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High-Entropy Doped KTiOPO4-Type Vanadium-Based
Fluorophosphate Cathodes for High-Energy Sodium-Ion
Batteries

Yingkai Hua, Zizheng Song, Kunran Yang, Seungjae Suk, Linlong Lyu, Xiangjun Pu,
Renjie Li, Haitao Huang, Kyu-Young Park, Zibin Chen, and Zheng-Long Xu*

The development of high-energy-density and high-power cathode materials
represents a critical requirement for advancing practical sodium-ion battery
(SIB) technologies. In this work, a high-entropy-doped KTiOPO4 (KTP)-type
NaV0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F (HE-NVPF) cathode material is presented,
designed to enhance reaction kinetics, operation voltage, and energy density
through single-crystal phase formation and improved electronic/ionic
conductivity. The high-entropy doping strategy enables the elimination of
inductive nucleation agents while promoting single-crystal growth of
HE-NVPF during low-temperature hydrothermal synthesis. The KTP-type
crystal structure facilitates complete Na ion utilization and enables a
solid-solution Na storage mechanism in HE-NVPF cathodes, accompanied by
minimal lattice volume changes (4%). When tested in half cells in com-
bination with Na metal anode, the HE-NVPF cathodes exhibit a remarkably
high energy density of 532 Wh kg−1 with an average operating voltage of
4.0 V, an exceptional long cycle life of 3 000 cycles, and high capacity
retentions at 30 C (2 min per charge). Its practical feasibility is demonstrated
in graphite//HE-NVPF full cells, which present power densities of above
10 000 W kg−1 and energy densities of over 342 Wh kg−1 for 1000 cycles. This
work offers new insights into designing high-entropy doped cathode materials
for long-life and fast-charging SIBs.
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1. Introduction

Sodium-ion batteries (SIBs) have garnered
significant interest as a promising alter-
native to lithium-ion batteries, primar-
ily due to the high abundance and low
cost of sodium resources.[1] The perfor-
mance of SIBs is heavily dependent on
the choice of cathode materials, which
include transition-metal layered oxides,[2]

Prussian blue analogues,[3] and polyan-
ionic compounds.[4] Among these, polyan-
ionic compounds are particularly notewor-
thy for their excellent structural stability
and long-term cycling performance. In this
category, sodium (Na) super ionic con-
ductor (NASICON)-type polyanionic com-
pounds, characterized by an open 3D
framework and rapid Na+ ion diffusion ca-
pability, stand out. However, the presence
of heavy phosphate blocks in NASICON
materials often results in moderate capac-
ities and energy densities. For example,
Na3V2(PO4)3 (NVP) exhibits reversible ca-
pacities of ≈110 mAh g−1 and operating
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voltages of ≈3.4 V.[5] In addition, the stoichiometric ratio of Na:V
= 3:2 in NVP hinders the full extraction of three Na ions[4a] due
to high overpotentials and substantial lattice distortion associated
with removing the 3rd Na ion,[6] further limiting the specific ca-
pacities and energy densities.
KTiOPO4-type NaVPO4F (KTP-type NVPF) cathode materials,

characterized by their orthorhombic structure and large spaces
along the [100] and [010] directions for Na ion accommodation,
offer great potential for complete Na+ extraction.[4b,7] Theoret-
ical capacity of 143 mAh g−1, which is 10% higher than that
for NVP structures, is achievable due to the one-to-one corre-
spondence between Na ion insertion and d-metal cation redox
in the NaVPO4F formula. However, KTP-type NVPF cathodes
face challenges such as phase impurities during synthesis, low
intrinsic electronic conductivity, and phase separation during
cycling.[8] Conventional solid-state synthesis methods often fail
to produce phase-pure KTP-type NVPF, while strategies to en-
hance electronic conductivity typically rely on excessive carbon
coating, which complicates synthesis and diminishes practical
capacities.[9] High-entropy doping has emerged as a promising
approach to improve structural stability and ionic/electronic con-
ductivity by tailoring the local atomic environment.[10] Despite its
potential, this strategy remains unexplored for KTP-type NVPF.
Previous studies on high-entropy doping in NVP cathodes em-
ployed substantial doping concentrations (≈50 at.%), often at
the expense of capacity.[10c,h,i] In contrast, trace doping (≤5 at.%)
of heterogeneous elements could effectively enhance the perfor-
mance of high-energy KTP-type NVPF, though this avenue re-
mains underexplored.
In this work, we introduce a carbon-free high-entropy

NaV0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F (HE-NVPF) cathode via a
facile hydrothermal and ion-exchange method. By incorporat-
ing heterogeneous dopant precursors, we eliminate the need
for conventional nucleation agents (e.g., carboxymethyl cellu-
lose, CMC-Na), yielding a carbon-free structure. Combined the-
oretical and experimental analyses demonstrate that HE-NVPF
exhibits enhanced electronic/ionic conductivity, superior struc-
tural integrity, and full Na ion utilization. In situ X-ray diffrac-
tion (XRD) characterizations indicate a solid-solution phase evo-
lution during Na-ion insertion and extraction reactions, contrast-
ing with the biphasic reaction for pristine KTP-type NVPF. The
lattice volume changes are calculated to be below 4% during Na
insertion, providing a testament to its excellent stability. In Na-
ion half cells consisting of Na metal anodes and 1 M NaPF6 car-
bonate electrolyte, the HE-NVPF demonstrates excellent electro-
chemical performance with an elevated operating voltage of 4.0 V
and a high energy density of 532 Wh kg−1 at 0.1 C (1 C = 143 mA
g−1), in comparison to the 3.75 V and 413 Wh kg−1 for pristine
NVPF. Furthermore, when paired with graphite anodes into Na-
ion full cells, the HE-NVPF cathodes show outstanding energy
and power densities of over 342 Wh kg−1 and 10 000 W kg−1 (ca-
pacity retention of ≈99% after 1000 cycles), highlighting its prac-
tical application for fast-charging and long-life SIBs.

2. Results and Discussion

The HE-NVPF cathode material was prepared via a hydrother-
mal and ion-exchange method. In particular, the NH4V0.95(Fe,
Mn, Ni, Al, Ca)0.05PO4F precursor was synthesized by hydrother-

mal reaction, which then reacted with sodium glutamate to form
NaV0.95(Fe, Mn, Al, Ca)0.05PO4F through an ion-exchange pro-
cess. Pristine NVPF (p-NVPF) was also synthesized using sim-
ilar methods for comparison. Figure 1a,b show the XRD patterns
and refinement results for HE-NVPF and p-NVPF structures,
which indicate phase-pure orthorhombic units with the Pna21
space group. This configuration contains interlinking chains of
P-O tetrahedra and HE/VO4F2 octahedra through corner-shared
oxygen atoms, where the fluorine atoms occupy two cis-/trans-
positions near the vanadium (V) atoms. The Fe, Mn, Ni, Al, and
Ca dopants (i.e., stoichiometric 5% of V) replaced V cations at
the V1 and V2 sites without detectable impurities in the XRD
patterns (Figure 1a). Refinement-derived lattice parameters re-
veal a slight lattice expansion in HE-NVPF (850.028 Å3) com-
pared to p-NVPF (846.960 Å3; Table S1, Supporting Information),
attributable to the larger ionic radii of dopants (e.g., V3+: 0.64
Å; Fe2+: 0.78 Å; Ni2+: 0.69 Å; Ca2+: 1.00 Å).[11] Notably, a car-
boxymethyl cellulose (CMC-Na) nucleation agent was necessary
to synthesis phase-pure p-NVPF. CMC-Na facilitates the nucle-
ation of NH4VPO4F from the solution by forming linkages with
V metal ions through its abundant carboxylic acid and hydroxyl
groups, thereby creating uniform nucleation sites.[12] As shown
in Figure S1 (Supporting Information), amorphous NH4VPO4F
particles grew on the surface of the CMC-Na fibers after 2 h of hy-
drothermal reaction, substantiating its role as a nucleation pro-
moter. Otherwise, noticeable impurities appear, as shown in the
XRD patterns (Figure S2, Supporting Information). The NVPF
prepared in CMC-Na absent conditions presents porous and ir-
regular morphology (Figure S3, Supporting Information). With
CMC-Na precursors, the surface layer of p-NVPF can be reduced
into carbon coating layers, e.g., 12.3 wt.% of carbon in thermo-
gravimetry analysis (TGA) result (Figure 1c) and the high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) image and energy dispersive X-ray spectroscopy
(EDS) mapping results (Figure S4, Supporting Information). In
contrast, the incorporation of Ni2+, Mn2+, and Ca2+ metal ions
can facilitate the nucleation dynamics for synthesizing carbon-
free HE-NVPF material (Figure S5, Supporting Information).
The abundant metal ions facilitated the individual nucleation
and single-crystal growth of NH4VPO4F precursor during the hy-
drothermal reaction (Figure S6, Supporting Information).
Scanning electron microscope (SEM) images exhibit well-

shaped blocky rhombohedral particles forHE-NVPF and p-NVPF
(Figure S7, Supporting Information), implying their high crys-
tallinity and phase purity. Figure S8 (Supporting Information)
presents the general X-ray photoelectron spectroscopy (XPS)
spectra for HE-NVPF and p-NVPF. It is observed that the peak
intensity of N 1s is much higher in p-NVPF than HE-NVPF, pos-
sibly due to the incomplete Na+/NH4

+ ion-exchange for carbon-
coated NH4VPO4F precursor. The V:Na ratio in p-NVPF was
determined as 1:0.7743 by ICP-OES test, again demonstrating
the incomplete Na+/NH4+ ion-exchange. The V 2p peak can
be deconvoluted into two group peaks at 516.51/516.02 eV and
523.89/523.40 eV for the V 2p3/2 and V 2p1/2 orbits (Figure S9,
Supporting Information), corresponding to the V3+ valence state.
Figure 1d presents the integrated differential phase contrast–

scanning transmission electron microscopy (iDPC-STEM) im-
age of HE-NVPF along the [100] zone axis. The image dis-
tinctly reveals the alternating layers of HE/VO4F2 octahedra and
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Figure 1. Structural and morphology characterization of HE-NVPF. XRD Rietveld refinement results and SEM images (inset) a) HE-NVPF and b) p-
NVPF, c) TGA curves of HE-NVPF and p-NVPF, d) iDPC-STEM image and corresponding FFT diffraction pattern of HE-NVPF, e) BF-STEM image and
corresponding EDS mappings of HE-NVPF.

phosphorus tetrahedra within the crystal structure. The corre-
sponding fast Fourier transform (FFT) pattern exhibits distinct
(020) and (002) diffraction spots, which align well with the ex-
pected lattice structure.[4b] Figure 1e shows a bright-field scan-
ning transmission electron microscopy (BF-STEM) image of a
HE-NVPF particle and the corresponding EDS mapping images.
The Fe, Mn, Ni, Al, and Ca doping elements are uniformly dis-
tributed among the Na, V, and P parent hosts, indicating their
homogeneous substitution without aggregations. This uniform
doping is further corroborated by SEM-EDS analyses of both the
NH4V0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F precursor and HE-NVPF
product (Figures S10 and S11, Supporting Information). The el-
emental ratio was investigated via inductively coupled plasma-
optical emission spectroscopy (ICP-OES), which confirmed the
dopant elements in HE-NVPF cathodes (Table S2, Supporting
Information).
The electrochemical performance of HE-NVPF and p-NVPF

cathode materials was evaluated in coin cells with Na metal an-
odes and 1 M NaPF6 EMC:FEMC:FEC (2:3:5) electrolyte. In or-
der to demonstrate the necessity of trace metal ions doping strat-

egy, a comparison of different doping concentrations is exhib-
ited in Figure S12 (Supporting Information). As doping con-
centrations increase from 5 to 50 at.%, the discharge capacity
progressively decreases, suggesting the electrochemical inactiv-
ity of the dopants. The galvanostatic charge–discharge curves of
HE-NVPF present no distinctive plateaus, possibly due to the
high-entropy effect.[10f,3a] HE-NVPF cathode delivers a discharge
capacity of 133 mAh g−1 at 0.1 C (1 C is defined as the cur-
rent density for fully charging in 1 h) with an average operat-
ing voltage of 4.0 V, resulting in a competitive energy density of
532 Wh kg−1 (Figure 2a). Voltage profiles over the first ten cy-
cles present negligible capacity and voltage degradations, high-
lighting the excellent reversibility for HE-NVPF. In contrast, the
charge–discharge profile of p-NVPF cathode exhibits large volt-
age hysteresis and a lower capacity, thus rendering an inferior
energy density of 413 Wh kg−1 (Figure S13, Supporting Infor-
mation). The discharge profiles and differential capacity/voltage
(dQ/dV) plots in Figure 2b,c show a relatively lower operating
voltage of 3.75 V for p-NVPF than that forHE-NVPF. The capacity
contributions above 4.1 V are 40.35% for HE-NVPF and 30.89%
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Figure 2. a) The charge–discharge voltage profiles at 0.1 C for HE-NVPF. b) Proportion of high voltage region (>4.1 V) of HE-NVPF and p-NVPF.
c) dQ/dV curves from the 3rd cycle for HE-NVPF and p-NVPF. d) Cycling performance at 10 C of HE-NVPF. e) Rate capability from 1 to 30 C for HE-NVPF
and p-NVPF. f) Diffusion coefficient of HE-NVPF and p-NVPF at different SOC. g) Total density of states for p-NVPF and HE-NVPF.

for p-NVPF, representing the high-voltage energy contribution
for HE-NVPF. A discharging plateau at ≈3.5 V was identified for
p-NVPF (Figure 2b), possibly arising from phase separation near
the end of Na insertion.[4b] The voltage hysteresis between dis-
charging and charging peaks in Figure 2c is 65 mV for p-NVPF
and 30 mV for HE-NVPF, implying enhanced reaction kinetics
due to high-entropy doping.
Long-term cycling stability is crucial for practical cathodes in

SIBs. An extended cycling test at a high current rate of 10 C
for 3000 cycles (Figure 2d) shows that HE-NVPF maintains re-
versible capacities of 102.8 and 77.4 mAh g−1 at the 1st and 3000th

cycles, respectively, leading to an extremely low capacity degrada-
tion rate of 0.008% per cycle. The exceptional cyclability of HE-
NVPF can be attributed to the structural robustness, as evidenced

by the SEM image in Figure S14 (Supporting Information) of
cycled HE-NVPF.
To further evaluate the improved Na ion storage kinetics from

high-entropy doping, HE-NVPF and p-NVPF cathodes were sub-
jected to a series of electrochemical characterizations. The rate
capability of HE-NVPF and p-NVPF were measured at increas-
ing current rates from 1 to 30 C (Figure 2e). The HE-NVPF cath-
ode delivers a decent capacity retention of 47% from 131.37 mAh
g−1 at 1 C to 65.55 mAh g−1 at 30 C (corresponding to 2 min
per charge), indicating the fast-charging capability of HE-NVPF.
In contrast, the p-NVPF cathode delivers significantly lower dis-
charging capacities of 94.73 mAh g−1 at 1 C and 27.41 mAh
g−1 at 30 C. The DNa

+ values were calculated using the galvano-
static intermittent titration technique (GITT) measurement at

Adv. Funct. Mater. 2025, e12341 e12341 (4 of 9) © 2025 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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different state-of-charge (SOC). HE-NVPF delivered an average
DNa

+ of 6× 10−12 cm2 s−1, which is 10 times higher than those for
p-NVPF (Figure 2f). The DNa

+ of HE-NVPF cathode remains rel-
atively stable during the whole charging process, whereas the p-
NVPF cathode exhibits low DNa

+ in the low SOC region. The sig-
nificantly low Na+ ion diffusion coefficient for p-NVPF can be at-
tributed to the absence of a high-entropy effect and the remaining
NH4

+ ions at Na ion sites, which warrant in-depth investigations
in future study. DFT calculated total density of states (DOS) for
HE-NVPF and p-NVPF (Figure 2g) show a substantially reduced
bandgap for HE-NVPF (0.51 eV) compared to p-NVPF (1.27 eV).
It means electron excitation from the valence to the conduction
band is easier in HE-NVPF. Furthermore, the projected density
of states (PDOS) of vanadium present a lower V3+/V4+ redox en-
ergy for HE-NVPF than p-NVPF, which indicates a higher oper-
ation voltage of the HE-NVPF cathode (Figure S15, Supporting
Information).[13] The improvements in electronic and ionic con-
ductivities are believed to contribute to the high-rate performance
of carbon-free HE-NVPF cathodes.
The Na ion storage mechanisms in HE-NVPF were investi-

gated by in situ XRD characterizations. Figure 3a shows the in
situ XRD patterns of HE-NVPF cathode cycling at 0.15 C for the
first cycle, with data collected in the range of 13°–45°. Figure S16
(Supporting Information) presents the evolution of representa-
tive peaks corresponding to (200), (011), and (002) planes dur-
ing the charging process. A rightward shift of these peaks corre-
sponds to the lattice contraction during Na ion extraction, while
their return to original positions during the following discharge
suggests a reversibility of theHE-NVPF structure. The absence of
new peaks throughout the whole charging and discharging pro-
cesses indicates a solid-solution phase evolution for HE-NVPF
cathodes. In contrast, p-NVPF shows a new peak at 33.7° during
the discharging process at a voltage range of 3.7–3.4 V, implying
phase separation or bi-phasic reaction for p-NVPF structure in
the low-voltage discharging plateau (Figure S17, Supporting In-
formation), as previously reported.[4b] Compared to biphasic reac-
tion, solid-solution phase evolution enhances the reaction kinet-
ics and structural stability in cathodes. In addition, the lattice pa-
rameters of HE-NVPF at different charge/discharge states were
calculated from the in situ XRD patterns (Figure 3b). The a, b,
and c-spacing contract by 1.3%, 1.1%, and 1.7% during charging
(Figure 3c), leading to a volume change (∆V) of 4%. Themarginal
volume change can indicate low-strain and high structural stabil-
ity for HE-NVPF cathodes.[14]

The local structure evolution and valence state changes of
redox centers were examined by X-ray absorption spectroscopy
(XAS). Figure 3d shows the V K-edge X-ray absorption near-edge
spectroscopy (XANES) results. Both freshHE-NVPF and p-NVPF
cathodes present V absorption edges close to that of V2O3, indi-
cating a near V3+ valence state. Upon charging to 4.5 V, the V
K-edge XANES spectra shift to higher energy values close to that
of VO2, which demonstrates the oxidation of V3+ to V4+ during
desodiation. Notably, the V K-edge of HE-NVPF is ≈1 eV higher
than that of charged p-NVPF and is closer to the V4+ state, which
can be interpreted by the incomplete desodiation of p-NVPF
(Figure 2b). The pre-edge features of VK-edge XANES spectra are
sensitive to the valence and local structure.[15] Figure S18 (Sup-
porting Information) shows the pre-edge peaks of the fresh and
the 1st cycled HE-NVPF. The peak intensities are almost intact

Figure 3. Structural evolutions and redox mechanisms of HE-NVPF and
p-NVPF. a) In situ XRD patterns of HE-NVPF during the 1st cycle.
b) Calculated lattice parameters of HE-NVPF from in situ XRD patterns.
c) Schematic illustration of HE-NVPF lattice structures. d) V K-edge
XANES at different charge/discharge state. e) EXAFS spectra of p-NVPF
(top) and HE-NVPF (down) at initial and discharged states.

due to the negligible structure distortion inHE/VO4F2 octahedra.
In contrast, the pre-edge peaks at 5467.8 and 5469.4 eV for fresh
p-NVPF changed to a single peak located at 5469.4 eV, possibly
due to the local distortion of VO4F2 octahedra after charging.

[15c]

Figure 3e presents the extended X-ray absorption fine structure
(EXAFS) plots for fresh and 1st cycled p-NVPF and HE-NVPF
cathodes. The first peak indicates the V-O/F coordination shells
of p-NVPF and HE-NVPF. The radical distance of the V─O/F
bond reduces from 1.50 Å for fresh p-NVPF to 1.38 Å the 1st

cycled sample, which can be attributed to a slightly higher va-
lence of V after the 1st cycle. The decreased peak intensity for the
first V─O/F bond in p-NVPF suggests lattice distortion or phase

Adv. Funct. Mater. 2025, e12341 e12341 (5 of 9) © 2025 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 4. Electrochemical performance of graphite//HE-NVPF full cells. a) Rate capability from 0.05 to 3 A g−1. b) The charge–discharge profiles at
20 mA g−1 for 20 cycles. c) Ragone plots of Na-ion full batteries.[10a,f,18] d) Cycling performance at 1 A g−1. e) Summary of full cell electrochemical
performance for SIBs.[4b,10a,f,18a,22]

separation after discharging. In contrast, HE-NVPF shows neg-
ligible changes in peak position and intensities for the V─O/F
coordination shell. Overall, the X-ray characterizations confirm
the reversible V redox and stable local structures for HE-NVPF
cathodes.
Finally, to demonstrate the practical feasibility of HE-NVPF, a

full cell was assembled using the graphite anode, the HE-NVPF
cathode, and 1MNaPF6 diglyme electrolyte. The electrochemical
performance is shown in Figure 4. It is worth noting that graphite
anode undergoing cointercalation reaction in ether-based elec-
trolyte can present excellent cyclability and high-rate capability
(Figure S19, Supporting Information),[16] thus it is selected to
pair with our fast-charging HE-NVPF cathodes. The 1 M NaPF6
diglyme electrolyte exhibits an electrochemical stability window
of 4.6 V (Figure S20, Supporting Information), accommodating
the high cutoff voltages (1.4–4.4 V) required for graphite//HE-
NVPF full-cells. Prior to assembly, the graphite anodes were pre-
activated in Na-metal half cells to form a stable solid-electrolyte
interphase. The negative to positive capacity ratio (N/P) was
set as 1:4.4, which is significantly lower than these in previous
studies, e.g., the N/P ratio = 3/5 for graphite//Na1.5VPO4.8F0.7
cells,[16a,17] N/P ratio = 6/5 for hard carbon// Na3V1.9(Ca, Mg,
Al, Cr, Mn)0.1(PO4)2F3 cells,

[10a] and N/P ratio = 8/7 for hard
carbon//Na3.5V0.5Mn0.5Fe0.5Ti0.5(PO4)3 cells.

[10f] The low N/P ra-
tio can enhance the practical energy densities for Na-ion full
cells without causing Na loss and fast capacity fade. It is worth
noting that the ether-based electrolyte enables solvated-Na-ion
cointercalation reaction and the formation of sodiophilic ternary
graphite intercalation compound (t-GIC). The t-GIC provides
thermodynamically favorable sites for dendrite-free Na metal
deposition,[16b] thus enabling the low N/P ratio for graphite//HE-
NVPF full cells.

Figure 4a illustrates the rate capability of graphite//HE-NVPF
full-cells at increasing current densities from 0.05 A g−1 to 3A
g−1.They deliver capacities of 114, 112, 103, 95, 82, 72, and
53 mAh g−1 at 0.05, 0.1,0.3, 0.5, 1, 1.5, and 3 A g−1, respec-
tively. At a current density of 0.05 A g−1, an average operating
voltage of 3.78 V and a competitive energy density of 342 Wh
kg−1 are achieved based on the total mass of anode and cath-
ode materials. Figure 4b shows the initial 20 cycles’ discharg-
ing/charging voltage profiles at 20 mA g−1, which maintained
the initial capacity by 99.6%. Compared with the state-of-the-art
Na-ion full cells, our graphite//HE-NVPF cells show outstanding
power densities of 3902, 7296, 10,726 W kg−1 at competitive en-
ergy densities of 187, 124, and 86 Wh kg−1 on base of the total
mass of cathode and anode active materials (Figure 4c).[10a,f,18]

Notably, the graphite//HE-NVPF cells with power densities of
above 10 000 W kg−1 under energy density of >100 Wh kg−1

surpasses advanced supercapacitors (e.g., 800 W kg−1/88 Wh
kg−1 for NiCo(HPO4)2 ·3H2O//3DPG,

[19] 800 W kg−1/51 Wh
kg−1 for Co3O4//RGO,

[20] and 997 W kg−1/68 Wh kg−1 for
SnO2−x NPs@SnO2−x//MnO2

[21]).
Figure 4d shows the long-term cycling performance of

graphite//HE-NVPF full cells at 1 A g−1 for 1000 cycles. It
presents reversible capacities of 78.8 and 78.0 mAh g−1 for 1st

and 1000th cycles, leading to an extremely high capacity reten-
tion of 99%. The cyclic capacities at a moderate current density of
100 mA g−1 present negligible capacity fluctuations after 100 cy-
cles (Figure S21, Supporting Information). Figure 4e emphasizes
the outstanding electrochemical performance of SIBs with HE-
NVPF cathode among its peers.[4b,10a,f,18a,22] Table S3 (Supporting
Information) summarizes the battery performance of the repre-
sentative Na-ion full cells,[10a,f,18] which shows the outstanding
energy density and cyclability of our graphite//HE-NVPF cells,

Adv. Funct. Mater. 2025, e12341 e12341 (6 of 9) © 2025 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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thus demonstrating the practical feasibility of HE-NVPF cath-
odes in SIBs.

3. Conclusion

In summary, this work introduces a high-entropy doping strat-
egy to develop carbon-free and single-crystal HE-NVPF cath-
ode materials for ultrastable SIBs. By introducing trace amounts
of dopants, HE-NVPF achieves high phase purity, no carbon
coating, and enhanced ionic/electronic conductivities. Benefit-
ing from the high-entropy effect, HE-NVPF cathodes deliver a
high average operation voltage of 4.0 V and an energy density of
532 Wh kg−1. Additionally, it also exhibits excellent crystal sta-
bility (75.58% capacity retention at 10 C after 3000 cycles) and
remarkable high-rate capability (capacity of 65.55 mAh g−1 at 30
C). The superior electrochemical performance of graphite//HE-
NVPF full cells demonstrate the practical feasibility of HE-NVPF
cathodes in high-power and long-life SIBs. The outstanding
electrochemical performance originates from the solid-solution
Na storage mechanism and the small volume changes of the
HE-NVPF structure. Overall, this work opens a new avenue
for building high-entropy doped KTP-typed cathodes in high-
performance SIBs.

4. Experimental Section
Synthesis of HE-NVPF: NaV0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F was syn-

thesized by a two-step ion-exchange approach. First, through the hy-
drothermal method synthesized NH4V0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F
precursor. The VOSO4 (9.5 mmol, Macklin), FeSO4·7H2O (0.1 mmol, Al-
addin), MnSO4·H2O (0.1 mmol, Aladdin), NiCl2·6H2O (0.1 mmol, Al-
addin), Al2(SO4)3·16H2O (0.05 mmol, Aladdin), CaCl2 (0.1 mmol, Al-
addin), (NH4)2HPO4 (15 mmol, Aladdin), NH4H2PO4 (15 mmol, Al-
addin), N2H6SO4 (3.75 mmol, Macklin), and NH4F (20 mmol, Aladdin)
were added to the distilled H2O solution (44 mL) one after another un-
der constant stirring. After the dark-blue suspension formed, transferred
it into a 100 mL Teflon-lined stainless-steel autoclave. This autoclave was
sealed and heated at 200 °C for 4 h. The result product was collected,
then, washed with distilled H2O and acetone by centrifuge. The precur-
sor was further dried in an 80 °C vacuum oven overnight. The precursor
(NH4V0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F) wasmixed with sodium glutamate
in a molar ratio of 1:5 and annealed at 190 °C under argon for 10 h. Dis-
solved black gel-like product in distilled H2O of 80 °C and filtered. Finally,
further dried the product and obtain NaV0.95(Fe, Mn, Ni, Al, Ca)0.05PO4F
powder. The synthesis process for pristine NaVPO4F is similar to that of
HE-NVPF, except that the first hydrothermal step requires the addition of
an extra 0.4 g of CMC-Na to 44 mL of distilled H2O beforehand.

Material Characterization: The X-ray diffraction patterns were col-
lected on a Rigaku SmartLab 9 kW X-ray diffractometer (Cu K𝛼 radiation,
𝜆 = 1.5418 Å, current: 20 mA, voltage: 45 kV) in a scan range (2𝜃) of 10°–
80°. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo
Fisher Scientific Nexsa with a monochromatic Al K𝛼 source. The morphol-
ogy and energy dispersive X-ray spectroscopy (EDS) mapping of the ma-
terials were collected on scanning electron microscope (SEM, TESCAN
MIRA). A transmission electron microscope (TEM, JEQL 2100F) was used
to capture the morphology and EDS mapping of HE-NVPF. Due the elec-
tron beam sensitive of the NVPF cathode, the Spectra 300 STEMwas used
to investigate the atomic-scale arrangement of HE-NVPF. The inductively
coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5110)
was carried out to confirm the element compositions of the samples. It
is noted that high tolerance of ICP-OES suggests the qualitative nature
of the measurement data. In situ XRD patterns were collected on Bruker
D8 Advance in a scan range of 13°–45° with 15 min intervals. The cells

ran for one charge/discharge cycle at 0.15 C in room temperature. The
Rietveld refinement was performed on FullProf.[23] The X-ray absorption
spectra (XAS) were collected at the 6D UNIST-PAL beamline in Pohang
Light Source (PLS). The data of XAS were performed on Demeter.[24]

Calculation Method: In this work, density functional theory (DFT) cal-
culations of periodic slabs were performed using the Vienna Ab initio
Simulation Package.[25] The electron density and system energy were de-
scribed by the projector augmented-wave (PAW) method combined with
the Perdew–Burke–Ernzerhof (PBE) functional.[26] The electronic struc-
ture was characterized using the generalized gradient approximation
(GGA).[27] A plane-wave cutoff energy of 450 eV was employed with a force
convergence criterion of 0.05 eV. All calculations included spin polariza-
tion effects. The lattice parameters of NaVPO4F were fully optimized us-
ing a k-point spacing of 0.080 Å−1. To investigate high-entropy structures,
a fourfold supercell containing 256 atoms were constructed. We gener-
ated a dataset of 100 structures with different random doping configura-
tions was generated, performed full geometric optimization on each, and
selected the 15 most stable structures to subsequently analyze their elec-
tronic structures.

Electrochemical Measurements: The electrochemical measurements
were conducted in CR2032 coin-type cells. The active materials, super P,
and polyvinylidene fluoride (PVDF) were coated onto Al foil with the mass
ratio of 8:1:1 usingN-methyl-2-pyrrolidone (NMP) as the solvent and dried
under vacuum at 80 °C for 12 h to make a working electrode. The mass
loading of active materials is ≈2 mg cm−2. The sodium metal foil was the
counter and reference electrode, the glass fiber GF/A is the separator. The
electrolyte consisted of 1MNaPF6 EMC:FEMC: FEC= 2:3:5. The coin-cells
were assembled in an argon-filled glovebox with H2Oand O2 lower than
0.1 ppm. The galvanostatic charge–discharge (GCD) measurements were
conducted on the battery testing system (Neware) in the voltage range
of 2.0–4.5 V versus Na+/Na. The galvanostatic intermittent titration tech-
nique (GITT) were used to investigate the electrode kinetics via calculating
Na+ diffusion coefficients. For full cell fabrication, a graphite slurry, pre-
pared with a mass ratio of graphite to PVDF of 9:1 using NMP as the sol-
vent, was coated onto Cu foil. The coated foil was subsequently dried un-
der vacuum at 80 °C for 12 h. Then the graphite electrode was pre-sodiated
to avoid excessive sodium loss of cathode. Using glass fiber GF/A as the
separator, the electrolyte is 1 M NaPF6 in diglyme. The voltage window for
the full cell test is 1.4–4.4 V.
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