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Abstract The steel manufacturing industry currently
urgently needs highly accurate detection algorithms for elec-
trical connection devices to slow down the time and danger
of electrical connections to torpedo cans during high-tem-
perature operations. The fisheye effect and fuzzy features of
industrial cameras seriously affect accuracy and effective-
ness, hindering the widespread application of object detec-
tion algorithms in the manufacturing industry. We propose
a feature enhancement preprocessing algorithm for torpedo
can electrical devices based on the pyramid structure that
resists fisheye effects and serves to detect and locate electri-
cal connection devices. With the aid of this preprocessing
algorithm, the detection efficiency and accuracy of state-
of-the-art (SOTA) object detection models are significantly
improved. Experimental validation confirms the superiority
of our method over other SOTA methods. With the applica-
tion of our preprocessing algorithm, the production capacity
of the steel plant increased by 31.8%, and material wastage
caused by transportation decreased by 10.9%.

Keywords Anti-fisheye effect (AFE) - Feature
enhancement - Machine vision - Steel smelting - Torpedo
can

< Shi-Min Liu
shimin.liu@polyu.edu.hk

School of Mechanical Engineering, Zhejiang University,
Hangzhou 310058, People’s Republic of China

Department of Industrial and Systems Engineering, The
Hong Kong Polytechnic University, Kowloon, Hong Kong,
People’s Republic of China

State Key Laboratory of Ultra-precision Machining
Technology, Department of Industrial Systems

and Engineering, The Hong Kong Polytechnic University,
Kowloon, Hong Kong, People’s Republic of China

Published online: 02 September 2025

- Pei-Yu Li' - Ruo-Xin Wang*?

1 Introduction

Recently, the rapid development in such areas as the HE
series steel industry is one fraught with numerous safety
hazards during the steel smelting process. Air pollution
caused by the smelting process can result in health issues
such as respiratory and skin irritation. It is therefore para-
mount for steel factories to bolster the implementation and
maintenance of safety facilities and procedures to mitigate
risks associated with these hazardous processes. Indus-
trial automation and other smart industry applications are
increasingly becoming an integral part of the steel indus-
try. Intelligent automation technologies are being employed
to automate manual processes, reduce costs, enhance pro-
duction efficiency, and ensure safety [1-4]. Furthermore,
machine learning algorithms are widely used for data
analysis and detection functions, enabling better decision-
making and more efficient production processes. Advanced
analytics are utilized to optimize production and inventory
management, enabling factories to produce goods with fewer
delays and at lower costs. Consequently, the steel industry is
reaping the benefits of smart industry applications, provid-
ing effective opportunities for enhancing productivity and
reducing costs.

Figure 1 presents a flowchart of the smelting process,
where the blast furnace is the primary iron smelting equip-
ment. [ron ore, limestone, and coal must undergo smelting in
the blast furnace to yield pig iron or molten iron for various
applications [5]. The blast furnace smelting is the first step
in steel smelting, where at high temperatures, the carbon
in coke reacts with the oxygen in the injected air to reduce
iron oxides in the iron ore to metallic iron. The molten iron,
heated to extremely high temperatures post-combustion, is
poured into torpedo or molten iron cans for transportation to
the next smelting stage. The exceedingly high temperature of
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Fig. 1 Smelting process diagram

molten iron poses significant safety risks to electrical work-
ers [6]. Additionally, the dim environment during iron fold-
ing and the fisheye effect of industrial cameras significantly
impedes target detection. However, the rapid advancement
of smart industry and neural network technology offers the
potential for automating the electrical connection operation
in torpedo cans.

1.1 Object detection (OD) technology

In recent years, OD technology has become a rapidly devel-
oping field in computer vision. Through the efforts of schol-
ars, OD technology has made significant strides in terms of
accuracy and inference speed [7—12]. Early OD primarily
relied on handcrafted features and models. However, these
methods had limited scalability and lacked generalization
ability, performing poorly on unseen data. With the enhance-
ment in computational system drive capabilities in recent
years, the evolution of deep learning models has facilitated
the development of OD technology architectures. Dong et al.
[13] obtained the optimal object anchor scale for high-speed
rail inspection system (HSRIS) OD based on adaptive object
scale learning operators and designed a detection method
for HSRIS objects based on convolutional neural networks
(CNNs). Ren et al. [14] amplified the subtle differences
between objects and the background, and established mul-
tiple texture perception refinement modules to learn texture
perception features in deep CNNs for target OD. Liu et al.
[15] proposed a triple-supervised dual-task network for
objects, background, and boundaries, accurately detecting
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the location and detailed boundaries of objects. However,
to date, no scholars have proposed relevant OD algorithms
for environments that exhibit both fisheye effects and low
illumination. Furthermore, there is currently no correspond-
ing state-of-the-art (SOTA) detection algorithm for torpedo
can’s electrical connection devices in the steel industry.

1.2 Anti-fisheye effect (AFE) technology

In recent years, fisheye effect detection technology has been
extensively studied. With the advancement of machine learn-
ing and computer vision, various algorithms have been pro-
posed and improved for fisheye effect detection. Comparative
experiments have shown that methods based on deep learn-
ing can significantly enhance the accuracy of fisheye effect
detection compared to traditional methods [16]. Fan et al.
[17] proposed that the correction results of distorted images
of the same scene shot with different lenses should be identi-
cal, and designed a self-supervised image rectification (SIR)
method based on neural networks. Chao et al. [18] introduced
pixel level distortion flow and internal distortion consistency
features, and validated its effectiveness through experiments.
Li et al. [19] proposed the no-prior fisheye representation
method based on the FisheyeDet contour-based object detec-
tor, which had good generalization ability. Additionally, some
scholars have separated the peripheral area from the central
area when learning features to adapt to the shape and propor-
tion of face anchor points in the AFE network [20]. Currently,
the AFE is often achieved through multi-camera positioning.
However, considering the impacts of cost and environmental
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factors, the iron folding process tends to favor single-cam-
era positioning. Furthermore, to date, there are no existing
algorithms that resist the fisheye effect in low-illumination
environments.

1.3 Feature enhancement technology

During OD, there are often many negative factors, such as
lighting, noise, camera precision, and shooting environment,
which can lead to unclear and indistinct features. Therefore,
feature enhancement technology has gradually become a
hot research topic in the field of machine learning in recent
years [21-23]. For instance, Wang et al. [24] proposed an
adaptively fused attention module (AFAM) applied in the
textile manufacturing industry to enhance spatial and chan-
nel features. To address the issue of color distortion and
detail blurring in underwater shooting images, Qi et al. [25]
introduced semantic information as high-level guidance and
proposed an underwater image enhancement network. Guo
et al. [26] proposed a multi-scale Retinex algorithm with a
color protection (MSRCP) image enhancement algorithm to
compensate for the lack of lighting and slow detection speed
in underwater environments. Additionally, some schol-
ars have proposed tracking methods that combine feature
enhancement and template updates to address issues such as
trackers in videos not being able to focus on global informa-
tion and not adapting well to target changes [27]. Due to the
singular nature of the scenes captured by the camera during
the iron folding process, the presence of a large number of
noise points, and the minimal contrast between the elec-
trical connection device and the background, it is difficult
to distinguish between them. Therefore, it is challenging to
directly utilize previous enhancement algorithms based on
channel or spatial features.

1.4 Research gaps

From the above analysis, we can identify the following
issues in the current automatic recognition process of steel
rolling.

(i) Through the analysis of the torpedo can iron folding
process, it was found that the electrical connection
operation of the torpedo can was dangerous and dif-
ficult to ensure human safety. There is currently a lack
of an effective automated electrical connection detec-
tion algorithm to be combined with a robotic arm to
replace manual operations, thereby ensuring human
safety and instability.

(ii)) The use of fisheye cameras ensures the field of view
for detection but sacrifices detection accuracy. There-
fore, the current conventional OD algorithms cannot

meet the detection accuracy requirements of actual
torpedo can’s electrical connection devices.

(iii)) The on-site environment during the electrical connec-
tion of the torpedo can is relatively dark, so the cap-
tured images have issues of blurring and low contrast.
The current anti-fisheye detection algorithms cannot
effectively extract the features of the electrical con-
nection device. A highly stable, fast, and efficient
disguised OD algorithm needs to be combined with a
robotic arm to achieve process automation.

The steel smelting process is becoming more intelligent,
and this paper will explain this phenomenon in detail. The
remainder of this paper is structured as follows. Chapter 2
introduces the automatic recognition strategy for the steel
rolling process. Chapter 3 presents the proposed AFE and
feature enhancement (AFE-FE) preprocessing algorithm for
torpedo can’s electrical connection devices based on a pyra-
mid structure. Chapter 4 experiments on the proposed model
and verifies its effectiveness. Finally, the main contributions
of this paper are summarized and prospects are discussed.

2 Automatic identification strategy for the steel
rolling process

The transportation of high-temperature molten iron is a
crucial step in steel production. The transportation process
includes an additional iron folding step, where the molten
iron inside the torpedo can is poured into the molten iron can
for subsequent processes, as shown in Fig. 2. The torpedo
can, filled with molten iron, is rotated, pouring the molten
iron from the torpedo can into a molten iron can. Transfer-
ring molten steel using a torpedo can pose inherent risks,
including high voltage connections, potential tipping during
pouring, and the hazardous proximity of personnel to the gas
cylinder and tipping point. Workers handling heavy electrical
plugs and controlling torpedo can tipping in the real-time
face a severe workload, increasing the potential for accidents,
as shown in Fig. 3. The main processes of torpedo car iron
transfer include: (i) the train pulls the torpedo car into the
steel plant; (ii) workers carry and install the plug; (iii) work-
ers operate the torpedo car to tilt and carry out iron tapping.

In applications requiring a wide field of view, fisheye
cameras are becoming increasingly popular. These cameras
offer a very large field of view with minimal distortion, as
shown in Fig. 4, representing the performance of fisheye
cameras under low light conditions. Fisheye cameras, com-
pared to other wide-angle types, offer simpler, cost-effective
implementation and comprehensive scene monitoring for
improved situational awareness. Given the torpedo can’s var-
iable positioning during transportation, with up to a meter of
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deviation, the fisheye camera’s broader field of view ensures
effective recognition.

As shown in Fig. 5, the red box represents the position-
ing under the fisheye effect, while the gray box signifies the
actual positioning. The disparity between the two exceeds
1-2 cm. Successful power connection for the torpedo can
only be achieved when the robotic arm guides the socket to
the precise location. The fisheye camera introduces substan-
tial positioning errors. Deviations exceeding 2 mm can result
in damage to the robotic arm structure and the power-receiv-
ing device, posing a risk of serious accidents and operational
inconvenience in production. In steel production, the torpedo
can iron folding process impacts production efficiency and
product quality, yet current methods are inefficient, risky,
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Fig. 4 Fisheye camera shooting effect

Fig. 5 Recognition and localization of fisheye images and normal
images

and involve harsh working conditions. Combining machine
learning with robotic arms, where a neural network detection
algorithm provides coordinates for a robotic arm to automate
iron folding, can address these issues.
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3 Algorithm for automatic identification of rolling
processes

3.1 Overall network structure

In response to the aforementioned engineering problem of
torpedo can electrical connection devices, this paper pro-
poses an AFE-FE model based on the pyramid structure.
Figure 6 shows the overall network structure of the AFE-
FE model, which includes three modules: the AFE mod-
ule, the feature enhancement module, and the discriminator
module. Different modules perform different functions; the
AFE module and the feature enhancement module together
constitute the main part of the image generation, while the
discriminator judges whether the generated image meets the
requirements.

The network of the AFE-FE model is divided into four
processes.

Step 1: Image X is input into the AFE module and output
as X; to the discriminator.

Step 2: Image X is input into the AFE module, then
passed through the feature enhancement module, and output
as X, to the discriminator.

Step 3: Image X is directly input into the discriminator.

Step 4: Image Y is input into the discriminator.

In this context, Image X refers to image data captured on-
site using an industrial camera with a fisheye effect. Image Y
refers to image data captured under manual lighting condi-
tions using a standard high-definition camera with no dis-
tortion when smelting operations are stopped, meeting the
requirements for no distortion and clear features.

The four processes occur simultaneously, achieving both
the correction of fisheye distortion and the clarity of blurred
feature information under low light conditions. Each module
of the network is fully trained, improving training quality
while saving training time. Figure 7 shows the structural
diagrams of the AFE module and the feature enhancement

module. Both modules use an attention module to ensure
that features are not lost and clear.

3.2 AFE module

Figure 7 shows the structure diagram of the AFE module,
which learns the mapping function between the distorted
image X captured by the industrial camera, the undistorted
image Y, and the feature-enhanced image X,,. This structure
corrects the distorted images captured by the fisheye camera.
In the model, we used the CSPParkNet53 tiny [28] module
to achieve feature-down sampling of the backbone network.
Utilizing a 1x1 convolutional layer of micro feature pyramid
network (FPN) to fuse features at different scales enhances
feature representation while reducing computational com-
plexity. The module inputs the distorted image captured by
the industrial camera and outputs an image and distortion
flow. The image size is HXWx3, and the distortion flow is a
feature map of HXWx2. H and W represent the height and
width of the input image, respectively. The distortion flow
represents the pixel-level image coordinate mapping in the
predicted undistorted image. Combining the distortion flow
with the image yields an undistorted image. This module is
designed based on the principles of cross-rotation consist-
ency and warping consistency inherent in fisheye images.

(i) Cross-rotation consistency. Borrowing from the con-
cept of geometric consistent generative adversarial
networks (GCGAN) [29], the image X is rotated by
45°,90°, and 135°and simultaneously input into the
prediction module for training. That is, it is rotated by
an angle R,, where € {45°, 90°, 135°}. The fisheye
distortion flow is mirror-symmetric, so for all input
images, including those at the original angle and those
at the rotated angle, the rotation flow should remain
consistent.

(i) Warping consistency. The distortion flow of each pixel
in the image is outward or inward relative to the image
center. It also exhibits radial symmetry, meaning that
the distortion flow is the same for pixels equidistant
from the image center. Moreover, the distortion flow
has a smoothness characteristic, meaning that the
difference in distortion flow size for adjacent pixels
along the horizontal or vertical direction is minimal.

3.3 Feature enhancement module

Figure 7 also shows the structural diagram of the feature
enhancement module. This structure adopts a pyramid con-
figuration, progressively enhancing and merging weaker fea-
tures at each level, resulting in a feature representation that
is rich and discriminative [30]. The input is the corrected
image output by the anti-fisheye module, and the output is
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Fig. 7 Structure of anti-fisheye and feature enhancement modules

the feature-enhanced undistorted image. Initially, the Haar
wavelet is utilized to gather high-frequency and low-fre-
quency features within the image. The emphasis module then
enhances high-frequency features, which are progressively
overlaid with low-frequency features to yield an image of
the electrical connection device with enhanced features. The
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use of an attention module ensures that detailed features are
not lost during the feature extraction process. This approach
is particularly beneficial in scenarios where the image may
contain a wealth of complex or subtle features that are essen-
tial for accurate OD. By enhancing high-frequency features
and preserving detailed features, the AFE-FE model can
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generate a more comprehensive and discriminative represen-
tation of the electrical connection device, thereby improving
the performance of the subsequent detection model.

3.4 Loss function

The discriminator primarily consists of two modules, Iden-
tify and Classification, i.e., D = (Dide, DCI). D, differenti-
ates between the generated images, namely X; and X,,, and
the undistorted real image Y(y). D, outputs are Distorted
(distorted or unenhanced feature images) and Corrected
(undistorted and feature-enhanced images). D, defines
undistorted images as True and generated images as False,
and adversarial training is conducted using the principle of
adversarial networks. A(x) represents the image generated
by the anti-fisheye module. F(x;) represents the image gen-
erated by the feature enhancement module. x; represents
the image generated by the anti-fisheye module. L;,. rep-
resents identity authentication loss, used to distinguish the
authenticity of real and undistorted images from generated
images. E;_j,(y) represents the expected distribution of true
undistorted images (y) . E,_gue(x) represents the distribution
of the original distorted input image (x) . L. represents clas-
sification loss, used to identify image distortion attributes.
Ly, represents the total loss function of the discriminator,
which is used to optimize the ability of identity discrimina-
tion and distortion classification, driving the discriminator
to accurately distinguish.

Lige =E,data(y) 10810(Dige )
+ E,datat 10810(1 = Djg (A))) (D
+ E, datax) 10810(1 — Dige (F (xf) ))

Ly =E; _qatay) 10810(De ()
+ Ex~data(x) 10810(1 - Dcl (x))

2
+ Ex~data(x) 10%10 (1 - Dcl(A(x))) ( )
+ E,gatatx) 10810 (1 -D, (F(xf)>)
Ly = Lige + Ly 3)

Since the images input into the AFE-FE model is not
labeled, auxiliary training is conducted based on the spe-
cial correspondence relationship of image types. This paper
adopts cross-rotation consistency and in-image warping
consistency features to achieve the function of correcting
the fisheye effect. Equations (4) and (5) are the cross-rota-
tion consistency feature loss functions between the original
image and the image generated by the AFE module. The
subscript 1 denotes the L1 norm (Manhattan norm). Equa-
tions (6) and (7) are the feature loss functions for achieving

warping consistency. In the equations, P(x) is the output
of the prediction module, and f = P(x). With (0, 0) as the
centre, f, represents the flow condition of the pixel at the
image coordinate p € R? in the flow-map. R,(x) represents
the image post-rotation, while A (R, (x)) denotes the image
generated by the anti-fisheye module after rotation. R,(A(x))
represents anti-fisheye output A(x rotated by 6. llsll; measures
the difference between P(x) and P(R, (x)). D(x;) represents
discriminator output for generated image x;. O represents
overall optimization objective combining min-max over net-
works (A, F, D). L, 4(A) ensures that the anti-fisheye mod-
ule A preserves geometric consistency under image rotation.
Lg,(A) maintains consistency in optical flow predictions
before and after rotation. Ly, (A) enforces radial consist-
ency in flow vectors to align with fisheye distortion pat-
terns. L,,,(A) promotes spatial smoothness in the flow field.
L..(A) supervises the feature enhancement module F to
preserve content. L, aggregates geometric, flow, radial, and
smoothness constraints for A. Lp combines reconstruction
fidelity and adversarial loss. p represents the pixel coordi-
nates in the image

Lyeol) =E o (| [RoA @) = A (Ro) | )

+ Ex~data(x)(HA(x) -R (A (Re(x)))“l), @

Lion(4) = E_guucs (| [P = P(Ro) | )- )
Liog(d) = EXNdala@[ff_ Hffﬂﬁ 1 var({ |l [ nipt = r})],

p

(6)

b= ([0 4 [0 )

Linge(F) = Exf~data(xf)<||xf — F(x) l | )e (8)

Ly = Lyoo(A) + Lyoy (A) + Liyg(A) + Ly o (A), )

Lp = Ly (F) + a(Ly (sigmoid (D (x;)), 1), (10)

O:argn}éinmpinmlgle(A,F,D). (11)

The objective function L(A, F, D) incorporates the loss
functions from Eq. (1) to Eq. (10). This paper’s model
addresses the complete optimization objective function as
shown in Eq. (11).
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4 Implementation details
4.1 Computer configuration

The method proposed in this paper collects images through
an industrial camera with a resolution of 3 840x2 160 pixels.
These are initially processed to a size of 256x256, serving as
the original sample images. These original images are used
as the basic input, and the proposed method is implemented
using a Windows 10 operating system, a NVIDIA GeForce
RTX 3070 Super graphics card, and a device with 32 GB of
video memory. The model’s effectiveness is validated using
Hikvision CS-MV-CS200-10GM video detection equipment
in combination with different SOTA OD models.

4.2 Design of the test
4.2.1 Picking out
The model in this paper requires two types of samples.

(1) Input samples for supervision (Image Y). Therefore,
ongoing smelting operations need to be halted, and
under the premise of ensuring safety, a lighting device
with sufficient brightness is manually held up. A high-
definition camera without distortion effects is used to
capture a set of undistorted samples with clear features.

(i) Real original samples (Image X) captured by an indus-
trial camera in real scenarios, forming a set of original
samples.

4.2.2 Establishment of a sample library

Sample library required for the proposed model: After
screening, the original dataset contains a total of 22 000
sample images (Image X), and there are 8 100 sample
images for supervision (Image Y). The images are stored in
the corresponding folder paths of the AFE-FE model.

Sample library required for validation: As the proposed
model’s effectiveness is validated using SOTA OD models,
a comparative sample set needs to be established for this
paper.

Sample set 1: A total of 20 000 sample images are
selected from the original sample set that has not been
trained using the AFE-FE model. These are divided into
training, testing, and validation sets at a ratio of 6:2:2. After
labeling, the images are stored in their respective folder
paths.

Sample set 2: After the AFE-FE model has been trained,
this model generates a total of 20 000 images that have been
corrected for fisheye distortion and have enhanced features.

@ Springer

Table 1 Model performance

Model size/MB  Params/M  FLOPs MAC/MB

AFE-FE 135 4.14 2.61 GFlops  76.28

These are divided into training, testing, and validation sets
at a ratio of 6:2:2. After labeling, the images are stored in
their respective folder paths.

All the above samples were collected from the smelting
site and corresponding databases were constructed.

4.2.3 AFE-FE model training

The industrial camera used in this paper captures images of
size 3 840%2 160, so the collected images are first propor-
tionally reduced to 256x144 using the Bicubic interpolation
method. The edges are then padded to expand them to a size
of 256x256.

This can achieve the aforementioned cross-rotation con-
sistency and warping consistency characteristics, helping
to improve the accuracy and performance of the model and
reduce the risk of overfitting. In addition, the above processing
can improve the training speed of the model without sacrificing
accuracy or losing features. It can also effectively enhance the
model’s generalization ability, which is conducive to improv-
ing the model’s usability. Therefore, it can provide significant
advantages for the neural network model in this paper.

We propose an AFE-FE model to implement fisheye
correction and feature enhancement. Using a learning rate
of 107> and Adam as the optimizer, the model is compiled
based on the Pytorch framework, with a batch size set to 8.
The aforementioned samples are input into this model for
training, and when the training reaches the optimal indica-
tor, the final model parameters of this method are saved. The
algorithms are then tested using the test set. In Table 1, we
analyzed the model size, parameters (Params), floating-point
operations per second (FLOPs), and memory access cost
(MAC) measurement to reflect the efficiency of the network.

4.2.4 Object recognition

Two comparative sample sets required for validation are
trained using excellent SOTA OD models. After training,
a control group is set up to validate the effectiveness of
the proposed model. The OD models selected in this paper
include: Focus-and-Detect [31], USTD [32], YOLODrone
[33], YOLOv4-MN3 [34], Faster R-CNN [35], and SSD. A
control group is set up to validate the superiority of the com-
bination of the aforementioned SOTA models and the AFE-
FE model proposed in this paper. In addition, the SIR model,
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FE-GAN model, AFAM model, and SGUIENet model are
combined with SOTA object detection models to test the
effects of fisheye correction and feature enhancement.

4.3 Evaluation metrics

This paper selects the following parameters as evaluation indi-
cators: precision (P,.), recall (R,.), average precision (Ap),
Apsg, Apys, and accuracy (Aggyrcy)- These indicators can evalu-
ate the positioning accuracy of the OD model. P, represents
the ratio of the number of correctly detected targets to the
total number of predicted bounding boxes. R, represents the
proportion of correctly detected targets to total targets. Ap is
the area between the precision curve and the coordinate axis
within the range of [0,1], as shown in Fig. 8. Aps, represents
the Ap value when IoU is fixed at 50%, and Ap,5 represents the
Ap value when IoU is fixed at 75%. A qyyycy represents the pro-
portion of correctly predicted samples in a given test sample
set. The formulas are shown as follows

Po=—F_ 12
e 12
R =L 13
A v (3)
1
Ap = [ P(R)dR, (14)
0
To+T,
A _ ptIN (15)

Y T T, + Ty + Fp + Fy

In OD, the predicted intersection over union (IoU)
between the predicted bounding box and the “ground-truth”
bounding box in the corresponding image is defined. If the
IoU exceeds a defined threshold, the predicted bounding
box in this prediction is considered a true positive (Tp).
Conversely, if the IoU is below the defined threshold, the
predicted bounding box in this prediction is deemed a false

Precision with AFE- Precision without
FE model/% AFE-FE model/%
Focus-and-Detect 95.456 84.562
USTD 94.826 88.463
YOLODrone 96.135 87.354
Faster R-CNN 84.452 80.654
SSD 87.475 82.465

positive (Fp). Fp represents the total number of negative
samples incorrectly predicted as positive samples, i.e., false
alarms. False negatives (Fy) represent the number of posi-
tive samples incorrectly predicted as negative samples, i.e.,
missed detections. True negative (Tyy) represent correctly
predicted negative samples, i.e., true non-targets identified
as negative. The evaluation indicators used in this paper all
indicate that the higher the score, the better the performance
of the detection model.

The Pg\r and Sgpy, [36] indicators are selected to evaluate
the differences in pixel values and structure. Py represents
the ratio of the maximum signal value of an image to the
noise in the background. R denotes the maximum possible
pixel value of the image, representing the dynamic range of
the signal. Mean squared error (Mgg) quantifies the average
squared difference between the original and reconstructed
images, measuring pixel-level distortion. The larger the
Pgnr, the higher the image quality. Sq;,, measures the simi-
larity between images based on luminance, contrast, and
structure. Luminance (I) compares the mean intensities of
images x and y, adjusted by exponent a. Contrast (¢) evalu-
ates the standard deviation of pixel values, reflecting texture
variations, weighted by f. Structure (s) measures the cross-
correlation between x and y, capturing spatial relationships,
with y as its exponent. The larger the Sqp, the smaller the
image distortion. The formulas are shown as follows

P = 101()g <—>

5 16
SNR 10 M ( )
‘SSIM(x’y) - (l(x?y)) (C(X,J’)) (s(x’)’)) . (1')

4.4 Testing & evaluation
4.4.1 Comparison with SOTA OD model combination

Two comparative sample sets required for validation are
trained using excellent SOTA OD models. The excellent
SOTA OD models selected in this paper include: Focus-
and-Detect, USTD, YOLODrone, YOLOvV4-MN3, Faster
R-CNN, and SSD. After training, control groups are set up:
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Table 3 Test metric scores for the different methods on each test set

Our detaset MCindoor20000
Time/ms R. /% Ap Apsoy  Aprs  Acuraey  Time/ms  R.J/% Ap Apsy  Aprs Accuracy
Focus-and-Detect+ours  26.6 95.136  41.7 62.1 489 78.63 30.1 96.145 403 619 479 79.15
Focus-and-Detect 26.3 94241 41.1 61.7 481 76.82 29.8 94836  36.6 588 438 7548
USTD+ours 242 94.864 417 59.8 457 73.94 29.6 94215 404 579 413 74.18
USTD 239 93415 414 592 453 7161 29.3 92,678 34.1 56.1 40.1 70.89
YOLODrone+ours 253 98.435 439 623 478 8842 27.6 98351 482 67.1 49.6 89.46
YOLODrone 249 97.682 432 648 47.1 84.67 27.5 96.153 416 623 434 834l
Faster R-CNN+ours 26.9 87.552 374 558 442 5575 29.4 87.115 384 56.6 415 59.15
Faster R-CNN 26.4 87.132  36.7 549 435 5234 29.2 83.646 355 534 402 5345
SSD+ours 27.6 89.341 39.8 578 448 72.65 24.4 88.845 374 568 413 73.15
SSD 27.4 88.454 389 573 441 70.64 243 84.643 346 51.6 40.1 7048
Table 4 Average positioning errors of different algorithms Table 5 Comparison of Pgyg and Sgp, of different models
Error with AFE-FE Error without Pgnr/ dB Ssim
model/mm AFE-FE model/
mm SIR 28.46 0.75
FE-GAN 27.15 0.68
Focus-and-Detect 0.98 5.24 AFE-FE (ours) 3142 0.97
USTD 1.34 11.73
YOLODrone 0.79 4.68
Faster R-CNN 1.64 16.84
SSD 1.98 20.16 Table 6 Comparison of precisions of different models
P. /%
YOLODrone 87.354
Control group 1. The trained SOTA models are directly used =~ YOLODrone+SIR 92.456
to detect images of torpedo can electrical connection devices ~ YOLODrone+FE-GAN 89.254
collected on-site. Control group 2: The trained AFE-FE ~ YOLODrone+AFE-FE (ours) 96.135

model is combined with the SOTA models before detecting
images of the torpedo can’s electrical connection devices
collected on-site. A total of 5 000 images of torpedo can
electrical connection devices collected on-site are used as
the test set. As shown in Table 2, the precision indicator of
the SOTA OD model combined with the AFE-FE model
proposed in this paper is significantly higher than the indi-
cator detected directly by the model. This demonstrates that
combining the AFE-FE model proposed in this paper with
the SOTA models can significantly improve the detection
accuracy of torpedo can’s electrical connection devices.
Among them, the combination of the YOLODrone model
and the AFE-FE model achieved the highest score.

Table 3 calculates the test metric scores before and after
combining different SOTA models with our proposed model.
We conducted experimental verification on the self-made
dataset and the MCindoor20000 dataset [37], respectively.
The prediction time of the OD model slightly increases
after adding the preprocessing algorithm in this paper, but
it is still within an acceptable threshold. Compared to the
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increase in recognition performance, the increased time cost
can be ignored. It can be concluded that the preprocessing
algorithm in this paper significantly improves the recogni-
tion accuracy and ability of each OD model.

Combine different algorithms with the robotic arm to
calculate the error between each recognition positioning
coordinate and the actual position. Table 4 calculates a total
of 100 experiments for each method and calculates the aver-
age positioning error. It can be seen that the preprocessing
algorithm proposed in this article meets the needs of actual
production and can greatly improve the probability of suc-
cessful power connection.

4.4.2 Comparison with the SOTA anti-fisheye model
This paper selects the SIR model and FE-GAN model, two

SOTA fisheye correction models, for comparison with the
AFE-FE model, to test the fisheye correction effect of the
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Table 7 Proportions of successful power connections

Table 8 Comparison of Py and Sgyy, of different models

Proportion/% Pgnr/dB Ssim

YOLODrone 94 AFAM 27.12 0.76
YOLODrone+SIR 95 SGUIENet 26.42 0.74
YOLODrone+FE-GAN 95 MEGF [38] 25.94 0.78
YOLODrone+AFE-FE (ours) 99 FDENet [39] 27.35 0.81
AFE-FE (ours) 31.42 0.97

model in this paper. As can be clearly seen from Table 5,
compared to other SOTA models, the AFE-FE model in this
paper achieves higher scores on all evaluation indicators.
This indicates that the images corrected for fisheye effects
using the AFE-FE model achieve the best results in terms of
quality and distortion.

The SIR model, FE-GAN model, and AFE-FE model are
combined with the YOLODrone OD model for a comparison
in terms of detection accuracy. As shown in Table 6, the
fisheye correction model in this paper has a clear advan-
tage in detection accuracy compared to other models. The
aforementioned different algorithms are combined with a
robotic arm. If the robotic arm cannot completely fit the
electrical connection device, it is judged as a failure; if it can
completely fit, it is judged as a success. Table 7 calculates
the proportion of successful connections in a total of 100
experiments for each method. It can be seen that the preproc-
essing algorithm proposed in this paper greatly increases the
probability of successful electrical connection compared to
other fisheye correction algorithms.

In summary, the model proposed in this paper is superior
to the SIR model and the FE-GAN model in terms of fisheye
correction effects, and the effectiveness of this algorithm in
OD has been experimentally validated.

4.4.3 Comparison with the SOTA feature enhancement
model

We compared several SOTA feature enhancement models,
including AFAM model, SGUIENet model, MEGF model,
and FDENet model, with AFE-FE model to test their feature
enhancement effect. As can be seen from Table 8, compared
to other SOTA models, the AFE-FE model in this paper
achieves higher scores on all evaluation indicators. This
indicates that the images enhanced with features using the
AFE-FE model achieve the best results in terms of quality
and distortion. The AFAM model, SGUIENet model, and
AFE-FE model are combined with the YOLODrone OD
model for a comparison in terms of detection accuracy. As
shown in Table 9, compared to other models, the detection
accuracy of the model in this paper has a clear advantage
over other feature enhancement models.

In summary, the model proposed in this paper is superior
to the AFAM model and the SGUIENet model in terms of

Table 9 Comparison of precisions of different models

P. /%
YOLODrone 87.354
YOLODrone+ AFAM 91.445
YOLODrone+ SGUIENet 87.548
YOLODrone+ MEGF 91.132
YOLODrone+ FDENet 89.985
YOLODrone+AFE-FE (ours) 96.135

feature enhancement effects, and the effectiveness of this
algorithm in OD has been experimentally validated.

4.4.4 Practical application effect

We obtained production capacity data from the internal pro-
duction records and annual reports of our partner factory. We
analyzed the average monthly production capacity changes
from June 2022 to June 2023, ensuring that the production
environment and production demand remained constant dur-
ing this period. Table 10 calculates the production capac-
ity and waste volume before and after the combination of
the FE-GAN model with SOTA models applied to the steel
rolling process. It can be seen that after using the method
proposed in this paper, the monthly production capacity has
been significantly improved while reducing the amount of
smelting waste. This indicates that the method proposed in
this paper can improve smelting efficiency and reduce smelt-
ing costs and waste.

Upon analysis, it can be found that the AFE-FE model
proposed in this paper has obvious advantages in the detec-
tion of torpedo can electrical connection devices, which are
shown as follows.

(i) The AFE-FE model is robust, can be combined with
different SOTA OD models, and enhances the perfor-
mance of the target monitoring model.

(ii)) The AFE-FE model has excellent fisheye effect cor-
rection capabilities, ensuring the positioning accuracy
of the electrical connection device to the greatest
extent.
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Table 10 Comparison of practical application effects

Monthly production Wastage/t
capacity/t
None 6421 341
YOLODrone 6802 338
YOLODrone+AFE-FE(ours) 8 462 304

(iii)) The AFE-FE model enhances the blurred target fea-
tures in dim environments, improving the detection
accuracy of the electrical connection device.

5 Conclusions and future work

Addressing the challenge of recognizing and locating tor-
pedo can electrical connection devices, we propose an AFE-
FE model preprocessing algorithm, comprising an anti-
fisheye module to correct fisheye camera distortions, and
a feature enhancement module to enhance blurred features
under low illumination. Combined with SOTA OD models,
the AFE-FE model performs well in detecting these devices.
An image database of these devices is established, and after
multiple training iterations, optimal hyperparameters are
fixed based on validation set results. Evaluation indicators
are calculated for both training and test sets to assess image
quality and detection performance. Finally, real-time detec-
tion is performed on on-site video footage, with target con-
fidence and location marked on the image.

This paper experimentally demonstrates the effectiveness
of a proposed algorithm for positioning torpedo can electri-
cal connection devices. Traditional manual operations are
time-consuming, labor-intensive, and pose safety risks. The
proposed algorithm, combined with a robotic arm, acceler-
ates the connection process, ensures safety, and improves
efficiency and cost-effectiveness. After implementing this
preprocessing algorithm, the monthly production capacity
in 2023 rose significantly to 8 462 t, a 31.8% increase from
2022’s 6 421 t. Material waste decreased by 10.9%, from
341 t to 304 t, enhancing smelting efficiency and reducing
costs and waste.

The preprocessing algorithm in this paper can improve
the overall efficiency and cost-effectiveness of the steel man-
ufacturing industry. The algorithm has a certain robustness
and can be applied to other scenes that need fisheye correc-
tion and feature enhancement, and it has good application
prospects. However, the algorithm still has some shortcom-
ings. It is necessary to customize specific model design indi-
cators according to different scenarios. In the future, more
factors need to be considered in the algorithm to enhance the
usability and robustness of the algorithm, such as processor
computing power, related shooting equipment, more target

@ Springer

features that need to be positioned, etc. When integrating the
algorithm into the existing steel smelting production line, the
scalability of the algorithm and the cost of maintenance and
debugging also need to be considered.
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