that the agent optimizes energy
scheduling not just for the immediate step but over the
long term.

S � S
bat
ι,t , P

load
ι,t , λchargeι,t , d

pos
ι,t ,Θsolarι,t , βdustι,t􏽮 􏽯. (32)

Equation (32) explicitly defnes the state space S of the
RL agent, which contains all relevant system parameters
needed for optimal decision-making. Each state includes the
following:

- Sbatι,t : Battery SoC of receiver unit ι at time t, which
determines the need for energy replenishment.

- Pload
ι,t : Current power demand of the load at the unit ι,

refecting real-time energy consumption.

- λchargeι,t : Charging station occupancy indicator, ensuring
efcient scheduling to avoid congestion.

- d
pos
ι,t : Spatial position of mobile receivers (rovers and

ISRU facilities) crucial for beam alignment and ef-
cient power transmission.

- Θsolarι,t : Solar energy availability, which impacts the
overall power generation capacity.

- βdustι,t : Regolith dust interference level, afecting the
efciency of power reception.

A � Θallocι,t , Γbeamι,t , λpriorι,t􏽮 􏽯. (33)

Equation (33) defnes the action space A for the DRL
agent, specifying available decisions for optimizing WPT
operations.

- Θallocι,t : Power allocation decision, determining how
much energy is assigned to each receiver at time \(t\).

- Γbeamι,t : Beam steering parameters, ensuring that
transmitted power aligns optimally with moving
receivers.

- λpriorι,t : Charging priority index, assigning priority levels
to diferent loads based on criticality.

P s′
􏼌􏼌􏼌􏼌s, a􏼐 􏼑 � Pr S

bat
ι,t+1 S

bat
ι,t

􏼌􏼌􏼌􏼌􏼌 ,Θallocι,t , d
pos
ι,t􏼒 􏼓. (34)

Equation (34) models the transition probability function,
which governs how the system evolves from one state s to the
next state s′ after taking action a. Tis accounts for the
following:

- Battery state evolution, where power allocation Θallocι,t
increases SoC.

- Spatial displacement, as moving receivers experience
position-dependent energy reception changes.

R(s, a) � 􏽘
ι∈N

Θrxι,t
Θtxι,t

− Ψdeficitι,t − Λidleι,t
⎡⎣ ⎤⎦. (35)

Equation (35) defnes the reward function, which
maximizes power efciency (frst term) while penalizing
energy defcits and idle charging states.

P(s, a) � 􏽘
ι∈N
ϖoverι,t + σidleι,t􏽨 􏽩. (36)

Equation (36) introduces penalties for the following:

- Energy overuse ϖoverι,t , ensuring efcient WPT
scheduling.
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- Unnecessary idle states σidleι,t , preventing wasted
transmission power.

L
PPO

� Et min rt(θ)At, clip rt(θ), 1 − ϵ, 1 + ϵ( 􏼁At( 􏼁􏼂 􏼃.

(37)

Equation (37) is the PPO loss function, stabilizing RL
training by preventing large policy updates.

θ⟵ θ − α∇θL
PPO

. (38)

Equation (38) updates the actor network using stochastic
gradient descent (SGD).

V
π
(s) � E 􏽘

∞

t�0
c

t
R st, at( 􏼁⎡⎣ ⎤⎦. (39)

Equation (39) estimates the long-term value function.

∇θJ(θ) � E ∇θ log πθ(a|s)A
π
(s, a)􏼂 􏼃. (40)

Equation (40) optimizes policy updates using gradient
ascent.

π∗(a|s) � argmax
π

[(1 − ϵ)E[R(s, a)|s, π] + ϵ · U(a)].

(41)

Equation (41) formulates the exploration–exploitation
trade-of model, a crucial component in RL–based energy
scheduling for lunar WPT. Te term (1 − ϵ) represents the
probability of following the current best-known policy,
while ϵ is the probability of exploring new, potentially better
policies by sampling from an uncertainty function U(a).
Tis mechanism ensures a balance between leveraging
existing knowledge to maximize efciency and discovering
new energy allocation strategies that might further optimize
power delivery, minimize transmission losses, or improve
charging station utilization. Tis trade-of is critical in dy-
namic lunar environments, where unpredictable factors
such as lunar dust interference, solar variability, and rover
movements require continuous adaptation.

αt+1 � αt ·
I δt|< δthres

􏼌􏼌􏼌􏼌􏼐 􏼑

1 + λdecay · t
. (42)

Equation (42) models an adaptive learning rate αt for
PPO training stability, dynamically adjusting the step size
based on model convergence behavior. Te numerator
contains an indicator function (|δt|< δthres), which ensures
that the learning rate remains stable if the gradient change δt

is within a predefned threshold δthres. Te denominator
introduces a time-decaying adjustment factor, ensuring that
as training progresses, the step size gradually reduces to
prevent divergence. Tis mechanism is vital in RL for WPT
because fxed learning rates may cause unstable oscillations
or slow convergence, especially in large-scale multiagent
environments with nonstationary energy demand patterns.

πι(a|s) � argmax
π

􏽘
κ∈K

ωι,κ · Qκ(s, a) + ]syncι,κ . (43)

Equation (43) introduces MARL for distributed energy
scheduling, where multiple power nodes (charging stations,
energy transmitters, and mobile receivers) coordinate their
actions collaboratively to optimize energy distribution. Each
agent ι learns an independent policy πι while considering the
shared Q-values of neighboring nodes κ. Te term ωι,κ
represents the weight of infuence that node κ has on ι,
ensuring decentralized but cooperative energy optimization.
Te term ]syncι,κ acts as a synchronization penalty, preventing
drastic discrepancies in power allocation between agents.
Tis approach is essential for scalable WPT in lunar envi-
ronments, where multiple nodes must dynamically adjust
energy distribution while ensuring grid stability.

O PPOtrain( 􏼁 � O Nepoch · Nbatch · E[|S|]􏼐 􏼑. (44)

Equation (44) defnes the computational complexity of
PPO–based energy scheduling, where learning efciency and
scalability are analyzed. Te Big-O notation expresses the
complexity in terms of

- Nepoch: Te number of training epochs required for
convergence.

- Nbatch: Te number of data samples processed per
optimization step.

- E[|S|]: Te expected size of the state space, de-
termining the dimensionality of the RL problem.

Tis analysis is essential because large-scale energy
optimization problems (such as WPT scheduling for an
entire lunar base) can become computationally prohibitive.
By quantifying the efciency of PPO training, researchers
can optimize hyperparameters to reduce unnecessary
computational overhead while maintaining policy
efectiveness.

lim
t⟶∞

􏽘

N

i�1
πθt

ai si􏼓 − πθt−1
ai􏼒

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
si􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (45)

Equation (45) formulates the convergence condition for
PPO model training, ensuring that as training progresses
over time, the policy updates diminish, indicating that the
model has reached a stable optimal policy. Tis condition is
crucial for RL in energy scheduling, as continuous policy
oscillations would destabilize power allocations, degrade
efciency, and make scheduling unreliable for mission-
critical operations. Te summation term represents the
total variation between consecutive policy updates, and the
limiting behavior ensures that this variation tends toward
zero over infnite iterations.

E Θalloci,t −Θoptimal
i,t

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕≤ ϵrobust, ∀t ∈N,∀t ∈ T. (46)

Equation (46) evaluates robustness under energy de-
mand fuctuations, ensuring that even if power demand
varies, the learned policy maintains near-optimal perfor-
mance. Te expectation function quantifes the expected
deviation between the allocated power and the optimal
power level, ensuring that the discrepancy does not exceed
a robustness threshold ϵrobust. Tis constraint is critical for

12 International Transactions on Electrical Energy Systems

 itees, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/etep/9877968 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



real-world deployment of in power grids, as it guarantees
that the system remains resilient to unexpected variations in
energy demand, solar availability, and communication
delays.

E R
test

(s, a)􏽨 􏽩 ≈ E R
train

(s, a)􏽨 􏽩 ± δgen. (47)

Equation (47) assesses generalization performance
across diferent lunar missions, ensuring that the trained RL
model performs consistently across varied scenarios. Te
expected reward in test environments should closely ap-
proximate the reward obtained in training environments,
with an allowable deviationmargin δgen.Tis guarantees that
the WPT optimization framework remains reliable when
deployed in new lunar regions, varying terrain conditions, or
with diferent power infrastructures.

5. Case Studies

To evaluate the performance of the proposed RL–based
adaptive WPT optimization framework, a high-fdelity
simulation of a lunar MEVPP was conducted. Te case
study focuses on a 30-day continuous lunar mission near
Shackleton Crater (89.9°S, 0.0°E), a region of interest due to
its permanent shadow zones and fuctuating solar power
availability. To further assess the adaptability of the proposed
model across varying lunar terrains, additional consider-
ations are made for equatorial regions where solar exposure
patterns difer signifcantly. Unlike polar sites with pro-
longed shadow zones, equatorial locations experience al-
ternating periods of full illumination and extended darkness,
leading to more dynamic energy availability. Te RL–based
scheduling framework is designed to adjust power allocation
in response to real-time solar input variations, ensuring
applicability in environments with fuctuating solar fux. By
leveraging predictive solar exposure models, the system can
optimize WPT scheduling by preemptively dispatching
energy during high-insolation periods and strategically
utilizing stored power during extended night phases. To
improve long-term WPT performance, the model in-
corporates a degradation-aware optimization strategy. Over
time, cumulative losses inWPT hardware, caused by thermal
cycling, material fatigue, and regolith-induced wear, grad-
ually reduce transmission efciency. A degradation-aware
reward function enables RL to anticipate and compensate for
these efects by dynamically adjusting beam intensity,
recalibrating power allocation, and prioritizing maintenance
when necessary. In addition, real-time sensor data on system
degradation is continuously integrated into the learning
framework, ensuring adaptive scheduling adjustments to
mitigate performance declines. Tis enhancement ensures
that the model remains robust and efective in long-duration
lunar operations, improving the sustainability of WPT de-
ployment over extended missions.

In addition, terrain variations at equatorial sites in-
troduce new challenges for rover mobility and beam
tracking. Te adaptive motion compensation mechanism
incorporated in the model, which was designed to handle
Shackleton Crater’s rugged topography, remains applicable

in equatorial conditions by dynamically adjusting beam
alignment in response to shifting environmental constraints.
Tese considerations demonstrate that the proposed
framework is not limited to polar regions but can be ex-
tended to diverse lunar terrains, ensuring reliable power
distribution under varying solar and mobility conditions.

Te study considers a 10×10 km operational zone,
where multiple energy receivers, including four autonomous
rovers, two ISRU extraction units, and a primary lunar
habitat, require continuous and adaptive energy allocation.
Te primary WPT transmission station, modeled as
a 100 kW high-efciency microwave beaming system op-
erating at 2.45GHz, is capable of transmitting power to
multiple receivers simultaneously, with a maximum trans-
mission range of 12 km and an efciency rate of 85% under
optimal beam alignment conditions. Te energy demand
profle is dynamically generated based on realistic lunar
mission scenarios. Te four rovers, each with a 20 kWh
battery capacity, have varying energy consumption rates
depending on their assigned tasks, with average power usage
ranging from 2 kW during standby mode to 6.5 kW during
excavation and mapping operations. Te two ISRU ex-
traction units, responsible for oxygen and water ice pro-
cessing from lunar regolith, operate at a fxed load of 15 kW
each, with intermittent peak demands reaching 18 kW
during active refnement cycles. Te lunar habitat module,
which supports astronaut life support and scientifc
equipment, has a baseline power consumption of 30 kW,
with fuctuations of ±10% depending on habitat occupancy
and operational conditions. Tese energy demands present
a highly dynamic and uncertain environment, making it an
ideal testbed for RL–based optimization.

Te simulation is conducted using a Python-based RL
framework, integrating Stable-Baselines3 for PPO training,
OpenAI Gym for MDP–based state-action formulation, and
TensorFlow for deep neural network optimization. Te
training and evaluation phases are performed on a high-
performance computing cluster equipped with Intel Xeon
32-core processors (2.9GHz), 256GB RAM, and NVIDIA
A100 Tensor Core GPUs, allowing for parallel training of RL
agents. While these high-fdelity simulations provide
a controlled environment for evaluating the WPT frame-
work, real-world lunar deployment introduces additional
challenges, including hardware constraints, communication
latencies, and mission uncertainties. To enhance the gen-
eralization capability of the proposed framework, future
work will integrate hardware-in-the-loop (HIL) simulations
to assess real-time performance under actual system la-
tencies and hardware limitations. In addition, incorporating
feld data from past lunar missions and terrestrial analog
environments will further validate the robustness of
DRL–based energy scheduling under real-world conditions.
By adapting the framework to varying computation ca-
pacities, sensor noise, and dynamic mission scenarios, we
aim to improve its practical feasibility for autonomous lunar
power management.

Te simulation runs for 5000 episodes, each representing
a 24-hour operation cycle, ensuring sufcient training for
policy convergence. Te PPO model is confgured with
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a discount factor (c\gamma) of 0.99, an adaptive learning
rate ranging from 1× 10− 41\times 10−4 to 5×10− 55\times
10−5, and a batch size of 4096 experience samples per update
step. Tis computational setup ensures that the RL agent
achieves optimal decision-making under real-time con-
straints, learning to maximize power efciency while min-
imizing energy defcits and beam misalignment losses.

Figure 1 provides a highly detailed analysis of the solar
exposure across a 10×10 km region surrounding the
Shackleton Crater. Te left side represents the average sun
visibility over a given period, with a color scale from dark
blue (low visibility, near 0) to yellow (high visibility, close to
1). Te central dark blue region represents the permanently
shadowed interior of the Shackleton Crater, where solar
illumination is nearly nonexistent, making it one of the
prime candidates for long-term ice preservation and ISRU.
Te surrounding regions exhibit varying degrees of sunlight
exposure, with some areas receiving up to 90% visibility,
suggesting optimal locations for solar panel installations and
surface-based energy harvesting systems. Te yellow-
highlighted contour zones indicate terrain areas that re-
ceive moderate sunlight exposure, potentially suitable for
deploying power relay stations or energy storage hubs. Te
right-side visualization presents a 3D perspective of the
Shackleton Crater, emphasizing the extreme depth and
sharp elevation changes within the crater. Te color-coded
elevation layers highlight how the terrain structure in-
fuences the solar exposure, with the deepest parts of the
crater remaining entirely in shadow, while the upper rims
and nearby ridges beneft from prolonged solar exposure.
Given that Shackleton Crater is approximately 21 km in
diameter and up to 4 km deep, the elevation gradients pose
signifcant challenges for energy transmission, necessitating
adaptive WPT strategies. Te sloped terrain further com-
plicates rover mobility and infrastructure deployment, re-
quiring specialized path-planning algorithms to ensure safe
navigation between high-exposure zones and shadowed
regions where ice deposits are likely to exist.

Tis visualization illustrates the real-time beamforming
strategy of a WPT system operating in a 10×10 km lunar
zone, showing the power distribution from a centralized
WPT transmitter to 15 receivers, including rovers, ISRU
processing units, and habitat modules, shown in Figure 2.
Te fgure highlights the spatial relationships, alignment
efciency, and adaptive tracking capabilities of the WPT
system, which dynamically directs energy beams based on
receiver movement, energy demand, and terrain constraints.
Te fgure provides insight into the geometric distribution
and optimization of energy transfer. Te WPT transmitter,
positioned at (0, 0, 3) km, enables wide-area coverage to
support receivers scattered up to 5 km away. Te 15 energy
receivers are placed at various elevations, simulating realistic
lunar surface irregularities. Te beamforming vectors (green
arrows) depict real-time adaptive power allocation, with
longer arrows representing receivers requiring higher pre-
cision targeting due to their distance or movement. Te
dense clustering of receivers in certain areas, particularly
within the 2-3 km radius, suggests regions of high-energy
demand, likely corresponding to operational hubs where

ISRU processing and life support functions are concen-
trated. Te varying beam orientations and distances em-
phasize the need for continuous power tracking algorithms,
ensuring optimal alignment and minimizing energy trans-
mission losses.

Figure 3 represents the hourly energy consumption
patterns of a lunar habitat module over a 30-day mission
cycle, showing variations in power demand throughout
diferent times of the day. Te color-coded heatmap visually
captures high-demand and low-demand periods, where red
and yellow shades indicate peak energy usage and blue
shades represent lower consumption hours. Te habitat
requires continuous power supply, making it essential to
understand how demand changes over time to optimize
WPT scheduling and energy storage management. Te de-
mand profle in Figure 3 is generated using a synthetic model
that incorporates operational constraints, equipment power
ratings, and expected astronaut activity cycles based on lunar
habitat studies. Te synthetic data are formulated by
combining power consumption estimates from past analog
habitat experiments, NASA mission reports, and energy
modeling frameworks for extraterrestrial environments. Te
variability in demand accounts for life support operations,
research activities, and environmental control systems,
ensuring that the model refects realistic mission conditions.
To validate the generalizability of the demand profle, sen-
sitivity analyses were conducted by varying energy con-
sumption levels and operational schedules. Te results
demonstrate that the RL–based WPT scheduling approach
remains robust under diferent energy demand scenarios,
confrming the adaptability of the proposed model for lunar
habitat power management. Te energy demand profle
presented in Figure 3 is derived from a synthetic model
incorporating expected astronaut activity cycles and oper-
ational schedules of critical habitat systems. Tis model is
informed by power consumption data from past analog
habitat experiments, NASA mission reports, and lunar
habitat energy modeling studies. Variations in energy de-
mand refect essential functions such as life support oper-
ations, research activities, thermal control, and
communication systems. Te synthetic demand model also
incorporates scheduled maintenance periods and low-
activity phases, ensuring that the energy trends align with
expected mission scenarios. Sensitivity analyses were con-
ducted to verify the robustness of the model across varying
habitat occupancy levels and equipment utilization rates,
confrming its applicability for lunar mission planning.

Te fgure reveals consistent high-energy demand pe-
riods between 10:00–14:00 and 19:00–22:00, coinciding with
likely mission-critical operations, astronaut activities, or
system recalibration processes. Demand fuctuates between
25 and 40 kW, with occasional surges reaching above 45 kW,
which could be attributed to life support system adjust-
ments, research activities, or heating requirements in ex-
treme lunar temperatures. Te lowest power demand occurs
between 2:00 and 7:00, where consumption drops to
15–20 kW, likely refecting reduced activity phases or
energy-saving protocols during lunar nighttime. Tese
fuctuations emphasize the need for adaptive power
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management strategies, ensuring that peak loads are sup-
ported while optimizing energy allocation during low-
demand hours. Te insights from this fgure provide cru-
cial implications for energy scheduling in WPT–based lunar
microgrid systems. By analyzing the patterns, mission
planners can strategically schedule energy storage
recharging cycles, prioritizing battery replenishment during
low-consumption hours and allocating more power to the
habitat when demand spikes. Te variability also suggests
that energy forecasting models should incorporate machine
learning–based predictions, enabling real-time power ad-
justment based on expected fuctuations. In addition, the
presence of sustained peak demand zones indicates that
static power delivery methods would be inefcient,

reinforcing the importance of intelligent, demand-driven
WPT solutions to ensure mission resilience.

Figure 4 demonstrates how power transmission ef-
ciency changes as a function of distance from the WPT
transmitter to various receivers on the lunar surface. Te
efciency curve follows an exponential decay trend, with
transmission efectiveness dropping rapidly as the distance
increases, refecting the fundamental beam divergence and
energy dispersion constraints in long-range wireless energy
transfer. Te 5 km efciency threshold observed in Figure 4
highlights a key limitation of microwave-based WPT, where
beam spreading causes substantial power losses at longer
distances. As an alternative, laser-based WPT has been
proposed for long-range energy delivery, as its highly col-
limated beams minimize divergence, maintaining power
transfer efciency beyond 5 km. However, laser transmission
sufers from signifcant energy conversion losses due to
photon–electron conversion inefciencies at the receiver
and is susceptible to dust accumulation, which can degrade
optical components over time. A direct comparison between
microwave and laser WPT technologies suggests that mi-
crowaves are more reliable for midrange applications,
particularly for rover charging and habitat power delivery,
whereas laser WPT could be more efective for deep-space
assets or remote lunar infrastructure beyond 5 km. Future
research should investigate hybridWPTarchitectures, where
microwave and laser transmission are combined to optimize
efciency and reliability across varying distance ranges. Tis
efciency-distance relationship introduces a key trade-of
between power transmission efciency and latency, which
can be efectively analyzed using a Pareto frontier approach.
By selecting diferent operating points along this frontier,
system designers must balance transmission efciency
against response latency. A high-efciency operating point
requires stricter beam alignment and longer recalibration
intervals, resulting in increased latency as the system
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continuously optimizes energy delivery. Conversely, prior-
itizing lower latency may lead to greater beam misalignment
and transmission losses, reducing overall power efciency.
Tese trade-ofs directly impact energy resilience and beam
alignment precision. A high-efciency, high-latency strategy
ensures a stable energy supply by maintaining precise beam
control and reducing energy fuctuations, though it may be
less responsive to sudden receiver mobility. In contrast,
a low-latency, lower-efciency approach allows for faster
adjustments, improving responsiveness to dynamic condi-
tions but potentially increasing power losses. Te results in
Figure 5 highlight the need for an adaptive, RL–based op-
timization strategy to dynamically balance these objectives,
ensuring efcient and resilient energy transmission in
varying lunar operational scenarios. One of the most critical
observations from the fgure is the sharp efciency reduction
past the 5 km threshold, where power transfer falls below
30%, making direct WPT impractical without energy

redistribution strategies. Tis means that rovers, ISRU units,
and habitats must remain within a 3–5 km operational ra-
dius from the main WPT transmitter to ensure stable and
efcient power reception. Beyond this range, beam tracking
precision must be enhanced, or alternative WPT trans-
mission methods (such as phased-array relays or laser-based
transmission) should be integrated to compensate for losses.
Te efciency drop also implies that energy-hungry receivers
(such as ISRU units processing oxygen extraction) should
ideally be positioned closer to the main transmitter, while
rovers with lower power needs can explore farther regions
without excessive efciency loss.

Figure 5 presents a three-dimensional trajectory map of
fve lunar rovers, showing their movement paths and real-
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time WPT beam tracking updates over a simulated mission
period. Te red marker at (0, 0, 3) km represents the main
WPT transmitter, while the colored lines trace the mobility
paths of rovers as they navigate across the lunar terrain. Te
green arrows indicate the fnal beam alignment state,
demonstrating how theWPTsystem adjusts its transmission
angles dynamically to maintain efcient power delivery to
moving targets. One of the key insights from the fgure is
that rover movement patterns are highly irregular, requiring
continuous adjustments in beam direction and power in-
tensity to ensure reliable energy transfer. Some rovers travel
beyond the 2 km mark, which aligns with previous fndings
that power efciency signifcantly decreases at this range.
Tis means that real-time beam tracking must occur at high
frequency (every 5–10 s) to avoid energy elicits for fast-
moving rovers. Te presence of clustered rover paths sug-
gests that certain mission areas (such as excavation sites or
scientifc research zones) experience concentrated energy
demand, necessitating dynamic priority-based power
scheduling strategies. Another critical takeaway from this
visualization is the impact of elevation diferences on beam
alignment efciency.

Some rovers are positioned at lower altitudes, requiring
steeper beam angles, which could introduce line-of-sight
obstructions due to terrain features. Tis issue highlights the
necessity of WPT relay stations positioned at higher ele-
vations to ensure an uninterrupted energy supply. In ad-
dition, the nonuniform distribution of rover paths suggests
that a fxed power allocation strategy would be suboptimal,
reinforcing the importance of machine learning–based
predictive energy management, where the system anticipates
rover movement trends and proactively adjusts power
delivery.

Figure 6 presents the distribution of energy transmission
delays (latency) for receivers positioned at varying distances
from the WPT transmitter, illustrating how distance afects
the time required for power delivery. Te boxplots represent
energy latency measurements in milliseconds (ms) for re-
ceivers at 1, 3, 5, 7, and 10 km, showing the median latency,
interquartile range (IQR), and presence of outliers. Te
shaded regions around the boxplots represent uncertainty
bounds caused by transmission losses, environmental
fuctuations, and stochastic variations in WPT efciency.
Tese variations stem from multiple factors, including beam
misalignment due to dynamic receiver mobility, terrain-
induced signal degradation, regolith dust accumulation,
and temperature fuctuations afecting power transmission
efciency. Te widening of the shaded regions at increasing
distances suggests that latency uncertainty grows as power
transmission spans longer distances. At short distances
(1–3 km), the uncertainty remains relatively low, indicating
stable power delivery with minimal disruption. However,
beyond 5 km, the uncertainty increases signifcantly due to
factors such as greater beam divergence, higher transmission
losses, and a higher probability of environmental in-
terference. At 10 km, the uncertainty bounds widen sub-
stantially, indicating that power delivery is no longer
instantaneous, and adaptive energy prescheduling strategies
become critical for mitigating energy shortages. To enhance

system robustness, the DRL–based scheduling model con-
tinuously learns and adapts to these variations by dynam-
ically adjusting power transmission parameters in real time.
By incorporating uncertainty estimation into the reward
function, the model proactively mitigates latency fuctua-
tions, ensuring reliable power transmission even under
challenging lunar conditions. Tese insights reinforce the
necessity of RL–driven WPT scheduling strategies to dy-
namically optimize power allocation while accounting for
transmission uncertainty. As distance increases, trans-
mission delay becomes more pronounced, highlighting the
need for latency-aware WPT scheduling in lunar energy
networks. Te fgure reveals a clear upward trend in latency
as receiver distance increases. At 1 km, the median energy
latency is approximately 5ms, and most values remain
within a narrow band, indicating that near-feld WPT
transmission is highly reliable and exhibits minimal varia-
tion. At 3 km, median latency rises to 15ms, though the
variance remains relatively low, showing that power
transmission is still stable in midrange distances. However,
at 5 km, median latency reaches 30ms, and variability begins
to widen, suggesting that interference factors such as terrain-
induced signal degradation and beam divergence start
impacting efciency. At 7 km, latency increases to around
50ms, with values occasionally exceeding 60ms, indicating
that real-time power adjustments become critical for
maintaining energy stability. Finally, at 10 km, latency es-
calates signifcantly to a median of 75ms, with extreme cases
reaching above 85ms, meaning that power delivery is no
longer instantaneous, and adaptive energy prescheduling
becomes essential to prevent supply shortages. Te insights
from this fgure highlight several optimization strategies for
lunar WPTnetworks. First, mission-critical receivers such as
habitat modules and ISRU units should be positioned within
a 3–5 km radius of the primary WPT transmitter to ensure
stable and low-latency power reception. Second, for rovers
operating beyond 5 km, predictive energy dispatching is
required, where power is transmitted in advance to com-
pensate for delay-induced shortages. Tird, the increasing
variance in latency at 7 and 10 km suggests that relay-based
WPT stations should be deployed at intermediate distances,
ensuring that energy transmission remains efcient even at
extended ranges. Te fndings from this fgure support the
necessity of dynamic, RL–based WPT scheduling algo-
rithms, ensuring that power allocation decisions proactively
account for latency constraints in long-range lunar
operations.

Figure 7 visualization presents a 3D surface plot illus-
trating how WPT beam steering efciency changes as
a function of rover speed (m/s) and response delay (ms).Te
color bar represents efciency percentage, with higher values
in green and lower values in dark blue, demonstrating how
mobility and slow beam realignment impact energy re-
ception. Beyond rover speed and response delay, terrain
conditions signifcantly infuence beam steering efciency,
particularly in regions with crater slopes, regolith in-
terference, and varying elevation gradients. Rough terrain
introduces additional misalignment challenges, requiring
more frequent realignment to maintain stable energy
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reception. For example, rover navigation across uneven
crater slopes alters beam orientation dynamically, causing
greater beam divergence and higher alignment errors, which
reduce transmission efciency. Similarly, regolith in-
terference, caused by fne dust particles accumulating on
receiver surfaces, attenuates received power, further de-
creasing overall beam efciency. Te results in Figure 7
reveal that these terrain-induced disruptions exacerbate
efciency losses as rover speed increases. At low speeds
(0.2–0.5m/s), beam tracking remains relatively stable, even
in challenging terrain, as the system has sufcient time to
compensate for minor misalignments. However, at speeds
above 1.5m/s, beam steering efciency drops sharply, es-
pecially when traversing regions with high slopes or regolith
disturbances, requiring rapid adjustments to avoid signif-
cant energy loss. To mitigate these efects, the DRL–based
WPT scheduling model dynamically adapts beam re-
alignment frequency based on real-time terrain sensing data.
Te model prioritizes faster realignment in high-slope re-
gions and regolith-dense areas, ensuring that beam targeting
remains accurate even under fuctuating terrain conditions.
Tis adaptability is crucial for sustaining uninterrupted
power transmission in long-range lunar operations where
rover mobility patterns intersect with varying environmental

constraints. Te goal of this fgure is to quantify the ef-
ciency loss due to motion-induced beam misalignment,
helping to establish real-time beamforming strategies for
lunar operations. Te fgure reveals a clear negative corre-
lation between rover speed and beam steering efciency. At
low speeds (0.2–0.5m/s), efciency remains above 90%,
meaning that the beam can maintain precise alignment,
ensuring reliable energy reception. As speed increases, ef-
fciency declines progressively, reaching around 75% at
1.5m/s and falling below 50% at speeds beyond 2.5m/s. Tis
behavior refects the difculty of dynamically adjusting
power beams for fast-moving receivers, as higher speeds lead
to larger positional changes between realignment intervals.
Tis trend is further infuenced by response delays, where
even at moderate speeds, a delay of 100ms can reduce ef-
fciency by nearly 20%, making fast-response beamforming
adjustments essential. Te data also highlight the com-
pounding impact of slow response times on energy re-
ception. At low delays (below 50ms), beam efciency
remains relatively stable, with only minor degradation across
diferent speeds. However, when response time increases
beyond 100ms, efciency drops sharply, especially for rovers
moving at 1.5m/s or faster. At 200ms delay and 3.0m/s
speed, efciency falls below 30%, indicating that high-speed
rovers relying on slow beam adjustments will experience
frequent power defcits. Tese fndings strongly suggest that
beam realignment updates must occur at sub-50ms intervals
for fast-moving receivers, ensuring that wireless power re-
mains continuously available, even under high-speed mo-
bility scenarios. Tis analysis underscores the necessity of
AI–driven predictive beam steering models, RL–based op-
timization, and real-time trajectory forecasting to enhance
WPT performance in lunar exploration missions.

6. Conclusion

Tis study introduces a DRL–based adaptive WPT frame-
work for lunar MEVPPs, addressing critical challenges in
real-time beam steering and power allocation. By formu-
lating the WPT scheduling problem as a MDP and utilizing
PPO, the proposed approach dynamically adjusts energy
transmission based on rover mobility, environmental con-
ditions, and mission-critical demands. A 30-day simulation
near Shackleton Crater demonstrates signifcant perfor-
mance improvements, including a 54.6% reduction in en-
ergy downtime, a 41.3% enhancement in beam alignment
efciency, and a 39.8% decrease in latency-induced power
defcits compared to conventional WPT methods. Tese
fndings highlight the necessity of real-time predictive
beamforming, latency-aware power scheduling, and multi-
agent energy optimization for future lunar energy networks.
Future work will explore hybrid energy storage integration,
quantum-inspired optimization for real-time decision-
making, and predictive beamforming algorithms to fur-
ther enhance system resilience and efciency. In addition,
the integration of a Pareto frontier-based multiobjective
optimization framework will be investigated to refne the
trade-ofs between power transmission efciency and la-
tency. By incorporating RL with adaptive tuning
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mechanisms, future studies aim to develop dynamic
scheduling strategies that optimize energy resilience and
beam alignment precision under varying lunar operational
conditions. In addition, the role of uncertainty quantifca-
tion in DRL–based WPT scheduling will be further in-
vestigated. By incorporating probabilistic modeling
techniques and adaptive uncertainty estimation, future
studies aim to refne the model’s ability to predict and
mitigate variations in power transmission efciency, en-
suring more robust and resilient energy delivery under
uncertain lunar conditions. Supercapacitors, with their high-
power density and rapid charge–discharge capabilities, can
efectively complement batteries by mitigating transient
energy defcits and stabilizing power fuctuations caused by
varying WPT efciency. By dynamically allocating power
between supercapacitors and batteries based on real-time
demand, the system can optimize energy bufering, reduce
response latency, and improve overall power reliability for
mission-critical lunar operations. Tis hybrid approach will
be incorporated into the RL framework, allowing the model
to adaptively manage energy storage resources for enhanced
resilience in dynamic extraterrestrial environments.
Quantum-inspired optimization techniques, such as quan-
tum annealing and variational quantum algorithms, have the
potential to signifcantly enhance RL–basedWPTscheduling
by accelerating decision-making processes and improving
adaptation to nonstationary energy demands. Unlike clas-
sical optimization approaches, which may struggle with
high-dimensional and dynamic environments, quantum-
inspired techniques can rapidly explore multiple energy
allocation scenarios in parallel, leading to faster convergence
of RL policies. Moreover, quantum-enhanced RL can pro-
vide a more efcient representation of energy demand
fuctuations, enabling the system to better anticipate vari-
ations caused by solar availability shifts, mobility-induced
transmission losses, and unpredictable environmental dis-
ruptions. By integrating quantum-inspired solvers, the
proposed framework could achieve real-time power allo-
cation optimizations with lower computational overhead,
making it highly scalable for future extraterrestrial energy
systems. Tese advancements will be explored in future
studies to further improve the adaptability and efciency of
WPT scheduling in lunar missions.

By advancing AI–driven adaptive WPT, this research
paves the way for scalable, self-optimizing power grids,
ensuring reliable energy distribution for long-term lunar
missions and extraterrestrial infrastructure.
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