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Abstract: Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied Al It is
crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learn-
ing methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback,
making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in
this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose
and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic de-
cisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize
the robot’s performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an over-
view and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research
directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM survey.
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1 Introduction

During the previous decade, remarkable progress has
been made in machine learning research centered on the
field of deep learning, revolutionizing various applica-
tions such as computer vision[!3] and natural language
processing4: 5. Different from traditional machine learn-
ing methods that solely rely on pre-constructed datasets
for pattern recognition and prediction, embodied learning,
a cornerstone of embodied AI, aims to empower intelli-
gent agents the capability of environment perception and
decision making. Embodied learning allows robots to
learn through physical interaction with the environment
and feedback from sensors, enabling them to adapt to
new situations. It emphasizes the importance of the
robot’s embodiment and knowledge acquisition through
physical interactions and practical experiencesl® 7. The
data sources encompass a broad spectrum, including sens-
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ory inputs, bodily actions, and immediate environmental
feedback. This learning mechanism is highly dynamic,
continuously refining behaviors and manipulation
strategies through real-time interactions and feedback
loops. Embodied learning is essential in robotics as it
equips robots with enhanced environmental adaptability,
enabling them to handle changing conditions and under-
take more intricate and complex tasks.

While a plethora of embodied learning methods have
been proposed, this survey primarily focuses on the task
of object-centric robotic manipulation. The inputs for this
task are data collected from sensors, and the outputs are
operational strategies and control signals for the robot to
perform manipulation tasks. The objective is to enable
the robot to efficiently and autonomously perform vari-
ous object-centric manipulation tasks while enhancing its
generality and flexibility across different environments
and tasks. This task is highly challenging due to the di-
versity of objects and manipulation tasks, the complexity
and uncertainty of the environment, and challenges such
as noise, occlusion, and real-time constraints in real-world
applications.

Fig.1(a) illustrates a typical robotic manipulation sys-
tem. It features a robotic arm equipped with sensors like
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cameras and end-effectors such as grippers, enabling it to
manipulate a wide range of objects. The system's intelli-
gence revolves around three key aspects, corresponding to
the three types of embodied learning methods depicted in
Fig.1(b). 1) Advanced perception capabilities, which in-
volve utilizing data captured by different sensors to un-
derstand the target object and external environment;
2) Precise policy generation, which entails analyzing the
perceived information to make optimal decisions; 3) Task-
orientation, which ensures the system can adapt to specif-
ic tasks by optimizing the execution process for maxim-
um effectiveness.

In recent years, extensive research has been conduc-
ted around those above three key aspects, particularly
with the flourishing of large language models (LLMs)[®l,
neural radiance fields (NeRFs)®, diffusion models'%, and
3D Gaussian splatting/lll, leading to a host of innovative
solutions. However, there is a notable absence of a com-
prehensive survey that encapsulates the latest research in
this rapidly evolving field. This motivates us to write this
survey to systematically recap the cutting-edge advance-
ments and summarize the encountered challenges, along
with the prospective research directions.

1.1 Comparison with recent surveys

Over the past few years, many survey articles have
emerged on embodied AI and robot learning, addressing
various domains like navigationl!?], planning’3l, gras-
ping4, and manipulation[!’l. In Table 1, we summarize
and categorize some recent relevant surveys in this field
and compare them with our work. To explicitly compare
these survey papers, we utilized two key criteria: timeli-

ness and systematicness. Timeliness assesses whether the
reviewed papers are up-to-date and cover the latest re-
search. Specifically, we consider review papers that in-
clude work from the past three years, i.e., those pub-
lished in 2022 and later, as timely. Systematicness, on the
other hand, applies specifically to surveys related to ro-
botic manipulation (RM). Other types of surveys are not
assessed for their systematic nature and are marked with

w_»

a in Table 1. If a survey only addresses certain as-
pects of RM like datasets[3% and imitation learningl32], it
is deemed lacking in systematicness.

From Table 1, it can be observed that the number of
surveys related to RM is the highest, indicating the signi-
ficance of research in the RM field. In addition, although
RG can be considered as the foundation of RM, it is of-
ten studied as an independent field due to its involve-
ment in many subtasks and specific problems. These ex-
isting surveys primarily focus on specific aspects of robot
manipulation, such as deep learning-based grasp synthes-
is20) and manipulation policy learning(!5 2. Additionally,
some latest surveys delve into recent advancements in
vision-language-action models24 and large language mod-
el-based autonomous agentsl?®.. However, our survey is
unique that it provides a comprehensive overview of em-
bodied learning methods for object-centric robotic manip-
ulation, encompassing embodied perceptual learning,
policy learning, and task-oriented learning.

The most closely related work to ours is the survey
paper by Cong et al. (2021)B5] which primarily reviews
research on 3D vision-based robotic manipulation up to
2021. In contrast, our work is not limited to specific in-
put modalities; we systematically summarize and categor-
ize representation methods based on 2D images, 3D-

Data representation (Section 2.1)

* Image-based representation (Section 2.1.1)
* 3D-aware representation (Section 2.1.2)

« Tactile-based representation (Section 2.1.3)

Object pose estimation (Section 2.2)

1 Embodied
Robotic arm erceptual learnin « Instance-level object pose estimation (Section 2.2.1)
p P . 2 « Category-level object pose estimation (Section 2.2.2)
(Section 2) * Novel object pose estimation (Section 2.2.3)
Abbr. EPEL
Affordance learning (Section 2.3)
* Affordance learning by supervised learning (Section 2.3.1)
« Affordance learning from interaction (Section 2.3.2)
Policy representation (Section 3.1)
« Explicit policy (Section 3.1.1)
« Implicit policy (Section 3.1.2)
Embodied « Diffusion policy (Section 3.1.3)
policy learning
(Section 3) Policy }eaming (Section 3.2) i
* Reinforcement learning (Section 3.2.1)
Abbr. EPCL « Imitation learning (Section 3.2.2)
* Other methods (Section 3.2.3)
Object grasping (Section 4.1)
« Single-object grasping (Section 4.1.1)
] Einiahizil * Multi-object grasping (Section 4.1.2)
Ob] ects task-oriented learning
(Section 4) Object manipulation (Section 4.2)
* Non-dexterous manipulation (Section 4.2.1
Abbr. ETOL pulaten )
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* Dexterous manipulation (Section 4.2.2)

(b)

Fig. 1 An illustration of robotic manipulation system (left) and the typology of embodied learning methods for object-centric robotic

manipulation (right).
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Table 1 Summary of recent surveys related to embodied Al and robot learning. RM: Robotic manipulation;
RG: Robotic grasping; RL: Reinforcement learning.

Authors Reference Year Category Timeliness Systematicness Short description
Jin et al. [16] 2018 Control X - Robot manipulator control using neural networks
Zhu et al. [17] 2021 Navigation X - Deep learning for embodied visual navigation
Duan et al. [18] 2022 Simulator v - Simulators for embodied AI
Francis et al. [19] 2022 Planning v - Embodied vision-language planning
Gervet et al. [12] 2023 Navigation v - Real-world empirical study for robot navigation
Newbury et al. [20] 2023 Grasp synthesis v - Deep learning approaches to grasp synthesis
Guo et al. [13] 2023 Planning v - Task and motion planning for robotics
Xiao et al. [22] 2023 Robot learning v - Foundation models for robot learning
Zare et al. [21] 2024  Imitation learning v - Imitation learning
Chen et al. [23] 2024 Policy learning v - Generative models for offline policy learning
Ma et al. [24] 2024 Action v - Vision-language-action models for embodied Al
Xu et al. [25] 2024 Planning and control v - Foundation models for robot planning and control
Kleeberger et al. [26] 2020 RG X - Machine learning for vision-based RG
Du et al. [14] 2021 RG X - Vision-based RG
Zhang et al. [27] 2022 RG v - Traditional and recent methods for RG
Xie et al. [28] 2023 RG v - Learning-based RG
Tian et al. [29] 2023 RG v - RG for unknown objects
Huang et al. [30] 2016 RM X X Datasets of RM
Yamanobe et al. [31] 2017 RM X X Affordance in RM
Fang et al. [32] 2019 RM X X Imitation learning for RM
Billard and Kragic [33] 2019 RM X X Trends and challenges in RM
Kroemer et al. [34] 2021 RM X X Machine learning for RM
Cong et al. [35] 2021 RM X X 3D vision-based RM
Cui and Trinkle [36] 2021 RM X X Adaptability of learned RM
Zhu et al. [37] 2022 RM X X RM of deformable objects
Mohammed et al. [38] 2022 RM v X RL-based RM in cluttered environments
Suomalainen et al. [39] 2022 RM v X RM in contact
Han et al. [15] 2023 RM v X RL for RM
Weinberg et al. [40] 2024 RM v X Learning approaches for in-hand RM
Ours 2024 RM v v Embodied learning for object-centric RM

aware techniques, and tactile sensing. Moreover, we
provide a comprehensive introduction to critical aspects
of robotic manipulation, such as policy and task-oriented
learning. Notably, our survey covers a wide range of the
latest research achievements mainly published after 2021,
offering a more cutting-edge and comprehensive perspect-
ive. Therefore, our work stands out as the only survey in
the RM field that combines both timeliness and systemat-
icness. We hope this survey will serve as a worthwhile
reference for researchers and practitioners in the field of
embodied learning for object-centric robotic manipula-
tion.

1.2 Text organization
This paper presents a comprehensive survey of embod-

@ Springer

ied learning methods for object-centric robotic manipula-
tion, encompassing three main domains and seven sub-
directions. The three domains are embodied perceptual
learning (Section 2), embodied policy learning (Section 3),
and embodied task-oriented learning (Section 4). The sev-
en sub-directions include data representation (Section
2.1), object pose estimation (Section 2.2), affordance
learning (Section 2.3), policy representation (Section 3.1),
policy learning (Section 3.2), object grasping (Section
4.1), and object manipulation (Section 4.2). We also ex-
tensively cover the commonly used datasets and evalu-
ation metrics (Section 5), along with several representat-
ive applications (Section 6). Additionally, we delve into
the primary challenges and provide insights into poten-
tial future research directions (Section 7).
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2 Embodied perceptual learning

To perform object-centric robotic manipulation, the
robot must first learn to perceive the target object and its
surrounding environment, which involves data representa-
tion, object pose estimation, and affordance learning. In
this section, we will provide a comprehensive overview of
these works.

2.1 Data representation

In object-centric robotic manipulation, robots utilize
various sensors to perceive their surroundings. These en-
compass visual sensors like RGB and depth cameras,
which capture color images and depth maps; LiDARs,
which create high-resolution 3D point clouds through dis-
tance measurements; and tactile sensors, which detect
forces during grasping and pressure distribution on con-
tact surfaces. The data collected by these sensors come in
different forms, leading to various representations tailored
to specific solutions. Next, we will introduce three
primary types of data representation approaches: image-
based representation, 3D-aware representation, and tact-
ile-based representation.

2.1.1 Image-based representation

This line of work primarily focuses on constructing ef-
fective representations solely from RGB images, thereby
providing a robust foundation for subsequent tasks in ro-
botic manipulation, such as object pose estimation. De-
pending on the number of input images and variations in
network architecture, existing methods can be categor-
ized into four types: single-image single-branch (SISB)®1],
(SIMB)42]]
single-branch (MISB)3], and multi-image multi-branch
(MIMB)#4, as illustrated in Fig. 2.

1) As depicted in Fig.2(a), the SISB methods take a
single RGB image as input, with a streamlined network

single-image  multi-branch multi-image

architecture featuring a single main pathway. It conven-
tionally employs deep learning models like convolutional

Object pose Object pose

Pose estimater Pose estimater

Auxiliary maps
Deep feature

Auxiliary
Deep model predictor
I, 2
(2) SISB (b) SIMB

neural networks (CNNs) to extract deep features from the
source image, which are then fed into a pose estimator to
generate the essential object pose information for robotic
manipulation. SISB incorporates a typical approach to
deep feature representation within an end-to-end net-
work framework. Despite its speed and simplicity, the
SISB's limitation in expressing objects’ 3D geometric in-
formation may result in subsequently coarser object pose
estimation.

2) To overcome the limitations of SISB, SIMB meth-
ods introduce extra network branches alongside the main
pathway, as shown in Fig.2(b). These additional
branches are designed to capture richer auxiliary informa-
tion. For instance, MonoGraspNet[42l combines a keypo-
int network and a normal network to produce keypoint
heatmaps and normal maps, respectively. It provides a
more robust intermediate representation, improving pose
estimation accuracy. However, this method relies heavily
on the prediction accuracy of the additional branches.
Due to the inherent limitations of making predictions
based on a single image, errors are inevitably introduced
in the generated intermediate representations. These er-
rors can amplify the adverse effect on subsequent pro-
cessing steps and increase uncertainty in robotic manipu-
lation tasks.

3) Owing to the lack of scale information in a single
image, accurately estimating the 3D geometric informa-
tion of objects is quite challenging. Therefore, a lot of re-
search has focused on exploring methods that use mul-
tiple images to address this constraint. Among these ap-
proaches, the MISB framework has received significant
attention. As shown in Fig.2(c), this framework aims to
use multiple images for 3D reconstruction to recover
depth information of the scenel45: 48], which in turn facilit-
ates the generation of efficient 3D representations. Spe-
cifically, the depth recovery can be achieved through ad-
vanced techniques such as NeRFsl¥ or Gaussian
splatting[!1],

4) Unlike MISB, MIMB aims to directly generate

Object pose Object pose

Multi-view

Pose estimater .
pose estimater

3D representation Auxiliary maps
N Auxiliary
reconstruction predictor
model
I, Iy I, Iy
(c) MISB (d) MIMB

Fig. 2 Conceptual comparison of four image-based representation frameworks. SISB: Single-Image Single-Branch; SIMB: Single-Image
Multi-Branch; MISB: Multi-Image Single-Branch; MIMB: Multi-Image Multi-Branch. (Colored figures are available in the online

version at https://link.springer.com/journal /11633)
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multi-view image representations from images captured
by a robot at multiple positions, bypassing the phase of
3D reconstruction. As illustrated in Fig.2(d), the MIMB
methods incorporate additional predictors to acquire ex-
tra information, compensating for the lack of 3D informa-
tion and enhancing the robot's scene perception. For ex-
ample, RGBManipl44 introduces a multi-view active
learning method and utilizes the segmentation maps pro-
duced by the segment anything model (SAM) model™ to
provide enhanced representations for the multi-view pose
estimator.
2.1.2 3D-aware representation

This section explores 3D-aware representation, which
usually takes RGB-D images as input. Existing methods
fall into three categories based on the representations
they generate: depth-based representation (DR), point
cloud-based representation (PR), and transition-based
representation (TR), as shown in Fig. 3.

Feature F, Feature F, Feature F,
. Feature 3D feature
Fusion
extractor extractor
2D features Point clouds

3D representation

2D feature Pre-processin Transition
extractor P & model
RGB-D images RGB-D images RGB-D images
(a) DR (b) PR (¢) TR

Fig.3 Conceptual comparison of three 3D-aware represen-
tation frameworks. DR: Depth-based representation; PR: Point
cloud-based representation; TR: Transition-based represen-
tation. (Colored figures are available in the online version at
https://link.springer.com/journal/11633)

1) The DR methods usually employ a network to ex-
tract 2D features from RGB-D images simultaneously, as
illustrated in Fig.3(a). Some use these extracted features
directly for subsequent tasks43: 491, which typically neces-
sitate posterior refinement. For example, Lenz et al.[4 in-
troduced a two-stage cascade network architecture, where
the first network efficiently filters out numerous unlikely
grasps generated upon extracted features, and the second
network concentrates on evaluating the detections from
the first network. Another line of studies(50 51 utilizes a
two-stream network to independently extract 2D fea-
tures from RGB and depth images. Subsequently, these
features are combined or fused to generate the final fea-
ture Fy for downstream tasks.

2) Instead of directly extracting features on RGB-D
images, PR methods first create point clouds through pre-
processing, as depicted in Fig.3(b). Previous approaches
for processing point clouds converted from RGB-D im-
ages(52l often involve voxelizing the point clouds and util-
izing 3D convolutional neural networks to extract fea-
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tures. However, such approaches are inefficient in terms
of memory usage. The introduction of PointNet3, a net-
work architecture designed explicitly for point clouds, has
revolutionized the field. Many methodsP% 53 now prefer
to leverage PointNet-like frameworks that enable direct
feature extraction from individual points in the point
cloud, followed by task-specific modules customized for
different objectives.

3) Fig.3(c) presents the framework of TR works/5
that focus on improving the model’s understanding of 3D
geometry by translating the input RGB-D data into 3D
representations such as occupancy fields, NeRFs, or 3D
Gaussians. For example, [57] involves converting RGB-D
data into a voxel representation, using a voxel encoder to
create a 3D feature volume. This volume is then em-
ployed to construct a neural radiance field to model the
3D space and predict robot actions. [58, 59] project RGB-
D data into dense point clouds or voxelized point clouds,
which are the foundation for placing 3D Gaussians with-
in the scene and enhancing support for robotic manipula-
tion tasks.

2.1.3 Tactile-based representation

Tactile sensing acquires crucial force and positional in-
formation, allowing the robot to perceive contact with ob-
jects and subtle surface changes sensitively. This informa-
tion is vital for enhancing the robot's capacity to per-
form complicated tasks and improving its operational ac-
curacy and adaptability.

The field of tactile sensing technologies is diverse,
with examples such as Gelsight(0, DIGIT[6U, and All-
Sight[62], These sensors can capture various tactile inform-
ation such as contact positions, normal forces, tangential
forces, and torques. The representation methods for this
data also vary. One common representation is time se-
quences obtained through multiple samplings of tactile
feedback within a specific time window(63. These se-
quences can be converted into feature vectors using neur-
al networks like long short-term memory (LSTM)04,
which simplifies the processing in subsequent models. An-
other form of representation is the tactile imagel65 66],
which presents tactile information visually in an intuitive
format similar to a standard RGB image and can be dir-
ectly processed using CNN for feature extraction. Addi-
tionally, tactile data can be integrated with other modal-
ities, such as vision and audio, to create a multimodal
representation(67. 6] providing a comprehensive under-
standing of the environment and objects.

Furthermore, creating high-quality tactile representa-
tions often requires extensive training data. However,
gathering tactile data is more time-consuming than visu-
al data. To overcome this challenge, researchers have pro-
posed leveraging technologies like NeRF or GANs to gen-
erate tactile datals® 7 or building simulation environ-
ments to imitate tactile experiences[™ 7. With the con-
tinuous development of these techniques, we anticipate
that tactile-based representations will play an even more
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significant role in robotic manipulation.
2.1.4 Discussion

Image-based representation minimizes sensor require-
ments but is limited by relying solely on RGB image in-
formation. 3D-aware representation leverages both image
and depth data to provide a more robust representation
for learning tasks. Tactile-based representation serves as
a supplementary method, further enhancing the robot’s
perception abilities. Future research should focus on com-
bining these methods to fully exploit their respective
strengths.

2.2 Object pose estimation

Grasp detection, an essential component of robotic
manipulation, relies on accurate object pose estimation as
a crucial step[™l. The precision of pose estimation signific-
antly affects the robot's ability to successfully grasp tar-
get objects, emphasizing the need to develop robust and
efficient pose estimation algorithms. Based on the type of
predicted output, there are two main categories of object
pose estimation methods: 2D planar pose estimation(7l
and 6D pose estimation in 3D spacel™]. The former pre-
dicts the object’s position in the 2D plane and a 1D rota-
tion angle, primarily employed for manipulating objects
within a 2D plane. An example application for this meth-
od is product sorting in industrial assembly lines, where
robotic arm grippers are typically positioned above the
sorting platform and utilize a vertical downward angle to
grasp target objects. The latter predicts the object’s 6DoF
(degrees of freedom), including 3D rotation and 3D trans-
lation, which can fully describe the object’s position and
orientation in 3D space. Compared to 2D planar pose es-
timation, 6D pose estimation has a broader range of ap-
plications, allowing robotic arms to manipulate objects
from any angle.

Most existing work focuses on the 6D object pose es-
timation, which can be divided into three categories: in-
stance-level, category-level, and novel object pose estima-
tion.

2.2.1 Instance-level object pose estimation (ILOPE)

It refers to estimating the pose of a specific instance of
an object, such as a particular cup. Existing methods typ-
ically require detailed prior knowledge of the object’s
shape and appearance, which a textured CAD model can
furnish. Since these methods conduct training on specific
samples of target objects, the trained models are object-
specific.

The ILOPE problem can be formulated as (1): Given
a set of N, objects O={0;|i=1,2,---,N,}, along
with their corresponding 3D models M = {m; |i=
1,2,---,No}, the objective is to learn a model & to es-
timate the transformation matrix T' for each object in-
stance S that is present in a given RGB or RGB-D im-
age I. This transformation T consists of a 3D rotation

R € SO(3) and a translation component t € R*, which
can map the target S to the camera coordinate system.

T « &(I| 0, M). (1)

Significant research has been conducted to estimate
the pose of objects at the instance level. Some methods
utilize deep neural networks to directly regress the 6D
pose of objects, such as PoseCNNI"6 and CDPNI[7.
However, these methods may still require post-processing
optimization[™ ™l to achieve better prediction results, as
they are relatively simple. Another class of methods in-
volves learning 2D-3D or 3D-3D correspondences using
keypoints8% and then employing a RANSAC-based PnP
(Perspective-n-Point) algorithm[®!: 82 to generate pose es-
timation results. Furthermore, template matching83 or
feature point voting(84 are promising approaches for 6D
object pose estimation.

The above methods have the advantage of yielding
highly accurate pose estimation results. However, they re-
quire training for each instance, which makes them un-
suitable for handling large-scale and diverse sets of ob-
jects.

2.2.2 Category-level
(CLOPE)

It involves estimating the pose of objects belonging to

object pose estimation

predefined categories, such as cups. Existing methods for
this task generally do not rely on training on specific in-
stances of objects. Instead, they perform pose estimation
using certain features within or across object classes.
These methods do not require a 3D model for each in-
stance, which is particularly beneficial when the exact
shape and appearance of the objects are not known in ad-
vance.

Formally, the CLOPE problem can be stated as (2):
Given a set of N, object categories C ={¢; | i =1,2,---,
N¢} and a set of objects O belonging to different categor-
ies, the goal is to learn a model @ to estimate the trans-
formation matrix T' for each object instance s that ap-
pears in the observed RGB or RGB-D image I and be-
longs to category ci. In this case, the 3D model of each
object is not available.

T+ &(I|0,C). (2)

To estimate object pose at the category level, Wang
et al.B% introduced normalized object coordinate space
(NOCS), a coordinate system based on the object cat-
egory. NOCS encodes the pose and size of the object as a
normalized coordinate vector, and then the correspond-
ence between observed pixels and NOCS can be directly
inferred with a neural network. Chen and Doul8¢ utilized
the structured prior of the object category to guide pose
adaptation and employed a transformer-based network to
model the global structural similarity between the object
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instance and the prior. These methods are mainly suit-
able for the pose estimation of rigid objects®7 88,
However, they are not effectively generalized for articu-
lated objects due to the complexity of articulated object
poses, which involve not only translation and rotation but
also various joint movements. To address category-level
articulation pose estimation (CAPE), Li et al.’9 expan-
ded upon NOCS and introduced articulation-aware nor-
malized coordinate space hierarchy (ANCSH), a category-
level representation method tailored for articulated ob-
jects. Additionally, Liu et al.% proposed a real-world
task setting called CAPER (CAPE-Real), which can
handle multiple instances and diverse kinematic struc-
tures.

The aforementioned methods all estimate an object’s
pose under the assumption that the object category is
known. They typically train models using datasets of
known object categories and then perform pose estima-
tion on new instances of the object. These methods en-
able generalization within the predefined object categor-
ies, but they are not capable of handling new object cat-
egories.

2.2.3 Novel object pose estimation (NOPE)

It has emerged as a highly active research area in re-
cent years to estimate the pose of novel objects from pre-
viously unseen categories during training. In this case, in-
stance-level 3D models and category-level prior informa-
tion are unavailable, but we can take reference images of
the target object as an aid. This problem can be formal-
ized as (3): Given one or multiple test images / along
with several reference images I, associated with the tar-
get object, the objective is to learn a model ¢ to estim-
ate the transformation matrix T within the test images
by leveraging the visual information from the reference
images.

T+ &I | I). (3)

In this field, classic methods usually employ image
matching[™ 91 or feature matchingl9% 93 techniques and
subsequently perform pose estimation on new object in-
stances. For example, Liu et al.%l developed Gen6D, a
novel 6D pose estimation method that integrates an ob-
ject detector, viewpoint selector and pose refiner, en-
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abling the inference of the 6D pose of unseen objects
without relying on 3D models. Goodwin et al.l%] pro-
posed a method based on a self-supervised vision trans-
former and semantic correspondence to achieve zero-shot
object pose estimation.

Recently, the research community has been increas-
ingly focused on utilizing large models to enhance the
generalization capability of deep models for the NOPE
task. Lin et al.®¥ introduced the SAM-6D approach,
which employs the powerful semantic segmentation
capabilities of SAMM7 to generate potential object pro-
posals. Simultaneously, Wen et al.[%! investigated meth-
ods to integrate large language models (LLMs) with con-
trastive learning, significantly improving model generaliz-
ation by training on large-scale synthetic datasets. The
primary advantage of these methods is that they can
handle new object categories, thereby enhancing their
generalizability and applicability in a broader range of
real-world scenarios. However, it should be noted that
large models usually require more training data and com-
putational resources, which could be a potential limita-
tion.

2.2.4 Discussion

These three types of pose estimation methods each
have specific application scenarios and advantages and
disadvantages: ILOPE offers high accuracy but is only
suitable for known objects; CLOPE has a wide range of
applicability but relatively lower accuracy; NOPE is
highly flexible but faces significant challenges in accur-
acy and robustness.

2.3 Affordance learning

Once the estimated object pose is obtained, the next
step involves identifying potential interactive regions of
the object as shown in Fig.4, a process known as afford-
ance learningl®’l. As a crucial component of robotic ma-
nipulation, affordance learning enables robots to compre-
hend the object’s functionality and potential actions.
Based on the data source, affordance learning can be cat-
egorized into two types: affordance learning by super-
vised learning and affordance learning from interaction.
2.3.1 Affordance learning by supervised learning

In order to make robots understand object manipula-

Knife grasp

Faucet open

Fig. 4 Visualization of four representative affordance prediction examples from the dataset provided by [96], including bag lift, bottle
open, knife grasp, and faucet open. The affordance ground truth labels are highlighted in red. (Colored figures are available in the online

version at https://link.springer.com/journal /11633)
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tion, various methods have been proposed that utilize
static data to learn affordances%8l. For example, Afford-
anceNet(® considered human-annotated RGB images
from public datasets as input and simultaneously per-
formed object localization and affordance prediction
through two distinct branches. Specifically, this method
assigned a probable affordance label to each pixel within
the predicted object, effectively making it a part of a se-
mantic segmentation task[®. Additionally, Nagarajan
et al.ll00 utilized interaction hotspot maps to depict ob-
ject affordances and trained their model on large-scale hu-
man-object interaction video datasets.

While the aforementioned methods have shown prom-
ising results on static datasets, they have not explored
applying learned affordances to robotic manipulation
tasks. To bridge this gap, vision-robotics bridge
(VRB)[01] incorporated a trajectory prediction model to
extract affordances from egocentric videos and integrated
the resulting model into various robot learning frame-
works. To improve generalization to unseen objects,
Robo-ABC[102l emphasized semantic correspondence and
has successfully implemented its model on real-world
platforms for grasping novel objects. Additionally, Kuang
et al.l9] developed a retrieval-based architecture that
lifts 2D affordances to 3D, enabling embodiment-agnostic
robotic manipulation. This framework introduced a hier-
archical retrieval pipeline to transfer actionable know-
ledge from out-of-domain data to specific target domains.
To overcome the constraints of closed-set affordance
learning, OpenAD[%4 measured the similarity between
language-based affordance labels and point-wise high-di-
mensional features and extended affordance learning to
an open-vocabulary context.

2.3.2 Affordance learning from interaction

Rather than relying on supervised learning from stat-
ic data, affordance learning from interaction framework
seeks to gather training data through simulations. This
method allows the system to learn from interactions,
providing it with essential prior knowledge for real-world
deployment. As a pioneer in this field, Where2Act[1%] em-
ployed self-supervised interaction for articulated 3D ob-
jects, which uses single-frame images or partial point
clouds as observations in the SAPIEN[%] simulator. But
AdaAfford107 identified that this paradigm ignores hid-
den kinematic uncertainties that lead to inaccurate af-
fordances. To address this, AdaAfford proposed a meth-
od that involves sampling multiple test-time interactions
to facilitate rapid adaptation. Building on similar con-
cepts, DualAfford[1% expanded the interactive learning
framework to dual-gripper manipulation to broaden the
robot's manipulation capabilities. Nevertheless, relying on
random interactions for data collection makes these meth-
ods sample-inefficient. ActAIM[I9 tackled this with a
clustering-based strategy and a generative model to im-
prove interaction diversity and data quality. Additionally,

IDA) put forward an information-driven method for af-
fordance discovery to boost interaction efficiency.
Where2Explorel!lll generalized affordance recognition to
novel instances and even various object categories by
leveraging local geometries for actionable parts.

It is important to note that all the aforementioned
methods operate under the assumption of noiseless visual
information, which is often unrealistic. In response, Ling
et al.l''? introduced a coarse-to-fine architecture to re-
duce point cloud noise and improve the affordance learn-
ing performance. Beyond focusing solely on single-object
affordances, Wu et al.!'3] incorporated realistic physical
constraints within environments and employed a data-ef-
ficient contrastive learning method to acquire environ-
ment-aware  affordances, even under  occlusions.
RLAfford'4, in contrast to prior work limited by pre-
defined affordance primitives, integrated reinforcement
learning to facilitate end-to-end affordance learning. Spe-
cifically, they considered contact maps of interest during
the RL process as visual affordances and seamlessly adap-
ted the architecture to various manipulation tasks.

2.3.3 Discussion

Current supervised affordance learning methods are
limited by their focus on specific domain data or tasks,
while interaction-based approaches are constrained by
sample inefficiency. Future research should investigate
how to design effective frameworks that can harness the
vast potential of internet-scale data and rapidly adapt to
specific tasks.

3 Embodied policy learning

Embodied policy learning aims to empower robots
with the sophisticated decision-making capabilities re-
quired to perform manipulation tasks efficiently. This sec-
tion will delineate the process of embodied policy learn-
ing into two fundamental phases: policy representation
and policy learning, elucidating how these techniques en-
able robots to accomplish predefined objectives. We
present the overview of embodied policy learning in Fig.5
and summarize the key works in Table 2.

Action a

Agent (robot)

Environment

i Grasping !

T
Di

anipulationil

Image, 3D, tactile

Obs. v

Fig. 5 Illustration of embodied policy learning architecture.
The robot agent interacts with the environment to learn a policy
that maps observations to actions.
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Table 2 Summary of embodied policy learning. RL: Reinforcement learning; IL: Imitation learning.

Task Type Subfields & references
Explicit Deterministic policy!1%], Stochastic policy[116]
Implicit EBMsl!17, Implicit behavioral cloning!18], IDACI9] EBIL[120]

Policy representation

Diffusion policy!!2l], Decision diffuser!22], Diffusion-QL[I123], HDP[124] UniDexFPMI!25] BESO[126]

Diffusion
Incorporating language instructions: MDT[127] Lan-03dpl!28]
ViSkilll129], RMA2[116] SAM-RL[30, Offline RLI31: 1321, Demonstration-guided RLI[!33]
RL
Rewards function learning: Text2reward!34, EUREKAI!35]
DMPsl136], DAgger[137], SpawnNet[138], ACTI139]
Scaling up demonstration data: MimicGen['4], Bridge Datal!4!l, Open X-embodiment[!42]
Policy learning IL
Learning from human videos: Vid2Robot[!43], Ag2Manip!!44], MPI[145]
Equivariant models: NDFs[146] L-NDF[47] EDFs[!48] EDGII49], Diffusion-EDFst50 SE(3)-DiffusionFields[!51]
Combination of RL & IL: UniDexGrasp!*52], UniDexGrasp++[153]
Others

LLM- or VLM-driven: VILA[I5 Grounding-RLI[!5%] OpenVLA[56] 3D-VLA[157]

3.1 Policy representation

The role of policy is to model the robot’s behavior by
taking its observation as input and determining the cor-
responding action to execute. This process is mathematic-
ally represented as 7 : O — A, where O and A represent
the observation space and action space, respectively.
Policy representation is critical in embodied policy learn-
ing, as it significantly affects the robot’s decision-making
ability. Depending on the modeling options, policy repres-
entation is classified into explicit, implicit, and diffusion
policies, regardless of whether the action space is discrete
or continuous.

3.1.1 Explicit policy

Explicit policies utilize a parameterized function to
map a robot's current observation v € O directly to an
action a € A. Typically, explicit policies are parameter-
ized using feed-forward models like neural networks and
can be either deterministic(l!% or stochasticll16l. A determ-
inistic policy directly predicts an action a = mg(v) to ex-
ecute, while a stochastic policy samples actions from an
estimated distribution a ~ (- | v), where 6 indicates
parameters of the policy. Stochastic policies enhance an
agent's exploration capabilities and provide greater ro-
bustness in complex, uncertain environments compared to
deterministic policies.

In a discrete action space, policy representation can be
transformed into an optimal action selection process from
a finite set of actions. The categorical distribution is com-
monly used to calculate action probabilities, from which
actions are sampled based on the estimated results. For
instance, Zhang et al.l8] conceptualized the robot as-
sembly manipulation policy as translation, rotation, and
insertion primitives, with RL subsequently optimizing the
policy. In continuous action spaces, a diagonal Gaussian
distribution is often chosen to represent the action distri-
bution, guided by regression losses such as mean squared

@ Springer

error (MSE) or RL-based objectives. The policy outputs
both the mean py(v) and the standard deviation o¢(v),
and actions are sampled from the resulting distribution as
follows:

a = pg(v) + oe(v) ©&. (4)

Here, £ ~ N(0,I) represents a vector of Gaussian
noise, and ©® signifies the Hadamard product. It should
be noted that, in practical applications, the logarithm of
the standard deviation logos(v) is typically used to pre-
vent the standard deviation from taking on negative val-
ues.

3.1.2 Implicit policy

Unlike explicit policy models, implicit policies at-
tempt to assign value to each action by leveraging en-
ergy-based models (EBMs)[117% 18] which are also recog-
nized as action-value functions[!!9. This paradigm learns
the policy by optimizing a continuous function to find the

action with minimal energy:

a = argmin & (v, a) (5)
acA

where 6 denotes the parameters of the energy function
E. Consequently, the problem of action prediction is
effectively reformulated as an optimization problem.
Generally, given a series of expert demonstrations or
online-collected trajectories denoted as { (v, a:)}ieg, im-
plicit policies are trained by an InfoNCE-style loss[l%9],
Once trained, stochastic optimization will be applied to
identify the optimal action for implicit inference. Energy-
based imitation learning (EBIL)[20 incorporated EBMs
into the inverse RL architecture, utilizing the estimated
expert energy as a surrogate reward. Florence et al.[ll]
further proposed an implicit behavioral cloning approach
grounded in this framework and assessed its performance
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across various robotic task domains such as simulated
pushing and bi-manual sweeping.
3.1.3 Diffusion policy

Drawing inspiration from denoising diffusion probabil-
ities models (DDPMs)!0, which gradually denoise ran-
dom inputs to generate data samples, diffusion policies
model the policy as a conditional generative modell!23].
This approach approximates the action distribution
7(- | v) considering the observation v as a condition for
producing the corresponding action a:

a*~' = a(a® - Beg(a®, v, k) +oN(0.I)  (6)

where k=1,2,---, K, representing the denosing itera-
tions, «, 3,0 are functions that rely on the noise sche-
dule, €y denotes the denosing network with parameters 6,
and N(0,I) represents the standard Gaussian noise. The
diffusion policy architecture is illustrated in Fig. 6.

Diffusion policy Conditioning

(o e )

Noised action

=

I - a’
Denoising

xK Output action

Denoising

Fig. 6 Illustration of diffusion policy architecture. The policy is
modeled as a conditional generative model that gradually
denoises random inputs to generate actions. (Colored figures are
available in the online version at https://link.springer.com/
journal/11633)

As concurrent work, decision diffuser(!22] and diffusion-
QLI[123] have pioneered the integration of diffusion policies
into offline RL. These studies revealed that this ap-
proach yields highly expressive policy representation that
surpasses traditional policy formats. While decision dif-
fuser(12?] suggested extending diffusion policies to handle
high-dimensional visual observations, its current focus re-
mains on state-based benchmarks. In contrast, Chi et
al.121] proposed a novel diffusion policy tailored for vis-
ion-based robotic manipulation tasks. Their experimental
findings highlighted the efficacy of diffusion policies in
visuomotor policies and their superiority in managing be-
havioral multimodality in imitation learning. They also
incorporated techniques such as receding horizon control
and time-series diffusion transformers to adapt the policy
for high-dimensional action spaces, resulting in more
stable training. Hierarchical diffusion policy (HDP)[!24] in-
tegrated diffusion policies into a high-level planning agent
for multi-task robotic manipulation, whereas Uni-
DexFPMI!25] applied diffusion policies to pre-grasp manip-
ulation. By leveraging the conditional generative
paradigm, diffusion policies are well-suited for multimod-
al policy learning. For example, multimodal diffusion
transformer (MDT)!27 and Lan-03dpl'2®] advanced mul-

timodal policy learning by incorporating language instruc-

tions. Differently, BESO[26 facilitated rapid inference in
diffusion policies by decoupling the score model learning
from the sampling process.
3.1.4 Discussion

Explicit policies are straightforward to implement but
struggle with complex tasks, while implicit policies face
challenges in training stability and computational costs.
Diffusion policies offer a promising alternative to provide
a more expressive and robust policy representation, but
how to accelerate the sampling process remains to be ex-
plored.

3.2 Policy learning

After establishing a suitable policy representation, the
next critical task is to train the policy m to execute spe-
cific manipulation tasks effectively. Policy learning meth-
ods can be broadly categorized into several approaches,
including reinforcement learning (RL)[116: 1291 imitation
learning (IL)[160: 1611 and other methods(153: 154 that com-
bine elements of both or introduce entirely different
learning paradigms. The choice of policy learning method
depends on factors such as the availability of demonstra-
tion data, task complexity, and computational resources.
Each method has its advantages and challenges, and the
field of embodied policy learning continues to evolve with
new techniques and insights.

3.2.1 Reinforcement learning

By modeling the policy learning procedure as a
Markov decision process (MDP), RL aims to discover the
optimal policy 7* that can maximize expected cumulat-
ive discounted reward, formulated as

\7(77) =E;r

D Al at)] (7)

t=0

where 7 = {(vy, at)}g;o denotes a trajectory, with v; and
a; representing the observation and action at time step ¢,
respectively. The function r; corresponds to the reward
provided as feedback from the environment after each
action is taken. Here, v € [0,1] is a discount factor used
to balance the importance of immediate and future
rewards. Therefore, the objective of RL can be expressed
as

m* = argmax J (). (8)

As a pivotal element for decision-making, RL has been
extensively investigated in robotic manipulation. Re-
searchers from OpenAlIl'%2 developed a sim-to-real train-
ing pipeline to enable a physical five-fingered robot hand
to perform vision-based object reorientation. This pipeline
initially trained the policy in simulation using proximal
policy optimization (PPO)!63 and then adapted it to
physical hardware through domain randomization. It
should be highlighted that PPO is a widely used on-
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policy RL algorithm in robotic manipulation, valued for
its simplicity and effectiveness. For long-horizon surgical
robot tasks, ViSkilll!29 introduced a novel mechanism
named value-informed skill chaining to learn smooth sub-
task policies. To create generalizable manipulation
policies adaptable to various object shapes, Liang et
al.116] presented a two-stage training framework with an
extra adapter training phase within PPO, enhancing the
policy’s robustness across diverse objects. Inspired by
model-based RL[I64, SAM-RL[30 proposed a sensing-
aware architecture that renders images from different
viewpoints and refines the learned world model by align-
ing these generated images with actual raw observations,
demonstrating  significant  real-world  performance.
Mandlekar et al.l!3! explored the impact of various design
choices in offline RL[132 and made their dataset publicly
available for further research. To overcome exploration
challenges in RL, Huang et al.['33] proposed demonstra-
tion-guided RL, which assigns high values to expert-pre-
ferred actions using non-parametric regression.

Beyond algorithmic enhancements, crafting the re-
ward function remains a significant challenge in RL due
to the need for domain-specific knowledge to accurately
capture the task objectives. Recently, research has in-
creasingly explored the capabilities of LLMs for reward
learning. For instance, Text2reward[!34 and EUREKA13]
leveraged the understanding and generation capabilities
of LLMs to convert natural language descriptions of goals
into dense and interpretable reward codes, which can be
iteratively refined by human feedback. This iterative pro-
cess is crucial as it allows the reward function to evolve
in response to new insights or changes in the task require-
ments. Consequently, this method streamlined the resolu-
tion of complex manipulation tasks, reducing reliance on
manually crafted reward functions and potentially in-
creasing the effectiveness of the learning process.

3.2.2 Imitation learning

Instead of learning in a trial-and-error manner as RL,
the objective of IL is to mimic the expert behavior. Typ-
ically, IL encompasses three primary methodologies: be-
havioral cloning (BC)[16 inverse reinforcement learning
(IRL)(163] and generative adversarial imitation learning
(GAIL)61. BC is a straightforward yet effective ap-
proach that learns the policy by minimizing the mean
squared error between the expert’s action and the policy’s
predictions through supervised learning. IRL operates in
a two-stage loop, initially deducing a reward function
from the demonstrations, followed by policy optimization
using RL techniques. GAIL is a generative model-based
method that relies on adversarial learning to develop a
discriminator and an action generator simultaneously,
distinguishing between the actions of an expert and those
produced by the policy.

Earlier, differentiable nonlinear dynamic systems like
dynamic movement primitives (DMPs)136 were used to
acquire skills from demonstrations at the trajectory level.
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The essence of DMPs lies in incorporating a forcing term,
comprised of a set of weighted basis functions, into the
system dynamics. These weights are determined through
regression analysis of the desired trajectory. Despite us-
ing a limited number of parameters, the effectiveness of
DMPs is constrained by the choice of basis functions. In-
stead, DAgger[137 incrementally aggregated current policy
interaction data with expert policy demonstrations to
augment the training data. SpawnNet[!38] incorporated a
pre-trained visual model to develop a generalizable policy
for diverse manipulation tasks. Kim et al.l'66] introduced a
self-attention mechanism to filter out irrelevant informa-
tion, while action chunking with transformers (ACT)[39
directly trained a generative transformer model on action
sequences specifically for dual-arm manipulation on real-
world collected data.

Given the high cost of collecting human demonstra-
tions, there is a focus on scaling up the demonstration
data. MimicGen/!40 designed a system that inputs a few
expert demonstrations and created an augmented data-
set by integrating various scenes and segmented objects.
Instead, initiatives like Bridge Datall4ll and Open X-em-
bodiment[!42] strove to compile extensive human demon-
stration datasets across diverse domains. In addition,
some researchers explored the potential of in-the-wild
data for IL, capitalizing on the availability of extensive
egocentric human activity videos. Vid2Robot[!43] pro-
posed an end-to-end policy learning framework by train-
ing a unified model on human video data. Recent efforts,
such as Ag2Manipl44 and MPII43, also adopted this ap-
proach to extract skills from human videos, demonstrat-
ing substantial performance in multi-task robotic manipu-
lation.

Equivariant models have garnered attention for their
advantages of enhancing sample efficiency and generaliza-
tion in IL. A notable example is the work by Simeonov
et al.l7]) which introduces neural descriptor fields (ND-
Fs). These fields leverage SE(3)-equivariance to repres-
ent manipulated objects and facilitate IL by searching
matched poses within demonstration data. Building on
this foundation, local neural descriptor fields (L-NDF)[147]
extended the concept by introducing shared local geomet-
ric features between objects. However, NDFs face inher-
ent limitations that restrict their generalization to non-
fixed targets. To address this, equivariant descriptor
fields (EDFs)[48] reformulated NDFs within a probabilist-
ic learning framework, enhancing its flexibility. Further
advancements include the integration of diffusion models
into EDFs, as seen in diffusion-EDFs[50, equivariant dif-
fuser for generating interactions (EDGI)I' and SE(3)-
DiffusionFields[!5l. These approaches aim to improve the
model’s ability to generalize across a broader range of

scenarios.
3.2.3 Other methods
In the domain of embodied policy learning, several in-
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novative methods have emerged that combine the
strengths of RL and IL. As a series of work, UniDex-
Grasp®?  and UniDexGrasp++[153]
paradigm of teacher-student learning, aiming to develop a

perpetuated the

universal grasp policy that can effectively generalize
across diverse objects and scenarios. Initially, these meth-
ods employed model-free RL algorithms to cultivate a
teacher model that takes oracle states as input. Sub-
sequently, the skills acquired by the teacher model are
distilled to a student policy via IL, where the student
policy solely has access to realistic observations, such as
those obtained through vision.

Recent breakthroughs in LLMs and vision-language
models (VLMs) have sparked interests in their applica-
tions for policy learning in robotics, leveraging their cap-
abilities in perception, reasoning, and decision-making.
These models took current visual observations and lan-
guage instructions as inputs to generate corresponding ac-
tion sequences through trainable adapters, enabling ro-
bots to perform complex tasks and adapt to new situ-
ations[!3% 155, Notable examples include VILA[%4 and
Grounding-RL[!5%], which use pre-trained LLMs in their
policy learning methods. In contrast, OpenVLAI56 em-
ployed pre-trained visual encoders to extract visual fea-
tures, subsequently mapping them into a language em-
bedding space. This method utilized a low-rank adapta-
tion fine-tuning strategy to customize LLMs for robotic
manipulation tasks. 3D-VLAI57 further extended this
concept by incorporating 3D spatial observations and in-
tegrating a diffusion model for goal-aware state genera-
tion, resulting in a 3D generative world model.

3.2.4 Discussion

Although RL and IL have shown remarkable progress

in embodied policy learning, challenges remain in terms of

sample efficiency, domain adaptation, and generalization.
Future research needs to unleash the potential of LLMs
and VLMs for building generalizable and versatile agents
for robotic manipulation tasks.

4 Embodied task-oriented learning

Embodied task-oriented learning not only involves
strategic planning through powerful perception but also
necessitates robots to understand how their physical at-
tributes influence decision-making and task execution. It
helps robots develop the ability to make decisions in com-
plex and dynamic scenarios. Specifically, existing work of
embodied task-oriented learning centers on two domains:
object grasping and object manipulation. As shown in
Table 3, this section will introduce methods tailored for
these two tasks, revealing how embodied learning im-
proves the efficiency and precision of robots.

4.1 Object grasping

Object grasping is the fundamental cornerstone of ob-
ject manipulation. It encapsulates a robot's ability to cap-
ture targets reliably using end-effectors such as grippers
or suction cups. This process requires analyzing object at-
tributes like location, shape, size, and material to formu-
late grasp strategies that ensure steadfast control while
preserving the object's intactness. Grasping methods are
further differentiated into single-object graspingl225l and
multi-object grasping(293l, each presenting its own set of
complexities. Fig. 7 illustrates examples of these two types
of methods.

4.1.1 Single-object grasping (SOG)
Prior research has defined SOG as the configuration of

Table 3 Summary of embodied task-oriented learning methods. SOG: Single-object grasping; MOG: Multi-object grasping;
NDM: Non-dexterous manipulation; DM: Dexterous manipulation; H2R: Human-to-robot.

Task Type

Subfields & references

Open-loop grasping (STEM-CaRFsl168] FANet[16% AnyGraspl!79), closed-loop grasping (adaptive
grasping!!71l, GG-CNNI['72], VFAS-Graspl173])

Transparent object grasping: DFNet(174], Dex-NeRF[173], GraspNeRF[I76], NFLI77] TRansPosell78]

TGF-Net[179]

SOG Grasping in clutter: Collision-free grasping (Contact-GraspNet!!80), CaTGraspl!81], CollisionNet!182],
DDGCI83], GSNet[184, DALIS), reposition-based grasping (push-grasping synergy!!86], object

Object grasping

singulation[!87] grasping invisible[!88], vision-language grasping[!89)

Dynamic object grasping: H2R handover (wearable sensingl!%0], TLP[191 reactive handover[192, flexible
handover[193], GenH2R/[194]), human-free moving object grasping (velocity decomposition[195]
adaptive motion generation[!96], Moving GraspNet[197])

Holistic grasping (MOG in the Planel!98), MOG-Net[199], experience forest[200, Push-MOGI[201])

MOG

Independent grasping (MOG by exploiting kinematic redundancy(202], MultiGrasp(203])

Pick-and-placel204] object rearrangement[205] kit assemblyl206], deformable object manipulation
NDM (clothing[297], ropes(208], and fluids[209), articulated object manipulation
(GAPartNet[210], UniDoorManipl2!], PartManip(2!2])

Object manipulation

DM

Trajectory optimization/?!3], kinodynamic planning?!4, PDDMI[213],
in-hand object reorientation216], DIME[2!7, DexDeform[218]

Tool Manipulation: KETORY] TOG-Net[220], DiffSkill221], tool cognition222], ATLA223] RoboTool[224]
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Fig. 7 Illustration of single-object grasping (top row) and multi-object grasping (bottom row). The examples are respectively from the
ARNOLD benchmark(226l and Grasp’ Em dataset203. (Colored figures are available in the online version at https://link.springer.

com/journal/11633)

an end-effector designed to achieve partial or complete
form-closure or force-closure of a targeted objectl49l.
Achieving stability and robustness in single-object grasp-
ing involves accurately determining object positions and
identifying the appropriate grasping pose, which has a
wide range of applications in fields such as industrial
manufacturing22” and medical assistant[228].

The typical and direct SOG involves three steps:
grasp detection, trajectory planning, and execution. In
this pipeline, the robot first captures the local scene us-
ing external cameras and plans a set of candidate config-
urations for the target object. Some methods executed the
optimal grasp in an open-loop manner, where the grasp is
performed directly without further sensor feedback after
selecting the optimal grasp. In open-loop grasping, grasp
detection is critical as subsequent steps rely on the co-
ordinates generated during this phase. Consequently,
various studies have endeavored to enhance the precision
of grasp detection to facilitate effective grasping proced-
ures. For example, Asif et al.ll68] proposed hierarchical
cascaded forests to infer object class and grasp-pose prob-
abilities at both patch and object levels. More recently,
Zhai et al.l19 designed FANet, which leverages grasp
keypoints to enhance the grasp detection accuracy while
maintaining real-time efficiency. In AnyGraspll’ the
center-of-mass of objects is incorporated into target de-
tection, and an open-loop strategy is employed
throughout the grasping process.

Although open-loop grasping has been extensively
studied, it might fail due to inadequate pose estimation
and other perception artifacts. To address these issues,
closed-loop grasping has been proposed, leveraging real-
time feedback to correct perception errors and handle ob-
ject disturbances. Specifically, object tracking and visual
servoing are two primary methods for achieving closed-
loop grasping. For instance, Marturi et al.ll7l] explicitly
tracked the 6DoF object pose and combined it with pre-
computed grasp poses to enable adaptive grasp planning
and execution. Furthermore, Morrison et al.l72 proposed
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GG-CNN to perform close-loop object-independent grasp-
ing, using a lightweight CNN to predict pixel-wise grasp
quality. After that, Piacenza et al.l73] presented VFAS-
Grasp, which uses visual feedback from point clouds and
an uncertainty-aware adaptive sampling strategy to main-
tain a closed-loop system.

In addition to the general SOG methods mentioned
above, three specific tasks, as illustrated in Fig.8, have
garnered significant attention due to their high level of
challenge: transparent object grasping, grasping in clut-
ter, and dynamic object grasping.

Transparent object grasping. Transparent objects
are items through which light can pass without signific-
ant scattering or reflection, such as glass containers and
plastic bottles commonly found in daily life. Research in-
to embodied learning technology for grasping transparent
objects has a profound impact on robotic applications[230],
However, grasping transparent objects presents signific-
ant challenges. Firstly, the lack of distinctive texture and
appearance features, combined with light reflection and
refraction, prevents most sensors from accurately captur-
ing surface information, making it difficult for traditional
vision systems to recognize and locate these objects.
Secondly, the low friction of transparent objects complic-
ates stable manipulation during the grasping process.

Most grasping methods heavily rely on depth images,
necessitating precise depth information for transparent
objects. Fang et al.17 developed DFNet, an end-to-end
depth completion network using RGB images and inac-
curate depth maps to produce refined depth maps. Some
other approaches utilized NeRFs to generate the depth
information of transparent objects directly. For instance,
Ichnowski et al.l75 augmented the specular reflection of
transparent objects by placing additional lighting and
used NeRFs for transparency-aware depth rendering.
However, this method requires several hours of computa-
tion per grasp. To speed up the grasping process, Dai
et al.ll70 introduced GraspNeRF, which uses six sparse
multi-view RGB images for zero-shot NeRF construction
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Fig. 8 Illustration of transparent objects (the first row), cluttered environment (the second row), and dynamic object grasping (the
last row). The examples are respectively from TRansPose dataset[!78l, CEPB benchmark[229), and Moving GraspNet[197].

and grasp detection, achieving material-agnostic grasp de-
tection in 90ms. In contrast, Lee et al.l77 proposed nor-
mal field learning (NFL) to train neural volume from per-
pixel surface normal estimation instead of RGB images
and employed segmentation to identify transparent ob-
jects, requiring only 40 seconds of training time.

In addition to depth information, some researchers
have employed other information to detect transparent
objects in the scene. For example, Kim et al.[l78 created
TRansPose, the first large-scale multispectral dataset
combining stereo RGB-D, thermal infrared images, and
object poses, to promote the study of transparent object
grasping. Moreover, Yu et al.ll" proposed using TGF-
Net to learn surface fragments, edge features, and geo-
metric features for 6D pose estimation of transparent ob-
jects, aiming to enhance robustness to variations in ap-
pearance. Additionally, they introduced a low-cost data-
set generation scheme for obtaining a high-fidelity, large-
scale dataset of transparent objects.

Grasping in clutter. It refers to a robot’s ability to
grasp target objects in crowded and cluttered environ-
ments precisely, which is crucial for applications like
automated home services, manufacturing parts picking,
and waste sorting. For instance, in domestic settings, ro-
bots must pick up items from a cluttered desk or cabinet
for organization or delivery. Compared to tasks in an or-
ganized environment, grasping in clutter is more complex
and challenging. This is because target objects may be
hidden or overlapping, making them hard to identify and
locate, and robots must also avoid collisions with sur-

rounding objects to ensure safety(231].

Current research primarily focuses on collision-free ob-
ject graspingl!80, 181 with the goal of planning a safe and
efficient grasping and execution path for the robot to en-
sure a smooth and unobstructed process. Murali et al.[l82]
proposed a grasp learning method, which uses a deep net-
work called CollisionNet to assess the collision risk of gen-
erated grasps in cluttered scenes. Lundell et al.[83] intro-
duced DDGC, a fast method for generating multi-finger
collision-free grasp samples, addressing the issues of long
computation times and challenges in obstacle avoidance.
Wang et al.l'84 introduced the concept of graspness,
which is a quality metric combining geometric cues and
collision labels to evaluate graspable regions in a
cluttered scene. To alleviate the reliance on extensive
labeled data, Wei et al.['85] introduced a discriminative
active learning framework, which employs a discriminat-
or to assess the informational value of unlabeled samples
and intelligently select samples for annotation.

Furthermore, a body of research has expanded bey-
ond collision-free object grasping and explored strategies
involving grasping and pushing to reposition surrounding
objects!86] which is particularly crucial when the target
object is occluded or not directly accessible. Kiatos and
Malassiotis/!87] addressed the challenge of collision avoid-
ance and proposed using pushing actions to isolate the
target object from surrounding clutter. Yang et al.[188]
further explored the problem of grasping invisible objects
in clutter and integrated deep Q-learning with domain
knowledge to devise optimal pushing and grasping mo-
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tions. Recently, Xu et al.[189 employed a visual-language
model to grasp objects in a cluttered environment based
on language instructions and utilized a series of obstacle-
removal actions to guide the robot to grasp the target ob-
ject. Although substantial progress has been made, grasp-
ing in clutter continues to present significant challenges.
Language-conditioned grasping has emerged as a novel
and promising research field, increasingly attracting at-
tention for future exploration.

Dynamic object grasping. It is a highly challen-
ging research area focusing on enhancing a robot's ability
to grasp moving objects stably. Its applications span from
picking up product parts on factory assembly lines to de-
livering items in household services and even accurately
grasping and transferring surgical instruments during sur-
gery procedures. Compared to grasping stationary ob-
jects, dynamic object grasping is much more difficult. It
requires the robot to quickly adjust its grasp to match
the object’s movement for precise docking and to predict
continuous motion to handle the object’s potentially non-
linear and unpredictable trajectories. This presents signi-
ficant challenges for the robot's real-time processing, ad-
aptability, and advanced motion prediction capabilities.

One key focus of existing work is on human-to-robot
(H2R) handover, which aims to enable robots to receive
objects from humans. Some studies have been conducted
to improve the success rate of H2R handovers by under-
standing human intention[1%: 191, Wang et al.l191 ex-
plored the integration of multimodal inputs, e.g., vision
and language, and proposed a multimodal learning frame-
work to predict human behavioral intentions. An altern-
ative research direction involves dynamic motion plan-
ning(192 193] for H2R handover. Yang et al.[192] tackled the
challenges posed by object variability in dynamic environ-
ments by integrating a closed-loop motion planning
strategy with grasp generation. To further enhance the
generalizability of H2R handover methods, Wang et
al.191 employed large-scale simulated demonstrations and
imitation learning, enabling the robot to pick up objects
of any shape transferred by humans in complex trajector-
ies.

Another line of work is human-free moving object
grasping, which does not involve human participation.
Early studies simplified this problem by assuming prior
knowledge of object motion. For example, Ye and Liull9]
focused on the top-down grasping strategy and proposed
a planning algorithm based on analyzing velocity com-
ponents to predict the trajectory of moving objects. Sub-
sequently, Akinola et al.l'9 expanded on this assumption
by developing a dynamic grasping approach that com-
bines reachability and motion awareness, thereby improv-
ing the overall success rate without relying on prior
knowledge of object motion or constraining the grasping
direction. In recent years, the robotics community has ex-
pressed significant interest in reactive grasping due to its
autonomous adaptability in complex and dynamic envir-
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onments. Specifically, Liu et al.l197 introduced a target-
referenced reactive grasping method that emphasizes both
the temporal smoothness and the semantic consistency of
the predicted grasp poses. Overall, the technology for
grasping moving objects is still evolving, and further in-
depth research will enable robots to develop more robust
and universally applicable grasping capabilities.

4.1.2 Multi-object grasping (MOG)

It embodies the advanced performance of robots in ef-
ficiently capturing two or more objects within a single op-
erational cycle. This capability holds tremendous poten-
tial for various robotic applications, including logistics
automation, product packaging, and home services, signi-
ficantly boosting the efficiency of task execution. Com-
pared to SOG, MOG imposes stricter demands on a ro-
bot’s comprehensive abilities, encompassing acute percep-
tion, sophisticated strategy formulation, and precise exe-
cution coordination. Robots must adeptly identify and
localize multiple target objects while mastering intricate
planning and coordination mechanisms to ensure simul-
taneous grasping of multiple objects in various environ-
ments, achieving an impeccable blend of high efficiency
and stability.

Within the domain of MOG, some methods treat it as
a holistic grasping problem, in which multiple target ob-
jects are regarded as a whole entity for manipulation[!98].
These methods intend to encompass all objects with a
gripper or fingers in a single action, regardless of their in-
dividual placement or stacking configurations. In practice,
the contact points are confined to the collective peri-
phery of the objects, and the robot needs to apply pre-
cise grasping forces to ensure the ensemble’s stability and
the grasp's reliability. Sun et al.232] developed a compre-
hensive taxonomy comprising twelve different types of
MOG, which incorporate considerations of shape and
function. Agboh et al.[19] integrated the factor of inter-
object friction into their method, significantly improving
the robot's ability to grasp multiple objects in a single
motion. Many existing methods are grounded in the as-
sumption that the target objects are closely adjacent in
spacel200, However, this assumption does not always hold
in practical, real-world situations. To tackle this chal-
lenge, Aeron et al.20l] introduced the Push-MOG method,
which utilizes pushing maneuvers to systematically ar-
range a disordered ensemble of polygonal objects into
compact and easily graspable clusters.

Another type of method involves considering each ob-
ject as an independent unit, which significantly enhances
the robot's flexibility and adaptability. Yao and
Billard202l proposed an algorithm that imitates human
dexterous grasping, enabling a robotic hand to utilize the
cooperative spaces between fingers for efficient and se-
quential grasping of multiple objects. Li et al.203] intro-
duced the multigrasp framework, focusing on maintain-
ing the ability to independently manipulate each object
while systematically enhancing the overall grasp effi-
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ciency in complex MOG scenarios. Despite significant
progress in this field, there is an urgent need for more ex-
haustive attention and further in-depth investigation.
4.1.3 Discussion

SOG, owing to its relative simplicity, has been extens-
ively studied and has achieved significant progress, gradu-
ally moving into practical applications. In contrast,
MOG, due to its high complexity, has experienced slower
progress and still demands further efforts and break-
throughs.

4.2 Object manipulation

Object manipulation involves a wide range of control
activities robots perform, from object grasping and utiliz-
ation to environmental interactions. These capabilities
are crucial in various applications, including product as-
sembly, household services, and precision medical surger-
ies. Currently, the methodologies in this field are divided
conceptually into two main categories: non-dexterous ma-
nipulation and dexterous manipulation, as depicted in
Fig.9. Next, we will introduce some representative meth-
ods of these two manipulation types.

4.2.1 Non-dexterous manipulation (NDM)

It refers to using simple end-effectors such as grippers,
suction cups, or pushers by robots during task execution
instead of relying on delicate finger manipulation or com-
plex hand coordination. This type of manipulation typic-
ally has fewer degrees of freedom. It is well-suited for
tasks that do not demand high precision or complexity,
such as basic gripping, pushing, and pulling. While it
may not be as flexible or adaptable as dexterous manipu-
lation, its simplicity and efficiency make it highly prom-
ising in fields characterized by repetitive tasks, including
industrial assembly, logistics sorting, and agricultural
picking.

Pick-and-place is a fundamental task of NDM that has
been extensively researched in recent years. It involves a

robot picking up objects from one location and placing
them in another specified location. Early studies primar-
ily concentrated on estimating the poses of known ob-
jects233] in structured environments or relied on scripted
planning and motion control?34. However, there has been
a recent shift towards creating universal pick-and-place
policiesi204 for novel objects to enhance adaptability
across broader scenarios. Furthermore, some research has
expanded on the basic pick-and-place capabilities to per-
form higher-level tasks, such as object rearrangement /205
and kit assemblyl206], These advancements represent pro-
gress towards more advanced manipulation skills and sig-
nify the next steps in complex robotic operations.
Another line of research focuses on improving the in-
telligence of robots to handle more complex tasks, such as
manipulating deformable and articulated objects. For de-
formable object manipulation, the variability in physical
properties across different materials and the complex de-
formation behaviors under external forces introduce un-
predictability in manipulation processes and heighten
control complexity. Researchers in this field are drawing
insights from human-object interactions in daily life to
develop specific manipulation strategies for materials like
clothing(207, ropes[28], and fluids2%9. For articulated ob-
ject manipulation, the core challenge lies in precisely per-
ceiving and controlling each joint part’s angle and posi-
tion while also necessitating a deep understanding of their
kinematic properties and dynamic interactions. Typical
articulated objects, such as doors, drawers, and buckets,
form the nucleus of research interest. The current re-
search frontiers center on establishing benchmarks/210; 211]
for articulated object manipulation at the part level and
developing universal manipulation policies?!2 that can ef-
fectively handle previously unseen shapes and categories.
Although existing methods have demonstrated profi-
ciency in various NDM tasks, they still confront several
challenges. For example, in prolonged operations, ensur-
ing high stability and seamless operational continuity is

Fig.9 Illustration of non-dexterous manipulation (top row: close drawer) and dexterous manipulation (bottom row: in-hand
manipulation). The examples are respectively from the ARNOLD benchmark(226l and DexDeform 218l
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paramount, which requires systems with robust endur-
ance for long-horizon task execution[®3]; in dynamic en-
vironments, the robot needs to adapt its position and ori-
entation based on environmental changes or the instant-
aneous state of objects, which necessitates the integra-
tion of active visual adaptation and learning mechani-
smsl236); when deviations or errors occur during robot op-
erations, the immediate and precise identification of er-
rors coupled with autonomous corrective actions become
essential to ensure uninterrupted task completion(237. Fu-
ture research efforts must address these challenges to ad-
vance the development of NDM technologies.

4.2.2 Dexterous manipulation (DM)

It aims to replicate subtle human actions, such as un-
screwing bottle caps or handling tools. It relies on soph-
isticated robotic hands[238], distinct from commonly used
parallel grippers in NDM. Typically, these robotic hands
emulate the structure of human hands, featuring mul-
tiple fingers and exhibiting exceptional flexibility[239], spe-
cializing in precise grasping and manipulation tasks.

Early methods for DM relied on analytical kinematic
and dynamic models, using trajectory optimization213l
and kinodynamic planning2!4l to establish robotic control
policies and motion trajectories. However, these ap-
proaches had a significant limitation as they heavily re-
lied on precise knowledge of dynamic properties and sim-
plified assumptions on object geometries, which are often
hard to obtain in complex real-world applications. In re-
cent years, model-based?!5) and model-freel216l RL ap-
proaches have increasingly become more prevalent in
DM. The former aims to train a model from collected
data that can predict state transitions and rewards to
guide policy optimization. In contrast, the latter does not
involve explicit model construction of the environment;
instead, it learns directly from experiences gained through
interaction with the environment. Another line of work
lies in imitation learning, where optimal control strategies
are learned from demonstrations?!”), sometimes integ-
rated with RL to enhance the effectiveness of DMI218].
These methods have shown effectiveness in executing DM
tasks; nonetheless, they are primarily designed and op-
timized for specific categories of tasks. Consequently, de-
veloping universal and broadly adaptable DM frame-
works remains an area for further exploration.

Tool manipulation. As a universal and fundament-
al human skill, tool manipulation has emerged as a
pivotal focus in the field of DM, which is dedicated to en-
abling robots to proficiently manipulate a wide range of
tools using intricate dexterous hands or specialized end-
effectors(240. Its applicability spans from industrial auto-
mation to surgical interventions and even space explora-
tion, empowering robots to undertake tasks of remark-
able complexity and specificity. In contrast to conven-
tional object manipulation, tool manipulation poses a
more stringent challenge to robots. It entails not merely
the precise grasping of tools but also the intricate use of
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tactile feedback to accurately discern the contact status
and effects of tool-workpiece interactions(24l]. Considering
the wide variety of tools in the real world, with their dif-
fering shapes, materials, and usage, robots need to
demonstrate robust perception and decision-making cap-
abilities to adapt flexibly and handle the specific physical
properties and operational requirements of each tool(242, 243],

Current research in tool manipulation often revolves
around learning task-specific skills, encompassing move-
ment strategies and manipulation techniques for using
tools. This is similar to learning approaches for manipu-
lating non-tool objects but emphasizes integrating tools
into robotic actions. Qin et al.219 proposed the KETO
framework, which employs deep neural networks to pre-
dict task-relevant keypoints from point clouds. Fang
et al.220] introduced task-oriented grasping network
(TOG-Net), which utilizes large-scale simulation for self-
supervised learning to optimize tool grasping and manip-
ulation strategies. Lin et al.22!l advanced the field with
the DiffSkill framework, leveraging a differentiable phys-
ics simulator to learn skill abstraction for tool-based long-
horizon manipulation of deformable objects. Distin-
guished from these methods that rely on prior tool learn-
ing, Tee et al.222 introduced a framework inspired by
neuroscience principles, enabling robots to recognize and
deftly apply novel tools to perform a variety of tasks
without prior learning. Recently, research trends have
ventured into leveraging LLMs to enhance robots’ tool
manipulation capabilities223; 224, highlighting a new direc-
tion for novel approaches that enable more flexible and
efficient robotic tool manipulation.
4.2.3 Discussion

Both NDM and DM involve diverse and complex
tasks. Existing methods are typically designed for several
specific tasks and still fall significantly short of achieving
truly general object manipulation.

4.3 Analysis of different end-effectors

No matter for object grasping or manipulation, a cru-
cial component for the embodied system is the end-effect-
or, which directly interacts with the objects and sur-
rounding environments. Generally, end-effectors can be
categorized into two types: parallel-jaw grippers and
multi-fingered grippers. Parallel-jaw grippers are simple
and widely used in industrial scenarios due to their low
cost and ease of control. Nevertheless, the lack of adapt-
ability and dexterity restricts their application in com-
plex tasks. In contrast, multi-fingered grippers, inspired
by human hands, have more degrees of freedom and are
more flexible and versatile, enabling robots to perform a
wide range of manipulation tasks. Despite their advant-
ages, they are more complex and expensive, which
hinders their widespread adoption in practical scenarios.

In the context of object-centric robotic manipulation,
the choice of end-effector is depending on the specific ma-
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nipulation tasks and object properties to some extent. For
instance, parallel-jaw grippers are more suitable for
single-object grasping??l and simple object manipulation
tasks(295], due to their simplicity and efficiency. Instead,
complicated multi-fingered grippers are more appropriate
for dexterous manipulation tasks(2!8] and tasks involving
multiple objects293], where precise control and dexterity
are required.

However, from the perspective of embodied learning,
different types of end-effectors are not the primary con-
cern and can be considered into one pipeline. In particu-
lar, the embodied agent just needs different action spaces
to adapt to various end-effectors, and the learning al-
gorithms can be shared across different end-effectors.
Therefore, we do not classify the embodied learning
methods based on different end-effectors in this survey.

5 Datasets and evaluation metrics

In this section, we will introduce some primary data-
sets and evaluation metrics in the area of robotic manipu-
lation.

5.1 Datasets

Existing datasets can be divided into two categories
based on the differences in specific manipulation tasks:
object grasping and object manipulation. Table 4 presents

an overview of widely used datasets. Most of them are
from simulated environments and exhibit considerable
variation in categories, objects, data domains, sizes, and
modalities. For a detailed description of each dataset,
please see Appendix A and Appendix B.

5.2 Evaluation metrics

Here, we will introduce some typical evaluation met-
rics for object grasping and manipulation, as shown in
Table 5.

5.2.1 Object grasping

Accuracy (Acc) is a classic metric for evaluating ob-
ject grasping, which measures the percentage of correct
predictions out of all predicted outputs. Acc can be ex-
pressed as follows:

N.
1 P

Acc = F E H{T(i)} (9)
P =1

where N, refers the number of all predicted output,
I{7@)y is the indicator function, which equals 1 if the
condition T of correctness is satisfied for the i-th
prediction and 0 otherwise. There are two critical metrics
for determining the correctness of a prediction: the
“point” metric?58 and the “rectangle” metric244. In the
“point” metric, a prediction is considered correct if the
center point of the predicted rectangle falls within a

Table 4 Summary of the widely used datasets for robotic manipulation. “Domain” indicates whether the dataset is derived from real-
world environments or generated through simulation, with “sim” being short for “simulation”. “~” denotes that the corresponding
quantity is unavailable.

Task Dataset #Categories #Objects Domain Size Modality
Cornell(244] - 240 Real 885 images, 8 019 grasps RGB-D
Multi-Object[245] - ~400 Real 96 images, 2 904 grasps RGB-D
Jacquard(246] - 11K Sim 54K images, 1.1 M grasps RGB-D
VR-Grasping-101[247] 7 101 Sim 150K grasping demonstrations RGB-D
Object grasping
ACRONYMI[248] 262 8872 Sim 17.7M parallel-jaw grasps PointCloud
EGADI249] - 2331 Sim 233K antipodal grasps PointCloud
GraspNet-1Billion[250] - 88 Real 97 280 images, ~1.2B grasps RGB-D
Grasp-Anything[251] 236 ~3M Sim ~1M samples, ~600M grasps Text/Image
YCBI[252] 5 77 Real 600 RGB-D images for each object RGB-D
AKB-48[253] 48 2037 Real 100K generated RGB-D images RGB-D
PartNet-Mobility[106] 46 2 346 Sim 14 068 articulated parts PointCloud/RGB-D
GAPartNet[210] 27 1166 Sim 8 489 part instances PointCloud/RGB-D
ManiSkill2[254] 20 2 000+ Sim 4M demonstration frames PointCloud/RGB-D
Object manipulation
ARNOLD[226] 8 1078 Sim 10 080 demonstrations Text/RGB-D
Bi-DexHands[253] 20 - Sim 1 638 400 step demonstrations  Force/PointCloud/RGB-D
DexArt[256] 4 82 Sim 6 K point clouds for each object PointCloud
PartManipl212] 6 494 Sim 11 object categories, 1 432 tasks PointCloud
BEHAVIOR-1K[257] 1000 9318 Sim 50 scenes, 1 949 object categories RGB-D
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Table 5 Some typical evaluation metrics for object grasping and manipulation

Task Metric Formula Short description
1 e
Accuracy ~ Z | FET The percentage of correct predictions out of all predicted output
P =1

Object grasping

S
Grasp success rate Nfg The proportion of successful grasps out of the total number of grasp attempts
g
. . . St . . .
Object manipulation Task success rate ~ The proportion of successful executions out of the total number of task executions
t

certain threshold distance from the ground truth grasp
point. However, this metric does not account for grasp
orientation, which may lead to overestimating actual
performance. On the other hand, the “rectangle” metric is
designed explicitly for rectangles and incorporates
orientation error into the evaluation criteria. It first
filters out predicted rectangles with an angular deviation
from the ground truth G that surpasses 30 degrees. Then,
among the remaining set, it calculates the intersection
over union (IoU) between the predicted rectangle G and
G:

W o |GNGY

166 = GuaT (10)

Finally, the prediction G is considered correct if
J(G, Q) is greater than a certain threshold 7.

Besides, grasp success rate (GSR) is commonly adop-
ted as an evaluation metric in real-world robotic experi-
ments. Assuming that a robot performs successful grasp
Sy times out of Ny grasp attempts, the GSR is formu-
lated as

Sg

GSR = 3t (11)

Moreover, several specially tailored evaluation met-
rics have been proposed, such as completion ratel42 and
API[250],

5.2.2 Object manipulation

The most commonly used evaluation metric for object
manipulation is the task success rate (TSR). A task is
considered successful when it satisfies specific conditions.
Generally, each task is performed multiple times using
different random seeds to reduce the impact of random
variations on assessment results, and the mean value and
variance are then reported. The following formula form-
ally defines the TSR:

St

TSR =5 (12)

in which S; and N; are the numbers of successful and
total executions, respectively. Notably, the conditions for
success differ across various types of manipulation tasks.
Taking the task of opening a cabinet drawer as an
example, the condition for success is that the target
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drawer has been opened to at least 90% of its maximum
opening range and must remain in a static statel254.
There are some extra metrics to evaluate models from
various perspectives, such as the simulated time and
kinematic object disarrangement257,

6 Applications

With the continuous advancement of artificial intelli-
gence, machine learning, and robotics technology, intelli-
gent robots will be applied more extensively and deeply
across various fields. Table 6 shows the applications of
embodied learning for object-centric manipulations, i.e.,
industrial robots, agricultural robots, domestic robots,
surgical robots, and other promising applications.

6.1 Industrial robots

Traditional industries, represented by manufacturing,
rely heavily on human resources. However, intelligent ro-
bots are expected to revolutionize the conventional indus-
trial production model, achieving goals such as increas-
ing production efficiency, reducing labor costs, and en-
hancing safety. Typical application scenarios include:
1) Assembly line operations?®], where robots can per-
form tasks such as parts installation and circuit board
welding; 2) Packaging and sorting operations260l where
robots can provide fast and accurate packaging and sort-
ing services for industries like retail and food; 3) Mainten-
ance operations[26l], where robots can perform equipment
maintenance tasks in hazardous environments.

To better demonstrate the practical application value
of the embodied intelligence methods introduced in this
paper, we use a factory assembly line as an example to il-
lustrate how these methods can be combined with real-
world applications. Here, the robot automation system
can be divided into three stages: 1) Input RGB-D images
captured by a depth camera and use object detection
technology to identify the category and location of the
parts. 2) Use pose estimation technology to determine the
6DOF grasping pose of each part so that the robot can
accurately grasp the parts. 3) Use reinforcement learning
technology to optimize the actions during the grasping
and assembly process to achieve efficient assembly based
on dexterous hands. The detailed case study is shown in
Table 7. The hardware, software, and algorithms men-
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Table 6 Applications of embodied learning for object-centric robotic manipulation

Area Example Short description

Assembly line operations(259] Performing tasks such as parts installation and circuit board welding
Providing fast and accurate packaging and sorting services for

. . : ionsl260]
Industrial robots Packaging and sorting operations industries like retail and food

Maintenance operations/261] Performing equipment maintenance tasks in hazardous environments

Accomplishing intelligent planting through monitoring plant growth,

FarmBot fertilization, and cultivation control
Agricultural robots FAR Identify fruits and their ripeness, and performing tasks such as pruning
Rowbot Designing for crops like corn, capable of fertilizing, seeding, and weed removal

Household assistants(262] Helping with tasks like organizing desks, performing cleaning duties, and folding clothes

Smart caregiving263] Offering daily care and health monitoring for people in need of special care

Domestic robots

Automatically completing specific cooking tasks, such as frying eggs,

king[264]
Cooking stir-fry, and toasting bread

Cutting and suturing[265] Utilizing specialized surgical tools to perform precise tissue cutting and suturing

Automated controll266] Performing intelligent adjustment of the speed and direction of surgical instruments

Surgical robots

Collaborating in real-time with doctors during surgery, providing real-time process

Surgical collaboration[267] me W .
urgicat coflaboration monitoring and data-driven decision support

Other applications Space exploration[268] education[269], research(270]

Table 7 Detailed case study of embodied learning methods in real-world applications

Section Details

Background On a factory assembly line, robots perform precise tasks by assembling multiple parts into a complete product.

The robot must complete assembly tasks, which involve recognizing parts, estimating their poses, detecting 6DoF

Task di ipti e L L . . - .
ask description positions, predicting affordances, and optimizing its operational strategy in a dynamic environment.

—Hardware: A URb5 robotic arm equipped with a multi-functional gripper, an Intel RealSense camera for capturing
RGB-D data, and a high-performance GPU computer.

—Software: ROS for control, PyTorch for model training and inference, Gazebo for simulation.

—~Algorithm: PointNet++53] for feature extraction, 6-DOF GraspNet271] for 6DoF grasp pose detection, RLAfford[!14] for
affordance prediction, PPOI!63] for reinforcement learning, behavioral cloning[!6% for imitation learning.

Implementation

Initial training in a simulated environment, followed by validation in a real-world setting using various parts to assess

E: i 1 P
xperimental setup generalization.

Results analysis The system's accuracy and efficiency are measured using task success rate and execution time.

tioned in this table serve as examples for the case study.
In real-world applications, the most suitable options can
be selected based on specific requirements.

In the process of robots becoming increasingly intelli-
gent but not yet fully autonomous, collaboration between
robots and humans is essential in many complex and
high-precision task scenarios. Additionally, robots may
encounter operational anomalies or make mistakes, which
requires the implementation of intelligent detection and
fault diagnosis methods272l. This is crucial for ensuring
intelligent robots’ stable and reliable application within
the industrial field.

6.2 Agricultural robots

In modern agriculture, intelligent robots are crucial in
completing various tasks within farms and orchards, such
as planting, nurturing, and harvesting crops. This pro-
motes high-quality and sustainable agricultural develop-

ment27]. Some representative agricultural intelligent ro-
bots include 1) FarmBot!, which accomplishes intelligent
planting through monitoring plant growth, fertilization,
and cultivation control; 2) FAR2, which utilizes artificial
intelligence and computer vision technology to identify
fruits and their ripeness, and can perform tasks such as
pruning; 3) Rowbot?, designed for crops like corn, cap-
able of fertilizing, seeding, and weed removal.

In agricultural settings, goods are often delicate and
prone to damagel274, as seen in tomato harvesting. Apply-
ing too much force can harm the tomatoes, while too
little force can cause them to slip and fall. This makes it
challenging to achieve precise control and gentle hand-
ling. Additionally, robots may encounter obstacles such
as branches and leaves in the open agricultural environ-
ment, requiring high positional accuracy and flexibility

L https://farm.bot
2 https://www.tevel-tech.com

3 https://www.rowbot.com
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during operation.
6.3 Domestic robots

Domestic intelligent robots have promising applica-
tions in areas such as family assistance, caregiving, and
household chores. They are capable of enhancing living
quality and convenience and providing assistance to indi-
viduals with particular needs. Specifically, some valuable
application scenarios include: 1) Household assistants(262,
which help with tasks like organizing desks, performing
cleaning duties, and folding clothes, thereby alleviating
the daily household workload; 2) Smart caregivingl263]
which offers daily care and health monitoring for people
in need of special care; 3) Cookingl264 capable of auto-
matically completing specific cooking tasks, such as fry-
ing eggs, stir-fry, and toasting bread.

Due to the vast diversity in home environments and
the high complexity of tasks, it is essential for robots to
quickly adapt to different household settings and handle
potentially unexpected situations as well as new types of
tasks. Taking cooking as an example, it involves a wide
variety of ingredients and vastly different cooking steps,
and the process also requires continuous identification of
the food's statel27], which poses a significant challenge for
robots. Another critical aspect is that such robots must
be sufficiently safe and reliable, especially around chil-
dren. Furthermore, cost is one of the significant factors
affecting the widespread adoption of domestic robots.
Consequently, identifying strategies to reduce the ex-
pense of robots while ensuring the quality of service is
also a crucial issue that must be considered.

6.4 Surgical robots

Research on robots in the surgical field is rapidly ad-
vancing. These robots have the potential to serve as intel-
ligent assistant tools to help doctors improve the quality
and efficiency of surgery. Some typical application scen-
arios include: 1) Cutting and suturing[?65, where robots
utilize specialized surgical tools to perform precise tissue
cutting and suturing, thereby reducing surgical trauma
and medical staff workload; 2) Automated controll206],
where intelligent adjustment of the speed and direction of
surgical instruments is performed, enabling precise con-
trol over surgical progress and outcomes; 3) Surgical col-
laboration[267], where robots collaborate in real-time with
doctors during surgery, providing real-time process monit-
oring and data-driven decision support.

The privacy of surgical data makes obtaining large-
scale real-world data challenging. Current methods often
rely on simulation environments to enhance surgical ma-
chine learning276l. However, there is a significant gap
between simulation and reality, challenging intelligent ro-
bots to make real progress in practical applications.
Therefore, while intelligent robots can perform certain
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parts of surgical procedures, it will take considerable time
before they can replace doctors. In particular, complex
and enduring surgical tasks still require doctors’ over-
sight to ensure the surgery’s safety and effectiveness.

6.5 Other applications

In addition to the applications above, intelligent ro-
bots can also be used in fields such as space explor-
ationl268], education269, and research27%. The skills re-
quired in these fields are different, and most of the exist-
ing work involves designing specialized intelligent models
tailored to domain expert knowledge. While these meth-
ods perform well on specific tasks, their generalization
capability could be improved. Fortunately, recent explor-
ations based on general large foundation models offer a
promising solution.

7 Challenges and future directions

In the past few years, there has been a significant in-
crease in research on embodied learning methods for ob-
ject-centric robot manipulation tasks, leading to rapid de-
velopment in this field. However, current technology still
faces some highly challenging issues. Further exploration
of these issues will be crucial in promoting the wide-
spread application of intelligent robots in various fields.
This section will discuss several challenges and potential
future research directions.

7.1 Sim-to-real generalization

Collecting real-world data for robotic manipulation is
difficult, making creating a large-scale dataset challen-
ging. To address this issue, current research primarily fo-
cuses on training models within simulation environ-
ments277) which offer safe, controllable, and cost-effective
learning scenarios, and the ability to generate virtually
unlimited simulated training datal?. However, transfer-
ring robotic skills learned in simulations to real-world
scenarios poses a significant challenge in robotic manipu-
lation. This difficulty arises primarily due to the differ-
ences between simulated and real environments279, which
leads to a mismatch between the data used in simula-
tions and that encountered in reality. For instance, a sim-
ulated environment might not accurately reflect the phys-
ical properties of the real world, such as friction and
gravity. Furthermore, simulated environments may
struggle to account for unforeseen events in real-world
situations. Another challenge is the difficulty in accur-
ately modeling various types of robot sensors and actuat-
ors within a simulated environment. An unseen sensor or
actuator may have different characteristics and limita-
tions. This discrepancy can result in variations in robot
behavior and performance when transitioning from simu-
lation to the real world.

The above issues make it difficult for robots to gener-
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alize their learned capabilities to new situations, thus lim-
iting their deployment and applications. However, this
challenge also presents new opportunities for robotic ma-
nipulation. The training data and iterations in simulated
environments can be unlimited, which can help improve
the robot’s understanding and adaptation to the complex-
ities and uncertainties of real-world environments.

Recent research has focused on reducing this sim-to-
real gap by using methods like domain randomization[280],
physical constraint regularization28ll, and iterative self-
training282. We propose further research on domain ad-
aptation methods suitable for robotic manipulation,
which involve in-depth exploration of large-scale pre-
training in virtual environments and rapid adaptation in
real-world settings. Additionally, methods based on ad-
versarial training and contrastive learning are worth fur-
ther investigation. Studies in these areas can help im-
prove the adaptation of robotic manipulation methods to
real-world environments and enhance their performance
in practical situations.

7.2 Multimodal embodied LLMs

Humans possess rich perceptual abilities like sight,
hearing, and touch, which help them gather detailed in-
formation about their surroundings. Besides, humans can
utilize learned experiences to perform various tasks. This
versatility is also the ultimate goal of general-purpose in-
telligent robots. To achieve this, robots must be equipped
with multiple sensors to perceive the environment and
collect multimodal data. Additionally, robots must
quickly learn and adapt to new environments and tasks
to perform efficient actions.

However, enabling robots to handle multi-modal data
and master diverse manipulation tasks is extremely chal-
lenging. This is reflected in two aspects: 1) Robots must
integrate and understand information from multiple
sources to comprehend task instructions and their sur-
rounding environment. Different data modalities have
unique characteristics and structures, often containing
lots of redundant information, which complicates the un-
derstanding of multi-modal data. 2) Robots are expected
to perform effectively across a wide range of manipula-
tion tasks. Nevertheless, models often exhibit varying per-
formance levels depending on the task, and they may
struggle with certain tasks. Furthermore, multi-task
learning increases the model’s complexity, making train-
ing and optimization more difficult.

Most existing research on robotic manipulation is
based on single modalities such as images, 3D, or tactile
data, with relatively little research on general robotic ma-
nipulation models that simultaneously master multiple
modalities. Enhancing robots’ multi-modal understanding
and multi-task execution capabilities can improve their
ability to interpret human intentions and respond accord-
ingly, leading to more flexible and adaptive robots.

In recent years, LLMs have demonstrated remarkable
capabilities in the fields of natural language processing
and computer vision. Meanwhile, in the domain of robot-
ic manipulation, researchers are gradually exploring how
to leverage LLMs to enhance robots’ perception, reason-
ing, and action-generation abilities283-286], Xu et al.[28%] in-
troduced a method for tuning reasoning that generates
accurate numerical outputs for robotic grasping, lever-
aging the extensive prior knowledge of LLMs. SMART-
LLM87 employed LLMs for multi-agent robot task plan-
ning, converting high-level task instructions into multi-ro-
bot task plans through processes like task decomposition,
coalition formation, and task allocation. Huang et al.[280]
integrated affordance and physical concepts into
LLMs beyond regular image and text modalities, result-
ing in better performance in robotic manipulation. Robot-
GPT[288] leveraged ChatGPT's problem-solving capabilit-
ies to train a more reliable agent for robotic manipula-
tion. These LLM-based methods integrate inputs from
multiple modalities and are usually referred to as mul-
timodal LLMs (MLLMs). The success of MLLMs is
closely linked to the input prompts(289, Cheng et al.[290]
introduced a framework named LLM+A (ffordance), which
employs an LLM as both a sub-task planner and a mo-
tion controller. Additionally, they devised an affordance
prompting technique to allow the language model to gen-
erate affordance values for relevant objects. Xiong
et al.29l proposed an autonomous interactive correction
(AIC) MLLM, which refines the SE(3) pose prediction of
articulated objects by leveraging low-level interaction ex-
periences. For interactions with objects, they designed
two types of prompt instructions, i.e., visual masks and
textual descriptions, to optimize the output of the
MLLM. Liu et al.292 suggested improving the autonom-
ous manipulation abilities of large language models
(LLMs) by leveraging human-robot collaboration, which
utilizes a prompted GPT-4 model to translate language
instructions into action sequences that a robot can per-
form.

The above-mentioned works have promoted the devel-
opment of multimodal embodied LLMs, but overall, the
field is still in its early stages and necessitates further ex-
tensive and in-depth research. We recommend starting
with the development of large multimodal LLMs that in-
tegrate vision, language, and tactile feedback to facilitate
general robotic manipulation in open-world environments,
with a particular focus on improving the efficiency of
training LLMs. Furthermore, leveraging vast amounts of
videos capturing human activities, in conjunction with
general multimodal LLMs, represents a promising direc-
tion for further research.

7.3 Human-robot collaboration

Intelligent robots can potentially revolutionize indus-
tries such as manufacturing, healthcare, and services. To
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fully realize this potential, human-robot collaboration is
crucial?®], By working together, robots can assist hu-
mans, enhancing efficiency and reducing human work-
load and safety risks. Meanwhile, humans can guide and
monitor robot operations to improve accuracy. Neverthe-
less, achieving perfect human-robot collaboration is chal-
lenging due to communication and coordination barriers,
over-reliance, and safety issues.

Specifically, the challenges of human-robot collabora-
tion include: 1) Robots must be able to accurately and in
real-time perceive human behavior and understand the
intentions behind it, which is very complex and subtle. 2)
Robots must quickly adapt to constantly changing situ-
ations during interactions, but unforeseen events often
lead to erroneous decisions by the robot. 3) Human-robot
collaboration requires robots to have clear safety decision-
making capabilities, which presents a series of moral and
social-ethical challenges. These challenges make it diffi-
cult for robots to effectively interact with humans, thus
limiting their ability to adapt to different user needs and
environmental conditions, reducing their adaptability in
various scenarios.

The research community has already achieved some
progress in addressing the challenges of human-robot col-
laboration. For instance, Jin et al.2% proposed a two-
level hierarchical control framework based on deep RL to
establish an optimal human-robot cooperation policy.
Wang et al.2% introduced a policy training method
called Co-GAIL, which is based on human-human collab-
oration demonstrations and co-optimization in an inter-
active learning process. However, these methods are im-
plemented in simulation environments or can only per-
form a limited number of tasks, making them unsuitable
for practical applications. In the future, human-robot col-
laboration will remain a crucial research area, requiring
continuous exploration to enhance the efficiency and
safety. We suggest developing a unified framework for hu-
man-robot collaboration to enable researchers to conduct
research and testing more efficiently. This framework
should be flexible and scalable, supporting various inter-
action modes and application scenarios. Additionally, es-
tablishing a set of universal evaluation standards for hu-
man-robot collaboration methods is crucial. These stand-
ards will help ensure the comparability and consistency of
different methods.

7.4 Model compression and robot accelera-
tion

In applications such as embedded systems, mobile
devices, and edge computing, robots with embodied intel-
ligent systems usually have minimal computational re-
sources(2%]. This makes it essential to optimize and com-
press the deep models to meet the requirements of stor-
age space, real-time, and accuracy. While LLMs-based
methods have made significant advancements in embod-
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ied AI, they have also led to increased computational re-
source demands, posing challenges for implementation on
devices with limited computing capabilities. Specifically,
this challenge mainly arises from two reasons: 1) Limited
computational resources can slow down the model's infer-
ence speed, affecting the robot's execution efficiency. 2) In
resource-constrained environments, storage space is often
highly restricted, preventing the storage of large amounts
of model parameters and affecting the model’s perform-
ance. Therefore, future research on model compression is
expected to facilitate the practical application of intelli-
gent robots.

In real-world applications, long waiting times often
result in a poor user experience. Thus, it is expected that
robots should be able to complete tasks quickly. However,
many current mainstream models have low operating fre-
quencies. For instance, Google’s RT-2 modell2°7] has a de-
cision frequency ranging from 1-5Hz, depending on the
parameter scale of the used VLMs, indicating that there
is still a substantial gap before it becomes practical. Re-
cently, the humanoid robot Figure 01* can generate ac-
tion instructions at a frequency of 200Hz, which benefits
from OpenAl's LLMs and an efficient end-to-end net-
work architecture. This achievement brings greater op-
timism for future research on robot acceleration. We re-
commend intensifying research efforts on more efficient
perception and control algorithms, particularly in explor-
ing unified architectures capable of handling multiple
tasks. Such an architecture should seamlessly integrate all
stages between sensor data input and robotic execution
control, creating a fast and efficient pathway. By optimiz-
ing data processing and decision-making processes, this
architecture will enhance the robot’s response speed and
task execution capabilities, enabling real-time operations
in dynamic and complex environments.

7.5 Model interpretability and application
safety

Deep learning-based methods are commonly referred
to as “black boxes”[2%8], For intelligent robots based on
deep learning, this black-box characteristic can lead to
suspicion and mistrust from users. However, understand-
ing how deep models make decisions is a challenging task.
On one hand, this is due to the lack of transparency in
the models. On the other hand, the model complexity
makes it hard to determine which features are the most
significant for making predictions. Additionally, models
trained on imbalanced data may exhibit potential biases,
leading to inaccurate predictions. These issues make it ex-
tremely difficult to identify and resolve potential prob-
lems, which can compromise the safety and reliability of
robots[29] ultimately limiting the widespread adoption of
robotic manipulation systems. Therefore, research on the

4 https://www.figure.ai
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interpretability of embodied learning methods is crucial,
which can help people understand the model's decision-
making process and increase user trust in robots.

In addition to model interpretability, the safety of in-
telligent robots needs to be guaranteed from other per-
spectives, including implementing more reliable online
learning and control techniques to prevent potential harm
caused by the robot’s motion3%, It is also essential to
employ adversarial training to protect robots against at-
tacksi30l and to design robust safety monitoring methods
for detecting possible security risks[32]. We propose estab-
lishing comprehensive robotic motion constraints in real-
world settings, as this is essential for ensuring safety. Ad-
ditionally, with the growing application of LLM-based
methods in robotic manipulation, future research into the
interpretability of instructions generated by LLMs will be
highly valuable. Enhancing the interpretability of LLMs
will help us achieve a better understanding of the de-
cision-making processes of robots, thereby increasing the
transparency and reliability of the system.

8 Conclusions

In this paper, we present a comprehensive survey of
the existing methods for embodied learning in object-
centric robotic manipulation. We begin by introducing
the concept of this task and its essential components and
then compare it with related survey articles. Next, we
systematically present the main works across three cat-
egories. We then explore the commonly used datasets and
evaluation metrics, highlighting some representative ap-
plications. Finally, we discuss the challenges and suggest
promising directions for future research. We hope this
survey will provide researchers with a comprehensive un-
derstanding and new insights in this emerging field.
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Appendix A. Datasets for object grasping

The objective of the object grasping task is for the ro-
botic arm to be able to successfully and stably grasp ob-
jects. Therefore, the related datasets are mainly construc-
ted around aspects such as enriching the categories of ob-

jects and the grasping poses.

The Cornell dataset244 encompasses 240 different ob-
jects, for which 885 RGB-D images have been captured
with a top-down imaging perspective. It provides 8 019
manually annotated positive and negative grasp samples.
This dataset was the first to introduce oriented rect-
angles to represent grasps, enabling efficient training of
grasp detection network models on images.

The Multi-Object dataset(2$5] comprises 96 real-
world images, each containing 3—5 objects, amounting to
approximately 400 objects in total. Multiple grasps have
been annotated for each object, with a total of 2904
grasps included, making it suitable for evaluating multi-
object/multi-grasp tasks.

The Jacquard datasetl?40l contains 54K images of
11K objects and provides 1.1 million grasping positions,
which are represented by 2D rectangles on the images.
All data are generated through simulations on CAD mod-
els and can be leveraged for image-based grasping posi-
tion estimation.

The VR-Grasping-101 dataset247 includes 101 daily
objects across 7 categories and synthesizes approximately
150K grasping samples based on human demonstrations
collected in virtual reality (VR). This dataset is particu-
larly suitable for 6DoF parallel-jaw grasping tasks.

The ACRONYM dataset[248 is constructed based on
simulation, comprising 8 872 objects across 262 categor-
ies from the ShapeNetSem datasetB%3], and provides data
on 17.7 million parallel-jaw grasping poses. As a large-
scale grasping dataset, it can be used to train learning-
based grasp detection algorithms.

The EGAD dataset?4] contains 2 331 objects repres-
ented by 3D meshes, with each object annotated with 100
antipodal grasps. Furthermore, a curated selection of 49
objects amenable to 3D printing has been chosen to facil-
itate the testing of robotic grasping tasks in real-world
scenarios.

The GraspNet-1Billion dataset?’0] encompasses 88
daily objects and has collected 97 280 RGB-D images of
these objects from 190 cluttered scenes, along with
providing accurate 3D mesh models. All data were ac-
quired using real-world sensors and cameras. Further-
more, over one billion grasp poses have been annotated
through analytic computation, offering a large-scale
benchmark for the advancement of robotic object grasp-
ing techniques.

The Grasp-Anything dataset(2’!] is constructed
based on foundational models and includes 236 object
categories from the LVIS dataset304. It provides one mil-
lion scene descriptions generated by ChatGPT and cor-
responding images produced by Stable Diffusion[30%, with
a total object count of approximately 3 million. For each
object, there is an average of 200 grasps represented by
2D rectangles, amounting to roughly 6 million grasps in
total. This dataset has the potential to substantially bol-
ster research in the domain of zero-shot grasp detection.
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B. Datasets for object manipulation

Compared to grasp detection, object manipulation is a
more complex and general task, encompassing both the
action of grasping and the various operations performed
on objects after grasping. Therefore, datasets in this field
focus more on covering a wider variety of task types,
scenarios, and skills.

The YCB dataset252l consists of 5 types of object
sets, totaling 77 sub-classes of objects. All data were cap-
tured using 5 RGB-D sensors and 5 high-resolution RGB
cameras. For each object, it provides 600 RGB-D images,
600 high-resolution RGB images, segmentation masks,
calibration information, and 3D mesh models with tex-
ture mapping. This dataset is primarily useful for re-
search related to robotic grasping and manipulation.

The AKB-48 dataset253] contains 48 types of objects,
encompassing a total of 2 037 articulated object instances.
Each instance has been scanned from the real world and
manually refined by humans. Based on these models,
100K RGB-D images have been generated for network
training. In addition, 10K real-world images have been
collected, with 50% used for fine-tuning and the other
50% for testing. This dataset can be utilized to facilitate
the generalization of robotic manipulation methods from
simulation to reality.

The PartNet-Mobility dataset(l9] encompasses 46
categories of common indoor objects, totaling 2 346 artic-
ulated object models, and provides 14 068 annotations of
moving parts. Specifically, the motion of parts is categor-
ized into three types: hinge, slider, and screw. This data-
set serves as an evaluation benchmark for robotic percep-
tion and part-based manipulation tasks.

The GAPartNet datasetl?l% is a large-scale part-
centric dataset for object manipulation, featuring 1 166
articulated object models across 27 categories, all sourced
from the AKB-48 dataset and PartNet-Mobility dataset.
It defines 9 classes of cross-category GAPart and provides
annotations for functional parts on each object, amount-
ing to a total of 8 489 GAPart instances. This dataset is
suitable for domain-generalizable tasks on object percep-
tion and manipulation.

The ManiSkill2 dataset234 is developed on the
OpenAl Gym simulatorB3] and consists of 20 manipula-
tion tasks that span a diverse range of task types, includ-
ing stationary/mobile, single/dual-arm, and rigid/soft. It
contains over 2 000 object models and offers more than 4
million demonstration frames. This dataset is particu-
larly well-suited for advancing and evaluating research in
the field of learning generalizable manipulation skills.

The ARNOLD dataset226 is built on the Isaac Gym
simulator®7 and encompasses 8 language-grounded ma-
nipulation tasks, each presenting four goal states articu-
lated through human language. This dataset provides a
comprehensive collection of 10080 learning demonstra-
tions, with each demonstration consisting of 4-6 key-
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frames. It consists of 1078 3D object models across 40
distinct categories and 1114 scenes spanning 20 different
types. This dataset establishes an evaluation benchmark
for methods of language-conditioned manipulation and
the generalization of learned skills.

The Bi-DexHands dataset[255 includes 20 types of
bimanual manipulation tasks, features thousands of tar-
get objects, and provides multi-modal information like
contact force, RGB image, RGB-D image, and point
cloud. This dataset offers a comprehensive benchmark for
general reinforcement learning approaches aimed at dex-
terous two-handed manipulation tasks.

The DexArt dataset[256] comprises 4 categories of ob-
jects, i.e., faucet, bucket, laptop, and toilet, with a total
of 82 objects included. For each object, it provides 6k
point clouds, which encompass both the actual observed
and imagined points. The primary focus of this dataset is
on the generalizable dexterous manipulation oriented to-
wards articulated objects.

The PartManip dataset212] is constructed based on
the GAPartNet dataset and comprises 494 objects across
11 different types. It consists of 1432 sub-tasks that fall
under 6 major task categories, respectively: OpenDoor,
OpenDrawer, CloseDoor, CloseDrawer, PressButton, and
GraspHandle. This dataset is designed to advance the re-
search into part-based cross-category object manipula-
tion methods.

The BEHAVIOR-1K dataset257 encompasses a
comprehensive collection of 1000 behavioral categories
derived from 50 everyday scenarios, incorporating 1949
object classes with a total of 9 318 individual object mod-
els. Additionally, it provides rich physical and semantic
annotations for each object. All data within BEHAVIOR-
1K are generated within a simulation environment named
OMNIGIBSON, which is particularly tailored for the
evaluation of diverse approaches to complex robotic ma-
nipulation tasks.
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