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ABSTRACT
Despite the widespread application of machine learning (ML) approaches such as the regression tree (RT) in the field of data-driven
optimization, overfitting may impair the effectiveness of ML models and thus hinder the deployment of ML for decision-making. In
particular, we address the overfitting issue of the traditional RT splitting criterion with a limited sample size, which considers only
the training mean squared error, and we accurately specify the mathematical formula for the generalization error. We introduce two
novel splitting criteria based on generalization error, which offer higher-quality approximations of the generalization error than
the traditional training error does. One criterion is formulated through a mathematical derivation based on the RT model, and the
second is established through leave-one-out cross-validation (LOOCV). We construct RT models using our proposed generalization
error-based splitting criteria from extensive ML benchmark instances and report the experimental results, including the models’
computational efficiency, prediction accuracy, and robustness. Our findings endorse the superior efficacy and robustness of the RT
model based on the refined LOOCV-informed splitting criterion, marking substantial improvements over those of the traditional
RT model. Additionally, our tree structure analysis provides insights into how our proposed LOOCV-informed splitting criterion
guides the model in striking a balance between a complex tree structure and accurate predictions.

1 | Introduction

Machine learning (ML) models have become an invaluable
asset in operations research, offering sophisticated data-driven
approaches to optimizing complex systems and assisting in
decision-making processes (Bengio et al. 2021; Chou et al. 2023).
For example, the predict-then-optimize framework is a
powerful approach used in operations research to improve
decision-making, in which an ML model is first employed to
forecast key parameters that are subsequently fed as inputs into
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an optimization model to determine the most effective opera-
tional strategies (Mišić and Perakis 2020). However, inaccurate
predictions from ML models can lead to suboptimal or even
detrimental decisions that fail to meet operational objectives, as
the resulting optimization models rely on inaccurate inputs.

Among the major impediments to the effective performance of
ML models is overfitting, which is characterized by an excessive
focus on the training data that is detrimental to a model’s abil-
ity to generalize to new data (Ying 2019). Insufficient data is one
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of the primary causes of overfitting in ML, because deficient data
may lead to limited exposure to variability and an inability to cap-
ture underlying patterns. In fact, in many practical application
scenarios, there might be a lack of adequate data due to the high
cost of data collection, privacy concerns, or accessibility issues.
An overfitted model may exhibit remarkable accuracy on the
training set, capturing potentially irrelevant fluctuations in the
data. However, such specificity reduces the model’s generalizabil-
ity, that is, its capability to adapt to new data with traits different
from those of the training set. Consequently, the performance of
overfitted models on independent test sets is typically poor, as
such models fail to capture the underlying patterns and structures
that are essential for accurate predictions across diverse datasets.

An overfitted model often results from relying exclusively on
training error as a measure for ML model construction (Hastie
et al. 2009). During the training phase, models are often evalu-
ated based on their ability to minimize errors or losses (e.g., mean
squared error (MSE)) on the training data. When the minimiza-
tion of training errors is the sole objective, there is a risk that the
model will “memorize” the data, including noise and outliers,
rather than “learn” from the data. In contrast, the generalization
error, a fundamental ML concept, quantifies the ability of a model
to make accurate predictions from new data, which is the ulti-
mate aim of an ML model. Techniques such as cross-validation,
regularization, and the use of a separate validation set to monitor
and tune model complexity help to estimate a model’s generaliza-
tion error during construction. Among such methods, modifying
the loss function to minimize the generalization error may be
one of the most intuitive. For example, in linear regression, reg-
ularization is commonly applied to the loss function to train the
model, typically in the form of lasso regression or ridge regres-
sion penalties (Tibshirani 1996; Hoerl and Kennard 1970). These
penalties serve to constrain coefficient values, thereby mitigating
overfitting and promoting model generalization. By focusing on
minimizing generalization errors, researchers can develop mod-
els that are robust and reliable, thereby maximizing their perfor-
mance in subsequent optimization processes.

Despite the many successful applications of regularization to
reduce the generalization error of many ML models, similar tech-
niques have not been applied to the loss function in the training
of regression tree (RT) models (Wu et al. 2008), which are widely
used in various industries for their interpretability and flexibil-
ity in modeling complex and nonlinear relationships within data
(Sun et al. 2020; Bandi and Bertsimas 2021; Bertsimas et al. 2022;
Salari et al. 2022). Some efforts have been devoted to improv-
ing the effectiveness of the tree-based models from other aspects,
including Kao and Tang (2014), which adds the label-dependent
“late constraints” to enrich the decision tree induction problem;
Aouad et al. (2023), which uses market segmentation trees to
explicitly learn market segmentations by recognizing variations
in user response patterns; Liu (2022), which develops a new
mixed-integer programming model to optimize split rule selec-
tion in the decision tree.

In this article, we focus on enhancing the extensively used clas-
sification and regression tree (CART) model by considering the
generalization error. In the traditional CART model, all train-
ing data are input to the root node and split into child nodes

based on the features and feature values that result in the
greatest reduction of a chosen measure of error or impurity, such
as MSE. This process is recursively applied in each split until a
stopping criterion is met, producing a tree structure where each
leaf node corresponds to a predicted value that is equal to the
mean of the outputs of all training samples contained in the node.
The choice of splitting criterion is crucial for determining how the
input space is partitioned.

Typical splitting rules include the Chi-squared test, Gini impu-
rity, entropy and information gain, F-test-based rules, and MSE.
To be specific, the Chi-squared test is commonly used in classifi-
cation trees, particularly in the Chi-square automatic interaction
detection (CHAID) algorithm (Kass 1980; Biggs et al. 1991). The
Chi-squared test evaluates the independence between categori-
cal input variables and the target variable, identifying splits that
maximize statistical significance. It is especially popular in fields
such as market research (Baron and Phillips 1994; Kumar and
Kaur 2023) and medical diagnostics (Kobayashi et al. 2013; Miller
et al. 2014), where categorical data is prevalent. Gini impurity is
another widely used criterion, particularly for classification tasks
within the CART framework (Breiman 2017). It calculates the
probability of misclassifying a randomly selected sample if it were
labeled according to the class distribution at a given node of the
tree. Gini impurity is computationally efficient and works well
with balanced datasets and finds applications in areas such as
finance (Yilgör et al. 2011), healthcare (Fonarow et al. 2005), and
marketing (Karim and Rahman 2013). Entropy and information
gain serve as foundational metrics for the ID3 and C4.5 classifi-
cation tree algorithms (Shannon 1948; Quinlan 1986). Entropy
quantifies the level of disorder or uncertainty in a dataset, while
information gain measures the reduction in entropy achieved
by a split. These criteria are widely utilized in ML applications
such as natural language processing (Kuhn and De Mori 2002)
and bioinformatics (Che et al. 2011). In contrast, F-test-based
rules and MSE are primarily used for regression tasks in CART
(Breiman 2017; Fisher et al. 1966). F-test-based rules assess
the significance of potential splits by comparing the variance
between groups created by a split to the variance within those
groups, enabling the selection of the most statistically significant
splits. Compared to F-test-based rules, training MSE is widely
used for the construction of CART (Loh 2011) and is adopted
by various state-of-the-art ML libraries, such as scikit-learn
(Scikit-learn 2025) and fitrtree (MathWorks 2023). However,
using the training MSE as the splitting criterion, which ensures
that the resulting branches of the tree capture the patterns within
the training data as accurately as possible, may create a tendency
to overfit, especially as models become deeper and more com-
plex. Without constraints or pruning, such models may exhibit
excellent accuracy on the training set but perform poorly on
new data.

Therefore, we consider intrinsically preventing the overfitting
of RT models by modifying the loss function to minimize the
generalization error instead of the training error. We explore
the fundamental objective of splitting in RT models and derive
the accurate formula for the generalization error for each split.
Based on this analysis, we propose two enhancements for the
traditional splitting criterion: One that approximates the gen-
eralization error by estimating the variance of the predicted

2 of 20 Naval Research Logistics (NRL), 2025

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22270 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



targets, and one that approaches the out-of-sample error through
leave-one-out cross-validation (LOOCV) (James et al. 2013).
We point out that while the predicted output of these different
splitting methods converges to the true (conditional) mean in
probability, considering the limited available data in practical
scenarios, our proposed enhancements can provide a better
prediction of the true target. To validate our proposed RT models
with generalization error-based splitting criteria, we implement
them and compare their effectiveness, efficiency, and robustness
with those of the traditional CART model and F-test-based model
on 12 common ML datasets. The scientific contributions of our
paper are as follows:

• Clarification of splitting objective in CART. We demonstrate
the benefit of the fundamental objective of splitting in the
context of our RT models, which is to maximize prediction
accuracy on new data by minimizing generalization errors.
We precisely formulate the generalization error for each
split, offering a clear mathematical representation of a gen-
eralization error-based splitting criterion that can improve
splitting decisions.

• Generalization error-based splitting criteria development. We
introduce two innovative enhancements to the traditional
splitting criterion. The first employs an estimate of the vari-
ance of predicted targets to approximate the generalization
error, while the second utilizes LOOCV to closely approxi-
mate the out-of-sample error. These methods are proven to
be able to better capture the predictive performance of poten-
tial splits on new data.

• Comprehensive model performance assessment. Our pro-
posed RT models that incorporate generalization error-based
splitting criteria are rigorously tested against the two classic
RT models on 12 benchmark ML datasets. The results indi-
cate the superior effectiveness, computational efficiency, and
robustness of our LOOCV-based RT models, demonstrat-
ing significant improvements over traditional RTs, with 95%
confidence. We also draw some insights from the tree struc-
ture, explaining how the generalization error-based splitting
criteria guide the tree to balance complexity with prediction
accuracy, yielding robust models that perform well on differ-
ent datasets.

The rest of this paper is organized as follows. Section 2 briefly
reviews basic information on MSE and RTs, laying the foun-
dations of our work. Section 3 demonstrates the defects of
RT splitting criteria based on training error and proposes our
enhancements. In Section 4, we present the framework of our
proposed generalization error-based tree. Section 5 describes a
series of numerical experiments conducted on various datasets to
validate our proposed generalization error-based tree. Section 6
concludes this article.

2 | Preliminaries

In this section, we introduce the fundamental definitions of MSE
and CART, which serve as the basis of our approaches.

2.1 | MSE of a Predictor

General MSE. In ML, MSE is commonly used to assess the
quality of a predictor. We consider a random feature vector 𝑋

and a dependent random variable 𝑌 with unknown underly-
ing joint distribution function denoted by 𝐹𝑋,𝑌 . Given a set of
independent and identically distributed (i.i.d.) training samples
denoted by 𝐷 = {(𝑋1, 𝑌1), . . . , (𝑋𝑁, 𝑌𝑁 )}, an ML model denoted
by 𝑓 (𝜃,𝑋;𝐷) is developed to approximate 𝑌 given 𝑋, where
𝜃 ∈ Θ is the vector of parameters (e.g., in an RT, 𝜃 represents the
chosen feature and the feature value at which to split). We note
that 𝑋 and 𝑌 are random, while 𝑋𝑖 and 𝑌𝑖 are determined by the
given training dataset 𝐷. Specifically, the general formula for the
MSE given the training data 𝐷 can be written as follows:

MSEgeneral(𝜃;𝐷) ≡ 𝔼(𝑋,𝑌 )
[
(𝑓 (𝜃,𝑋;𝐷) − 𝑌 )2]

= ∫ (𝑓 (𝜃, 𝑥;𝐷) − 𝑦)2𝑑𝐹𝑋,𝑌 (𝑥, 𝑦) (1)

Note that the training set 𝐷 is fixed in Expression (1). We also
denote by 𝐷̃ a random sample of size 𝑁 drawn from the joint
distribution 𝐹𝑋,𝑌 . Then, the expected value of MSEgeneral(𝜃; 𝐷̃)
on training data 𝐷̃ yields the following general MSE, where the
expectation refers to the distribution induced by the random vari-
able 𝐷̃:

MSEgeneral(𝜃) ≡ 𝔼𝐷̃

[
MSEgeneral(𝜃; 𝐷̃)

]
(2)

Training MSE. However, because of the lack of knowledge of
the joint distribution function 𝐹𝑋,𝑌 and the computational com-
plexity of high-dimensional integrals, one may replace 𝐹𝑋,𝑌 in
Equation (1) with the empirical distribution of the observed sam-
ple set 𝐷. A commonly adopted approach is to approximate
Equation (1) by using the training MSE, which can be written as
follows:

MSEtrain(𝜃;𝐷) ≡ 1
𝑁

𝑁∑
𝑖=1

(𝑓 (𝜃,𝑋𝑖;𝐷) − 𝑌𝑖)2 (3)

Subsequently, the optimal solution of 𝜃 for an ML model is cho-
sen as

𝜃̂ ∈ arg min
𝜃∈Θ

MSEtrain(𝜃;𝐷) (4)

Out-of-sample MSE. MSEtrain(𝜃̂;𝐷) has been criticized as being
optimistic and may cause overfitting when used as the metric
for model training (Pekel 2020). The training data account for
a portion of this optimism. Specifically, imagine a new dataset
𝐷′ = {(𝑋1, 𝑌

′
1 ), . . . , (𝑋𝑁, 𝑌

′
𝑁
)}, where the notation 𝑌 ′

𝑖 indicates
that we observe a new response value at the training point 𝑋𝑖,
𝑖 = 1, 2, . . . , 𝑁 . We can define the out-of-sample error on 𝐷′ of a
predictor that minimizes the training error on 𝐷 as

MSEout-𝑠𝑎𝑚𝑝𝑙𝑒(𝜃̂;𝐷,𝐷′) ≡ 1
𝑁

𝑁∑
𝑖=1

(𝑓 (𝜃̂, 𝑋𝑖;𝐷) − 𝑌 ′
𝑖 )

2 (5)
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Notably, MSEgeneral(𝜃̂;𝐷) is more general than
MSEout-sample(𝜃̂;𝐷,𝐷′) because the input vectors need not coin-
cide with the training input vectors. Nevertheless, MSEtrain(𝜃̂;𝐷)
is still more optimistic than MSEout-sample(𝜃̂;𝐷,𝐷′), and the
nature of this optimism can be written as

optimism ≡ MSEout-sample(𝜃̂;𝐷,𝐷′) − MSEtrain(𝜃̂;𝐷)

= 1
𝑁

𝑁∑
𝑖=1

(𝑓 (𝜃̂, 𝑋𝑖;𝐷) − 𝑌 ′
𝑖 )

2 − 1
𝑁

𝑁∑
𝑖=1

(𝑓 (𝜃̂, 𝑋𝑖;𝐷) − 𝑌𝑖)2

(6)

Theorem 1. Taking the expectation of optimism, we can
demonstrate that generally,

𝔼𝑌 [optimism] = 2
𝑁

𝑁∑
𝑖=1

Cov
[
𝑓 (𝜃̂, 𝑋𝑖;𝐷), 𝑌𝑖

]
(7)

where Cov indicates the covariance. Here, the predictors, that is,
𝑓 (𝜃̂, 𝑋𝑖;𝐷), in the training set are fixed, and the expectation is taken
over 𝑌 , that is, the vector of the training set outputs drawn from
the same distribution of 𝐹𝑋,𝑌 given the inputs. Specifically, each
𝑌𝑖 follows the conditional distribution 𝐹𝑌 |𝑋=𝑋𝑖

for 𝑖 = 1, 2, . . . , 𝑁 .
The proof can be found in Hastie et al. (2009).

The degree to which MSEtrain(𝜃̂;𝐷) underestimates
MSEgeneral(𝜃̂;𝐷) partially depends on the covariance of 𝑌𝑖 and
𝑓 (𝜃̂, 𝑋𝑖;𝐷), that is, how strongly 𝑌𝑖 is related to its own forecast.

2.2 | Traditional RT

RT Implementation. The CART algorithm is a supervised learn-
ing approach that generates a tree structure and can be used for
both classification and regression tasks (Hastie et al. 2009). In this
paper, we are concerned with only regression tasks, and there-
fore, we discuss only the RT in the following sections.

Determining whether an RT is optimal is an NP-complete
problem (Naumov 1991). Therefore, a greedy heuris-
tic method is usually adopted to construct an RT in a
depth-first manner. Suppose that we have a set of samples
denoted by 𝐷 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋𝑁, 𝑌𝑁 )}, where
𝑋𝑖 = (𝑋(1)

𝑖 , 𝑋(2)
𝑖 , . . . , 𝑋(𝐽 )

𝑖 ) is the input vector of 𝐽 features of
sample 𝑖, and 𝑌𝑖 is the output of sample 𝑖, 𝑖 = 1, . . . , 𝑁 . All
samples are first input to the root node and subsequently split
into child nodes based on the splitting criterion. Subsequently,
the next node to split is found recursively, usually following a
breadth-first search in which we explore all the nodes at the
present depth level before moving on to the nodes at the next
depth level. The iterative splitting process continues until no
more nodes can be split according to the stopping criteria, that
is, attaining the minimum number of samples required in a
parent node, the maximum tree depth, or the same outputs for
all samples in a node. The node that cannot be split further is
referred to as a leaf node.

Traditional RT Splitting Criterion. For ease of description, we
always take the root node as an example to illustrate the RT split-
ting criterion because other nodes have a similar structure. For
RT model 𝑓 (𝜃,𝑋;𝐷) with depth 2, 𝜃 = (𝑗, 𝑠𝑗) is the splitting pair

of the root node, where 𝑗 and 𝑠𝑗 are the index and value of the
splitting feature, respectively. The objective of RT splitting is to
make the outputs of samples within the same node as similar as
possible, which can be achieved by

min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

⎡⎢⎢⎣min
𝐶1

∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝐶1 − 𝑌𝑖

)2 + min
𝐶2

∑
𝑖∈Γ2(𝑗,𝑠𝑗 )

(
𝐶2 − 𝑌𝑖

)2
⎤⎥⎥⎦, (8)

where the set of potential splitting values of feature 𝑗 is 𝑆𝑗 ,
which is usually ℝ for a root node. The set of indices of the
data contained in the parent node is Γ = {1, . . . , 𝑁} for the root
node. The sets of indices of the data contained in the left and
right child nodes areΓ1(𝑗, 𝑠𝑗) =

{
𝑖 ∈ Γ|𝑋(𝑗)

𝑖 ⩽ 𝑠𝑗

}
andΓ2(𝑗, 𝑠𝑗) ={

𝑖 ∈ Γ|𝑋(𝑗)
𝑖 > 𝑠𝑗

}
, respectively; 𝐶1 and 𝐶2 are the output of each

child node. Notably, 𝑗, 𝑠𝑗 ,𝐶1, and𝐶2 are decision variables. There-
fore, the predicted target of a sample with input vector 𝑋𝑖 is

𝑓 (𝜃,𝑋𝑖;𝐷) =

{
𝐶1, if 𝑖 ∈ Γ1(𝑗, 𝑠𝑗)
𝐶2, if 𝑖 ∈ Γ2(𝑗, 𝑠𝑗)

(9)

In a traditional RT, for any choice of 𝑗 and 𝑠𝑗 , the inner mini-
mization problems are solved as 𝐶1 =

∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

𝑌𝑖∕|Γ1(𝑗, 𝑠𝑗)| and
𝐶2 =

∑
𝑖∈Γ2(𝑗,𝑠𝑗 )

𝑌𝑖∕|Γ2(𝑗, 𝑠𝑗)|. Therefore, Problem (8) is simplified
as a problem of minimizing the least squares deviation of the sam-
ples contained in the child nodes (Hastie et al. 2009). Specifically,
the mean of all samples in each of the two child nodes is first
computed and denoted by 𝑌 (Γ1(𝑗, 𝑠𝑗)) =

∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

𝑌𝑖∕|Γ1(𝑗, 𝑠𝑗)|
for the left child node and 𝑌 (Γ2(𝑗, 𝑠𝑗)) =

∑
𝑖∈Γ2(𝑗,𝑠𝑗 )

𝑌𝑖∕|Γ2(𝑗, 𝑠𝑗)|
for the right child node. Subsequently, the difference of each tar-
get value in each child node from the mean is calculated. The
traditional splitting criterion is always written as follows:

Definition 1. Traditional splitting criterion

(𝑗∗, 𝑠∗𝑗∗ ) ∈ arg min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

⎡⎢⎢⎣
∑

𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌 (Γ1(𝑗, 𝑠𝑗)) − 𝑌𝑖

)2

+
∑

𝑖∈Γ2(𝑗,𝑠𝑗 )

(
𝑌 (Γ2(𝑗, 𝑠𝑗)) − 𝑌𝑖

)2⎤⎥⎥⎦ (10)

An RT based on this splitting criterion is typically called a least
squares RT; we denote it as t-RT in this article.

3 | Revised Splitting Criteria

Following the definitions of MSE and traditional RT, this section
first introduces the shortcomings of the traditional splitting
criterion. The theoretical motivations for improving the RT split-
ting criterion are subsequently presented.

3.1 | Objective of RT Splitting

General RT splitting criterion. As introduced in Section 2.2, For-
mula (10) is one of the most widely used RT splitting crite-
ria. However, its widespread use stems more from mathematical
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convenience than from considerations of actual loss in applica-
tions. As discussed in Section 2.2, the objective of splitting is to
achieve the optimal binary partition by minimizing the MSE of
each child node; however, only the training error is considered
by the splitting criterion (10). Given a split 𝜃 = (𝑗, 𝑠𝑗) and dataset
𝐷, the general MSE can be written as the sum of two parts relating
to the two child nodes of the root node:

MSEgeneral(𝜃;𝐷) ≡ ∫𝑥(𝑗)≤𝑠𝑗 ,𝑦∈ℝ (𝑓 (𝜃, 𝑥;𝐷) − 𝑦)2𝑑𝐹𝑋,𝑌 (𝑥, 𝑦)

+ ∫𝑥(𝑗)>𝑠𝑗 ,𝑦∈ℝ (𝑓 (𝜃, 𝑥;𝐷) − 𝑦)2𝑑𝐹𝑋,𝑌 (𝑥, 𝑦)

(11)

Here, the training set𝐷 is fixed, and 𝑓 (𝜃, 𝑥;𝐷) is a constant when
𝑥(𝑗) ≤ 𝑠𝑗 (or 𝑥(𝑗) > 𝑠𝑗). Recall that 𝐷̃ is a random sample of size
𝑁 drawn from the joint distribution 𝐹𝑋,𝑌 , we have the following
general MSE by taking the expectation over 𝐷̃:

MSEgeneral(𝜃) ≡ 𝔼𝐷̃[MSEgeneral(𝜃; 𝐷̃)]

= 𝔼𝐷̃

[
∫𝑥(𝑗)≤𝑠𝑗 ,𝑦∈ℝ (𝑓 (𝜃, 𝑥; 𝐷̃) − 𝑦)2𝑑𝐹𝑋,𝑌 (𝑥, 𝑦)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MSEgeneral
left-part(𝜃)

+ 𝔼𝐷̃

[
∫𝑥(𝑗)>𝑠𝑗 ,𝑦∈ℝ (𝑓 (𝜃, 𝑥; 𝐷̃) − 𝑦)2𝑑𝐹𝑋,𝑌 (𝑥, 𝑦)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MSEgeneral
right-part(𝜃)

(12)

Theorem 2. For a fixed split, the general MSE comprises three
parts. As an example, MSEgeneral

left-part(𝜃) can be decomposed into the
following:

MSEgeneral
left-part(𝜃) = ∫𝑥(𝑗)≤𝑠𝑗

{
𝕍 [𝑓 (𝜃, 𝑥; 𝐷̃)] + [Bias(𝑓 (𝜃, 𝑥; 𝐷̃))]2

+𝕍 [𝑌 |𝑋 = 𝑥]}𝑑𝐹𝑋,⋅(𝑥) (13)

where 𝐹𝑋,⋅ is the marginal distribution of 𝑋 under the joint
distribution 𝐹𝑋,𝑌 , 𝑓 (𝜃, 𝑥; 𝐷̃) is random because 𝐷̃ is random,
Bias(𝑓 (𝜃, 𝑥; 𝐷̃)) ≡ 𝔼𝐷̃[𝑓 (𝜃, 𝑥; 𝐷̃)] − 𝔼𝑌 [𝑌 |𝑋 = 𝑥], and 𝕍 [𝑌 |𝑋 =
𝑥] is the conditional variance of 𝑌 given 𝑋 = 𝑥 and depends only
on the conditional distribution 𝐹𝑌 |𝑋 (James et al. 2013; Hastie
et al. 2009).

Decomposition of the general splitting criterion. In an RT, the
mean of the outputs of the samples contained in each node is
used as its predicted value, that is, 𝑓 (𝜃, 𝑥; 𝐷̃). For example, the
𝑓 (𝜃, 𝑥; 𝐷̃) of the left child node of the root node can be denoted
by 𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃) =

∑
𝑖∈𝐷̃(𝑌𝑖⋅1(𝑋

(𝑗)≤𝑠𝑗 ))∑
𝑖∈𝐷̃ 1(𝑋(𝑗)≤𝑠𝑗 ) , where 1(condition) is an

indicating function that equals 1 if the condition is met. Here,
𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃) is a random variable due to 𝐷̃. Thus, we have

Bias(𝑓 (𝜃, 𝑥; 𝐷̃)) = Bias(𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃))

= 𝔼𝐷̃[𝑌 (𝑋
(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] − 𝔼[𝑌 |𝑋(𝑗) ≤ 𝑠𝑗]

= 𝔼[𝑌 |𝑋(𝑗) ≤ 𝑠𝑗] − 𝔼[𝑌 |𝑋(𝑗) ≤ 𝑠𝑗]

= 0

The terms ∫
𝑥(𝑗)≤𝑠𝑗 𝕍 [𝑌 |𝑋 = 𝑥]𝑑𝐹𝑋,⋅(𝑥) in MSEgeneral

left-part(𝜃) and

∫
𝑥(𝑗)>𝑠𝑗

𝕍 [𝑌 |𝑋 = 𝑥]𝑑𝐹𝑋,⋅(𝑥) in MSEgeneral
right-part(𝜃) can sum to

𝔼𝑋[𝕍 [𝑌 |𝑋]], which is an irreducible error, regardless of the
splitting criterion. Therefore,

Corollary 1. Formula (12) can be transformed into

MSEgeneral(𝜃) = ∫𝑥(𝑗)≤𝑠𝑗 𝕍 [𝑓 (𝜃, 𝑥; 𝐷̃)]𝑑𝐹𝑋,⋅(𝑥)

+ ∫𝑥(𝑗)>𝑠𝑗 𝕍 [𝑓 (𝜃, 𝑥; 𝐷̃)]𝑑𝐹𝑋,⋅(𝑥) + constant (14)

where the constant is equal to 𝔼𝑋[𝕍 [𝑌 |𝑋]] and is independent of
the splitting criterion.

The term 𝕍 [𝑓 (𝜃, 𝑥; 𝐷̃)] equals 𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] for the left child
node and 𝕍 [𝑌 (𝑋(𝑗) > 𝑠𝑗 ; 𝐷̃)] for the right child node, which are
constants irrespective of 𝑥 in the domain 𝑥(𝑗) ≤ 𝑠𝑗 and 𝑥(𝑗) > 𝑠𝑗 ,
respectively. Hence, we can further derive an equivalent formula
for MSEgeneral(𝜃) as follows.

Corollary 2. Given the splitting parameter 𝜃 = (𝑗, 𝑠𝑗), we
obtain

MSEgeneral(𝜃) = 𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)]∫𝑥(𝑗)≤𝑠𝑗 𝑑𝐹𝑋,⋅(𝑥)

+ 𝕍 [𝑌 (𝑋(𝑗) > 𝑠𝑗 ; 𝐷̃)]∫𝑥(𝑗)>𝑠𝑗 𝑑𝐹𝑋,⋅(𝑥) + constant

(15)

where the constant is equal to 𝔼𝑋[𝕍 [𝑌 |𝑋]] and is independent of
the splitting criterion.

For an RT, we expect to obtain splits that minimize the gener-
alization error in the child nodes, based on which the splitting
criterion can be written as follows:

(𝑗∗, 𝑠∗𝑗∗ ) ∈ arg min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

MSEgeneral(𝑗, 𝑠𝑗) (16)

Nevertheless, the traditional splitting criterion (10) considers
only the training error rather than the generalization error, which
may result in prediction bias.

3.2 | Enhancements

In this section, we propose two solutions to generate superior
splitting criteria. The first approach, called variance-estimated
approximation, estimates the general MSE by determining the
variance from the observed samples. Then, splitting criteria are
generated through the minimization of this approximated gener-
alization error. The second approach estimates the out-of-sample
MSE through LOOCV. This LOOCV-informed splitting criterion
is adopted to determine the splitting pair.
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3.2.1 | Variance-Estimated Approximation

As our discussion in Corollary 2 reveals, the general MSE of sam-
ples in a child node is determined by the expected value of the
variance of 𝑌 over the cumulative distribution function of 𝑋 in
the node. While the joint distribution 𝐹𝑋,𝑌 is unknown, we try
to estimate its value based on the observed samples. We take
the child nodes of the root node as an example; assume that the
potential split (𝑗, 𝑠𝑗) divides a dataset with 𝑁 samples into subset
Γ1(𝑗, 𝑠𝑗) in the left child node and subsetΓ2(𝑗, 𝑠𝑗) in the right child
node. Denote 𝑌 (Γ1(𝑗, 𝑠𝑗)) and 𝑌 (Γ2(𝑗, 𝑠𝑗)) as the mean value of
the samples’ outputs in the left and right child node, respectively.
We use the sample variance within the left node, denoted by
𝑆2
Γ1(𝑗,𝑠𝑗 )

=
∑

𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ1(𝑗, 𝑠𝑗))

)2
∕(|Γ1(𝑗, 𝑠𝑗)| − 1), to esti-

mate the population variance of the random variable 𝑌 in the
left child node, denoted by 𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)], because the pre-
vious one is an unbiased estimator of the population variance in
the left child node (Larsen and Marx 2005). Thus, the variance of
the random variable 𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃) in the left child node can be
presented as

𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] ≈
𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)]|Γ1(𝑗, 𝑠𝑗)|

≈ 1|Γ1(𝑗, 𝑠𝑗)| ⋅
∑

𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ1(𝑗, 𝑠𝑗))

)2

|Γ1(𝑗, 𝑠𝑗)| − 1
(17)

where we take the approximation because we use the sample
variance to estimate the (conditional) population variance. More-
over, because the probability that a data point is split into the left
child node (i.e., ∫

𝑥(𝑗)≤𝑠𝑗 𝑑𝐹𝑋,⋅(𝑥)) is unknown, we approximate this
probability by using the empirical value |Γ1(𝑗, 𝑠𝑗)|∕𝑁 . Therefore,
𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] ∫

𝑥(𝑗)≤𝑠𝑗 𝑑𝐹𝑋,⋅(𝑥) can be approximated as

MSEapprox-general
left-part (𝑗, 𝑠𝑗 ) ≡ 1|Γ1(𝑗, 𝑠𝑗 )| ⋅

∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ1(𝑗, 𝑠𝑗 ))

)2

|Γ1(𝑗, 𝑠𝑗 )| − 1
⋅
|Γ1(𝑗, 𝑠𝑗 )|

𝑁

= 1
𝑁

⋅

∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ1(𝑗, 𝑠𝑗 ))

)2

|Γ1(𝑗, 𝑠𝑗 )| − 1
(18)

According to this approximated generalization error, we pro-
pose the following variance-estimated splitting criterion, which
approximates the splitting criterion (16):

Definition 2. Variance-estimated splitting criterion

(𝑗∗, 𝑠∗𝑗∗ ) ∈ arg min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

⎡⎢⎢⎣ 1|Γ1(𝑗, 𝑠𝑗)| − 1
∑

𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌 (Γ1(𝑗, 𝑠𝑗)) − 𝑌𝑖

)2

+ 1|Γ2(𝑗, 𝑠𝑗)| − 1
∑

𝑖∈Γ2(𝑗,𝑠𝑗 )

(
𝑌 (Γ2(𝑗, 𝑠𝑗)) − 𝑌𝑖

)2⎤⎥⎥⎦ (19)

Notably, 1∕𝑁 is omitted as it is a constant and will not influence
the choice of splitting pair.

Remark 1. For the variance-estimated splitting criterion, we
want to remark on the following points:

• Enhancement analysis. As demonstrated in Corollary 2,
the general MSE of samples in a child node is deter-
mined by the expected value of the variance of 𝑌 over
the cumulative distribution function of 𝑋 in the node.
Our variance-estimated splitting criterion enhances the tra-
ditional approach by utilizing an unbiased estimation of
𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] and 𝕍 [𝑌 (𝑋(𝑗) > 𝑠𝑗 ; 𝐷̃)]. In contrast, the
traditional splitting criterion relies on a biased estimator.
The proof is given in Appendix A. The main benefits of our
method include: (1) Improved split quality: By accurately
representing the variance, our splitting criterion ensures that
splits are evaluated based on a more faithful representation
of the data’s variability, leading to more meaningful par-
titions. (2) Superiority on small sample sizes: When deal-
ing with small sample sizes, a scenario common in practi-
cal applications such as high-dimensional regression, imbal-
anced datasets, or deep tree depth, the bias introduced by
the traditional MSE can lead to overfitting or the selection
of splits that do not generalize well to unseen data. By using
the variance-estimated splitting criterion, our method miti-
gates these issues, resulting in more robust and generalizable
trees.

• Two approximations are involved here: (1) The sample vari-
ance is used to estimate the conditional variance of 𝑌 (i.e.,
𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] and 𝕍 [𝑌 (𝑋(𝑗) > 𝑠𝑗 ; 𝐷̃)]); (2) The cumula-
tive distributions ∫

𝑥(𝑗)≤𝑠𝑗 𝑑𝐹𝑋,⋅ and ∫
𝑥(𝑗)>𝑠𝑗

𝑑𝐹𝑋,⋅ are approx-
imated from the number of training samples that fall into
each child node divided by the number of samples in the par-
ent node.

• In each split, the computational complexity of the
variance-estimated splitting criterion is the same as that
of the traditional splitting criterion, that is, 𝑂(𝑛), where 𝑛 is
the number of samples in the node.

• If there is only one sample in a child node, then the MSE of
this node is set to zero. For example, if we have |Γ1(𝑗, 𝑠𝑗)| = 1
for the left child node, then MSEapprox-general

left-part = 0.

3.2.2 | Leave-One-Out Cross-Validation (LOOCV)

Another widely adopted ML method that partially mitigates the
common underestimation of generalization errors is LOOCV,
which is usually used to select the optimal hyperparameters
in the RT model; the underlying principle is to minimize the
out-of-sample error (defined in Formula (5)). In LOOCV, a
dataset is divided into 𝑁 subsets, where 𝑁 is the total number of
samples in the dataset. At each iteration, one sample is left out for
use as the validation set, and the model is trained on the remain-
ing 𝑁 − 1 samples. This process is repeated 𝑁 times, with each
sample being left out once as the validation set. The final eval-
uation metric (e.g., MSE) is computed by averaging the results
of all 𝑁 iterations (James et al. 2013). We use LOOCV to select
the optimal parameters (i.e., splitting criterion) by evaluating the
out-of-sample MSE in each child node.

Given a training dataset 𝐷 of 𝑁 samples and a potential split
(𝑗, 𝑠𝑗) of 𝐷 into Γ1(𝑗, 𝑠𝑗) and Γ2(𝑗, 𝑠𝑗), we apply LOOCV to
estimate the out-of-sample MSE for the child node. Again,
we take the left child node of the root node as an example.

6 of 20 Naval Research Logistics (NRL), 2025

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22270 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



With some abuse of notation, we denote the training MSE and
out-of-sample MSE for the left child node as MSEtrain(𝑗, 𝑠𝑗 ; Γ1)
and MSEout-sample(𝑗, 𝑠𝑗 ; Γ1,Γ′

1), respectively, where Γ′
1 comprises

the indices of a new dataset, in which we observe a new response
value for each of the training points ofΓ1 (similar to the definition
of 𝐷 and 𝐷′ in Section 2.1). Let 𝑌

(−𝑖)
𝑖 be the predicted value of

leaving out each sample (𝑋𝑖, 𝑌𝑖), 𝑖 ∈ Γ1(𝑗, 𝑠𝑗). Then, 𝑌
(−𝑖)
𝑖 can be

computed from the expectation of the remaining samples as fol-
lows:

𝑌
(−𝑖)
𝑖 ≡

∑
𝑘∈Γ1(𝑗,𝑠𝑗 ),𝑘≠𝑖 𝑌𝑘|Γ1(𝑗, 𝑠𝑗)| − 1

(20)

Therefore, the LOOCV value of Γ1(𝑗, 𝑠𝑗) can be presented as

LOOCV(Γ1(𝑗, 𝑠𝑗)) ≡ 1|Γ1(𝑗, 𝑠𝑗)| ∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌

(−𝑖)
𝑖 − 𝑌𝑖

)2
(21)

Direct LOOCV is computationally inefficient. Fortunately,
according to Stone (1974)., a “shortcut” identity can be used
for LOOCV in the special case of least squares polynomial
regression.

Proposition 1. We can perform LOOCV with this simple short-
cut in the left child node as follows:

LOOCV(Γ1(𝑗, 𝑠𝑗)) =
1|Γ1(𝑗, 𝑠𝑗)| ∑

𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌 (Γ1(𝑗, 𝑠𝑗)) − 𝑌𝑖

1 − 𝛾1

)2

(22)
where 𝛾1 = 1∕|Γ1(𝑗, 𝑠𝑗)|.
Proof. To streamline the notation, we write Γ1(𝑗, 𝑠𝑗) as Γ1 in the
following proof.

LOOCV(Γ1) =
1|Γ1|∑𝑖∈Γ1

(
𝑌

(−𝑖)
𝑖 − 𝑌𝑖

)2

= 1|Γ1|∑𝑖∈Γ1

(∑
𝑘∈Γ1 ,𝑘≠𝑖 𝑌𝑘|Γ1| − 1

− 𝑌𝑖

)2

= 1|Γ1|∑𝑖∈Γ1

(∑
𝑘∈Γ1

𝑌𝑘 − 𝑌𝑖|Γ1| − 1
− 𝑌𝑖

)2

= 1|Γ1|∑𝑖∈Γ1

(|Γ1| ⋅ 𝑌 (Γ1) − 𝑌𝑖|Γ1| − 1
− 𝑌𝑖

)2

(
because 𝑌 (Γ1) =

∑
𝑖∈Γ1

𝑌𝑖|Γ1|
)

= 1|Γ1|∑𝑖∈Γ1

(|Γ1| ⋅ 𝑌 (Γ1) − 𝑌𝑖 − (|Γ1| − 1)𝑌𝑖|Γ1| − 1

)2

= 1|Γ1|∑𝑖∈Γ1

(|Γ1| ⋅ 𝑌 (Γ1) − |Γ1| ⋅ 𝑌𝑖|Γ1| − 1

)2

= 1|Γ1|∑𝑖∈Γ1

⎛⎜⎜⎝
𝑌 (Γ1) − 𝑌𝑖

1 − 1|Γ1|
⎞⎟⎟⎠

2

Therefore, letting 𝛾1 = 1∕|Γ1|, we have

LOOCV(Γ1) =
1|Γ1|∑𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

1 − 𝛾1

)2

◽

Using the above LOOCV formula, we further prove that the result
approximates the out-of-sample MSE, which largely mitigates the
optimism of the training MSE.

Proposition 2. The out-of-sample MSE can be approximated
as LOOCV(Γ1(𝑗, 𝑠𝑗)); that is,

MSEout-𝑠𝑎𝑚𝑝𝑙𝑒(𝑗, 𝑠𝑗 ; Γ1,Γ′
1) ≈ LOOCV(Γ1(𝑗, 𝑠𝑗)) (23)

Proof. We denote Γ1(𝑗, 𝑠𝑗) as Γ1 for simplicity in this proof. Let
𝑔(𝛾1) = 1∕(1 − 𝛾1)2; through Taylor expansion, we determine that

𝑔(𝛾1) =
𝑔(0)
0!

+ 𝑔′(0)
1!

𝛾1 +
𝑔′′(0)

2!
𝛾2

1 + 𝑔′′′(0)
3!

𝛾3
1 + · · ·

= 1 + 2𝛾1 + 3𝛾2
1 + 4𝛾3

1 + · · ·

= 1 + 2𝛾1 + 𝑜(𝛾1)

≈ 1 + 2𝛾1

Therefore, we have 1∕(1 − 𝛾1)2 ≈ 1 + 2𝛾1 when |Γ1| is large. Sub-
stituting it into (22), we obtain

LOOCV(Γ1) ≈
1 + 2𝛾1|Γ1| ∑

𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2

= 1|Γ1|∑𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2
+

2𝛾1|Γ1|∑𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|2 ∑𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2

|Γ1|
≈ MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +

2|Γ1|𝕍 [𝑌 |𝑋(𝑗) < 𝑠𝑗]

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|Cov[𝑌 , 𝑌 |𝑋(𝑗) < 𝑠𝑗]

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑𝑖∈Γ1

1|Γ1|
Cov[𝑌𝑖, 𝑌𝑖] 𝑌𝑖 is a random variable given 𝑋(𝑗) < 𝑠𝑗

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑𝑖∈Γ1

Cov

[
𝑌𝑖,

𝑌𝑖|Γ1|
]

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑

𝑖∈Γ1

(
Cov

[
𝑌𝑖,

𝑌𝑖|Γ1|
]
+

∑
𝑗∈Γ1 ,𝑗≠𝑖

Cov

[
𝑌𝑖,

𝑌𝑗|Γ1|
])

(∵𝑌𝑖⊥⊥𝑌𝑗 ∴Cov[𝑌𝑖, 𝑌𝑗] = 0 ∴Cov

[
𝑌𝑖,

𝑌𝑗|Γ1|
]
= 0)

= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑𝑖∈Γ1

Cov

[
𝑌𝑖,

∑
𝑖∈Γ1

𝑌𝑖|Γ1|
]
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≈ MSEtrain(𝑗, 𝑠𝑗 ; Γ1) +
2|Γ1|∑𝑖∈Γ1

Cov
[
𝑌𝑖, 𝑌 (Γ1)

]
= MSEtrain(𝑗, 𝑠𝑗 ; Γ1) + 𝔼[optimism]

= MSEout-𝑠𝑎𝑚𝑝𝑙𝑒(𝑗, 𝑠𝑗 ; Γ1,Γ′
1) (by eq. (7)).

◽

According to the above proof, we have
MSEout-sample(𝑗, 𝑠𝑗 ; Γ2,Γ′

2) ≈ LOOCV(Γ2(𝑗, 𝑠𝑗)) for the right
child node. The above discussion reveals that the LOOCV val-
ues approach the out-of-sample error, partially correcting for
the underestimation based on the training error. Thus, the
leave-one-out splitting criterion can be presented as follows:

Definition 3. Leave-one-out splitting criterion

(𝑗∗, 𝑠∗𝑗∗ ) ∈ arg min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

⎡⎢⎢⎣ 1|Γ1(𝑗, 𝑠𝑗 )| ∑
𝑖∈Γ1(𝑗,𝑠𝑗 )

(
𝑌 (Γ1(𝑗, 𝑠𝑗 )) − 𝑌𝑖

1 − 𝛾1

)2

+ 1|Γ2(𝑗, 𝑠𝑗 )| ∑
𝑖∈Γ2(𝑗,𝑠𝑗 )

(
𝑌 (Γ2(𝑗, 𝑠𝑗 )) − 𝑌𝑖

1 − 𝛾2

)2⎤⎥⎥⎦ (24)

where 𝛾1 = 1∕|Γ1(𝑗, 𝑠𝑗)| and 𝛾2 = 1∕|Γ2(𝑗, 𝑠𝑗)|.
Remark 2. For the LOOCV-based splitting criterion, we want
to remark on the following points:

• Enhancement analysis. As demonstrated in Proposition 2,
the LOOCV-based splitting criterion can approximate the
out-of-sample error, which is less optimistic than the train-
ing error by containing an additional term 𝔼[optimism].
Consequently, the LOOCV-based splitting criterion provides
a more accurate representation of the generalization error
than the traditional splitting criterion, yielding predictions
that are more likely to generalize well to unseen data.

• The LOOCV-based splitting criterion approximates the gen-
eral MSE-based splitting criterion in two steps: (1) LOOCV is
used to approximate the out-of-sample MSE; (2) the sum of
out-of-sample MSE instead of the precise general MSE is uti-
lized as the splitting criterion.

• Given the expression based on “short cut” in Proposition 1,
in each split, the computational complexity of the
LOOCV-based splitting criterion is the same as that of
the traditional splitting criterion, that is, 𝑂(𝑛) where 𝑛 is the
number of samples in the node.

• If there is only one sample in a child node, then the MSE of
this node is set to 0. For example, if we have |Γ1(𝑗, 𝑠𝑗)| = 1
for the left child node, then LOOCV(Γ1) is 0.

4 | Generalization Error-Based Tree Models

This section introduces tree models constructed with differ-
ent splitting criteria based on the enhancements presented in
Section 3.2. Subsequently, a synthetic example is presented to

ALGORITHM 1 | Pseudocode for the RT algorithm.

Input: Training dataset 𝐷 and stopping rules
Output: RT model
Step 1: Input all training samples in 𝐷 to the root node
Step 2: Find the optimal splitting pair for the current node based
on the splitting criterion (i.e., (10), (19), or (24))
Step 3: Divide the samples in the current node into two child
nodes (i.e., subsets based on the optimal splitting pair)
Step 4: If a stopping criterion is reached, advance to Step 5. Oth-
erwise, recursively apply Steps 2 and 3 to each child node until
no nodes can be further split
Step 5: Assign the average value of the sample outputs of each
leaf node as the predicted value
Step 6: Return RT model.

demonstrate how the proposed splitting criteria influence RT
construction.

4.1 | Tree Models

This section provides the training process and the summaries of
the RT models incorporating different splitting criteria.

4.1.1 | Regression Tree

As introduced in Section 2.2, one of the most commonly used and
intuitive tree-based models is the decision tree (in our case, which
is a regression problem, the RT). Based on different splitting cri-
teria, our RT model can be constructed following the pseudocode
presented in Algorithm 1.

4.1.2 | Summary of Models

To simplify the notation of our RT models based on different
generalization error-based splitting criteria, we denote them as
g-RT-𝑘, where 𝑔 indicates “generalization error” and 𝑘 is the
index of the splitting criterion. We summarize the critical for-
mula for four splitting criteria and the notation of the respec-
tive RT models in Table 1, where an F-test-based RT model is
also included. The F-test-based RT model uses the F-statistic
to measure the reduction in variance and selects the split that
mostly decreases prediction error as indicated by statistically sig-
nificant F-test results (Murtaugh 1998; Gkioulekas and Papageor-
giou 2021).

4.2 | Synthetic Example in an RT

To better illustrate the aforementioned splitting criteria, we com-
pare them with the traditional splitting criterion in a synthetic
example below.

Example 1. We consider five training samples, each with two
input features denoted by (𝑥1, 𝑥2) and one output denoted by 𝑦.
The samples’ input feature vectors are (6, 6), (8, 5), (4, 9), (10, 10),

8 of 20 Naval Research Logistics (NRL), 2025

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22270 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 | Summary of tree-based models with different splitting criteria.

Splitting criterion Formula RT model Property

Traditional
(benchmark)

min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

[∑
𝑖∈Γ1

(
𝑌 (Γ1) − 𝑌𝑖

)2
+
∑

𝑖∈Γ2

(
𝑌 (Γ2) − 𝑌𝑖

)2
]

(10) t-RT training MSE

F-test-based
(benchmark)

max
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

(
𝑌 (Γ1)−𝑌 (Γ2)

)2

𝑆2
𝑝

, where 𝑆2
𝑝 =

(|Γ1|−1)𝑆2
Γ1 (𝑗,𝑠𝑗 )

+(|Γ2|−1)𝑆2
Γ2 (𝑗,𝑠𝑗 )|Γ1|+|Γ2|−1

a Ftest-RT F-Statistic

Variance-estimated min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

[
1|Γ1|−1

∑
𝑖∈Γ1

(𝑌 (Γ1) − 𝑌𝑖)2 + 1|Γ2|−1

∑
𝑖∈Γ2

(𝑌 (Γ2) − 𝑌𝑖)2
]

(19) g-RT-1 approximated
general MSE

Leave-one-out
cross-validation

min
𝑗∈{1, . . . ,𝐽}

𝑠𝑗∈𝑆𝑗

[
1|Γ1|∑𝑖∈Γ1

(
𝑌 (Γ1)−𝑌𝑖
1−1∕|Γ1|

)2
+ 1|Γ2|∑𝑖∈Γ2

(
𝑌 (Γ2)−𝑌𝑖
1−1∕|Γ2|

)2]
(24) g-RT-2 out-of-sample

MSE

a𝑆2
Γ1 (𝑗,𝑠𝑗 )

=
∑

𝑖∈Γ1 (𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ1(𝑗, 𝑠𝑗 ))

)2
∕(|Γ1(𝑗, 𝑠𝑗 )| − 1) and 𝑆2

Γ2 (𝑗,𝑠𝑗 )
=
∑

𝑖∈Γ2 (𝑗,𝑠𝑗 )

(
𝑌𝑖 − 𝑌 (Γ2(𝑗, 𝑠𝑗 ))

)2
∕(|Γ2(𝑗, 𝑠𝑗 )| − 1).

TABLE 2 | Testing data and predicted performance of RTs with different splitting criteria.

Splitting
feature

Splitting
valuea

Left child
node

Right child
node

Errorsb

t-RT g-RT-1 g-RT-2

𝑥1 3.5 sample 5 sample 1, 2, 3, and 4 38.75 12.92 161.22
𝑥1 5 sample 3 and 5 sample 1, 2, and 4 35.17 17.83 27.00
𝑥1 7 sample 1, 3, and 5 sample 2 and 4 34.00c 33.00 65.50
𝑥1 9 sample 1, 2, 3, and 5 sample 4 38.75 12.92 161.22
𝑥2 5.5 sample 2 and 5 sample 1, 3, and 4 34.00 33.00 65.5
𝑥2 7.5 sample 1, 2, and 5 sample 3 and 4 35.17 17.83 27.00
𝑥2 9.5 sample 1, 2, 3, and 5 sample 4 38.75 12.92 161.22

aWe adhere to the scikit-learn implementation of CART, which treats the midpoints between a feature’s consecutive unique values—rather than the unique values
themselves—as possible splitting thresholds (Buitinck et al. 2013).
bThe errors of each splitting pair are calculated by the respective splitting criterion formula.
cWhen multiple splitting pairs have the same minimum error, we randomly choose one from them. For simplicity, in this illustrative example, we choose the first feature
with the minimum error of these potential splits.

and (3, 5), and their corresponding targets are 14, 20, 13, 12,
and 12, respectively. These samples are indexed from 1 to 5
sequentially. The potential splitting points and errors calculated
using each splitting criterion on this training set are presented in
Table 2.

Therefore, for the root node, the optimal splitting criterion based
on t-RT is (𝑥1, 7), while those based on g-RT-1 and g-RT-2 are
(𝑥1, 3.5) and (𝑥1, 5), respectively. Following a similar procedure,
we can develop corresponding RTs with a maximum depth of 3;
as shown in Figure 1, the revised splitting criteria yield consid-
erably different tree structures in this synthetic example. Addi-
tionally, it is clear that the g-RT-2 model generates a significantly
wider range of errors, ranging from 27.00 to 161.22, compared to
the t-RT (from 34.00 to 38.75) and g-RT-1 (from 12.92 to 33.00)
models. This increased diversity can be attributed to the larger
coefficients used in the expression of the splitting criterion in the
g-RT-2 model.

5 | Numerical Experiments

This section compares the prediction performance of our pro-
posed generalization error-based RT models with that of two
benchmark models (i.e., t-RT and Ftest-RT). Specifically, the

computational efficiency, prediction accuracy, model stability,
and tree structures are analyzed sequentially. We further enhance
our model comparison by evaluating with fixed hyperparame-
ters in Section 5.3 and on non-independent and identically dis-
tributed (non-i.i.d.) datasets in Section 5.4, respectively.

5.1 | Experimental Settings

To evaluate the performance of our generalization error-based
models, this section adopts 12 classic datasets sourced from
the UC Irvine Machine Learning Repository (Kelly et al. 2023),
which is an online platform that provides a collection of valu-
able datasets for ML research and experimentation. We adopt
the 12 most frequently downloaded datasets in the regres-
sion domain and label them 1 to 12. Detailed information on
each dataset is presented at https://github.com/ShadowY1998/
Data-sets. Each dataset is randomly divided into a training set
comprising 70% of the samples and a test set comprising the
other 30%.

Two main hyperparameters are considered in RT models: Mini-
mum sample split and maximum tree depth. Specific descriptions
and relative tuning values are presented in Table 3. Notably,
since the minimum number of samples contained in a leaf
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FIGURE 1 | The depth-3 trees based on different splitting criteria.

TABLE 3 | Descriptions and tuning methods of hyperparameters in RT models.

Hyperparameters Description Tuning valuesa

Minimum-sample-split It determines the minimum number of samples required to split a node
in an RT model and is used as the stopping criterion for further

partitioning of nodes during the tree construction process.

{2, 4, 6}

Maximum-tree-depth It limits the maximum depth of a tree and helps reduce overfitting by
restricting the complexity and size of the resulting trees.

{10, 15, 20}

aThe tuning values show the possible values that the hyperparameters are chosen from.

node can be controlled by limiting the minimum number of
samples required to split a node, the former one is not consid-
ered here. We train the model with different combinations of
hyperparameters and record the five-fold cross-validated MSE,
based on which the optimal hyperparameter combination can
be determined.

All experiments are conducted on a computer using the Mac
operating system, equipped with an Apple M2 Pro proces-
sor and 16GB of RAM. The models are implemented using
Python 3.11.

5.2 | Numerical Results

The detailed experimental results of the RT models on all datasets
are presented in Table 4. Notably, the column “Coeff” presents
the correlation coefficient between the actual targets and the
predicted targets, which is a standardized metric taking values
between zero and one and is used to assess prediction accuracy.
Specifically, the larger the correlation coefficient, the more accu-
rate the prediction. The column “Hyperparameters” presents the
optimal hyperparameter combination for each model, that is, the
combination that achieves the minimum MSE on the training set
in five-fold cross-validation. The column “Best model” presents
the model with the maximum correlation coefficient on the test
set. If two models have the same correlation coefficient on the test
set, we compare the MSE on the test set and select the model with
the smaller MSE as the best model.

5.2.1 | Computational Efficiency

The computational efficiency of ML models can be gauged by
the duration of model training, which is presented in the col-
umn “Time (s)” in Table 4, where the time used in the valida-
tion stage is also included. The results indicate similar computing
times for the four models, revealing that employing our proposed
generalization error-based splitting criteria does not impose a
greater computational burden during model training—and even
shortens the training time in some cases. While the result is
straightforward for g-RT-1, as the variance-estimated splitting
criterion only revises the denominator of the traditional split-
ting criterion, it may seem counterintuitive for g-RT-2. Typically,
employing leave-one-out in the traditional cross-validation stage
would increase computational time due to the iterative calcula-
tion of the mean value on all but one sample. However, given the
“shortcut” identity outlined in Proposition 1, we offer a compu-
tationally efficient equivalent for the variance-estimated splitting
criterion, which requires calculating the mean value only once.

5.2.2 | Prediction Accuracy

The prediction accuracy of these models is evaluated based on
their MSE and correlation coefficients, which are indicated by
“MSE” and “Coeff,” respectively, in Table 4. The results suggest
that all models yield higher performance on the training sets than
on the test set. The test results display divergence across datasets.
Specifically, g-RT-2 performs optimally on nine datasets and t-RT
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 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22270 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 4 | Experiment results of different RT models.

Dataset Model
Time

(s)

Training set Testing set

Hyperparametersa
Best

modelMSE Coeff MSE Coeff

1 t-RT 160.71 0.36 0.757 0.68 0.428 [10,4] g-RT-1
Ftest-RT 215.19 0.84 0.088 0.66 0.069 [10,6]
g-RT-1 80.88 0.64 0.499 0.56 0.439 [20,2]
g-RT-2 93.79 0.37 0.750 0.70 0.411 [10,6]

2 t-RT 2.03 0.02 0.937 0.04 0.761 [10,6] g-RT-2
Ftest-RT 3.29 0.04 0.878 0.11 0.486 [15,2]
g-RT-1 2.11 0.03 0.906 0.04 0.836 [20,6]
g-RT-2 0.85 0.02 0.936 0.03 0.848 [20,6]

3 t-RT 7.68 2.11 0.995 6.89 0.990 [20,4] g-RT-2
Ftest-RT 3.72 161.62 0.512 183.50 0.547 [10,2]
g-RT-1 7.75 12.11 0.972 121.10 0.723 [15,2]
g-RT-2 3.64 0.56 0.999 4.21 0.992 [20,2]

4 t-RT 124.40 2.71 0.871 6.33 0.589 [10,6] g-RT-2
Ftest-RT 115.10 7.21 0.598 5.96 0.556 [20,6]
g-RT-1 72.60 7.39 0.585 5.78 0.569 [20,6]
g-RT-2 73.56 2.69 0.872 5.91 0.628 [10,2]

5 t-RT 25.25 0.79 0.991 36.72 0.638 [15,2] g-RT-2
Ftest-RT 22.42 17.70 0.782 41.14 0.469 [15,2]
g-RT-1 24.30 2.21 0.975 30.69 0.702 [20,4]
g-RT-2 14.09 2.66 0.970 33.26 0.704 [20,2]

6 t-RT 12.91 0.72 0.991 42.08 0.711 [15,4] g-RT-2
Ftest-RT 19.52 15.49 0.780 58.05 0.538 [10,2]
g-RT-1 13.26 4.07 0.947 56.29 0.749 [10,2]
g-RT-2 5.89 2.14 0.973 42.66 0.783 [10,6]

7 t-RT 106.49 9.49 0.983 18.67 0.969 [10,6] t-RT
Ftest-RT 124.26 189.27 0.582 223.14 0.500 [15,6]
g-RT-1 75.64 17.50 0.969 20.88 0.964 [15,4]
g-RT-2 56.76 9.92 0.983 18.05 0.968 [10,6]

8 t-RT 4.16 27.14 0.997 421.26 0.981 [20,2] g-RT-2
Ftest-RT 6.47 42.33 0.996 193.10 0.956 [20,4]
g-RT-1 4.37 15.96 0.998 163.53 0.975 [15,2]
g-RT-2 1.81 30.65 0.997 328.84 0.987 [10,2]

9 t-RT 208.61 14.44 0.785 29.86 0.526 [10,6] g-RT-2
Ftest-RT 236.44 36.15 0.202 37.83 0.133 [15,4]
g-RT-1 103.62 34.19 0.305 36.49 0.223 [20,6]
g-RT-2 124.24 13.94 0.794 29.58 0.535 [10,6]

10 t-RT 20.46 0.32 0.923 1.29 0.695 [15,6] g-RT-2
Ftest-RT 24.16 1.60 0.516 1.85 0.452 [15,4]
g-RT-1 17.61 0.71 0.822 1.40 0.652 [15,6]
g-RT-2 10.34 0.39 0.906 1.26 0.697 [15,6]

11 t-RT 7.62 822.78 0.976 2515.46 0.965 [15,2] t-RT
Ftest-RT 10.74 4022.34 0.879 28145.06 0.513 [15,4]
g-RT-1 6.19 2.82 1.000 55274.27 0.668 [20,2]
g-RT-2 3.29 849.91 0.976 2767.98 0.965 [10,2]

12 t-RT 11.26 11.20 0.970 69.24 0.781 [15,4] g-RT-2
Ftest-RT 16.30 130.50 0.563 137.08 0.454 [15,4]
g-RT-1 10.93 46.64 0.869 63.32 0.803 [10,6]
g-RT-2 5.28 18.20 0.951 56.62 0.826 [10,2]

aThe tuple [𝑎, 𝑏] is the best hyperparameter combination, where 𝑎 is the maximum-tree-depth and 𝑏 is the minimum-sample-split.
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FIGURE 2 | The testing correlation coefficients of different RT models on each dataset.

TABLE 5 | The Wilcoxon signed-rank test of the correlation coeffi-
cients between RT models.

Tested
models

Sum of
positive

ranks

Sum of
negative

ranks
𝑾

value 𝒑-value

g-RT-1 and t-RT 33 58 33 0.414
g-RT-2 and t-RT 71 7 7 0.009∗

Note: ∗ indicates that the null hypothesis can be rejected with a confidence level
of 95%.

performs optimally on two datasets; g-RT-1 performs optimally
on only dataset 1. In contrast, Ftest-RT consistently shows sig-
nificantly worse performance than the other three models on
both MSE and correlation coefficients, which may be attributed
to its potential sensitivity to outliers and the non-normality of
the data, as the F-test assumes homoscedasticity and normally
distributed errors (James et al. 2013). In Figure 2, we present
a bar plot illustrating the coefficients of all models on the test
sets. g-RT-2 outperforms t-RT on average over the 12 datasets,
but the performance of g-RT-1 is unstable, being much lower
on datasets 9 and 11. The results underscore the effectiveness
of our proposed enhanced splitting criteria, which achieve bet-
ter approximations of the generalization error. Besides, the con-
sistently superior prediction accuracy of g-RT-2 across various
datasets can be attributed to its ability to generate a more diverse
range of errors, as demonstrated in Example 1. This diversity
aids in distinguishing more suitable split points, thereby enhanc-
ing model performance. The Ftest-RT exhibits markedly inferior
performance, showing lower correlation coefficients across all
twelve datasets. Since the prediction results of the Ftest-RT model
are notably worse than those of the other three models, and its
splitting principle is quite different from the other models based
on generalization error, we do not conduct further significance
tests or tree structure explorations on it.

We conduct the Wilcoxon Signed-Rank test to detect signifi-
cant differences between the correlation coefficients of the t-RT

model and the generalization error-based RT models. The null
hypothesis is that the difference between the median of the cor-
relation coefficients of the two models is zero. We use test corre-
lation coefficients rather than MSE to compare prediction accu-
racy because they are standardized between zero and one, while
the test MSE varies greatly across the dataset, making it mean-
ingless for computing statistics such as median values. For sim-
plicity, we refer to the test correlation coefficients simply as “co-
efficients” in the following illustration. We use the two-tailed
Wilcoxon Signed-Rank test with 𝛼 = 0.05 and the critical value
𝑊0.05(12) = 13, where 0.05 represents the significance level and
12 represents the number of samples. The coefficients of each
model on the 12 datasets can be used to construct the 𝑊 value,
as shown in Table 5. The columns “Sum of positive ranks” and
“Sum of negative ranks” refer to the sums of the ranks for all
differences where the coefficient of the first model is greater
than and less than that of the second model, respectively. The
𝑊 value represents the smaller value of the two sums, which,
if less than the critical value, indicates that the observed differ-
ences between the paired samples are statistically significant. The
column “𝑝-value” is the probability of observing a value for the
statistic more extreme than, or as extreme as, the actual value of
the statistic.

As shown in Table 5, the 𝑊 value and the 𝑝-value for g-RT-2 ver-
sus t-RT are 7 and 0.009, respectively, which fall in the rejection
domain (i.e., g-RT-2 significantly outperforms t-RT at the 95%
confidence level). However, the 𝑊 value of g-RT-1 versus t-RT
is 33 with a 𝑝-value of 0.414, which is larger than 0.05. Therefore,
there is no difference between the coefficients of g-RT-1 and t-RT
at a significance level of less than 5%.

5.2.3 | Model Robustness

The robustness of a model, defined as its ability to maintain con-
sistent performance in different situations, is another important
consideration. Our model robustness evaluation is twofold. First,

12 of 20 Naval Research Logistics (NRL), 2025
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FIGURE 3 | Residuals of RT models within dataset 4. (a) t-RT, (b) g-RT-1, and (c) g-RT-2.

we compare the prediction accuracy of the models on all points
within one dataset. Second, we compare the performance of the
models on various datasets.

Robustness on one dataset. We select dataset 4 as an example
because the RT models exhibit diverse prediction accuracy on this
dataset yet follow the same average overall performance trend
(i.e., g-RT-2 performing optimally, followed by t-RT and g-RT-1).
For each data point in the test set, we illustrate the relationship
between the true value and its prediction in Figure 3.

In the left panel of each figure, the true values are plotted against
the predicted values. The right panel presents the residuals cal-
culated as the true values minus the predicted values and orders
them according to their true values for better visualization.

The left scatter plot of g-RT-2 shows a close relationship between
the actual and predicted values, with the data points closely dis-
tributed around the line with slope one that passes through the
origin. In contrast, the left scatter plot of t-RT has a wide distri-
bution of data points, indicating that the relationship between

13 of 20

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22270 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the predicted and actual values is weaker than that of g-RT-2.
Notably, the left scatter plot of g-RT-1 exhibits data points tightly
distributed around a line with a slope less than 1, which may
indicate that g-RT-1 systematically underestimates its predic-
tions. The right scatter plot reveals that the predictions of all
three models produce larger residuals when the true target values
increase; however, g-RT-1 and g-RT-2 exhibit few outliers. How-
ever, g-RT-1 consistently underestimates the targets as the actual
outputs increase. In summary, g-RT-2 emerges as the most robust
model, followed by g-RT-1 and t-RT. Notably, g-RT-1 shows a ten-
dency toward biased predictions, especially as the target values
increase.

Robustness across datasets. We present a box plot of the coeffi-
cients of the RT models in Figure 4 for comparing their perfor-
mance on different datasets.

According to the figure, g-RF-2 exhibits optimal perfor-
mance, displaying the largest mean (cross mark) and median

FIGURE 4 | Box plot of the testing correlation coefficients of the RT
models on different datasets.

(midline) coefficients among the three models, followed by t-RT
and g-RT-1. Model g-RT-2 has a slightly shorter box length than
t-RT, indicating more stable performance across datasets; while
g-RT-1 has the shortest box length but one outlier, implying more
consistent performance on different datasets but occasionally
unexpectedly poor outcomes. Conclusively, g-RF-2 exhibits the
optimal average performance and is the most reliable model,
producing consistently satisfactory results on various datasets.

5.2.4 | Tree Structure

In this section, we analyze the tree structure, including the max-
imum tree depth and the number of leaf nodes, to better under-
stand how the three models perform regression. The specific tree
structure information is provided in Table 6.

Model t-RT has the lowest average tree depth but the most leaf
nodes. Low depth indicates that there are fewer decision points
before reaching a leaf node, and thus the decision paths are sim-
pler. More leaf nodes mean that there are more terminal regions
for the target, which could indicate that the model is trying to
capture more detail and variance in the data, and thus might be
a sign of overfitting. The g-RT-1 algorithm exhibits the smallest
average number of leaf nodes alongside the largest maximum tree
depth among the models compared. This pattern suggests that
the underlying tree structure of g-RT-1 possesses a few dominant
branching paths characterized by numerous splits. This imbal-
ance indicates that while certain branches are extensively devel-
oped, potentially capturing complex patterns in specific areas of
the data, other branches are considerably underdeveloped, result-
ing in a lack of generalization across different segments of the
dataset. Such a skewed tree structure may impede the model’s
overall performance on diverse datasets such as datasets 3, 9, and
11. Therefore, although the g-RT-1 may provide better approx-
imations to the generalization error in each split, its tendency
to focus on certain data features likely contributes to its sub-
optimal performance on datasets that require a more balanced

TABLE 6 | The maximum tree depth and the number of leaf nodes of three RT models.

Maximum tree depth Number of leaf nodes

Dataset t-RT g-RT-1 g-RT-2 t-RT g-RT-1 g-RT-2

1 10 15 10 158 66 174
2 10 15 15 21 28 26
3 10 10 15 111 55 120
4 10 20 10 376 134 386
5 15 20 15 533 487 323
6 20 15 15 73 102 96
7 10 20 10 507 812 443
8 15 10 10 68 69 67
9 10 20 10 373 136 341
10 10 10 15 111 62 151
11 20 15 15 92 36 83
12 15 10 20 114 38 99
Average 12.92 15.00 13.33 211.42 168.75 192.42

14 of 20 Naval Research Logistics (NRL), 2025
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exploration of feature space. The tree structure of g-RT-2 stands
out as having an appropriate depth and number of leaf nodes,
indicating that the model partitions the input space into a rea-
sonable number of regions, each representing a different output
of the response variable; this structure may explain why g-RT-2
outperforms the other two models.

Summary. Our experiments and comparative analysis of the four
RT models on 12 datasets indicate the marked superiority of
our proposed g-RT-2 model. This model not only outperforms
t-RT, as evidenced by a Wilcoxon Signed-Rank test in the rejec-
tion domain, indicating its significant superiority at the 95%
confidence level, but also demonstrates superior robustness and
consistent performance. In contrast, g-RT-1, despite having a
performance generally similar to that of t-RT, exhibits notable
instability, with especially poor results on datasets 9 and 11. Our
tree structure analysis reveals that t-RT has the smallest average
tree depth and most leaf nodes, indicating potential overfitting;
g-RT-1 has the fewest leaf nodes on average yet the largest
maximum tree depth, suggesting high model complexity. The
structural attributes of g-RT-2, with its appropriate tree depth
and balanced number of leaf nodes, are likely to contribute to its
effective partitioning of the input space, facilitating its superior
performance across datasets and demonstrating the effectiveness
of our LOOCV-informed splitting criterion.

5.3 | Model Comparison Without
Hyperparameter Tuning

This section conducts two sets of experiments to ensure a fair
comparison of the splitting criteria and mitigate the potential
influence of varying hyperparameters and recursive partitioning.

5.3.1 | Model Evaluation With Fixed
Hyperparameters

To mitigate the influence of hyperparameter selection, we test
all models with fixed hyperparameters as we set the maximum
tree depth as well as the minimum number of samples to split
as 50 and 2, respectively, which are consistent with the default
settings in the commonly used ML library scikit-learn (Buitinck
et al. 2013). Other experimental settings align with those specified
in Section 5.1. The experiment results are presented in Table 7,
where the column definitions are the same as Table 4.

Table 7 shows a minor variation of computational time between
different models, with g-RT-2 generally requiring less time com-
pared to t-RT and g-RT-1. For example, in Dataset 1, g-RT-2 com-
pletes the computations within approximately 20 s, while t-RT
requires 42.96 s and g-RT-1 takes even longer (56.25 s). However,
the computational time is more influenced by the dataset’s total
number of samples and the number of features. Moreover, the
computational times for all datasets are generally shorter than
those reported in Table 4, as the hyperparameters are fixed and
no additional time is needed for hyperparameter tuning.

In terms of prediction accuracy, evaluated through MSE and cor-
relation coefficients, the performances of all three models on the
testing set are inferior to those in Table 4, where models are

trained after hyperparameter tuning. In the testing phase, our
proposed models, namely g-RT-1 and g-RT-2, consistently out-
perform t-RT. Specifically, g-RT-2 achieves the highest correla-
tion coefficients on nine datasets, and g-RT-1 outperforms other
models in two datasets, while t-RT achieves a better testing cor-
relation coefficient and MSE on only one dataset. Overall, the
results highlight the superior prediction accuracy of our general-
ization error-based RT models under the fixed hyperparameters.
We note that the performance of g-RT-1 on dataset 3 is signif-
icantly inferior to that of the other two models. The abnormal
results of g-RT-1 on dataset 3 can be attributed to the charac-
teristics of the dataset. Specifically, dataset 3 contains only 309
samples, making it a relatively small dataset. Additionally, the
target variable in this dataset has a wide range, varying from 0.01
to 62.42. This combination of limited data and large variability in
the target can amplify the sensitivity of regression tree models to
small structural changes in the tree.

5.3.2 | Model Evaluation With Limited Splits

To diminish the effects of greedy splitting and the recursive parti-
tioning process, we also compare our RT models with the t-RT by
limiting the number of splits to three. Specifically, we set the max-
imum tree depth to three while keeping all other experimental
settings consistent with those outlined in Section 5.1. The experi-
mental results of computational time and prediction accuracy for
various RT models across multiple datasets are shown in Table 8.

The results demonstrate that when the number of splits is limited,
the performances of all RT models are generally similar across
most datasets. For example, models such as t-RT, g-RT-1, and
g-RT-2 often achieve nearly identical MSE and correlation coeffi-
cients, as seen in datasets 1, 2, 4, 5, 7, 8, and 9. However, the t-RT
and g-RT-1 occasionally show significantly worse performance
than g-RT-2, as reflected in datasets 3, 6, 10, 11, and 12, where
their testing MSE and correlation coefficients are noticeably infe-
rior compared to g-RT-2.

Despite the similarity, our proposed models, particularly g-RT-2,
still stand out by providing better prediction accuracy. For
instance, in dataset 6, g-RT-2 achieves the highest correlation
coefficient (0.872), followed by g-RT-1 and then t-RT. Similarly, in
datasets 10, 11, and 12, g-RT-2 achieves improvements in testing
metrics, that is, a higher correlation coefficient and a lower MSE,
compared to the t-RT. These results highlight the effectiveness of
the generalization error-based RT models under the settings of
limited splits, indicating the enhancement of our proposed split-
ting method in a more direct manner.

5.4 | Model Comparison on Non-I.I.D. Datasets

In this article, the assumption that training samples are i.i.d. is
central to the validity of key findings. To illustrate the robustness
of their method under relaxed i.i.d. conditions, this section tests
and compares the regression tree models based on our proposed
splitting criterion using two classic non-i.i.d. datasets, that is, the
Yahoo finance dataset and the European climate assessment &
dataset (ECA&D).
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TABLE 7 | Experiment results of different RT models with the same hyperparameter.

Dataset Model Time (s)

Training set Testing set
Best

modelMSE Coeff MSE Coeff

1 t-RT 42.96 0.02 0.987 1.04 0.373 g-RT-2
g-RT-1 56.25 0.18 0.888 0.91 0.337
g-RT-2 19.49 0.06 0.963 0.96 0.399

2 t-RT 0.41 0.01 0.982 0.04 0.793 g-RT-2
g-RT-1 0.42 0.00 0.989 0.05 0.793
g-RT-2 0.16 0.01 0.974 0.04 0.820

3 t-RT 1.50 0.58 0.999 9.09 0.985 g-RT-2
g-RT-1 1.49 31.98 0.924 186.98 0.529
g-RT-2 0.65 0.18 1.000 2.68 0.995

4 t-RT 29.25 0.32 0.986 9.10 0.518 g-RT-1
g-RT-1 43.76 0.62 0.972 8.45 0.545
g-RT-2 13.98 0.57 0.974 8.36 0.534

5 t-RT 4.64 1.14 0.987 28.90 0.701 t-RT
g-RT-1 4.82 3.11 0.965 33.11 0.632
g-RT-2 2.40 3.03 0.966 29.37 0.671

6 t-RT 2.49 0.53 0.993 41.41 0.694 g-RT-2
g-RT-1 2.93 0.26 0.997 53.17 0.675
g-RT-2 1.06 0.93 0.988 42.64 0.752

7 t-RT 25.78 1.08 0.998 21.96 0.962 g-RT-2
g-RT-1 30.67 0.87 0.998 23.02 0.961
g-RT-2 11.60 2.43 0.996 20.78 0.965

8 t-RT 0.84 23.88 0.998 176.68 0.975 g-RT-1
g-RT-1 0.87 34.66 0.996 320.99 0.982
g-RT-2 0.34 21.67 0.998 324.02 0.982

9 t-RT 53.52 0.95 0.987 35.11 0.540 g-RT-2
g-RT-1 74.15 3.29 0.955 37.59 0.490
g-RT-2 26.91 1.20 0.984 33.30 0.561

10 t-RT 4.24 0.07 0.983 1.76 0.626 g-RT-2
g-RT-1 5.18 0.03 0.994 1.67 0.637
g-RT-2 1.85 0.16 0.964 1.40 0.714

11 t-RT 1.41 5.14 1.000 19927.54 0.816 g-RT-2
g-RT-1 1.78 5.37 1.000 5111.47 0.950
g-RT-2 0.60 879.68 0.975 1831.59 0.974

12 t-RT 2.33 4.14 0.989 118.08 0.689 g-RT-2
g-RT-1 2.69 1.28 0.997 53.91 0.842
g-RT-2 0.94 13.86 0.963 47.19 0.849

The Yahoo finance dataset comprises financial time-series
data recorded from April 1, 2018, to March 31, 2023, con-
taining 1257 rows and 6 columns (Kaggle 2023). It includes
five key features: Opening price, closing price, highest price,
lowest price, and trading volume. The target variable is the
asset’s closing price on a given date. As the observations are
sequential, with each data point influenced by its predecessors,
the dataset is inherently non-i.i.d. The ECA&D dataset con-

sists of 3654 daily climate-related observations collected from
meteorological stations across Europe between 2000 and 2010
(Klein Tank et al. 2002). It includes 11 climate-related feature
variables, such as precipitation, cloud cover, humidity, wind
speed, and others, with the target variable being the mean
temperature. Because the daily climate observations exhibit
temporal dependencies and spatial correlations, they are also
non-i.i.d.
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TABLE 8 | Experiment results of different RT models with small tree depth.

Dataset Model Time (s)

Training set Testing set
Best

modelMSE Coeff MSE Coeff

1 t-RT 0.95 0.58 0.530 0.53 0.525 —
g-RT-1 0.99 0.58 0.530 0.53 0.525
g-RT-2 4.65 0.58 0.530 0.53 0.525

2 t-RT 0.01 0.03 0.930 0.07 0.645 —
g-RT-1 0.01 0.03 0.930 0.07 0.645
g-RT-2 0.07 0.03 0.924 0.07 0.645

3 t-RT 0.17 10.65 0.975 19.26 0.962 g-RT-2
g-RT-1 0.16 42.47 0.898 143.06 0.666
g-RT-2 0.12 1.92 0.996 3.95 0.992

4 t-RT 1.73 5.87 0.652 6.19 0.657 —
g-RT-1 1.73 5.87 0.652 6.19 0.657
g-RT-2 2.89 5.87 0.652 6.19 0.657

5 t-RT 0.05 24.66 0.711 24.70 0.647 —
g-RT-1 0.05 24.66 0.711 24.70 0.647
g-RT-2 4.60 24.66 0.711 24.70 0.647

6 t-RT 0.09 9.48 0.919 17.24 0.847 g-RT-2
g-RT-1 0.09 9.50 0.919 16.86 0.851
g-RT-2 2.86 9.51 0.919 14.47 0.872

7 t-RT 2.41 25.89 0.954 28.30 0.950 —
g-RT-1 2.40 25.89 0.954 28.30 0.950
g-RT-2 2.62 25.89 0.954 28.30 0.950

8 t-RT 0.02 471.71 0.944 507.79 0.932 —
g-RT-1 0.02 471.71 0.944 507.79 0.932
g-RT-2 0.26 471.71 0.944 507.79 0.932

9 t-RT 9.55 28.86 0.492 29.08 0.476 —
g-RT-1 9.55 28.86 0.492 29.08 0.476
g-RT-2 20.07 28.86 0.492 29.08 0.476

10 t-RT 0.28 0.96 0.739 1.25 0.645 g-RT-2
g-RT-1 0.27 0.96 0.739 1.25 0.645
g-RT-2 18.15 0.99 0.731 1.19 0.664

11 t-RT 0.04 586.69 0.989 6042.49 0.895 g-RT-2
g-RT-1 0.04 586.69 0.989 6042.49 0.895
g-RT-2 1.21 586.69 0.989 2705.65 0.931

12 t-RT 0.13 46.67 0.852 92.52 0.761 g-RT-2
g-RT-1 0.13 46.67 0.852 92.52 0.761
g-RT-2 4.67 46.62 0.852 92.05 0.763

We test the three RT models on the two datasets with other exper-
imental settings aligned with those specified in Section 5.1. The
detailed results are given in Table 9.

For both datasets, g-RT-2 is identified as the best model,
achieving the highest correlation coefficients on the testing
set, outperforming the other models. However, g-RT-2 requires
more computational time (117.68 s) compared to t-RT and

g-RT-1 on the weather prediction dataset, both of which are
faster but less accurate. For the Yahoo finance dataset, g-RT-2
stands out by achieving the lowest testing MSE at 12805.82
and the highest correlation coefficients at 0.994, followed by
g-RT-1 and then t-RT. For the Yahoo finance dataset, t-RT
and g-RT-1 demonstrate similar computational times, while
g-RT-2 requires less time, which may be due to its smaller tree
depth.
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TABLE 9 | Experiment results of different RT models on non-i.i.d. datasets.

Dataset Model Time (s) Training set Testing set Hyperparametersa Best model

MSE Coeff MSE Coeff

Weather
prediction

t-RT 67.41 12.66 0.898 31.33 0.727 [10,6] g-RT-2
g-RT-1 56.31 33.27 0.702 30.77 0.699 [20,2]
g-RT-2 177.68 12.99 0.895 29.30 0.740 [10,6]

Yahoo finance t-RT 47.05 864.89 1.000 18338.20 0.991 [20,2] g-RT-2
g-RT-1 50.18 837.29 1.000 18117.51 0.992 [20,4]
g-RT-2 21.90 1102.71 1.000 12805.82 0.994 [15,2]

aThe tuple [𝑎, 𝑏] is the best hyperparameter combination, where 𝑎 is the maximum-tree-depth and 𝑏 is the minimum-sample-split.

Overall, the performance of g-RT-2 across these two datasets
is the best, slightly outperforming others on the Yahoo finance
dataset and excelling on the weather prediction dataset. These
results highlight the robustness of the proposed RT models on
non-i.i.d. datasets. In fact, while much real-world data is not
strictly i.i.d., the i.i.d. assumption often serves as a reasonable
approximation, particularly for large datasets where individual
dependencies or non-homogeneous distributions can be treated
as noise.

6 | Conclusion

RT models are favored in prediction tasks for their interpretabil-
ity and ability to handle diverse data without stringent assump-
tions. Despite these advantages, we believe that traditional RT
models are susceptible to overfitting because they use a splitting
criterion based solely on minimizing training errors. To overcome
this ignorance of generalization errors in the determination of the
splitting criterion, this article presents an accurate formula for the
generalization error for each split. While the actual generaliza-
tion error is intractable, we mathematically derive two approx-
imations. One approximation estimates the variance of the pre-
dicted target for each child node, and the other uses LOOCV to
approximate the out-of-sample error. Both methods can be imple-
mented efficiently in model construction. We conduct extensive
numerical experiments on 12 widely used ML datasets to test
our proposed RT models and compare them with a traditional
RT model. The results demonstrate the superiority of our pro-
posed LOOCV-informed splitting criterion over the traditional
splitting criterion in terms of prediction accuracy and model sta-
bility. We further analyze the tree structures resulting from differ-
ent splitting criteria, indicating more reasonable splits based on
the LOOCV-informed splitting criterion.

The primary limitations and edge cases of this research lie in the
following two aspects. Firstly, while the proposed splitting criteria
are shown to provide closer approximations to the generaliza-
tion error compared to traditional in-sample MSE at each split,
and experimental data indicate enhanced predictive accuracy,
particularly with g-RT-2, across the entire tree in widely used
ML datasets, a more comprehensive theoretical analysis of these
enhancements throughout the whole tree can still be explored
in the future. Secondly, our splitting criteria are more complex
and less interpretable than in-sample MSE. While our splitting

criteria are advantageous in scenarios with limited data avail-
ability, for large datasets, all splitting methods are likely to
probabilistically converge to the true conditional mean, which
may diminish the performance improvements of our model
compared to the traditional approach.

Data Availability Statement

The data supporting the findings of this study are openly available in the
Data-sets repository at https://github.com/ShadowY1998/Data-sets.
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Appendix A

Enhancement Analysis of Variance-Estimated Splitting Criterion

We take the left child node of the root node as an example. For notation
convenience, we let 𝑀 = |Γ1(𝑗, 𝑠𝑗 )|. Then, let 𝑌1, 𝑌2, . . . , 𝑌𝑀 be 𝑀 ran-

dom samples of 𝑌 given 𝑋(𝑗) ≤ 𝑠𝑗 and 𝑌 =
∑𝑀

𝑖=1𝑌𝑖

𝑀
. We denote 𝔼[𝑌 (𝑋(𝑗) ≤

𝑠𝑗 ; 𝐷̃)] = 𝜇 and 𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)] = 𝜎2. Then, we have

𝔼

[
𝑀∑
𝑖=1

(
𝑌𝑖 − 𝑌

)2
]
= 𝔼

⎡⎢⎢⎣
𝑀∑
𝑖=1

𝑌 2
𝑖 − 1

𝑀

(
𝑀∑
𝑖=1

𝑌𝑖

)2⎤⎥⎥⎦
= 𝔼

[
𝑀∑
𝑖=1

𝑌 2
𝑖 −𝑀𝑌

2
]

= 𝔼

[
𝑀∑
𝑖=1

𝑌 2
𝑖

]
−𝑀𝔼

[
𝑌

2]
=

𝑀∑
𝑖=1

𝔼
[
𝑌 2
𝑖

]
−𝑀𝔼

[
𝑌

2]
=

𝑀∑
𝑖=1

(𝜎2 + 𝜇2) −𝑀

(
𝜎2

𝑀
+ 𝜇2

)
(
𝜎2 = 𝔼

[
𝑌 2
𝑖

]
− 𝜇2,

𝜎2

𝑀
= 𝔼

[
𝑌

2]
− 𝜇2

)
= 𝑀(𝜎2 + 𝜇2) −𝑀

(
𝜎2

𝑀
+ 𝜇2

)
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= (𝑀 − 1)𝜎2

Therefore, we have 𝔼

[∑𝑀
𝑖=1

(
𝑌𝑖−𝑌

)2

𝑀−1

]
= 𝜎2, that is, it is an unbiased esti-

mator to 𝕍 [𝑌 (𝑋(𝑗) ≤ 𝑠𝑗 ; 𝐷̃)]. In contrast, the traditional splitting criterion
yields 𝑀−1

𝑀
𝜎2, which is a biased estimator. Similarly, we can prove it for

the right child node of the root node.
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