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Abstract

Reconstructing and animating digital avatars with free views from monocular videos have been an interesting research
task in the computer vision field for a long time. Recently, some methods have introduced a novel category method of
leveraging the neural radiance field to represent the human body in a canonical space with the help of the SMPL model.
With the deformation of the points from an observation space into a canonical space, the human appearance can be learned in
various poses and viewpoints. However, previous methods highly rely on pose-dependent representation learned from frame-
independent optimization and ignore the temporal contexts across the continuous motion video, causing a bad influence on the
dynamic appearance texture generation. To overcome these problems, we propose a novel free-viewpoint rendering framework,
TMIHuman. It aims at introducing temporal information into NeRF-based rendering and distilling task-relevant information
from complex pixel-wise representations. To be specific, we build a temporal fusion encoder that imports timestamps into the
learning of non-rigid deformation and fuses the visual features of other frames into human representation. Then, we propose to
disentangle the fused features and extract useful visual cues via mutual information objectives. We have extensively evaluated
our method and achieved state-of-the-art performance on different public datasets.

Keywords Novel view synthesis - Neural rendering - Mutual information - Avatar reconstruction

1 Introduction

The free-viewpoint synthesis of human motion is a challeng-
ing task in the current computer vision field. This task aims
to synthesize all views of a human at any frame in a given
pose sequence. It can be the fundamental component of other
interactive and immersive applications, such as virtual real-
ity, virtual try-on, and video entertainment, which require
this technique to provide controllable viewing experiences.
Existing methods either require expensive multi-view image-
capturing setups, or ignore the effectiveness of information
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extraction way from temporal contexts. Hence, it is urgent
to have a direct method for providing effective time-aware
digital avatar reconstruction and corresponding controllable
motion animation from a monocular video.

Traditional methods [22, 36, 40, 44] for free-viewpoint
rendering of dynamic scenes typically rely on a multi-camera
setup to capture and synthesize new perspectives of a human
subject. To mitigate the high costs associated with multi-
view image capture systems, Peng et al. [21] introduced
a technique capable of producing realistic images from a
single-camera video. However, this approach falls short in its
ability to animate avatars with new movements. In response
to this limitation, recent advancements [19, 35] have been
made using neural radiance fields (NeRF) to represent the
human. These methods deform the rays within the NeRF,
allowing for the transformation of visual pixels in accor-
dance with SMPL body model parameters. Consequently,
this enables the rendering of human figures in various poses
across different frames. Despite this progress, such tech-
niques heavily depend on pose-specific deformations and
risk overfitting to the views present in the training dataset. To
address this issue, contemporary research has shifted toward
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learning a deformation field that is more generalizable. Some
studies have employed root-finding algorithms to determine
the backward correspondence for a learned pose-independent
forward blend function within a canonical space. However,
the computational intensity of root-finding algorithms has
led to the development of newer methods [39] that combine
forward and backward mapping networks with consistency
constraints. These mapping functions are designed to be
both frame-specific and generalizable. Nevertheless, exist-
ing approaches tend to concentrate solely on pose-dependent
deformations, overlooking the temporal variations and con-
text between frames. Given the rapid changes in human
motion, the texture of a person’s appearance can vary signif-
icantly across different time points, even for similar poses.
Current NeRF-based human rendering techniques lack effec-
tive training strategies to capture this temporal information.

To address the limitations of pose-dependent model-
ing and better capture temporal dynamics, we introduce
timestamps into the deformation field, making time an
explicit variable for frame-wise deformation. We further
apply information-theoretic supervision to ensure effective
extraction of temporal cues across frames.

Specifically, we then introduce TMIHuman, a novel
framework that generates free-viewpoint human views from
a single-camera video while enabling text- or speech-driven
avatar animation as depicted in Fig. 1. Our method starts
with a temporal fusion encoder that integrates a bidirectional
deformation module. This module decomposes deforma-
tions into two parts: a skeleton-based branch that employs
shared weights informed by human anatomy and motion
patterns, and a non-rigid branch enhanced by a learn-
able time-dependent embedding to capture frame-specific
appearance details. To achieve free-viewpoint synthesis, we
construct a template bank that provides high-quality visual
details and serves as a reference for rendering occluded
body parts. The pixel features extracted from these tem-
plates are merged with those of the current frame and
fed into the NeRF. Importantly, to exploit the temporal
context beyond mere pose information, a representation
disentanglement module is used to separate the fused fea-
tures into task-relevant and irrelevant components. A mutual
information-based objective is introduced to guide this sepa-
ration and ensure that the most pertinent temporal features are
retained. Furthermore, to realize controllable, speech-driven
animation, we integrate an automatic speech recognition
(ASR) system with a human motion generation module. This
combination allows us to generate new sequences of human
motion that respond directly to speech inputs in a genera-
tive manner. Our method achieves significant performance
improvements over the state-of-the-art methods on public
datasets. We conduct extensive experiments, and the results
validate the effectiveness of the proposed components and
the information-theoretic objective.
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Fig.1 Overview of TMIHuman. We present TMIHuman, which learns
a controllable animatable human neural field from monocular videos.
With monocular video input, it can synthesize the novel views of the
digital avatar. And with the human speech or text, it can generate cor-
responding novel human motion animation

Our contributions are summarized as follows:

— We advocate the idea of encoding the temporal infor-
mation into the learning of deformation for the human-
specific NeRF, refining the pose parameters, improving
the performance of rendering novel views.

— We propose to disentangle the pixel-wise visual feature
in the NeRF into task-relevant and irrelevant components
to fully mine the temporal contexts and bring more useful
discriminative useful temporal cues for the final human
appearance reconstruction and animation.

— Extensive experiments have demonstrated that our method
can achieve state-of-the-art results on public benchmark
datasets.

2 Related work
2.1 Human performance capture

The free-viewpoint rendering of humans requires exact
modeling geometry of human body structure and surface
properties like clothing or skin textures. It has been seen
as an important task in the computer vision field. Previ-
ous works generally leverage multi-view videos or depth
cameras and albedo map of surface mesh to do the recon-
struction. Traditional methods utilize studio setups to capture
these properties physically with multi-view cameras or depth
cameras [15, 32]. Carranza et al. [2] proposed the earli-
est image-based rendering approach with markerless-motion
capture, which represents a human body as a parameterized
model and uses view-dependent texturing [4] for novel view
synthesis of the human. Then, the following works use dif-
ferent techniques to improve the rendering quality. These
approaches highly rely on multi-view image capturing stu-
dio setups. To tackle this difficulty, some recent works has
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introduced human rendering with the single view setup [3,
6]. But they need pre-scanned human body templates, which
actually requires expensive equipment. Similarly, monocular
RGB-D-based methods [29] adopt the traditional modeling
and rendering pipeline for synthesizing different views of
humans, and they also suffer from the high prices of RGB-D
cameras with depth sensors.

Although the above methods have achieved good render-
ing performance, they require stable indoor image-capturing
environments and high-quality cameras, both of which are
uneasily reachable. Our method does not need these settings,
and only requires a monocular video with a human perform-
ing self-rotating actions.

2.2 Human neural rendering from monocular video

To tackle the difficulty of expensive multi-view setups, many
current methods attempt to explore the human reconstruction
based on a individual image or a monocular video. Some
works [23, 24] proposed to use pixel-aligned implicit func-
tion to learn the accurate 3d human surface reconstruction
from a single image. When it comes to the dynamic human,
with the development of differentiable neural rendering tech-
niques, a lot of methods adapted the neural rendering manner
to obtain high-quality rendered results based on different data
representations [27]. Among them, NeRF [16] and its exten-
sions [1, 8] has achieved the most attractive performance on
novel view synthesis. Liu et al. [13] proposed to utilize a pre-
scanned body model and modeled time-dependent dynamic
textures via NeRF. Wu et al. [37] and Peng et al. [21] learn
a embedding for the human model based on point clouds or
reposed mesh vertices. Zhang et al. [41] and Jiang et al. [10]
decomposed a scene into the static background and fore-
ground moving human object, and represented them with
separated NeRFs thus enabling human pose or scene editing.
Xuetal. [38], Suet al. [28] and Noguchi et al. [18] introduce
learning implicit geometry via a deformable NeRF. Recently,
Weng et al. [35] propose a free-viewpoint rendering pipeline
of human in monocular videos. In the pipeline, the rendering
of human is done in a canonical space, and the human repre-
sentation will be transformed form the observation space for
each frame by warping. Based on this method, Yu et al. [39]
present a framework that achieve generalizable consistent
forward and backward deformation to query correspondence
appearance features to guide rendering.

These methods focus on the learning of a single frame, just
targeting at the geometry transformation and rendering func-
tions. In fact, they ignore the feature-level knowledge hidden
in the intermediate representation of NeRF. Our method
leverages the information-theoretic objective to extract use-
ful temporal information from a continuous sequence to
refine the rendering.

2.3 Animatable digital human

The pursuit of animatable human avatars has been seen a sig-
nificant task in computer vision field, and it has shown great
potential based on recent intricate neural approaches guided
by 3D human models. Habermann et al. [7] introduced a weak
multi-view supervision to provide a deformable pre-scanned
humans. Liu et al. [12] proposes to use a coarse body model
as a proxy and learn a deformable radiance field with SMPL
as a guidance with incorporating 2D texture maps to render
human with novel poses. Peng et al. [20] introduce neural
blend weight fields to produce the deformation fields and
then generate the animatable human model. Recently, kinds
of deformable neural fields [25, 35] show progression from
coarse rendering to high-quality results. Then by incorporat-
ing human prior-like SMPL models, the 3D text-to-human
generation techniques have made a great success. For exam-
ple, Hong et al. [9] utilize SMPL and Neus [33] to generate 3D
human based on the guidance of CLIP. Kolotouros et al. [11]
utilizes a pose-conditioned NeRF to obtain density fields.
However, these methods neglect the control of the motion of
the animatable human model. Recently, Yu et al. [39] pro-
poses to use text prompts to guide the pose-dependent NeRF,
obtaining a novel motion sequence of a human avatar which
is learned from a monocular video.

However, these methods all ignore the task-relevance of
the learned information for the avatar reconstruction. In con-
trast, we focus on the development of the extraction way
for useful information. Our proposed method can effectively
obtain the task-relevant information for improving rendering
performance of the digital avatar reconstruction. Besides, as
far as we know, there is no any work for speech-driven 3D
avatar animation generation. To address this problem, in this
paper, we propose to use the speech recognition technique
to generate a motion sequence from a speech, guiding the
deformation of points in the NeRF and the synthesis of a
human motion video.

3 Method

We present our TMIHuman for reconstructing an animat-
able avatar from a monocular video. In this section, first,
we review some techniques of the previous human render-
ing approaches. Second, we introduce the novel NeRF-based
human rendering framework which has a novel representa-
tion disentanglement module which introduces the mutual
information-based objectives for extracting complementary
task-relevant information from other frames in the same
video. Finally, we give details of the volume rendering and
the overall training objective of the framework. The illustra-
tion of the pipeline is shown in Fig. 2.
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Fig. 2 Illustration of the TMIHuman. Our framework takes a single
frame as input for each optimization, and learns a backward defor-
mation field mapping points X from observation space into canonical
space X, with the guidance of the temporal information. We utilize the
poses of neighboring frames to refine the pose detections, and apply a
MLP to learn a time-dependent embedding e’ for importing the tempo-
ral information. With the symmetrical forward deformation, the points
can be deformed back to the canonical space. In the temporal feature
fusion, inputting the corresponding time-dependent embeddings, X, can

be deformed to X/, x and x|, in different observation spaces that are

selected previously from the monocular video to obtain the features f;,;,

3.1 Preliminaries

Given a series of monocular video frames of a person,
denoted as I = {I' € R¥*WX31 ¢ {1,...,T}}, along
with corresponding human poses P = {p’ = (J', Q)|t €
{1, ..., T}}and segmentation masks M = {M! € R*W|t ¢
{1, ..., T}}, we follow the approach of HumanNeRF [35] to
synthesize free-viewpoint rendering results of a human by
representing the human via a neural radiance field (NeRF).
Here, H and W represents the resolution of the input image.
T is the total number of frames in the monocular video. And
J! and Q' indicate K standard 3D joint locations and local
joint rotations of the human body at frame I'.

Following HumanNeRF [35], our goal is to render the
human appearance in a canonical space. To achieve this,
we first deform the points in the observation space into the
canonical space. For each input image I;, we represent the
person by a volume V, in a canonical space, which is warped
to an observation space V,, i.e., V, = V.(D(x, p)), where
V. = ®(y(x)) is actually represented as a neural radiance
field ®. & takes the position of point x € R as input and
outputs color ¢ and density o . y is a standard sinusoidal posi-
tional encoding function. The warping function is defined as
a learnable deformation field D that maps points from the
observed space to the canonical, and D consists of two main
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fn» fv and the colors ¢y, ¢, ¢y. Through a blending network, these fea-
tures are used to obtain the feature Fj,. Aggregating F;, and the learned
feature in the canonical space F., we can get a fused visual feature
F for rendering. Further, in the representation disentanglement, F ;
is disentangled into task-relevant representation F,, and task-irrelevant
representation F;, via two separate MLPs . F,, is used for the final
rendering. Besides the direct loss between the rendered ray C, and the
ground truth C, obtained by the input image, we introduce an additional
mutual information objectives to guarantee the useful information dis-
tillation

components:

D(x,p) = (Ds(x, P(p)), Dn(Ds(x, P(p)), p)), ey

where P represents a pose correction function for refin-
ing previously estimated 3D human pose, Dy is skeleton-
based motion weight deformation, and Dy represents an
non-rigid deformation field. Like traditional HumanNeRF
methods [35, 39], we use MLPs to represent P and Dy and
Dyg is set as an inverse linear blend skinning function. Specif-
ically, in Dy, the skinning weight w can be represented with
a single learnable volume W.(x,), where X, is the points in
the observation space.

Butindividual images cannot provide enough visual infor-
mation of different aspects of human appearance for the
training of NeRF. To obtain multi-view visual information
for helping the rendering, we follow MonoHuman [39] to
find correspondences in different time stamps for the current
observed frame. We use the technique proposed by Mono-
Human [39] to build a template bank B =1, | b € {1, ..., T}
by picking up several key frame images Ij. The selection
of the templates is based on the pose similarity and texture
map complementarity. Considering the traditional deforma-
tion field D as a backward deformation Dp, we additionally
build another forward deformation Dr. Dp can map the
points in different observation space X,, into X, in the same



Distilling complementary information from temporal context...

6483

canonical space: Dp : (Xy, p) — X¢,, and Dp can deform
back x. to X,: Df : (X¢, p) = X,. By learning all the above
network parameters, the final rendering step can be done as
volume rendering in the canonical space.

3.2 Temporal fusion encoder

It is obvious that the visual contexts in different timestamps
can not be simply regarded as the other views of the human,
because of the temporal influence, such as the different poses,
texture changes due to the wind or light conditions. To
mine the temporal correspondences fully, we propose a mod-
ule called temporal fusion encoder (TFE), which combines
a learned time-dependent embedding and the bidirectional
deformation modules proposed by MonoHuman [39] to get
visual features with temporal information.

Temporal pose refining and embedding. For each frame I,
first, we propose to refine the detected pose p with temporal
contexts. We combine the poses of adjacent frames with the
current frame together as the input of a multilayer perceptron
(MLP) to compute a new p’:

P/:MLPp(pt»Pt—laPt-ﬁ-l)- (2

To leverage the temporal information, we need encode the
timestamp to obtain a latent code which can be utilized for
the following deformation. We use a MLP to learn e, as:

e, =MLP,(p,1). 3)

Time-dependent deformation. We implement the deforma-
tion of the points. As described previously, the deformation
Dp and DF can be both decomposed into skeleton-driven
deformation and non-rigid deformation. And the motion
weight for the skeleton-driven deformation obtained in Dpg
and D with different ways.

For Dp, the computation of the skeleton-driven deforma-
tion DE is linear blend skinning:

K
DY (x5, P) = ) @l (xo) (Rixo + ), “)

i=1

where a)loc is the blend weight of k'" bone, and R;, I; are
the rotation and translation of the bone’s coordinates in p’.
a)(’j (x,) can be computed by a set of motion weight volumes
.. which are in canonical space:

wé(xo)(RiXo +1;)
YK 0k (x0) (Rixo + ;)

)

wk(x,) =

By solving the parameters of a CNN, we can obtain a
volume representation for the skeleton-driven deformation ,

ie., We(x,) = CNNy(x;z), for getting a)’g, where z is a
constant random code and g represents the parameters of
the CNN. For DF, the motion weight is queried by x,, as:

K
D (xe, p) = ) oh (%)X, (6)

i=1

As for non-rigid deformation, MLP is always the choice.
We build two individual MLPs to compute the backward
and forward deformations respectively. Different from con-
ventional methods, we add a latent embedding e; encoding
temporal information as the additional input of the MLP:

Dy(x,p) = MLPy(DE (x,p)), ' e) + DF(x,p).  (7)

Note that the non-rigid deformation in the forward and back-
ward deformation can be both computed as Eq. (7).

Visual feature fusion. We take three templates I,,,, I,,, I, from
B randomly. We regard the visual features of a same point in
observation spaces corresponding to these frames as the cor-
respondence features in canonical space. With deforming x,.
tox”, x!", x) by Dr. For example, we compute the projected
points xm of the image coordinate as:

X! = K EmDF (X, Ply), ®)

where K,, and E,, are the intrinsic and extrinsic camera
parameters of I,,,. Then, we sample to obtain the feature f;,
and color ¢, indicated by the pixel location x,,. We use the
U-Net to extract f;,,. After obtaining f,,,, f, fv and ¢, ¢y,
¢y, respectively, we use a MLP to map features to the blend
weights. And to import the temporal information into the
learning for blending, we explicitly add the learned embed-
ding e; corresponding to each template as an extra input of
the MLP:

W= MLPy((fn: cm:€"), (fui cni€)), (foicoie))), (9)
where (; ) indicates the concatenation. And w is a vector con-
taining the blend weights for the m™, n'", and v'" templates.

Then, the blended feature of these templates can be computed
as:

Fp = w((fm: cm); (fus cn)s (fos €0)), (10)

where Fj, is the blended feature to provide guidance for the
training of network.

3.3 Representation disentanglement

Traditionally, the blended feature F, is concatenated directly
to the pixel feature of canonical space as the input of a MLP

@ Springer
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in the NeRF O to obtain the color ¢(x) and density o (X):

c(x), 0(x) = O(y(x), Fp), Y
where y is a sinusoidal positional encoding. Specifically,
regarding y (x) as feature F,, in the ®, F. and F, are fused
to Fy as:
Fr=MLP;((F:; Fp)). 12)
But this direct process inevitably brings a lot of task-
irrelevant pixel features in F ¢ from other frames. To tackle
this difficulty, we propose to utilize the mutual information-
based representation learning to mine the useful information
for the rendering from the F.

Factorization and rendering. We follow TDMI [5] to build
a representation disentanglement module (RD) for disentan-
gling the representation F 7 into two compositions which are
relevant part F,, and irrelevant part F;,. F,, contains useful
information for the rendering of current frame, while F;, is
a contrastive landmark to help the useful knowledge distil-
lation of F,, from F ;. To factorize F s into F,. and F;,, we
employ two separate MLPs to process, respectively:
Fre:MLPre(Ff),FirZMLPir(Ff)' (13)

The relevant feature composition F}e and the original pixel
feature F, can be combined as the input of a feature aggre-
gation MLP to output a final feature F. F is fed into the rest
MLP in the ® to yield the color and density. Then, the for-
mula Eq. 11 can rewritten as:
e(x), 0 (x) = O(F, F). (14)

For the final rendering, we use the volume rendering [16].
We compute the color Cy of aray r as:

N o
Ce=) (e S 680 (1 — e~3%)e;, (15)

j=1

where §; and §; are the distance between two adjacent sam-
ples in the ray. And we apply the stratified sampling approach
proposed to sample points from the rays.

Information-theoretic objectives. To obtain rendering-relevant
information, we treat the visual features as representations
and design a information-theoretic objective to extract useful
knowledge from the fusion feature F ¢. With the disentangled
representations F,, and F;;, itis naive for us to consider mini-
mizing the similarity or the amount of the shared information
between F,, and F;,:

Lairf = cos[Fre, Fir] + M(F,e; Fir), (16)

@ Springer

where cos[-] represents the cosine similarity between two
variables and M (; ) is a mutual information term. Through
this loss function, with the training, the features encoded by
these two representations become different. Considering that
the F,., will be used in the subsequent rendering process, the
unique features encoded into the representation F;,. can be
regarded as task-irrelevant. And to retain the useful informa-
tion in F;, from F s, we build another objective as:

Lreta = _M(Ff; | (17
With minimizing this loss function, the effective visual cues
from other timestamps can be encoded into the feature of the
final task-relevant representation.

With achieving Lgirs and L., together, we can maxi-
mize the additional task-relevant information. Besides, con-
sidering the possible information vanishing in the learning,
wo propose to add L, to alleviate this bad influence:
Late = M(Fy; CelF) + M(Fe; CrlF), (18)
where C is the ground truth color of the rendered ray r
described in Eq. (15). M(Fy.; C¢|F) and M(F.; C,|F) rep-
resent the dropped task-relevant information loss in F,, and
F.. With minimizing L., the useful information can be fur-
thest retained. Following the previous work [14], the mutual
information terms can be simplified as:

M(Fe; ColF) > M(Fye: Cr) — M(Fr: F) (19)
M(F;; Ce|F) = M(Fe; Cr) — M5 F)

Finally, the overall information-theoretic objective L;,r,

for useful temporal information extraction can be formulated
as:
»Cinfo = »Cdiff + »Creta + »Calle- (20)
Variational self-distillation (VSD) [31] can be used to achieve
the computation of these mutual information terms by min-
imizing the KL divergence between two variables in each
mutual information terms. In addition, in the computation,
we use the NeRF © to generate rays for each representation
F,., F and F, separately for the computation of losses.

Training objective. For the network optimization, we first
compute the rendering loss £, in the NeRF to measure the
difference between the rendered color Cy and the ground
truth color a of the ray r:

L= (ICe — Crl3).

reY

21

where Y represents all query rays for the rendering. And fol-
lowing HumanNeRF [35], we employ the LPIPS [42] loss
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function for improving the reconstruction performance and
robustness of the image synthesis. Considering the consis-
tency between the forward and backward deformation, we
add the constraint for regularization of the forward and back-
ward deformation. Inspired by MonoHuman [39], we build
a consistency loss L, as:

Le =1%o, DF(Dp (X0, P, P13 (22)

Then combining £, with the information-theoretic objec-
tive described in Sect. 3.3, the overall objective £ of our
framework can be formulated as:

L= ['c + ACc + Aclpips + Einfo- (23)

We minimize £ during the training.

4 Experimental results

4.1 Dataset and evaluation metrics

Our method is evaluated on the ZJU-MoCap dataset [21] and
the HumanNeRF-data dataset [43]. Additionally, we collect
in-the-wild videos from the Internet to validate the gener-
alizability of our method. For the ZJU-MoCap dataset, we
select six subjects (377, 386, 387, 392, 393, and 394) as
our data sets. Frames from camera 1 are used as the train-
ing set, while images from the other 22 cameras form the
test set. For the HumanNeRF-data dataset, we select three
subjects (cjm, batman, law) as the rendering objects. This
dataset includes six cameras capturing different views. We
use the view from camera 1 for training and the others for
evaluation. Both datasets are carefully collected in indoor
environments, and all subjects provide annotations. We adopt
the peak signal-to-noise ratio (PSNR) [34], structural simi-
larity index (SSIM) [34], and learned perceptual image patch
similarity (LPIPS) [42] as evaluation metrics. While PSNR
favors smooth results but may neglect the visual quality of
the rendered image, LPIPS measures the perceived distance
between the synthesized image and the ground truth image.
Additionally, we provide visual results of the 3D human
reconstruction.

4.2 Implementation details

We implement our framework on the PyTorch platform. We
use Nvidia GeForce RTX™ 3090 GPU with 24GB memory
to train and test the network. We train our models using Adam
optimizer with a learning rate Se~* for the NeRF ©, and 5¢ >
for all the other network components. We use patch-based
ray sampling for the calculation of LPIPS. And we sample 2

patches of rays with size 20 x 20. One hundred and twenty-
eight samples are rendered per ray. For the selection of the
template bank, we follow the keyframe selection of Mono-
Human [39] according to the pose similarity and texture map
complementarity. For speech-driven motion generation, we
use the speech-to-text API of google [26] to translate the
speech into text prompts, and then utilize the MDM [30]
model to generate the SMPL parameters of a novel motion
sequence.

4.3 Comparison

The main target of our method is the rendering of the
human in a monocular video. Therefore, we only provide
the comparisons between our method with neural body [21],
HumanNeRF [35] and MonoHuman [39] on ZJU-MoCap
datasets in terms of qualitative results and quantitative results.
And we provide additional visual results in HumanNeRF-
data dataset. Table 1 shows the results of novel view synthesis
on the ZJU-MoCap dataset. Our method clearly outperforms
the others for almost all subjects, achieving improvements
across all evaluation metrics. This demonstrates that our
method is capable of generating views that are closest to
the real images in various aspects. By introducing temporal
information into the non-rigid deformation and maximizing
the useful information from template images, the rendering
quality is significantly enhanced. We also provide qualita-
tive result comparisons on the ZJU-MoCap dataset in Fig. 3.
For an individual frame, we apply MonoHuman [39] and
our method to synthesize views from different directions.
It is evident that our method exhibits high-fidelity details
such as textures and geometries, while MonoHuman pro-
duces blurred or faulty results. Additionally, we present novel
view synthesis result comparisons on the HumanNeRF-data
dataset in Fig. 4. For the challenging cases in HumanNeRF-
data, our method more accurately renders visual details like
textures. Moreover, we provide the controllable animation
synthesis ability evaluation of our method by giving the qual-
itative comparison between our method and MonoHuman.
Here, we give the order of “jump” via speech. The results are
shown in Fig. 5. It can be seen that MonoHuman deforms the
human representation wrongly and generates multiple arti-
facts, while our method can render more realistic results.

4.4 Ablation study

We conduct ablation study on ZJU-MoCap dataset to evaluate
the proposed components and objectives.

Time-dependent embedding. To validate the effectiveness
of our time-dependent embedding, we conduct different
experiments where the framework is with or without the
embedding. As shown in Table 2, we conduct several exper-
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Table 1 Novel view synthesis quantitative comparison on ZJU-MoCap dataset

Subject 377 Subject 386 Subject 387
PSNR 4 SSIM 4 LPIPS* | PSNR 4 SSIM 1 LPIPS* | PSNR 1 SSIM ¢ LPIPS* |

Neural Body [21] 29.29 0.9693 39.40 30.71 0.9661 45.89 26.36 0.9520 62.21

HumanNeRF [35] 30.41 0.9743 24.06 33.20 0.9752 28.99 28.18 0.9632 35.58

MonoHuman [39] 30.77 0.9787 21.67 32.97 0.9733 32.7 27.93 0.9633 33.45

Ours 31.01 0.9801 20.22 33.74 0.9764 28.43 28.86 0.9709 32.26
Subject 392 Subject 393 Subject 394

PSNR4  SSIM{  LPIPS*| PSNR4  SSIM{  LPIPS*|  PSNR4  SSIM{t  LPIPS* |

Neural Body [21] 28.97 0.9615 57.03 27.82 0.9577 59.24 28.09 0.9557 59.66
HumanNeRF [35] 31.04 0.9705 32.12 28.31 0.9603 36.72 30.31 0.9642 32.89
MonoHuman [39] 31.24 0.9715 31.04 28.46 0.9622 34.24 28.94 0.9612 35.90
Ours 31.77 0.9757 29.84 29.63 0.9698 32.97 29.92 0.9665 32.53

We bold values cells that have the best metric value. LPIPS* = LPIPS x 10°

MonoHuman Our Method Ground Truth MonoHuman Our Method Ground Truth

Input

P — Novel View Sythesis — ) Novel View Sythesis —

Fig.3 Qualitative comparison on ZJU-MoCap dataset. The area circled results and MonoHuman demonstrates the effectiveness of our proposed
by red dash lines indicates the part where we render better photo-realistic method for helping human-specific rendering
results compared with MonoHuman [39]. The comparison between our
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MonoHuman Our Method MonoHuman Our Method MonoHuman Our Method

I Novel View Sythesis 2 —\ I Novel View Sythesis 3 —\

p =~

Fig. 4 Qualitative comparison on HumanNeRF-data dataset. The area circled by red dash lines indicates the part where we render better photo-
realistic results compared with MonoHuman [39]. The clearly better performance of our method demonstrates the effectiveness of our framework

I Novel View Sythesis 1 —\

i

MonoHuman

TMIHuman

-

Fig.5 Qualitative comparison on challenge poses controlled by human speech. We evaluate our method driven by challenge pose sequence generated
by MDM model
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Table 2 Ablation study for the
usage of the time-dependent

embedding on ZJU-MoCap

Method PSNR 4 SSIM 4 LPIPS* |
HumanNeRF [35] 30.24 0.9679 31.73
Ours-a (w/o €' in non-rigid field) 30.45 0.9691 31.52
Ours-b (w/o €' in NeRF) 30.52 0.9698 30.31
Ours-f (full model) 30.82 0.9732 29.38

We compute averages over 6 sequences. We bold cells with best metric values. LPIPS* = LPIPS x 103

Table 3 Ablation study for network components on ZJU-MoCap. We
compute averages over six sequences

Method TFE RD PSNR1t SSIM 1t LPIPS* |
HumanNeRF [35] 30.24 09679  31.73
(a) v 30.49 0.9698  31.00
(b) v 30.47 0.9692  30.62
©) v v 30.82 09732 2938

We bold cells with best metric values. LPIPS* = LPIPS x 103

HumanNeRF (a) (b) (©)

Fig. 6 Qualitative comparison for network components on ZJU-
MoCap. The area circled by red dash lines indicates the part where
the models with the proposed components achieve better results

iments with inputting the embedding into the non-rigid
deformation field, the NeRF separately and both, respec-
tively. The results of ours-a and ours-b are a little higher
than the baseline (HumanNeRF), which demonstrates that
the temporal information can provide meaningful help for
the deformation of rays and the final NeRF-based rendering.
And the full body achieves the best rendering performance
which validates the effectiveness of the designed framework.

TFE and RD. To investigate the effectiveness of the proposed
temporal fusion encoder and the representation disentangle-

ment, we modify the framework with the settings of TFE and
RD: (a) only with TFE, (b) only with RD (d) and the full body
with both two components. The results are shown in Table 3.
From Table 3(a)—(b), we can see that utilizing the TFE and
RD can help the model outperforms slightly the baseline
HumanNeREF, respectively, which validates the significance
of importing temporal information and the novel supervision
at feature-level correspondingly. And the result of (c) demon-
strates that these two components can bring positive influence
to each other, improving the rendering performance eventu-
ally. We provide visual results of all experimental settings
about HumanNeRF and (a), (b) and (c) in Fig. 6. It is easily
to tell that the models with TFE or RD in (a) and (b) can
synthesize better details for the human hands compared with
the HumanNeRF [35], but still remains distortion and blurs.
The model with TFE and RD in (c) can render more photo-
realistic textures. These results validate that each proposed
component works for improving rendering performance and
their collaboration can lead to better outcomes.

Information-theoretic objective. Table 4 illustrates the influ-
ence of the proposed objectives to the rendering performance.
We conduct experiments with different settings of objective
Linfo.: (a) setting without L;, ¢, (b) only applying Ly;rf,
(c) applying Lgirr and L;erq and (d) the full model with
all objectives. From the result of Table 4(a), without the
overall information-theoretic objective, the result is slightly
better than the HumanNeRF. But compared with the result
of Table 3(a), which set the framework without the whole
RD component, the result is even worse. It means the sim-
ply application of the RD structure into a network cannot
bring meaningful help for the performance improvement.
The results of Table 4(b) is almost same with the base-
line model Table 4(a), which means that only making the

Table 4 Ablation study for loss

functions on ZJU-MoCap Method Laiff Lreta Laile PSNR % SSIM 4+ LPIPS* |
HumanNeRF [35] 30.24 0.9679 31.73
(a) 30.28 0.9685 31.11
(b) v 30.39 0.9694 30.78
(c) v v 30.44 0.9701 30.21
(d) v v v 30.82 0.9732 29.38

We compute averages over 6 sequences. We bold cells with best metric values. LPIPS* = LPIPS x 103
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Table 5 Few-shot generalization comparison for novel view synthesis
on the ZJU-MoCap dataset

Settings Method PSNR 4 SSIM ¢ LPIPS |
5-shot ActorsNeRF 27.52 0.9566 44.94
TMIHuman 27.59 0.9572 44.33
10-shot ActorsNeRF 27.76 0.9590 39.79
TMIHuman 27.87 0.9592 39.42
30-shot ActorsNeRF 28.08 0.9600 36.85
TMIHuman 28.53 0.9613 36.01
100-shot ActorsNeRF 28.1 0.9602 36.58
TMIHuman 28.67 0.9615 35.87
300-shot ActorsNeRF 28.06 0.9599 36.57
TMIHuman 28.64 0.9614 35.46

We compute averages over 3 sequences. We bold cells with best metric
values

two representation different is not meaningful for the useful
information extraction. The improvements of Table 4(c)—(d)
demonstrate that the £,.;, amd L. are useful to facilitate
the learning of discriminative task-relevant visual details.
In particular, £, can significantly improve the rendering
quality, which evidence the importance of alleviating the
information vanishing in the learning.

Low FPS Frames. To evaluate the few-shot generalization
ability of our model, we follow the experimental settings of
ActorsNeRF [17] to conduct few-shot novel view synthesis
experiments. We compute average over 3 sequences (Sub-
jects 387,393 and 394) of ZJU-Mocap dataset, and the results
are shown in the Table 5. It is easy to see that our method
can obtain better results because our method leverages
the information-theoretic objectives to extract rendering-
relevant information from the temporal contexts, obtaining
useful knowledge and helping the final rendering.

5 Conclusion

We propose a novel framework TMIHuman which aims at
synthesizing novel views of dynamic humans in a monoc-
ular video, and outputting video with novel controllable
human pose sequence. We propose a novel temporal fusion
encoder for encoding temporal information into the defor-
mation field, making the deformation of the points acquiring
more guidance from other frames. In this encoder, we first
refine the human pose with temporal contexts from detected
poses information of adjacent frames. Then, we use a learn-
able embedding which encodes temporal information from
time stamps as the input of the deformation from observation
space, providing specific temporal and pose information for
each frame. Furthermore, we build a representation disentan-
glement module and leverage mutual information objectives

to extract useful information from the correspondence fea-
tures of image templates. We generate SMPL pose sequences
based on human speech and animate the learned avatar. The
high-quality results have shown that our framework is able
to generate photo-realistic novel views of human. In addi-
tion, the recent Gaussian splatting techniques can be regarded
as the better alternatives for the NeRF, and our proposed
methods can be utilized in it. The accurate and fine-grained
rendering based on designed Gaussian splatting framework
with our proposed mechanism might be the most significant
future research direction.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-025-03948-
Z.
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