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HF-free synthesis of high-entropy MXene-PVA composite film and its 
flexible nanogenerator 
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ABSTRACT MXene exhibits notable piezoelectric proper
ties, making it a promising material for high-performance 
piezoelectric nanogenerators (PENGs) in next-generation 
smart wearable devices and bioelectronics. However, current 
MXene-based PENGs face challenges such as insufficient me
chanical robustness, low piezoelectric response, and limited 
long-term functionality. These limitations primarily stem 
from the small effective area and low strain levels of MXene 
nanosheets. Here, we constructed a high-entropy TiVCr
MoC 3T x MXene composite film by leveraging strong hydrogen 
bonding interactions between MXene and polyvinyl alcohol 
(PVA), which was further developed into a self-powered flex
ible nanogenerator. The resulting device exhibited a sig
nificant piezoresponse with output signals of 500 mV and 
790 pA under a compressive force of 3.47 N, along with con
siderable long-term functionality over 1500 cycles. Moreover, 
a hydrofluoric-free etching approach was employed to syn
thesize the high-entropy MXene nanosheets, which ensures the 
safety and biocompatibility for bioelectronics applications. 
This work highlights the potential of high-entropy MXene for 
sustainable applications in wearable electronics and energy 
harvesting. 
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INTRODUCTION 
MXene, a class of two-dimensional materials, has emerged as a 
versatile material with a plethora of exceptional characteristics, 
including vast surface area, excellent catalytic performance, 
impressive mechanical properties, high tunability, and notable 
piezoelectric sensitivity [1–5]. These attributes have propelled 
MXene into the spotlight across diverse applications, such as 
catalysis, sensing technologies, and energy devices [6–8]. Nota
bly, MXene exhibits strong piezoelectric properties due to the 
non-centrosymmetric lattice from the multi-atomic lattice 
structure and tunable functional groups, enabling to practical 
applications in flexible nanogenerators [5,9–12]. 

Recently, high-entropy MXenes incorporating multiple tran
sition metallic elements have garnered attention for their 
superior physiochemical properties compared to their conven
tional counterparts [13–15]. The asymmetric interlayer segre
gation of atoms in high-entropy MXenes underscores their 
unique electrical behavior, which is crucial for their piezoelectric 

characteristics [15]. While conventional hydrofluoric acid (HF) 
etching remains a common method for layered MXene synthesis 
due to its efficient delamination and high yields, concerns persist 
regarding safety and environmental impact owing to its corro
siveness and toxicity. Alternatively, HF-free etching routes, such 
as alkali etching, molten salt etching, and electrochemically 
etching, offer safer approaches for MXene production [8,16,17]. 
Despite these advancements, achieving piezotronic applications 
for MXene nanosheets remains challenging due to size limita
tions and low strain levels. To address this, MXene nanosheets 
can be engineered into self-supporting thin films through facile 
methods like vacuum filtration, which could consolidate the 
exceptional properties of individual MXene nanosheets and 
enable to their development in large-scale and array-based 
applications [18]. However, their inherent random stacking 
would undermine stability and strain tolerance under external 
conditions like mechanical stress, thereby hindering their prac
tical applicability [19]. The MXene films, capable of preserving 
structural integrity and performance stability, are highly desir
able. One effective strategy involves the integration of polymers 
into MXene matrices through robust interactions, leveraging 
dynamic covalent or non-covalent bonds to tailor the physical 
and chemical properties of layered materials and developing 
adaptable composite thin films suitable for flexible sensing 
applications. Polyvinyl alcohol (PVA) serves as the matrix 
material in piezoelectric composite structures, providing a flex
ible base for embedding functional nanomaterials. Furthermore, 
by enhancing the mechanical properties of the composite films, 
PVA strengthens them against mechanical stress and deforma
tion, thereby playing a crucial role for preserving the structural 
integrity of the nanogenerators during device operation [20]. 

Based on this strategy, this work proposes the utilization of 
PVA as a polymer linker to establish strong interactions through 
hydrogen bonding with high-entropy MXene nanosheets. This 
approach effectively engineers a composite film characterized by 
high chemical stability and good biocompatibility [20]. Here, the 
high-entropy MXene TiVCrMoC 3T x nanosheets were synthe
sized by a thermal-assisted electrochemical HF-free etching 
approach, which is safe and facile to achieve environmentally 
friendly synthesis [8]. Moreover, TiVCrMoC 3T x nanosheets with 
a non-centrosymmetric structure could contribute to a robust 
piezoelectric response [14,15]. Meanwhile, the MXene-PVA 
composite films exhibited favorable mechanical properties, 
making them promising for applications in smart and wearable 
electronics. Therefore, by bridging the gap for stable and flexible 
piezoelectric nanomaterials adaptable to mechanical deforma
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tion, MXene-PVA composite films were further developed into 
piezoelectric nanogenerators (MXene/PVA-PENGs). Notably, 
the MXene/PVA-PENG device exhibited significant piezo
response signals (500 mV and 790 pA) at 3.47 N compressive 
force, surpassing previously reported MXene nanosheet-based 
devices [5,9]. Furthermore, this flexible nanogenerator demon
strated long-term functionality over 1500 cycles, showcasing 
high stability and capability. These results highlight the immense 
potential of high-entropy MXene nanosheets for applications in 
energy harvesting and healthcare electronic systems. 

EXPERIMENTAL SECTION 

Synthesis of TiVCrMoC 3T x nanosheets 
The high-entropy MXene TiVCrMoC 3T x nanosheets were syn
thesized using a thermal-assisted electrochemical HF-free etch
ing approach. Prior to the synthesis process, carbon fiber cloths 
(W0S1002, CeTech) were deeply cleaned in acetone and ethanol 
through sonication to eliminate any organic contaminants on 
the surface. Subsequently, the clothes underwent surface mod
ification with HNO 3 (63 wt.% %, Sigma) for 6 h at 125 °C under 
reflux conditions, followed by neutralization with a 1 M NaOH 
solution. Then the clothes were rinsed thrice with deionized 
water and dried at 60 °C in an oven. The MAX precursor 
(TiVCrMoAlC 3, >99%, Laizhou Kai Ceramic Material Co., Ltd.) 
was initially blended with carbon black in a 95:5 ratio, dispersed 
in 1% PVA as an adhesion agent to create a composite electrode, 
and uniformly applied onto the carbon fiber cloths. The etching 
process was carried out at an etching voltage of 1 V and a 
temperature of 55 °C in a dilute HCl electrolyte to enhance 
etching efficiency and yield. The process could be described as 
follows: 
TiVCrMoAlC 3 + yCl−+ (2x + z)H 2O → TiVCrMOC 3 
(OH) 2xCl yO z + Al3+ + (x + z)H 2 + (y + 3)e−.                   (1) 

Since the MXene sheets are stacked together by van der Waals 
forces, delamination is essential to increase the yield of TiVCr
MOC 3T x nanosheets. This involves intercalating the sheets with 
tetrabutylammonium hydroxide (TBAOH) solvent, followed by 
sonication. After adding TBAOH to the TiVCrMoC 3T x sus
pension, the mixture is stirred at room temperature for 24 h and 
then subjected to bath sonication for 3 h. Following sonication, 
the treated TiVCrMoC 3T x MXene is centrifuged at 3500 r/min 
for 15 min to collect the suspension of nanosheets. 

Preparation of MXene-PVA composite film 
After the synthesis of high-entropy MXene nanosheets, the 
MXene-PVA composite film was also prepared as follows. The 
initial step involved mixing the as-prepared 5 mg/mL high- 
entropy MXene solution thoroughly with a 10% PVA aqueous 
solution in a 1:1 ratio, ensuring complete homogenization. This 
mixture was then carefully poured into a mold and left to dry 
overnight, resulting in the formation of a uniform composite 
film. After drying, the composite film was peeled off and sub
sequently integrated into a piezoelectric nanogenerator device 
connected to conductive Ni electrodes. The thickness of the 
composite film was measured to be approximately 400 μm. 

Characterizations and device measurements 
As for material characterization, the X-ray diffraction (XRD) 
patterns of the high-entropy MXene were acquired using the 
Rigaku SmartLab 9kW-Advance instrument. For morphological 

analysis, the high-entropy MXene nanosheets were examined 
through scanning electron microscopy (SEM, Zeiss Merlin), 
transmission electron microscopy (TEM, JEOL JEM-2100F) and 
atomic force microscopy (AFM, Asylum MFP-3D Infinity), 
respectively. Raman spectroscopy was conducted with a micro
Raman spectrometer (Witec alpha300 R) equipped with a Zeiss 
EC Epiplan 50× objective lens, employing an excitation wave
length of 532 nm and a laser power of 2 mW to investigate the 
structural characteristics of the material. The mechanical prop
erty of the MXene-PVA composite film was investigated via a 
dynamic mechanical analyzer (Tensile mode, Mettler Toledo 
DMA1). The electric polarization-electric field (P-E) loops were 
measured via Premier II Ferroelectric Tester. The dielectric 
properties were recorded by an impedance analyzer (Keysight/ 
Agilent 4294A Precision Impedance Analyzer). Before the elec
trical measurements, the samples were coated with 50 nm gold 
electrodes via e-beam evaporation. To evaluate device perfor
mance, an oscillator (LeCroy WaveSurfer 62Xs) and a low-noise 
current preamplifier (Stanford Research Systems Model SR570) 
were utilized. The output performance measurements were 
carried out under periodic compressive strains applied by a 
linear motor. 

RESULTS AND DISCUSSION 
The atomic structure of TiVCrMoC 3T x MXene nanosheets is 
demonstrated in Fig. 1a. Four layers of transition metal atoms 
sandwiched between carbon layers, while the outer metal layers 
are bonded to functional groups (T x, such as –O, –OH and –Cl) 
[13]. These outermost metal atoms form active bonds with 
functional groups, whose asymmetric distribution breaks the 
inversion symmetry of the crystal structure [5,13]. Here, the 
layered TiVCrMoC 3T x MXene nanosheets were synthesized by 
the thermal-assisted electrochemical HF-free etching approach, 
and the delamination of layered MXene nanosheets by etching 
the Al layers from the MAX precursor is first investigated. 
According to the XRD patterns (supplementary material, Fig. 
S1a), the peaks of TiVCrMoC 3T x match well with the previously- 
reported results [13]. The (00l) peaks of TiVCrMoC 3T x shift to 
the left, while no obvious Al-Mo peaks appear in TiVCrMoC 3T x, 
indicating the effective delamination from the MAX phase. In 
the Raman spectra (supplementary material, Fig. S1b), the 
increase and red shift of characteristic peaks (near 200 and 
700 cm−1) of the resulting TiVCrMoC 3T x nanosheets confirms 
the removal of Al layers from their parent MAX phase [21–26]. 
Besides, the broad peaks located in the range of 1200–1700 cm−1 

are attributed to the D and G bands of carbon [27,28]. These 
results confirm the effective removal of Al layers from the MAX 
phase and the successful formation of MXene nanosheets. It is 
important to note that our synthetic approach intentionally 
produces multilayered MXene structures rather than focusing on 
monolayer exfoliation, as multilayered MXene is more suitable 
for our target application, as it is mixed with polymer. TEM and 
AFM results (Supplementary material, Figs S2 and S3) confirm 
the successful preparation of these multilayered structures with 
thicknesses appropriate for the electromechanical applications 
described in this work. Besides, a comparative table summarizes 
key parameters of various HF-free MXene synthesis approaches, 
as shown in Table S1. Operating at mild temperatures 
(25–80 °C) with diluted HCl in ambient air, our approach offers 
significant advantages in safety and simplicity compared to high- 
temperature methods requiring inert atmospheres. With rea
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sonable yield and simple equipment requirements, this synthesis 
method strikes a good balance between accessibility, safety, and 
environmental sustainability while expanding the range of 
achievable MXene compositions. In addition, the fluorine-free 
MXenes exhibit markedly improved biocompatibility, showing 
negligible cytotoxicity compared to fluorinated MXenes showing 
significant cytotoxic effects due to fluoride ion release during 
oxidative degradation [29,30]. 

In order to achieve large-scale MXene thin films with high 
stability and good mechanical properties for practical applica
tions, the PVA with flexibility, natural compatibility, and 
degradability is used as the matrix material in composite 
structures, providing a flexible and durable matrix for embed
ding functional materials [31]. Besides, PVA can also improve 
the mechanical properties of the composite, making it more 
robust to mechanical stress and deformation, which is important 
for maintaining the structural integrity of the nanogenerators 
during operation. The –OH on PVA chains could guide MXene 
nanosheets to self-assemble stacking with strong hydrogen 
bonding [20,31]. As shown in Fig. 1b, the PVA was employed as 
a cross-linker to form a network with high-entropy MXene, 
showing the intermolecular interaction in the strong hydrogen 
bonding. The mechanical properties were measured by a 
dynamic mechanical analyzer, as shown in Supplementary 
material, Fig. S2. From the stress-strain curve (Supplementary 
material, Fig. S4), it could be obtained that the Young’s modulus 
of 40 μm-thick MXene-PVA thin film is 2 GPa, while the 
Young’s modulus of pure PVA film is 1 GPa. This mechanical 
strength improvement is attributed to strong hydrogen bonding 
between MXene sheets and PVA chains, suggesting that good 

mechanical strength of the MXene-PVA composite film for 
practical applications. 

After confirmation of the delamination of layered MXene 
nanosheets and the interaction of MXene and PVA, we further 
investigate the characterization of the high-entropy MXene-PVA 
composite film. Compared to the XRD pattern of pristine high- 
entropy MXene, the (002) peak of MXene-PVA composite film 
shifts toward lower angles, suggesting the increase of d-spacing 
[32], as shown in Fig. 1c. This change is attributed to the strong 
interaction between MXene and PVA, with the formation of 
hydrogen bonding. From Fig. 1d, three major Raman peaks 
correspond to Ti–C vibrations [33,34]. Besides, compared to the 
pristine materials, the Raman response of the MXene-PVA 
composite film decreases and is blue-shifted due to the strong 
interaction of PVA chains. Furthermore, the SEM images offered 
detailed insights into the morphology of MXene nanosheets 
(Fig. 1f), showing uniform and layered nanosheets with accor
dion-like texture after etching from the bulk MAX precursor, 
showing smooth surfaces without any delamination (Fig. 1e). 
These characterizations emphasize the good quality of the 
layered MXene nanosheets and the MXene-PVA composite film, 
promising for a wide range of advanced technological applica
tions. Moreover, the P-E loop and dielectric properties were also 
performed to evaluate the electrical properties, as shown in 
Supplementary material, Figs S5 and S6. The transition from 
lossy capacitor behavior (pure PVA) to resistor-like behavior 
(MXene-PVA composite) in P-E loop measurements suggests 
increased conductivity and interfacial polarization in MXene- 
PVA composite film, which can facilitate piezoelectric charge 
generation. The introduction of MXene into the PVA matrix 

Figure 1 Structure and characterization of TiVCrMoAlC 3 MAX precursor, the resulting TiVCrMoC 3T x layered MXene nanosheets and MXene-PVA 
composite film. (a) Atomic structure of a single TiVCrMoC 3T x nanosheet. (b) The schematic illustration of the MXene-PVA composite film with cross-linked 
structures. (c) XRD patterns. (d) Raman spectra. (e, f) SEM images of TiVCrMoAlC 3 MAX (scale bar: 2 μm) and TiVCrMoC 3T x MXene (scale bar: 200 nm).  
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slightly increases the dielectric constant, indicating enhanced 
polarization capability, which is favorable for piezoelectric per
formance. With increasing frequency, the dielectric loss of the 
MXene-PVA composite film initially decreased and subse
quently increased. This reduction in dielectric loss at low fre
quencies can be attributed to the rapid decrease in interfacial 
leakage current, which results from the attenuation of interfacial 
polarization between PVA and MXene. And the slight increase 
in dielectric loss at higher frequencies results from the hysteresis 
associated with dipole orientation within the polymer matrix 
[33,35]. Besides, the low leakage current at pico-ampere level 
prevents the loss of generated polarization charges and ensures 
that the output signals are both detectable and reliable. More
over, the MXene-PVA composite film also demonstrates the 
enhanced biocompatibility and scalability, endowing the func
tionality for practical applications [29,30]. 

The MXene-PVA composite film was further developed into a 
flexible piezoelectric nanogenerator. The experimental setup for 
output performance testing is illustrated in Fig. 2a. The MXene- 
PVA composite film was first connected to Ni electrodes (the 
inset of Fig. 2a), and then attached to the sample stage. A period 
compressive force driven by a linear motor would be applied to 
the MXene/PVA-PENG device. To exclude the influence of the 
triboelectric effect on the observed piezoelectric behavior of the 
MXene-PVA composite, a series of carefully controlled experi
ments were conducted. The electrodes were kept in firm contact 
with the film to minimize surface friction, and the mechanical 
deformation was applied via uniaxial compression, thus avoiding 
relative sliding between the film and electrodes. The output 
performance testing was performed without conventional poling 
procedures due to the piezoelectric behavior of TiVCrMoC 3T x. 
and the interfacial interactions between MXene and polymer 
[5,9,36]. 

The high-entropy configuration in TiVCrMoC 3T x MXene 
introduces a diverse distribution of metal elements, leading to 

lattice distortions and symmetry breaking. In high-entropy 
materials, the multi-atomic distortions (i) stabilize single-phase 
structures, (ii) amplify local symmetry breaking and polar dis
placement, (iii) soften elastic moduli to boost electromechanical 
coupling, and (iv) enrich domain structures and facilitate 
polarization rotation [37]. Similar behavior has been observed in 
other high-entropy materials (such as high-entropy perovskites 
and Mo 1−xW xS 2) [38,39], where compositional complexity con
tributes to enhanced functional properties. To analyze the pie
zoelectric behavior of high-entropy TiVCrMoC 3T x MXene, the 
polarization charge generation process under the external stress 
is illustrated in Fig. 3. The TiVCrMoC 3T x monolayer exhibits a 
hexagonal lattice formed by four metal elements (Ti, V, Cr, and 
Mo) and C atoms, terminated by surface functional groups 
(Fig. 3a) [13]. The multi-atomic structure and the asymmetric 
functional groups could induce the inversion symmetry breaking 
in the crystal structure [9,40,41]. At the original state, the electric 
dipole moments (P 1, P 2, P 3) in the metal-T x hexagonal structure 
unit cancel each other (P 1 + P 2 + P 3 = 0, left inset of Fig. 3b). 
Upon strain applied (right inset of Fig. 3b), increased P 1 and 
reduced P 2 and P 3 shift the charge centers, thus positive and 
negative ionic polarization charges would be accumulated 
accordingly, creating directional piezoelectric field. Similarly, 
metal-C bond stretching disrupts the equilibrium of dipole 
moments (P 4, P 5 and P 6), producing secondary polarization, 
though its contribution to piezoelectricity is minor compared to 
the dominant metal-T x bond (Fig. 3c). The primary piezoelectric 
response arises from the non-centrosymmetric lattice distortion 
induced by terminal functional groups and the asymmetric 
multi-atomic structure [5,15]. Given its repeating metal-T x and 
metal-C units and the asymmetric metallic atom distribution, 
the TiVCrMoC 3T x MXene exhibits piezoelectricity under 
mechanical deformation. Moreover, while the outer metal layers 
in TiVCrMoC 3T x exhibit various segregation tendencies, a dis
tinct asymmetric interlayer atom segregation could be observed 

Figure 2 (a) Experimental setup for output performance testing. Inset: the MXene/PVA-PENG device and the MXene-PVA composite film. Inset: flexible 
MXene-PVA composite film. (b) Schematic illustration for the energy conversion process in MXene/PVA PENG. (i) Initial state, (ii) compressed state and 
(iii) released state.  
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within TiVCrMoC 3T x [15]. This asymmetric behavior may affect 
the polarization and charge separation processes in TiVCr
MoC 3T x, revealing its ability to generate piezoelectric charges 
and respond to electric fields or mechanical stimuli. 

Fig. 2b illustrates the fundamental principle of converting 
mechanical energy into electrical energy in the MXene/PVA- 
PENG. At the initial state (i), the charges in the nanogenerator 
are maintained at an equilibrium state. As a compressive force is 
applied to the device (ii), the opposite positive and negative 
charges in the MXene/PVA-PENG will go towards the electrodes 
respectively in response to the mechanical stimulus, which is 
attributed to a polarization effect from the composite film. This 
charge separation leads to an electric field in the internal circuit, 
and then it will be transferred as the positive output signals (self- 
powered output). Once the force is released (iii), the charges 
flow back, and the negative output signals can be obtained. 
Therefore, the mechanical energy could be successfully con
verted into electrical energy in this MXene/PVA-PENG. The 
whole process could work without the supply of external elec
trical fields, which confirms the self-powered capability. Besides, 
the interfacial polarization at the heterogeneous boundaries 
between MXene nanosheets and the PVA matrix creates loca
lized electric fields under mechanical stress. These fields facil
itate the realignment of dipoles within both the polymer chains 
and the surface functional groups of MXene, thereby amplifying 
the strain-induced polarization. The mechanically induced 
alignment of dipoles in the PVA and at the MXene surfaces, 
facilitated by interfacial polarization, results in an efficient and 
coordinated polarization response [20,35]. Although the 
MXene-PVA composite film does not exhibit ferroelectric 
characteristics, its notable piezoelectric response can be attrib
uted to interfacial polarization at the MXene/PVA interface, the 
high-entropy effects, the presence of functional groups on 
MXene nanosheets, and strain-induced dipole alignment within 
the polymer matrix. These synergistic effects collectively con
tribute to the observed piezoelectric behavior in the MXene/ 
PVA composite [5,42]. 

The output performance of the MXene/PVA-PENG is 
demonstrated in Fig. 4. The output voltage and current signals of 
MXene/PVA-PENG were 500 mV and 790 pA at 3.47 N com

pressive force, respectively (Fig. 4a, b). It is evident that a 
positive output piezoresponse is generated under the applied 
compressive strain. Upon removing the strain from the device, 
the output voltage and current exhibit corresponding shifts 
towards negative values. The output signals exhibit an increase 
with the applied force ranging from 1.96 to 3.47 N (Fig. 4c, d). 
Compared to previously reported MXene-based PENGs [5,9] (as 
shown in Supplementary material, Table S2), the MXene/PVA- 
PENG delivers a significantly higher output voltage while 
maintaining a comparable output current. Although the power 
density appears lower due to the relatively larger device size, the 
high voltage output demonstrates the enhanced piezoelectric 
response of our device. These results highlight the great potential 
of the MXene/PVA-PENG for future applications in high-sen
sitivity self-powered sensors and mechanical energy harvesting. 
Moreover, the peak output current remains stable over 1500 
cycles at 1.96 N force (Fig. 4e, f), affirming the good mechanical 
durability of the high-quality MXene/PVA-PENG, enabling their 
practical use in wearable electronics and self-powered sensors. 
The voltage and current under different load resistances were 
also measured to observe how the PENG responds to varying 
external loads, as shown in Fig. 5a–c. The voltage increased with 
the increasing load resistors, while the current signals were 
opposite. The output power obtained from multiplying the 
voltage and current could reach up to 110.76 pW, allowing for 
practical applications for low-power systems. The polarity of the 
output signal was found to reverse with the direction of applied 
strain, consistent with the characteristics of piezoelectricity 
rather than triboelectricity (Supplementary material, Fig. S7). 
Additionally, control experiments using pristine PVA further 
verified that the output signal originated from the MXene-PVA 
composite itself (Supplementary material, Fig. S8). These results 
collectively confirm that the measured signals are predominantly 
due to the piezoelectric response of the MXene/PVA composite 
film, rather than triboelectric artifacts. 

We also compare diverse approaches to flexible energy har
vesting, with MXene-based materials emerging as particularly 
promising for nanogenerators. This MXene-PVA composite film 
performed well by addressing key limitations: its high-entropy 
TiVCrMoC 3T x MXene, synthesized via feasible HF-free etching, 

Figure 3 The generation of piezoelectric field in TiVCrMoC 3T x by an external strain. (a) Top view of TiVCrMoC 3T x structure. (b) Simplified metal-T x 

hexagonal structure. (c) Metal-C hexagonal structure.  
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exhibits a robust piezoelectric response (500 mV, 790 pA at 
3.47 N) due to asymmetric lattice structure and hydrogen 
bonding with PVA, which enhances mechanical flexibility 
(1500-cycle durability) and biocompatibility. Unlike thermo
electric, it operates independently of temperature gradients [43]; 
compared to TENGs, it avoids crosstalk and humidity issues 
[44]; and relative to P(VDF-TrFE) (PVDF)-based systems, it 

delivers higher output signals [45,46]. The synergy of high pie
zoresponse, environmental resilience, and biocompatibility in 
MXene-PVA composite film positions it as a good candidate for 
wearable and biomedical PENGs. On these bases, the flexible 
nanogenerators based on high-entropy MXene-PVA composite 
demonstrated their potential in energy harvesting and nanode
vice powering. 

Figure 4 The output performance of MXene/PVA-PENG. (a, b) The output current and voltage signals obtained at 3.47 N compressive force. (c, d) The 
output signals obtained at different forces. (e, f) Cyclic durability test for 1500 cycles at 1.96 N and its corresponding enlarged image from the green box.  

Figure 5 Output performance of MXene/PVA-PENG under different external load resistance and output signals of self-powered sensor based on MXene- 
PVA composite film. (a) Open-circuit voltages. (b) Short-circuit currents. (c) Output powers. (d) Finger motion monitoring while bending and releasing. 
(e, f) The corresponding output current and voltage signals obtained from finger motion.  
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Based on the well-performed piezoelectric outputs, the flexible 
MXene/PVA-PENG was further integrated onto the finger to 
function as a self-powered motion monitoring sensor. Upon 
bending and releasing the finger, distinct positive and negative 
output signals were generated and collected (Fig. 5d). Notably, 
these signals were recorded in the absence of any external bias, 
confirming the device’s self-powered operation. The measured 
current and voltage output (Fig. 5e, f) reached approximately 
85 pA and 10 mV, respectively, indicating good sensitivity and 
robust performance of the MXene/PVA-PENG sensor. These 
findings highlight the considerable potential of the MXene/ 
PVA-PENG device for applications in wearable electronics. 

CONCLUSIONS 
In summary, we have demonstrated MXene-PVA composite 
films with high stability and mechanical strength for high-per
formance flexible piezoelectric nanogenerators. The high- 
entropy piezoelectric TiVCrMoC 3T x MXene layered nanosheets 
synthesized via the thermal-assisted electrochemical etching 
method exhibit highly crystalline structure. Furthermore, the 
formation of strong hydrogen bonding between MXene 
nanosheets and PVA facilitates good flexibility, stability and bio- 
compatibility. These combined advantages contribute to high- 
performance self-powered energy harvesting in MXene/PVA- 
PENG, exhibiting good durability and achieving high output 
power of up to 110.76 pW. The MXene-PVA composite films 
exhibit good mechanical stability and high piezoelectric 
response, revealing significant promise for application in self- 
powered electronics and wearable technologies. 
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无氢氟酸合成的高熵MXene-PVA复合薄膜及其柔性 
纳米发电机 

杨富美, 陳錦煉, 吴泽涵, 赵芳青, 黄文聰, 彭倩兒, 郝建华* 

摘要 MXene表现出显著的压电性能, 使其成为下一代智能可穿戴设 
备和生物电子学中高性能压电纳米发电机(PENGs)应用的潜力材料 .  
然而, 当前基于MXene的压电纳米发电机面临诸多挑战, 例如机械强度 
不足、压电响应较低以及长期工作稳定性有限 .  这些问题主要源于 
MXene纳米片的有效应力传递面积较小以及应变水平较低. 在本研究 
中, 我们通过利用MXene与聚乙烯醇(PVA)之间的强氢键相互作用， 
构建了一种高熵TiVCrMoC 3T x MXene复合薄膜, 并进一步开发出一种 
自供电柔性纳米发电机 .  该器件在受到 3 . 4 7  N 的压力时输出高达 
500 mV和790 pA的压电信号, 且在1500个循环工作过程中表现出良好 
的长期工作稳定性. 此外, 该高熵MXene纳米片通过无氢氟酸(HF-free) 
蚀刻方法合成, 确保了其在生物电子学应用中的安全性和生物相容性. 
本工作突显了高熵MXene在柔性可穿戴电子产品和能量收集方面的可 
持续应用潜力. 
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