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Abstract

Adolescent idiopathic scoliosis is a significant health concern, ranked as the third most prevalent issue among adolescents
after obesity and myopia. Traditional screening methods rely on the use of complex and expensive measuring instruments
and expert physicians to interpret X-ray images. These methods can be both time-consuming and inaccessible for widespread
screening efforts. To address these challenges, we propose a standardized protocol for the collection of scoliosis gait dataset.
This protocol enables the systematic capture of relevant gait characteristics associated with scoliosis, leading to the creation
of a comprehensive, annotated dataset tailored for research and diagnostic purposes. Leveraging this dataset, we developed an
effective deep learning algorithm based on graph convolutional networks, which outperforms traditional CNN by effectively
modeling the complex spatial and temporal dynamics of human gait and posture, leveraging skeletal structure as a graph
for more accurate and robust scoliosis screening. We also explored various optimization strategies to enhance the model’s
accuracy and efficiency, ensuring robust performance across diverse scenarios. Our innovative approach allows for the rapid
and non-invasive recognition of scoliosis. This method is not only scalable but also eliminates the need for specialized
equipment or extensive medical expertise, making it ideal for large-scale screening initiatives. By improving the accessibility
and efficiency of scoliosis detection, our approach has the potential to facilitate early intervention.
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1 Introduction
Adolescent idiopathic scoliosis (AIS) is the most common

form of scoliosis, emerging in children and adolescents dur-
ing growth. This spinal deformity is characterized by a lateral

@ Springer

curvature and vertebral rotation, potentially causing a visi-
ble hump and asymmetrical waist. The idiopathic nature of
AIS indicates that its exact cause remains unknown, despite
its significant incidence and potential impact on health and
quality of life.

Early detection and intervention are crucial for effectively
managing AIS and reducing the risk of progression. Groot [9]
examined the effectiveness of educating parents to recognize
scoliosis. Participants assessed two sets of 14 cases, includ-
ing 8 with scoliosis and 6 without, each with photographs of
a child’s back both standing and in forward flexion. Parents
determined the need for physician referral. Despite educa-
tion, only 74% accurately identified scoliosis.

Although radiographic measurement of the Cobb angle
currently remains the clinical gold standard for the diagnosis
of scoliosis, its inherent limitations are becoming increas-
ingly apparent. Studies have shown that a single full-length
radiographic examination of the spine in the standing posi-
tion can expose adolescent patients to an effective radiation
dose of approximately 0.14—0.20 mSv [5], while the Inter-
national Commission on Radiological Protection (ICRP) has
stated that each Sv of radiation dose will result in an incre-
mental lifetime risk of cancer death of 5.5%, which poses
a potential health threat to the adolescent population who
require regular review [19]. In clinical practice, Cobb angle
measurements are subject to measurement errors of up to
5°-7°, which mainly stem from subjective differences in
vertebral end-plate identification [17]. Additionally, radiog-
raphy relies on expensive digital imaging equipment and the
operation of specialized radiologic technologists, resulting in
high screening costs, which severely limits the accessibility
of large-scale screening in areas where healthcare resources
are poor.

Recently, neural networks have gained interest for non-
invasive scoliosis detection. Convolutional neural networks
(CNNs) excel in image recognition and medical imaging
analysis, identifying patterns in spinal images that may
escape human detection, enabling earlier and more accurate
detection. Yang et al. [25] developed a CNN for automatic
scoliosis screening using bare back images, outperforming
human experts in detecting curves of 20° or more and classi-
fying severity. However, CNN-based methods often rely on
localized features or static image representations, which may
not fully capture the complex spatial and temporal dynam-
ics of human gait and posture. In contrast, the proposed
use of graph convolutional network (GCN) offers significant
advantages by inherently modeling the skeletal structure as
a graph, allowing for direct and efficient representation of
the spatial relationships between joints. Furthermore, GCN
excels in dynamic spatiotemporal feature modeling, effec-
tively capturing the intricate interactions and motion patterns
over time that are critical for accurate scoliosis detection.
These capabilities enable GCN-based approaches to provide
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amore comprehensive analysis of gait abnormalities, leading
to improved screening performance compared to CNN.

GCN effectively learns relationships among nodes by
encoding graph structures and node features, showing impres-
sive classification results. Integrating gait analysis with GCN
models introduces a novel scoliosis screening approach. This
method harnesses artificial intelligence to process complex
biomechanical data and identify scoliosis correlations. Ben-
efits include reduced radiography reliance, earlier detection,
and the ability to monitor scoliosis progression.

This work uses deep learning algorithms for gait analysis
to achieve scoliosis recognition. The main contributions are
as follows:

e We applied gait analysis to scoliosis detection and, in
conjunction with deep registration, developed a scoliosis
detection algorithm centered on three-dimensional skele-
tal data that utilizes graph convolutional networks.

e We establish a 3D scoliosis dataset and develop standards
for scoliosis sample collection.

e We further investigated the impact of binary classifica-
tion and the symmetry-based skeleton feature grouping
strategy.

2 Related works

Conventional diagnostic methods, such as radiography, are
the clinical standard for scoliosis assessment but have limita-
tions, including radiation exposure and challenges in main-
taining a standard measurement protocol [20]. Computer-
aided detection (CAD) systems have been developed to
enhance the accuracy and efficiency of scoliosis assessment
in radiographs [27]. However, these systems require high-
quality images and do not eliminate radiation use.

Recent research highlights the potential of neural net-
works in image-based scoliosis detection. For gait data
with depth information, modern CNN-based deep learn-
ing methods outperform traditional geometric approaches in
pose estimation on account of their ability to handle differ-
ent types of input data: depth maps [8] (2D images with
depth values), 3D volumetric data [2] (3D grid represen-
tations), and point clouds [10] (collections of 3D points).
Researchers use specialized neural network designs like 2D
CNN [21] (processing depth maps as images), 3D CNN
[2] (analyzing volumetric data), MLPs (multilayer percep-
trons) [7] (for point cloud processing), and transformer
models [10] (capturing long-range dependencies). Compara-
tive analyses [2] demonstrate that 3D CNN maintain superior
spatial coherence preservation notwithstanding their substan-
tial computational overhead, while alternative approaches

like the anchor-to-joint paradigm [21] employ two-stage pro-
cessing with 2D heatmap generation followed by depth offset
estimation from local depth distributions, yet still underper-
form relative to volumetric probability estimation via 3D
CNN hourglass architectures [2].

Recent advances in graph convolutional network (GCN)
have revolutionized gait analysis through their inherent
capability to model skeletal topology. Some predominant
GCN-based approaches have emerged: Skeleton-sequence
GCN [24] directly operates on raw joint coordinates, con-
structing spatiotemporal graphs where nodes represent body
joints and edges encode natural bone connections. While
computationally efficient [18], these methods often neglect
global inter-joint relationships beyond predefined edges.
Multi-scale GCN [3] addresses this limitation by learning
hierarchical graph representations through adaptive edge
weighting and multi-hop neighborhood aggregation, achiev-
ing superior performance on cross-view gait recognition
at the cost of increased computational complexity (+38%
FLOPs).

Decoupled spatial-temporal GCN [23] proposes inde-
pendent spatial and temporal convolution modules, reduc-
ing parameters by 27% compared to coupled architectures
while maintaining competitive accuracy on CASIA-B dataset
(98.1% vs. 98.4%). While decoupled spatial-temporal graph
convolutional networks achieve improved parameter effi-
ciency through modular separation, their architectural design
fundamentally suffers from inherent limitations in cross-
modal synergistic modeling. The rigid decoupling of spatial
and temporal features artificially dissociates the dynamically
coupled relationships between limb spatial configurations
and temporal evolution patterns essential for action recog-
nition, thereby constraining representational capacity for
complex multi-joint coordinated movements—particularly
prone to spatiotemporal feature misalignment when handling
non-uniform temporal sampling or abrupt motion transitions.

Integrating gait analysis with advanced neural network
techniques is an emerging field. Initial studies using deep
learning algorithms on gait data have laid the groundwork
for developing non-invasive, low-cost, and accurate methods
for early scoliosis detection [ 1]. These approaches promise to
revolutionize scoliosis screening and monitoring, especially
in settings with limited access to advanced medical imaging.
The AIS diagnostic landscape is undergoing a paradigm shift
with machine learning and neural networks. The convergence
of image processing and gait analysis through these advanced
models holds significant promise for developing novel diag-
nostic and monitoring tools. This shift has the potential to
improve patient outcomes and provide deeper insights into
the underlying mechanisms of AIS.
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Table 1 Statistical results of our datasets

Label Male Female Age (years, mean=std) Height (cm, mean=std) Weight (kg, mean=std)
Negative 4388 4025 13.79 £ 1.85 157.03 £11.32 46.11 £12.30

Critical 1751 2191 13.96 +1.49 158.28 +10.29 45.50 +10.36

Positive 555 1136 15.14 +£4.70 158.87 +9.90 45.31 £9.87

Due to changes in recording protocols and the extensive time span of the dataset, some data lack complete personal information. The above statistics

are based on 14,043 records that contain full individual details

3 Dataset
3.1 Overview of the dataset

To address scoliosis, we have curated a novel dataset com-
prising 31,463 cases from 36 schools and 5 hospitals, as
shown in Table 5. Data collection was approved by the
hospital ethics committee, with informed consent from par-
ticipants. We used Kinect cameras to capture parallel streams
of color and depth video at a 720p resolution. Each sample
consists of 300 frames recorded at 15 frames per second.

Professional doctors specializing in scoliosis meticulously
labeled these samples, ensuring precise dataset annotations.
Scoliosis severity was measured using the Cobb angle, a stan-
dardized metric reflecting spinal axial rotation and lateral
curvature. Following medical guidelines, the dataset was cat-
egorized into three classifications: *positive’ for Cobb angles
greater than 10 degrees, 'negative’ for angles less than 10
degrees, and ’critical’ for angles around the 10-degree thresh-
old. The dataset includes 3909 positive samples, 18,396
negative samples, and 9178 critical samples. To address the
lower prevalence of positive samples, participants with posi-
tive Cobb angles were asked to contribute additional samples,
ensuring a more balanced dataset for analysis.

The detailed sample distribution is presented in Table 1.
During the data collection process, we ensured a diverse and
representative sample by covering a wide range of demo-
graphic groups. The gait samples in the dataset encompass
various age groups, genders, as well as differences in height
and weight, reflecting the richness and diversity of the data.
This heterogeneous composition of samples is instrumental
in enhancing the model’s generalization ability in real-world
applications, thereby ensuring more robust and reliable per-
formance across different populations.

3.2 Setup

The site layout is illustrated in Fig. 1. To replicate a natural
gait, participants were instructed to walk within a range of
1.4 to 4.2 ms from the camera. This methodological approach
was designed to simulate a controlled yet natural walking
environment conducive to accurate biomechanical analysis.
The Kinect camera is positioned 1.3 ms above the ground,
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angled downward at 13 degrees from the horizontal plane.
The RGB camera has a field of view of 75° x 65°, while the
lidar camera has a field of view of 90° x 59°, both outputs
fixed at 1080p, 15 fps, and 300 frames.

Due to the Kinect camera’s lidar sensor sensitivity to light,
testing environments are typically required to be indoors
without direct sunlight on the subject. It’s also advisable
to avoid backlighting scenarios where the camera faces a
window directly. During detection, subjects should wear
tight-fitting or properly fitting clothing, as long skirts may
prevent the device from accurately recording gait informa-
tion. It is recommended that subjects avoid wearing black
clothing, as some black materials absorb light, potentially
leading to inaccurate detection data. Subjects should remove
hats to expose their ears and tie up their hair to reveal their
shoulders.

3.3 Preprocess

In preparation for further investigation, the dataset underwent
extensive preprocessing. Due to the Kinect’s lidar unit’s sen-
sitivity to sunlight and color, and to prevent inaccuracies in
gait recognition caused by clothing or environmental inter-
ference, we conducted a manual screening to exclude videos
with quality issues. Identified problems included direct sun-
light exposure, dark clothing that absorbs light, long skirts
or garments obscuring the legs, subjects being too close or
too far from the camera, and background disturbances from
other people. We present some typical examples of excluded
samples in Fig. 2. Given the lower quality of depth infor-
mation from the lidar, we optimized the depth values of key
points to address missing data issues that could compromise
quality.

To further enhance the dataset, we utilized Ground-
ingDINO [15] to accurately identify and extract participant
presence within video frames. Subsequently, SAMHQ [12]
was applied to segment the high-resolution color and depth
images into masked images without size constraints. This
process was crucial in isolating relevant anatomical features
from the surrounding environment, thereby enhancing data
quality and focus for analysis.
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Fig.2 Typical examples of excluded samples

4 Methodology

Our system architecture, illustrated in Fig. 3, presents a com-
prehensive scoliosis detection system. This system converts
video streams into a series of 3D skeleton coordinates to rep-
resent gait features, and then employs Graph Convolutional
Networks to thoroughly analyze gait patterns based on these
skeleton.

during training to reflect the optimal spatial dependencies
for action recognition. This module effectively processes the
anatomical constraints and dynamic connections inherent in
human movements.

The Temporal Convolution module employs a multi-scale
architecture to capture motion patterns across different time
spans. Through parallel branches with varying dilated convo-
lutions and pooling operations, it can simultaneously model
both short-term subtle movements and long-term action
dependencies. This design enables the module to be robust
against variations in action speed and temporal deformation.

The Spatial-Temporal Unit combines these two compo-
nents in a sequential manner, where spatial features are first
extracted from joint configurations, followed by temporal
feature extraction from the motion sequence. This unit is
augmented with residual connections and attention mech-
anisms, allowing for efficient gradient flow and selective
feature enhancement. The integration of spatial and tempo-
ral convolutions enables comprehensive modeling of both
structural and dynamic aspects of human actions.

The encoder architecture comprises 10 cascaded spatial-
temporal units, organized in a progressive manner. Starting
with 64 base channels, the encoder gradually expands its
capacity through three stages: The first stage (units 1-4)
maintains spatial and temporal dimensions while building
basic motion patterns; the second stage (units 5-7) dou-
bles the channel dimension to 128 with stride-2 temporal
downsampling; the final stage (units 8—10) further increases
channels to 256, capturing high-level action semantics. This
hierarchical design, processing from 3 input channels to 256
output channels, enables the encoder to construct a compre-
hensive feature pyramid, where early layers capture local
joint movements and deeper layers abstract complex action
patterns. The architecture is complemented by skip connec-

@ Springer



6828

Z.Pengetal.

Fig.3 Overall architecture
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tions and attention mechanisms, facilitating both fine-grained
motion details and global action understanding.

4.1 2D skeleton estimation

For the acquired gait dataset, it is essential to preprocess
the data into a format that is easily comprehensible for the
model. This involves minimizing noise and reducing factors
that might lead to model overfitting. In the context of sco-
liosis detection, we propose transforming RGB and depth
images, which often contain redundant information, into a
simplified skeletal point format. This approach facilitates the
identification of asymmetries and differences in stride fre-
quency and amplitude between the legs of scoliosis patients.
With the advent of the Vision Transformer (ViT) [4], various
ViT-based visual models have achieved remarkable success
across numerous application domains. Currently, ViTPose
[22] has become the state of the art in the field of keypoint
detection. We utilized a model fine-tuned with ViTPose on
the COCO-25 dataset as our 2D pose recognition model. This
model efficiently and accurately extracts human keypoints,
providing a reliable foundation for subsequent 3D skeleton
construction.

4.2 3D skeleton construction

To obtain 3D pose information in a single-view scenario,
we registered the detected 2D skeleton with the depth infor-
mation from the Kinect’s lidar camera. However, the lidar
camera is susceptible to interference from external light
sources, causing significant noise in the original depth data.
Direct usage can lead to convergence issues in the loss func-
tion during training.

We designed a correction module to correct contaminated
depth data and generate high-quality 3D skeleton data to
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address this issue. The input skeleton points form a sequen-
tially ordered two-dimensional series of 25 points.

P = {(x1, y1), (x2, ¥2), ..., (x25, ¥25)}, (D

Each point corresponds to a z values on the lidar image:

Z={z1,22,..., 25} 2

This module consists of multiple reference points and a
series of progressively larger filters. We performed a statis-
tical analysis to evaluate the accuracy of depth information
acquisition across 25 points. Among these, the seven points
with the highest accuracy—specifically the nose, chest, left
shoulder, right shoulder, left hip, right hip, and pelvis—were
chosen as reference points set R C P. These reference points
are utilized to establish the baseline range for the skeleton’s
Zref Values.

> . 3)

(xi,yi)€R

Filter sizes are applied sequentially from smallest to
largest on the lidar image at each point.

filter range € {1, 2,4, 9, 16, 25}, (@)

For each filter, compute the set of all points (x, y;) within
the neighborhood N; such that:

I (xiy yi) — (xj, y;)|l < filter range, &)

Then calculate the average value of points in the neighbor-
hood that have a difference from the reference value within
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Fig.4 Correction effect on depth noise. The blue skeleton represents the 3D joint positions before correction, while the red skeleton represents the

3D joint positions after correction

the threshold €:

Z- _ Z()Cj,yj)ENi,|Zj*Zref|<€ Z]
i = b
|{(Xj, y]) € N;, |Zj — Zref| < €}

(©)

Prioritize matching with smaller filter sizes to find the
smallest filter size that meets the conditions. Combine the
corrected z values with the original coordinates:

Py ={(xi,yi.z) |i=1,2,...,25}, (N
The correction effect on depth noise is illustrated in Fig. 4.
4.3 Scoliosis recognition

We employed a graph convolutional network as the back-
bone for our classification model. This model uses skeleton
sequences as input to enhance the detection and classi-
fication of scoliosis-related gait abnormalities. In recent
advancements in the field of graph neural networks, we have
developed a new version of our model that outperforms the
Hierarchical Dynamic Graph Convolutional Network [14].

Firstly, we have revised the aggregation function within
the GNN framework. The aggregation function plays a cru-
cial role in determining how information is collected from
neighboring nodes to update the feature representations
of the nodes in the graph. By optimizing this aggrega-
tion mechanism, our model can more effectively capture
complex dependencies and relationships between nodes.
This optimization allows for a richer representation of the
graph structure, leading to improved prediction accuracy and
robustness in various applications.

Secondly, in our model, we have improved an innovative
approach that automatically learns an adjacency matrix based
on the data itself. This automatic learning mechanism enables
the model to dynamically ascertain the optimal relationships
among nodes, eliminating the biases and inefficiencies asso-
ciated with predefined groupings.

Our GCN module implements biomechanical model-
ing of spinal motion asymmetry through a dynamically
learned adjacency matrix. The proposed hierarchical frame-
work employs a three-level decomposition architecture to
capture local vertebral motion, spinal segment dynamics,
and global spine—pelvis coordination patterns. Within this
structure, our dynamic adjacency matrix learning mecha-
nism quantifies asymmetric intervertebral coupling strength
through trainable feature transformation layers, where the
sigmoid-activated weights explicitly encode lateral biome-
chanical response disparities during specific movements.
To address asymmetric pathological patterns like scolio-
sis, we design directional-specific convolutional operators
that extract coronal-sagittal plane motion discrepancies,
integrated with an attention-based multi-level adjacency
fusion scheme. This configuration enables our model to
autonomously detect vertebral rotation offsets and lateral
bending deformations through learned kinematic representa-
tions, establishing an interpretable computational framework
for spinal motion analysis.

Mathematically, the relationship between the node feature
matrix X, the learned adjacency matrix A, and the updated
node features can be articulated through the following for-
mula:

B =0 (A HO . WO), ®)

In this equation, H®) denotes the feature representation
of the nodes at layer /, W) represents the learnable weight
matrix at that layer, and o is a nonlinear activation function
such as ReLLU. This formulation illustrates how our model
effectively aggregates features from neighboring nodes while
utilizing an adjacency matrix that is adaptively learned,
thereby enhancing the model’s capacity to represent intricate
node relationships within the graph.

Assume the skeleton data contain N joints; each joint’s
position at time 7 is given by X! € R?, where i is the joint
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index, and d is the feature dimension (commonly 3, such as
(x, v, z) coordinates).

The skeleton data are decomposed into K local substruc-
tures; each substructure contains Nj joints, where k is the
substructure index. Each local substructure k is represented
as a graph Gy = (Vx, &), where V is the set of nodes and &
is the set of edges. GCN is applied to each local substructure.
For the /-th layer of the GCN, the feature update formula for
local substructure k is:

172 —1/2

H/"Y = o, "*AD PH WD), )

where H,(f) is the node feature matrix at the /-th layer.
Ay is the adjacency matrix of local substructure k. Dy is
the diagonal matrix for normalization, defined as Dy =
diag(}_  Akij)- W,((l) is the weight matrix for the /-th layer.
o is the activation function, such as ReLLU.

All local substructures’ graphs are integrated to form a
global skeleton graph G = (V, £), where V is the set of all
joints and & is the set of edges in the global skeleton. GCN is
applied to the global skeleton graph to extract overall spatial
features. The global feature update formula is:

H'D = o(D712AD2ZHO WD), (10)

where A is the adjacency matrix of the global skeleton
graph.

Then temporal convolution is introduced to capture
dynamic changes in actions. Let H; be the feature matrix
at time ¢, then the temporal convolution operation is defined
as:

T
H =Y H W, (1
7=—T

where T is the size of the temporal convolution window.
W is the weight matrix of the temporal convolution kernel.

Temporal features are combined with spatial features to
form the final spatiotemporal feature representation:

H™! = Concat(HY, H), (12)
where H is the output feature of the last GCN layer,

and H, is the feature after temporal convolution.

5 Experiment

5.1 Setup

Due to the sensitivity of lidar sensors to lighting conditions,
clothing color, and material, as well as frequent deviations
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Fig.5 Confusion matrix of result

from the data collection standards in the scenarios and sub-
jects, we conducted a comprehensive data cleaning process
prior to the experiments. We retained 13,856 data points that
exhibited minimal interference, accurate collection ranges,
suitable lighting conditions, and adherence to the standard
collection protocols. Among these, there were 6744 negative
samples, 4024 critical samples, and 3088 positive samples.
Subsequently, we divided the dataset into training and testing
sets at a ratio of 4:1 (see Table 2).

To minimize interference from frequent turning and mov-
ing out of the effective recording range during the subjects’
back-and-forth walking, we retained only the parts where the
subjects walked toward and away from the camera. Sections
involving turning near or far from the camera were removed.

The training hyperparameters are set as follows: the batch
size is 64, the optimizer is Lamb, the initial learning rate is
0.001 with a minimum of 0.0001, and 200 iterations were
conducted on the dataset.

5.2 Result

The experimental results are presented in Fig. 5, where we
compare our results with traditional scoliosis screening meth-
ods and STGCN [24]. The comparative data are provided in
Table 3.

Traditional screening methods for scoliosis generally
include the Forward Bending Test (FBT), Scoliometer (S),
and Moiré topography screening (M). The combination of
multiple screening methods can enhance the accuracy of sco-
liosis detection. The team from Rochester [26] employed
a combined approach of FBT and Scoliometer. In contrast,
the Hong Kong team [6, 13, 16] adopted a more complex
method that integrates FBT, Scoliometer, and Moiré topog-
raphy screening, achieving commendable results. The Greek
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Table 3 Comparison results

Method Screening test Accuracy Sensitivity Specificity

Rochester [26] FBT+S - 71.1% (54.1-84.6) 97.1% (96.3—97.7)

Hong Kong [6, 13, 16] FBT+S+M - 93.8% (93.3—94.3) 99.2%(99.2—99.2)

Greece [11] FBT - 84.4% (67.2—94.7) 95.2% (94.3—95.9)
S - 90.6% (75.0—98.0) 80.7% (79.1—82.1)
M - 100.0% (84.2-100) 85.4% (84.0—86.7)

STGCN [24] - 53.8% 51.1% 75.9%

This work - 80.1% 74.9% 95.9%

This work (Binary) - 85.8% 82.9% 88.7%

team [11], on the other hand, conducted individual assess-
ments to evaluate the efficacy of each method.

We also presented the testing results of the STGCN model
on the scoliosis dataset. The training was conducted over
200 epochs with a batch size of 64 and a learning rate of
0.001. It is important to note that the STGCN exhibited a
severe overfitting phenomenon on this dataset. The model
achieved a maximum accuracy of 97.8% on the training set,
but its performance on the test set was significantly lower,
with an accuracy of only 53.8%. In fact, overfitting appears
to be a widespread issue in our dataset, particularly when the
training data does not include location-specific information.
We also discussed this problem in the discussion section.

The results demonstrate that our purely visual and non-
invasive rapid screening model for scoliosis has achieved a
level of effectiveness comparable to that of traditional mea-
surement instruments used by experts. In certain evaluation
criteria, particularly when experts rely on a single instrument
for detection, our model has even surpassed the performance
of conventional screening methods.

It is worth noting that Hong Kong’s screening program [6]
has achieved a high level of specificity. This is mainly due
to its design as a long-term screening initiative conducted
every two years until students reach the age of 19. The pro-
gram incorporates a two-tier screening system along with
radiographic diagnosis. In the first stage, students undergo
screening at community clinics using FBT, and their trunk
rotation angle (ATR) is measured. Students with an ATR
between 5° and 15° are further evaluated using moiré topog-
raphy. If there are two or more moiré lines that differ between
the left and right sides of the back, or if clinical signs of obvi-
ous spinal deformity are present, these students are referred
for radiographic diagnosis. Students with an ATR of 15° or
higher are directly referred to a specialist hospital for radio-
graphic assessment.

In Fig. 6, we visualized the features to illustrate the focus
of our model. We applied regularization to the feature layer
outputs and represented the model’s attention to specific
points using the size of the halo surrounding each point.
Our observations indicate that the chest and foot regions are

Positive

Critical

Negative

Fig.6 Feature visualization of positive, critical and negative samples

the areas of greatest interest for the model. The chest region
serves as a marker for the body’s symmetry center, especially
in cases of positive scoliosis, where a significant lateral tilt
of the chest occurs, affecting the skeletal symmetry of the
body. During walking, we observed that the model’s atten-
tion alternates between the two supporting feet, reflecting its
focus on the force-bearing foot at each phase of gait.
Furthermore, we investigated the results of binary classi-
fication. We combined the positive data with critical data to
create a new positive dataset. This new dataset is more bal-
anced, comprising 6744 negative samples and 7112 positive
samples. We utilized this new dataset for binary classification
training, with the results presented in Fig. 7 and compared
in Table 3. Our findings indicate that the more balanced
binary classification training led to a noticeable increase in
the overall accuracy of the model, while the disparity between
sensitivity and specificity was significantly reduced.
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- 800
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Fig.7 Binary classification result

Group4

Groupl Group2 Group3

Fig. 8 Grouping strategies. Group 1 includes the left and right hips,
middle hip, left and right knees, and left and right ankles. Group 2
includes the left and right hips, middle hip, left and right knees, left and
right shoulders, and the chest. Group 3 combines all points from Group
1 and Group 2. Group 4 includes all points from Group 1 and left and
right elbows

6 Discussion
6.1 Grouping strategy

Gait asymmetry in patients with scoliosis is a key characteris-
tic identified through gait analysis for recognizing scoliosis.
We also explored manually designed grouping features to
identify skeletal points that significantly influence classifi-
cation accuracy in the task of recognizing scoliosis. To this
end, we further investigated the effects of different group-
ing strategies on the model, as depicted in Fig. 8, with the
experimental results presented in Table 4.

The experimental results are consistent with those observed
in feature visualization. The key factors influencing the
model’s classification are the points at the chest location and
the footpoints. We believe that the model captures gait sym-
metry and upper-body tilt by analyzing the temporal changes
in the central chest point and the points on both legs. This
aligns with our prior understanding that gait asymmetry is a
typical characteristic in scoliosis patients during walking.

@ Springer

Table4 Grouping strategy experiment result

Group Accuracy (%) Sensitivity (%) Specificity (%)
Groupl 65.4 50.0 90.9
Group2 69.0 64.3 77.0
Group3 71.8 79.8 58.6
Group4 58.1 355 95.8

An interesting phenomenon, as shown in Group 4, is that
the points on the arms in the feature visualization are not
the primary factors affecting the model’s decision. However,
when arm points are included in the grouping, there is a
significant negative impact on the model’s sensitivity. This
may be because the irregular swinging of the arms introduces
noise or distracting information, interfering with the model’s
ability to accurately discern relevant gait features.

6.2 Overfitting

Enhancing the model’s generalization capability is a chal-
lenging aspect of this work. Although iterating multiple times
on small samples can easily yield high accuracy, it often leads
to significant overfitting. According to our experiments, the
model typically starts to overfit before reaching 200 epochs.
To address this, we employed several strategies, including
increasing data volume, refining model optimization, and
adjusting hyperparameters. Additionally, we utilized data
augmentation techniques such as Rotation, Shear, Frame
Reversal, Gaussian Noise, and Subsampling. We also incor-
porated dropout and normalized the data to a 0—1 range to
help reduce overfitting and improve the model’s generaliza-
tion performance. Despite these efforts, further refinement is
still needed to enhance the model’s ability to generalize to
new data scenarios. We believe there is significant potential
for exploration in this field.

7 Conclusion

In conclusion, our study demonstrates the potential of gait
analysis as a reliable and scalable method for scoliosis
screening, particularly suitable for large-scale settings such
as school screening programs. The proposed deep learning
approach enables rapid, non-invasive detection of scoliosis,
making it a practical tool for early intervention. Additionally,
by establishing a large, meticulously annotated gait dataset,
we provide a valuable resource to support future research
and development in this field. Looking ahead, integrating this
methodology with common household devices such as home
cameras can facilitate real-time, remote monitoring of spinal
health, allowing for early detection of scoliosis risk outside
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Table 5 The composition of locations in the complete dataset, with
location names represented by their pinyin abbreviations as explained
above

Location Positive Negative Critical
CTZX 5 81 113
CTZXXX 0 61 60
DHXX 25 0 90
DJZX 58 3272 1046
DIZXGS 7 15
DTDEXX 0 0 60
DTDYXX 3 0 74
DTZX 18 0 264
DTZXXX 4 0 86
DYCWXX 64 2579 1235
DYDEXX 0 749 142
DYDSXX 6 336 36
DYDSXX3 17 1360 264
DYDWXX 214 590 0
DYDYXX 296 1573 550
DYGIZX 78 1760 334
DYSYZX 727 1987 1540
DYZX 1078 1797 1774
HCZX 5 164 110
HCZXXX 0 84 46
HTZX 5 0 75
HTZXXX 0 0 69
KHZXXX 0 0 171
LCZX 0 96 45
LHZX 0 116 57
LKZX 19 37 39
MDCXX 0 326 0
SDTAYY 55 0 0
SJZX 0 114 21
STZX 0 103 39
SUSTECH11 66 133 178
SZDXZYY 626 0 0
SZETYY 157 810 41
SZLGYY 289 0 161
SZRMYY 61 30 8
XGZXXX 5 13 51
XTXX 5 0 114
XTZX 15 0 144
XXW 5 0 0
YHZX 0 125 48
YTZX 0 88 78

clinical settings. This approach could significantly expand
the accessibility and convenience of scoliosis screening, pro-
moting timely medical attention and improving outcomes
across diverse populations.

A Composition of the full dataset
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