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Abstract  The steel manufacturing industry currently 
urgently needs highly accurate detection algorithms for elec-
trical connection devices to slow down the time and danger 
of electrical connections to torpedo cans during high-tem-
perature operations. The fisheye effect and fuzzy features of 
industrial cameras seriously affect accuracy and effective-
ness, hindering the widespread application of object detec-
tion algorithms in the manufacturing industry. We propose 
a feature enhancement preprocessing algorithm for torpedo 
can electrical devices based on the pyramid structure that 
resists fisheye effects and serves to detect and locate electri-
cal connection devices. With the aid of this preprocessing 
algorithm, the detection efficiency and accuracy of state-
of-the-art (SOTA) object detection models are significantly 
improved. Experimental validation confirms the superiority 
of our method over other SOTA methods. With the applica-
tion of our preprocessing algorithm, the production capacity 
of the steel plant increased by 31.8%, and material wastage 
caused by transportation decreased by 10.9%.

Keywords  Anti-fisheye effect (AFE) · Feature 
enhancement · Machine vision · Steel smelting · Torpedo 
can

1  Introduction

Recently, the rapid development in such areas as the HE 
series steel industry is one fraught with numerous safety 
hazards during the steel smelting process. Air pollution 
caused by the smelting process can result in health issues 
such as respiratory and skin irritation. It is therefore para-
mount for steel factories to bolster the implementation and 
maintenance of safety facilities and procedures to mitigate 
risks associated with these hazardous processes. Indus-
trial automation and other smart industry applications are 
increasingly becoming an integral part of the steel indus-
try. Intelligent automation technologies are being employed 
to automate manual processes, reduce costs, enhance pro-
duction efficiency, and ensure safety [1–4]. Furthermore, 
machine learning algorithms are widely used for data 
analysis and detection functions, enabling better decision-
making and more efficient production processes. Advanced 
analytics are utilized to optimize production and inventory 
management, enabling factories to produce goods with fewer 
delays and at lower costs. Consequently, the steel industry is 
reaping the benefits of smart industry applications, provid-
ing effective opportunities for enhancing productivity and 
reducing costs.

Figure 1 presents a flowchart of the smelting process, 
where the blast furnace is the primary iron smelting equip-
ment. Iron ore, limestone, and coal must undergo smelting in 
the blast furnace to yield pig iron or molten iron for various 
applications [5]. The blast furnace smelting is the first step 
in steel smelting, where at high temperatures, the carbon 
in coke reacts with the oxygen in the injected air to reduce 
iron oxides in the iron ore to metallic iron. The molten iron, 
heated to extremely high temperatures post-combustion, is 
poured into torpedo or molten iron cans for transportation to 
the next smelting stage. The exceedingly high temperature of 
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molten iron poses significant safety risks to electrical work-
ers [6]. Additionally, the dim environment during iron fold-
ing and the fisheye effect of industrial cameras significantly 
impedes target detection. However, the rapid advancement 
of smart industry and neural network technology offers the 
potential for automating the electrical connection operation 
in torpedo cans.

1.1 � Object detection (OD) technology

In recent years, OD technology has become a rapidly devel-
oping field in computer vision. Through the efforts of schol-
ars, OD technology has made significant strides in terms of 
accuracy and inference speed [7–12]. Early OD primarily 
relied on handcrafted features and models. However, these 
methods had limited scalability and lacked generalization 
ability, performing poorly on unseen data. With the enhance-
ment in computational system drive capabilities in recent 
years, the evolution of deep learning models has facilitated 
the development of OD technology architectures. Dong et al. 
[13] obtained the optimal object anchor scale for high-speed 
rail inspection system (HSRIS) OD based on adaptive object 
scale learning operators and designed a detection method 
for HSRIS objects based on convolutional neural networks 
(CNNs). Ren et al. [14] amplified the subtle differences 
between objects and the background, and established mul-
tiple texture perception refinement modules to learn texture 
perception features in deep CNNs for target OD. Liu et al. 
[15] proposed a triple-supervised dual-task network for 
objects, background, and boundaries, accurately detecting 

the location and detailed boundaries of objects. However, 
to date, no scholars have proposed relevant OD algorithms 
for environments that exhibit both fisheye effects and low 
illumination. Furthermore, there is currently no correspond-
ing state-of-the-art (SOTA) detection algorithm for torpedo 
can’s electrical connection devices in the steel industry.

1.2 � Anti‑fisheye effect (AFE) technology

In recent years, fisheye effect detection technology has been 
extensively studied. With the advancement of machine learn-
ing and computer vision, various algorithms have been pro-
posed and improved for fisheye effect detection. Comparative 
experiments have shown that methods based on deep learn-
ing can significantly enhance the accuracy of fisheye effect 
detection compared to traditional methods [16]. Fan et al. 
[17] proposed that the correction results of distorted images 
of the same scene shot with different lenses should be identi-
cal, and designed a self-supervised image rectification (SIR) 
method based on neural networks. Chao et al. [18] introduced 
pixel level distortion flow and internal distortion consistency 
features, and validated its effectiveness through experiments. 
Li et al. [19] proposed the no-prior fisheye representation 
method based on the FisheyeDet contour-based object detec-
tor, which had good generalization ability. Additionally, some 
scholars have separated the peripheral area from the central 
area when learning features to adapt to the shape and propor-
tion of face anchor points in the AFE network [20]. Currently, 
the AFE is often achieved through multi-camera positioning. 
However, considering the impacts of cost and environmental 

Fig. 1   Smelting process diagram
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factors, the iron folding process tends to favor single-cam-
era positioning. Furthermore, to date, there are no existing 
algorithms that resist the fisheye effect in low-illumination 
environments.

1.3 � Feature enhancement technology

During OD, there are often many negative factors, such as 
lighting, noise, camera precision, and shooting environment, 
which can lead to unclear and indistinct features. Therefore, 
feature enhancement technology has gradually become a 
hot research topic in the field of machine learning in recent 
years [21–23]. For instance, Wang et al. [24] proposed an 
adaptively fused attention module (AFAM) applied in the 
textile manufacturing industry to enhance spatial and chan-
nel features. To address the issue of color distortion and 
detail blurring in underwater shooting images, Qi et al. [25] 
introduced semantic information as high-level guidance and 
proposed an underwater image enhancement network. Guo 
et al. [26] proposed a multi-scale Retinex algorithm with a 
color protection (MSRCP) image enhancement algorithm to 
compensate for the lack of lighting and slow detection speed 
in underwater environments. Additionally, some schol-
ars have proposed tracking methods that combine feature 
enhancement and template updates to address issues such as 
trackers in videos not being able to focus on global informa-
tion and not adapting well to target changes [27]. Due to the 
singular nature of the scenes captured by the camera during 
the iron folding process, the presence of a large number of 
noise points, and the minimal contrast between the elec-
trical connection device and the background, it is difficult 
to distinguish between them. Therefore, it is challenging to 
directly utilize previous enhancement algorithms based on 
channel or spatial features.

1.4 � Research gaps

From the above analysis, we can identify the following 
issues in the current automatic recognition process of steel 
rolling.

	 (i)	 Through the analysis of the torpedo can iron folding 
process, it was found that the electrical connection 
operation of the torpedo can was dangerous and dif-
ficult to ensure human safety. There is currently a lack 
of an effective automated electrical connection detec-
tion algorithm to be combined with a robotic arm to 
replace manual operations, thereby ensuring human 
safety and instability.

	 (ii)	 The use of fisheye cameras ensures the field of view 
for detection but sacrifices detection accuracy. There-
fore, the current conventional OD algorithms cannot 

meet the detection accuracy requirements of actual 
torpedo can’s electrical connection devices.

	(iii)	 The on-site environment during the electrical connec-
tion of the torpedo can is relatively dark, so the cap-
tured images have issues of blurring and low contrast. 
The current anti-fisheye detection algorithms cannot 
effectively extract the features of the electrical con-
nection device. A highly stable, fast, and efficient 
disguised OD algorithm needs to be combined with a 
robotic arm to achieve process automation.

The steel smelting process is becoming more intelligent, 
and this paper will explain this phenomenon in detail. The 
remainder of this paper is structured as follows. Chapter 2 
introduces the automatic recognition strategy for the steel 
rolling process. Chapter 3 presents the proposed AFE and 
feature enhancement (AFE-FE) preprocessing algorithm for 
torpedo can’s electrical connection devices based on a pyra-
mid structure. Chapter 4 experiments on the proposed model 
and verifies its effectiveness. Finally, the main contributions 
of this paper are summarized and prospects are discussed.

2 � Automatic identification strategy for the steel 
rolling process

The transportation of high-temperature molten iron is a 
crucial step in steel production. The transportation process 
includes an additional iron folding step, where the molten 
iron inside the torpedo can is poured into the molten iron can 
for subsequent processes, as shown in Fig. 2. The torpedo 
can, filled with molten iron, is rotated, pouring the molten 
iron from the torpedo can into a molten iron can. Transfer-
ring molten steel using a torpedo can pose inherent risks, 
including high voltage connections, potential tipping during 
pouring, and the hazardous proximity of personnel to the gas 
cylinder and tipping point. Workers handling heavy electrical 
plugs and controlling torpedo can tipping in the real-time 
face a severe workload, increasing the potential for accidents, 
as shown in Fig. 3. The main processes of torpedo car iron 
transfer include: (i) the train pulls the torpedo car into the 
steel plant; (ii) workers carry and install the plug; (iii) work-
ers operate the torpedo car to tilt and carry out iron tapping.

In applications requiring a wide field of view, fisheye 
cameras are becoming increasingly popular. These cameras 
offer a very large field of view with minimal distortion, as 
shown in Fig. 4, representing the performance of fisheye 
cameras under low light conditions. Fisheye cameras, com-
pared to other wide-angle types, offer simpler, cost-effective 
implementation and comprehensive scene monitoring for 
improved situational awareness. Given the torpedo can’s var-
iable positioning during transportation, with up to a meter of 
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deviation, the fisheye camera’s broader field of view ensures 
effective recognition.

As shown in Fig. 5, the red box represents the position-
ing under the fisheye effect, while the gray box signifies the 
actual positioning. The disparity between the two exceeds 
1−2 cm. Successful power connection for the torpedo can 
only be achieved when the robotic arm guides the socket to 
the precise location. The fisheye camera introduces substan-
tial positioning errors. Deviations exceeding 2 mm can result 
in damage to the robotic arm structure and the power-receiv-
ing device, posing a risk of serious accidents and operational 
inconvenience in production. In steel production, the torpedo 
can iron folding process impacts production efficiency and 
product quality, yet current methods are inefficient, risky, 

and involve harsh working conditions. Combining machine 
learning with robotic arms, where a neural network detection 
algorithm provides coordinates for a robotic arm to automate 
iron folding, can address these issues.

Fig. 2   Iron folding site

Fig. 3   Torpedo can iron folding process

Fig. 4   Fisheye camera shooting effect

Fig. 5   Recognition and localization of fisheye images and normal 
images
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3 � Algorithm for automatic identification of rolling 
processes

3.1 � Overall network structure

In response to the aforementioned engineering problem of 
torpedo can electrical connection devices, this paper pro-
poses an AFE-FE model based on the pyramid structure. 
Figure 6 shows the overall network structure of the AFE-
FE model, which includes three modules: the AFE mod-
ule, the feature enhancement module, and the discriminator 
module. Different modules perform different functions; the 
AFE module and the feature enhancement module together 
constitute the main part of the image generation, while the 
discriminator judges whether the generated image meets the 
requirements.

The network of the AFE-FE model is divided into four 
processes.

Step 1: Image X is input into the AFE module and output 
as Xf to the discriminator.

Step 2: Image X is input into the AFE module, then 
passed through the feature enhancement module, and output 
as Xh to the discriminator.

Step 3: Image X is directly input into the discriminator.
Step 4: Image Y is input into the discriminator.
In this context, Image X refers to image data captured on-

site using an industrial camera with a fisheye effect. Image Y 
refers to image data captured under manual lighting condi-
tions using a standard high-definition camera with no dis-
tortion when smelting operations are stopped, meeting the 
requirements for no distortion and clear features.

The four processes occur simultaneously, achieving both 
the correction of fisheye distortion and the clarity of blurred 
feature information under low light conditions. Each module 
of the network is fully trained, improving training quality 
while saving training time. Figure 7 shows the structural 
diagrams of the AFE module and the feature enhancement 

module. Both modules use an attention module to ensure 
that features are not lost and clear.

3.2 � AFE module

Figure 7 shows the structure diagram of the AFE module, 
which learns the mapping function between the distorted 
image X captured by the industrial camera, the undistorted 
image Y, and the feature-enhanced image Xh . This structure 
corrects the distorted images captured by the fisheye camera. 
In the model, we used the CSPParkNet53 tiny [28] module 
to achieve feature-down sampling of the backbone network. 
Utilizing a 1×1 convolutional layer of micro feature pyramid 
network (FPN) to fuse features at different scales enhances 
feature representation while reducing computational com-
plexity. The module inputs the distorted image captured by 
the industrial camera and outputs an image and distortion 
flow. The image size is H×W×3, and the distortion flow is a 
feature map of H×W×2. H and W represent the height and 
width of the input image, respectively. The distortion flow 
represents the pixel-level image coordinate mapping in the 
predicted undistorted image. Combining the distortion flow 
with the image yields an undistorted image. This module is 
designed based on the principles of cross-rotation consist-
ency and warping consistency inherent in fisheye images.

	 (i)	 Cross-rotation consistency. Borrowing from the con-
cept of geometric consistent generative adversarial 
networks (GCGAN) [29], the image X is rotated by 
45°, 90°, and 135°and simultaneously input into the 
prediction module for training. That is, it is rotated by 
an angle R� , where � ∈ {45°, 90°, 135°}. The fisheye 
distortion flow is mirror-symmetric, so for all input 
images, including those at the original angle and those 
at the rotated angle, the rotation flow should remain 
consistent.

	 (ii)	 Warping consistency. The distortion flow of each pixel 
in the image is outward or inward relative to the image 
center. It also exhibits radial symmetry, meaning that 
the distortion flow is the same for pixels equidistant 
from the image center. Moreover, the distortion flow 
has a smoothness characteristic, meaning that the 
difference in distortion flow size for adjacent pixels 
along the horizontal or vertical direction is minimal.

3.3 � Feature enhancement module

Figure 7 also shows the structural diagram of the feature 
enhancement module. This structure adopts a pyramid con-
figuration, progressively enhancing and merging weaker fea-
tures at each level, resulting in a feature representation that 
is rich and discriminative [30]. The input is the corrected 
image output by the anti-fisheye module, and the output is 

Fig. 6   Overall network structure
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the feature-enhanced undistorted image. Initially, the Haar 
wavelet is utilized to gather high-frequency and low-fre-
quency features within the image. The emphasis module then 
enhances high-frequency features, which are progressively 
overlaid with low-frequency features to yield an image of 
the electrical connection device with enhanced features. The 

use of an attention module ensures that detailed features are 
not lost during the feature extraction process. This approach 
is particularly beneficial in scenarios where the image may 
contain a wealth of complex or subtle features that are essen-
tial for accurate OD. By enhancing high-frequency features 
and preserving detailed features, the AFE-FE model can 

Fig. 7   Structure of anti-fisheye and feature enhancement modules
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generate a more comprehensive and discriminative represen-
tation of the electrical connection device, thereby improving 
the performance of the subsequent detection model.

3.4 � Loss function

The discriminator primarily consists of two modules, Iden-
tify and Classification, i.e., D =

(

Dide,Dcl

)

 . Dide differenti-
ates between the generated images, namely Xf and Xh , and 
the undistorted real image Y(y). Dcl outputs are Distorted 
(distorted or unenhanced feature images) and Corrected 
(undistorted and feature-enhanced images). Dcl defines 
undistorted images as True and generated images as False, 
and adversarial training is conducted using the principle of 
adversarial networks. A(x) represents the image generated 
by the anti-fisheye module. F(xf) represents the image gen-
erated by the feature enhancement module. xf represents 
the image generated by the anti-fisheye module. Lide rep-
resents identity authentication loss, used to distinguish the 
authenticity of real and undistorted images from generated 
images. Ey~date(y) represents the expected distribution of true 
undistorted images (y) . Ex~date(x) represents the distribution 
of the original distorted input image (x) . Lcl represents clas-
sification loss, used to identify image distortion attributes. 
LD represents the total loss function of the discriminator, 
which is used to optimize the ability of identity discrimina-
tion and distortion classification, driving the discriminator 
to accurately distinguish.

Since the images input into the AFE-FE model is not 
labeled, auxiliary training is conducted based on the spe-
cial correspondence relationship of image types. This paper 
adopts cross-rotation consistency and in-image warping 
consistency features to achieve the function of correcting 
the fisheye effect. Equations (4) and (5) are the cross-rota-
tion consistency feature loss functions between the original 
image and the image generated by the AFE module. The 
subscript 1 denotes the L1 norm (Manhattan norm). Equa-
tions (6) and (7) are the feature loss functions for achieving 

(1)

Lide =Ey∼data(y) log10(Dide(y))

+ Ex∼data(x) log10(1 − Dide(A(x)))

+ Ex∼data(x) log10(1 − Dide

(

F
(

xf
))

)

,

(2)

Lcl =Ey∼data(y) log10(Dcl(y))

+ Ex∼data(x) log10(1 − Dcl(x))

+ Ex∼data(x) log10
(

1 − Dcl(A(x))
)

+ Ex∼data(x) log10
(

1 − Dcl

(

F
(

xf
)))

,

(3)LD = Lide + Lcl.

warping consistency. In the equations, P(x) is the output 
of the prediction module, and f = P(x) . With (0, 0) as the 
centre, fp represents the flow condition of the pixel at the 
image coordinate p ∈ R2 in the flow-map. R�(x) represents 
the image post-rotation, while A

(

R�(x)
)

 denotes the image 
generated by the anti-fisheye module after rotation.  Rθ(A(x)) 
represents anti-fisheye output A(x rotated by θ. ||∙||1 measures 
the difference between P(x) and P(Rθ (x)). D(xf ) represents 
discriminator output for generated image xf. O represents 
overall optimization objective combining min-max over net-
works (A, F, D). Lrad(A) ensures that the anti-fisheye mod-
ule A preserves geometric consistency under image rotation. 
Lflow(A) maintains consistency in optical flow predictions 
before and after rotation. Lgeo(A) enforces radial consist-
ency in flow vectors to align with fisheye distortion pat-
terns. Lsmo(A) promotes spatial smoothness in the flow field.  
Lmse(A) supervises the feature enhancement module F to 
preserve content. LA aggregates geometric, flow, radial, and 
smoothness constraints for A. LF combines reconstruction 
fidelity and adversarial loss. p represents the pixel coordi-
nates in the image

The objective function L(A,F,D) incorporates the loss 
functions from Eq. (1) to Eq. (10). This paper’s model 
addresses the complete optimization objective function as 
shown in Eq. (11).

(4)
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(5)Lflow(A) = Ex∼data(x)
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(6)

Lrad(A) = Ex∼data(x)
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(7)Lsmo(A) = Ex∼data(x)
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(8)Lmse(F) = Exf∼data(xf)

(

|

|

|

|

|

|

x
�
− F

(

xf
)

|

|

|

|

|

|

)

,

(9)LA = Lgeo(A) + Lflow(A) + Lrad(A) + Lsmo(A),

(10)LF = Lmse(F) + �(Lbce
(

sigmoid
(

D
(

xf
))

, 1
)

,

(11)O = argmin
A

min
F

max
D

L(A,F,D).
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4 � Implementation details

4.1 � Computer configuration

The method proposed in this paper collects images through 
an industrial camera with a resolution of 3 840×2 160 pixels. 
These are initially processed to a size of 256×256, serving as 
the original sample images. These original images are used 
as the basic input, and the proposed method is implemented 
using a Windows 10 operating system, a NVIDIA GeForce 
RTX 3070 Super graphics card, and a device with 32 GB of 
video memory. The model’s effectiveness is validated using 
Hikvision CS-MV-CS200-10GM video detection equipment 
in combination with different SOTA OD models.

4.2 � Design of the test

4.2.1 � Picking out

The model in this paper requires two types of samples.

	 (i)	 Input samples for supervision (Image Y). Therefore, 
ongoing smelting operations need to be halted, and 
under the premise of ensuring safety, a lighting device 
with sufficient brightness is manually held up. A high-
definition camera without distortion effects is used to 
capture a set of undistorted samples with clear features.

	 (ii)	 Real original samples (Image X) captured by an indus-
trial camera in real scenarios, forming a set of original 
samples.

4.2.2 � Establishment of a sample library

Sample library required for the proposed model: After 
screening, the original dataset contains a total of 22 000 
sample images (Image X), and there are 8 100 sample 
images for supervision (Image Y). The images are stored in 
the corresponding folder paths of the AFE-FE model.

Sample library required for validation: As the proposed 
model’s effectiveness is validated using SOTA OD models, 
a comparative sample set needs to be established for this 
paper.

Sample set 1: A total of 20 000 sample images are 
selected from the original sample set that has not been 
trained using the AFE-FE model. These are divided into 
training, testing, and validation sets at a ratio of 6:2:2. After 
labeling, the images are stored in their respective folder 
paths.

Sample set 2: After the AFE-FE model has been trained, 
this model generates a total of 20 000 images that have been 
corrected for fisheye distortion and have enhanced features. 

These are divided into training, testing, and validation sets 
at a ratio of 6:2:2. After labeling, the images are stored in 
their respective folder paths.

All the above samples were collected from the smelting 
site and corresponding databases were constructed.

4.2.3 � AFE‑FE model training

The industrial camera used in this paper captures images of 
size 3 840×2 160, so the collected images are first propor-
tionally reduced to 256×144 using the Bicubic interpolation 
method. The edges are then padded to expand them to a size 
of 256×256.

This can achieve the aforementioned cross-rotation con-
sistency and warping consistency characteristics, helping 
to improve the accuracy and performance of the model and 
reduce the risk of overfitting. In addition, the above processing 
can improve the training speed of the model without sacrificing 
accuracy or losing features. It can also effectively enhance the 
model’s generalization ability, which is conducive to improv-
ing the model’s usability. Therefore, it can provide significant 
advantages for the neural network model in this paper.

We propose an AFE-FE model to implement fisheye 
correction and feature enhancement. Using a learning rate 
of 10−5 and Adam as the optimizer, the model is compiled 
based on the Pytorch framework, with a batch size set to 8. 
The aforementioned samples are input into this model for 
training, and when the training reaches the optimal indica-
tor, the final model parameters of this method are saved. The 
algorithms are then tested using the test set. In Table 1, we 
analyzed the model size, parameters (Params), floating-point 
operations per second (FLOPs), and memory access cost 
(MAC) measurement to reflect the efficiency of the network.

4.2.4 � Object recognition

Two comparative sample sets required for validation are 
trained using excellent SOTA OD models. After training, 
a control group is set up to validate the effectiveness of 
the proposed model. The OD models selected in this paper 
include: Focus-and-Detect [31], USTD [32], YOLODrone 
[33], YOLOv4-MN3 [34], Faster R-CNN [35], and SSD. A 
control group is set up to validate the superiority of the com-
bination of the aforementioned SOTA models and the AFE-
FE model proposed in this paper. In addition, the SIR model, 

Table 1   Model performance

Model size/MB Params/M FLOPs MAC/MB

AFE-FE 13.5 4.14 2.61 GFlops 76.28
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FE-GAN model, AFAM model, and SGUIENet model are 
combined with SOTA object detection models to test the 
effects of fisheye correction and feature enhancement.

4.3 � Evaluation metrics

This paper selects the following parameters as evaluation indi-
cators: precision ( Pre), recall ( Rec), average precision ( AP ), 
AP50 , AP75 , and accuracy ( Accuracy ). These indicators can evalu-
ate the positioning accuracy of the OD model. Pre represents 
the ratio of the number of correctly detected targets to the 
total number of predicted bounding boxes. Rec represents the 
proportion of correctly detected targets to total targets. AP is 
the area between the precision curve and the coordinate axis 
within the range of [0,1], as shown in Fig. 8. AP50 represents 
the AP value when IoU is fixed at 50%, and AP75 represents the 
AP value when IoU is fixed at 75%. Accuracy represents the pro-
portion of correctly predicted samples in a given test sample 
set. The formulas are shown as follows

In OD, the predicted intersection over union (IoU) 
between the predicted bounding box and the “ground-truth” 
bounding box in the corresponding image is defined. If the 
IoU exceeds a defined threshold, the predicted bounding 
box in this prediction is considered a true positive ( TP ). 
Conversely, if the IoU is below the defined threshold, the 
predicted bounding box in this prediction is deemed a false 

(12)Pre =
TP

TP + FP

,

(13)Rec =
TP

TP + FN

,

(14)AP =
1

∫
0

P(R)dR,

(15)Accuracy =
TP + TN

TP + TN + FP + FN

.

positive ( FP ). FP represents the total number of negative 
samples incorrectly predicted as positive samples, i.e., false 
alarms. False negatives ( FN ) represent the number of posi-
tive samples incorrectly predicted as negative samples, i.e., 
missed detections. True negative ( TN ) represent correctly 
predicted negative samples, i.e., true non-targets identified 
as negative. The evaluation indicators used in this paper all 
indicate that the higher the score, the better the performance 
of the detection model.

The PSNR and SSIM [36] indicators are selected to evaluate 
the differences in pixel values and structure. PSNR represents 
the ratio of the maximum signal value of an image to the 
noise in the background. R denotes the maximum possible 
pixel value of the image, representing the dynamic range of 
the signal. Mean squared error ( MSE ) quantifies the average 
squared difference between the original and reconstructed 
images, measuring pixel-level distortion. The larger the 
PSNR , the higher the image quality. SSIM measures the simi-
larity between images based on luminance, contrast, and 
structure. Luminance (l) compares the mean intensities of 
images x and y, adjusted by exponent � . Contrast (c) evalu-
ates the standard deviation of pixel values, reflecting texture 
variations, weighted by � . Structure (s) measures the cross-
correlation between x and y, capturing spatial relationships, 
with � as its exponent. The larger the SSIM , the smaller the 
image distortion. The formulas are shown as follows

4.4 � Testing & evaluation

4.4.1 � Comparison with SOTA OD model combination

Two comparative sample sets required for validation are 
trained using excellent SOTA OD models. The excellent 
SOTA OD models selected in this paper include: Focus-
and-Detect, USTD, YOLODrone, YOLOv4-MN3, Faster 
R-CNN, and SSD. After training, control groups are set up: 

(16)PSNR = 10log10

(

R2

MSE

)

,

(17)SSIM(x, y) = (l(x, y))�(c(x, y))�(s(x, y))� .

Fig. 8   AP computation

Table 2   Comparison of precisions of different models

Precision with AFE-
FE model/%

Precision without 
AFE-FE model/%

Focus-and-Detect 95.456 84.562
USTD 94.826 88.463
YOLODrone 96.135 87.354
Faster R-CNN 84.452 80.654
SSD 87.475 82.465
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Control group 1. The trained SOTA models are directly used 
to detect images of torpedo can electrical connection devices 
collected on-site. Control group 2: The trained AFE-FE 
model is combined with the SOTA models before detecting 
images of the torpedo can’s electrical connection devices 
collected on-site. A total of 5 000 images of torpedo can 
electrical connection devices collected on-site are used as 
the test set. As shown in Table 2, the precision indicator of 
the SOTA OD model combined with the AFE-FE model 
proposed in this paper is significantly higher than the indi-
cator detected directly by the model. This demonstrates that 
combining the AFE-FE model proposed in this paper with 
the SOTA models can significantly improve the detection 
accuracy of torpedo can’s electrical connection devices. 
Among them, the combination of the YOLODrone model 
and the AFE-FE model achieved the highest score.

Table 3 calculates the test metric scores before and after 
combining different SOTA models with our proposed model. 
We conducted experimental verification on the self-made 
dataset and the MCindoor20000 dataset [37], respectively. 
The prediction time of the OD model slightly increases 
after adding the preprocessing algorithm in this paper, but 
it is still within an acceptable threshold. Compared to the 

increase in recognition performance, the increased time cost 
can be ignored. It can be concluded that the preprocessing 
algorithm in this paper significantly improves the recogni-
tion accuracy and ability of each OD model.

Combine different algorithms with the robotic arm to 
calculate the error between each recognition positioning 
coordinate and the actual position. Table 4 calculates a total 
of 100 experiments for each method and calculates the aver-
age positioning error. It can be seen that the preprocessing 
algorithm proposed in this article meets the needs of actual 
production and can greatly improve the probability of suc-
cessful power connection.

4.4.2 � Comparison with the SOTA anti‑fisheye model

This paper selects the SIR model and FE-GAN model, two 
SOTA fisheye correction models, for comparison with the 
AFE-FE model, to test the fisheye correction effect of the 

Table 3   Test metric scores for the different methods on each test set

Our detaset MCindoor20000

Time/ms Rec/% AP AP50 AP75 Accuracy Time/ms Rec/% AP AP50 AP75 Accuracy

Focus-and-Detect+ours 26.6 95.136 41.7 62.1 48.9 78.63 30.1 96.145 40.3 61.9 47.9 79.15
Focus-and-Detect 26.3 94.241 41.1 61.7 48.1 76.82 29.8 94.836 36.6 58.8 43.8 75.48
USTD+ours 24.2 94.864 41.7 59.8 45.7 73.94 29.6 94.215 40.4 57.9 41.3 74.18
USTD 23.9 93.415 41.4 59.2 45.3 71.61 29.3 92.678 34.1 56.1 40.1 70.89
YOLODrone+ours 25.3 98.435 43.9 62.3 47.8 88.42 27.6 98.351 48.2 67.1 49.6 89.46
YOLODrone 24.9 97.682 43.2 64.8 47.1 84.67 27.5 96.153 41.6 62.3 43.4 83.41
Faster R-CNN+ours 26.9 87.552 37.4 55.8 44.2 55.75 29.4 87.115 38.4 56.6 41.5 59.15
Faster R-CNN 26.4 87.132 36.7 54.9 43.5 52.34 29.2 83.646 35.5 53.4 40.2 53.45
SSD+ours 27.6 89.341 39.8 57.8 44.8 72.65 24.4 88.845 37.4 56.8 41.3 73.15
SSD 27.4 88.454 38.9 57.3 44.1 70.64 24.3 84.643 34.6 51.6 40.1 70.48

Table 4   Average positioning errors of different algorithms

Error with AFE-FE 
model/mm

Error without 
AFE-FE model/
mm

Focus-and-Detect 0.98 5.24
USTD 1.34 11.73
YOLODrone 0.79 4.68
Faster R-CNN 1.64 16.84
SSD 1.98 20.16

Table 5   Comparison of PSNR and SSIM of different models

PSNR∕ dB SSIM

SIR 28.46 0.75
FE-GAN 27.15 0.68
AFE-FE (ours) 31.42 0.97

Table 6   Comparison of precisions of different models

Pre/%

YOLODrone 87.354
YOLODrone+SIR 92.456
YOLODrone+FE-GAN 89.254
YOLODrone+AFE-FE (ours) 96.135
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model in this paper. As can be clearly seen from Table 5, 
compared to other SOTA models, the AFE-FE model in this 
paper achieves higher scores on all evaluation indicators. 
This indicates that the images corrected for fisheye effects 
using the AFE-FE model achieve the best results in terms of 
quality and distortion.

The SIR model, FE-GAN model, and AFE-FE model are 
combined with the YOLODrone OD model for a comparison 
in terms of detection accuracy. As shown in Table 6, the 
fisheye correction model in this paper has a clear advan-
tage in detection accuracy compared to other models. The 
aforementioned different algorithms are combined with a 
robotic arm. If the robotic arm cannot completely fit the 
electrical connection device, it is judged as a failure; if it can 
completely fit, it is judged as a success. Table 7 calculates 
the proportion of successful connections in a total of 100 
experiments for each method. It can be seen that the preproc-
essing algorithm proposed in this paper greatly increases the 
probability of successful electrical connection compared to 
other fisheye correction algorithms.

In summary, the model proposed in this paper is superior 
to the SIR model and the FE-GAN model in terms of fisheye 
correction effects, and the effectiveness of this algorithm in 
OD has been experimentally validated.

4.4.3 � Comparison with the SOTA feature enhancement 
model

We compared several SOTA feature enhancement models, 
including AFAM model, SGUIENet model, MEGF model, 
and FDENet model, with AFE-FE model to test their feature 
enhancement effect. As can be seen from Table 8, compared 
to other SOTA models, the AFE-FE model in this paper 
achieves higher scores on all evaluation indicators. This 
indicates that the images enhanced with features using the 
AFE-FE model achieve the best results in terms of quality 
and distortion. The AFAM model, SGUIENet model, and 
AFE-FE model are combined with the YOLODrone OD 
model for a comparison in terms of detection accuracy. As 
shown in Table 9, compared to other models, the detection 
accuracy of the model in this paper has a clear advantage 
over other feature enhancement models.

In summary, the model proposed in this paper is superior 
to the AFAM model and the SGUIENet model in terms of 

feature enhancement effects, and the effectiveness of this 
algorithm in OD has been experimentally validated.

4.4.4 � Practical application effect

We obtained production capacity data from the internal pro-
duction records and annual reports of our partner factory. We 
analyzed the average monthly production capacity changes 
from June 2022 to June 2023, ensuring that the production 
environment and production demand remained constant dur-
ing this period. Table 10 calculates the production capac-
ity and waste volume before and after the combination of 
the FE-GAN model with SOTA models applied to the steel 
rolling process. It can be seen that after using the method 
proposed in this paper, the monthly production capacity has 
been significantly improved while reducing the amount of 
smelting waste. This indicates that the method proposed in 
this paper can improve smelting efficiency and reduce smelt-
ing costs and waste.

Upon analysis, it can be found that the AFE-FE model 
proposed in this paper has obvious advantages in the detec-
tion of torpedo can electrical connection devices, which are 
shown as follows.

	 (i)	 The AFE-FE model is robust, can be combined with 
different SOTA OD models, and enhances the perfor-
mance of the target monitoring model.

	 (ii)	 The AFE-FE model has excellent fisheye effect cor-
rection capabilities, ensuring the positioning accuracy 
of the electrical connection device to the greatest 
extent.

Table 7   Proportions of successful power connections

Proportion/%

YOLODrone 94
YOLODrone+SIR 95
YOLODrone+FE-GAN 95
YOLODrone+AFE-FE (ours) 99

Table 8   Comparison of PSNR and SSIM of different models

PSNR/dB SSIM

AFAM 27.12 0.76
SGUIENet 26.42 0.74
MEGF [38] 25.94 0.78
FDENet [39] 27.35 0.81
AFE-FE (ours) 31.42 0.97

Table 9   Comparison of precisions of different models

Pre/%

YOLODrone 87.354
YOLODrone+ AFAM 91.445
YOLODrone+ SGUIENet 87.548
YOLODrone+ MEGF 91.132
YOLODrone+ FDENet 89.985
YOLODrone+AFE-FE (ours) 96.135
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	(iii)	 The AFE-FE model enhances the blurred target fea-
tures in dim environments, improving the detection 
accuracy of the electrical connection device.

5 � Conclusions and future work

Addressing the challenge of recognizing and locating tor-
pedo can electrical connection devices, we propose an AFE-
FE model preprocessing algorithm, comprising an anti-
fisheye module to correct fisheye camera distortions, and 
a feature enhancement module to enhance blurred features 
under low illumination. Combined with SOTA OD models, 
the AFE-FE model performs well in detecting these devices. 
An image database of these devices is established, and after 
multiple training iterations, optimal hyperparameters are 
fixed based on validation set results. Evaluation indicators 
are calculated for both training and test sets to assess image 
quality and detection performance. Finally, real-time detec-
tion is performed on on-site video footage, with target con-
fidence and location marked on the image.

This paper experimentally demonstrates the effectiveness 
of a proposed algorithm for positioning torpedo can electri-
cal connection devices. Traditional manual operations are 
time-consuming, labor-intensive, and pose safety risks. The 
proposed algorithm, combined with a robotic arm, acceler-
ates the connection process, ensures safety, and improves 
efficiency and cost-effectiveness. After implementing this 
preprocessing algorithm, the monthly production capacity 
in 2023 rose significantly to 8 462 t, a 31.8% increase from 
2022’s 6 421 t. Material waste decreased by 10.9%, from 
341 t to 304 t, enhancing smelting efficiency and reducing 
costs and waste.

The preprocessing algorithm in this paper can improve 
the overall efficiency and cost-effectiveness of the steel man-
ufacturing industry. The algorithm has a certain robustness 
and can be applied to other scenes that need fisheye correc-
tion and feature enhancement, and it has good application 
prospects. However, the algorithm still has some shortcom-
ings. It is necessary to customize specific model design indi-
cators according to different scenarios. In the future, more 
factors need to be considered in the algorithm to enhance the 
usability and robustness of the algorithm, such as processor 
computing power, related shooting equipment, more target 

features that need to be positioned, etc. When integrating the 
algorithm into the existing steel smelting production line, the 
scalability of the algorithm and the cost of maintenance and 
debugging also need to be considered.
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