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Abstract

In Newtonian theory of gravitation, used in Earth’s and planetary sciences, gravitational
acceleration is standardly regarded as the most fundamental parameter that describes any
vectorial gravitational field. Considering only conservative gravitational field, the vecto-
rial field can be described by a scalar function of 3D position called gravitational potential
from which other parameters (particularly gravitational acceleration and gravitational gra-
dient) are derived by applying gradient operators. Gradients of the Earth’s gravity potential
are nowadays measured with high accuracy and applied in various geodetic and geophysi-
cal applications. In geodesy, the gravity and gravity gradient measurements are used to
determine the Earth’s gravity potential (i.e., the geopotential) that is related to geometry
of equipotential surfaces, most notably the geoid approximating globally the mean sea
surface. Reversely to the application of gradient operator, the application of radial inte-
gral to gravity yields the gravity potential differences and the same application to grav-
ity gradient yields the gravity differences. This procedure was implemented in definitions
of rigorous orthometric heights and differences between normal and orthometric heights
(i.e., the geoid-to-quasigeoid separation). Following this concept, we introduce the radi-
ally integrated geopotential, and provide its mathematical definitions in spatial and spec-
tral domains. We also define its relationship with other parameters of the Earth’s gravity
field via Poisson, Hotine, and Stokes integrals. In numerical studies, we investigate a spa-
tial pattern and spectrum of the radial integral of the disturbing potential (i.e., difference
between actual and normal gravity potentials) and compare them with other parameters
of gravity field. We demonstrate that the application of radial integral operator smooths a
spatial pattern of the disturbing potential. This finding is explained by the fact that more
detailed features in the disturbing potential (mainly attributed to a gravitational signature of
lithospheric density structure and geometry) are filtered out proportionally with increasing
degree of spherical harmonics in this functional. In the global geoidal geometry (and the
disturbing potential), on the other hand, the gravitational signature of lithosphere is still
clearly manifested—most notably across large orogens—even after applying either spectral
decompensation or filtering.
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Article Highlights

We conceptualize the definition of the radial integral of the geopotential
We derive functional relationships between this quantity and other parameters of the
Earth’s gravity field via Hotine, and Stokes integrals

e We demonstrate that application of the radial integral operator smooths a spatial pattern
of the disturbing potential.

1 Introduction

Gravitational acceleration is the most fundamental parameter describing the vectorial gravita-
tional field. Assuming its conservative form (adopting some simplifications in case of the real
Earth), it can be described by the scalar function of 3D position called gravitational potential.
Due to the Earth’s rotation, the superposition of the centrifugal and gravitational potentials
results in the Earth’s gravity potential (i.e., the geopotential). The static geopotential is a sca-
lar function of 3D position of which unit is m*> s~2. The geopotential plays a crucial role in
defining geometry of equipotential surfaces of the Earth’s gravity field. In 1828, Gauss pos-
tulated the concept of representing the physical figure of the Earth by the geoid. According
to his definition, the geoid is the equipotential surface of the static Earth’s gravity field that
best fits (in the least-squares sense) the global mean sea level extended under the continents.
The geoid constitutes the height reference (zero-height) surface for defining physical heights
over the continents used in geodesy and surveying. The accurately determined marine geoid
model is, on the other hand, crucial in studies of ocean dynamics and sea level changes.

The geopotential cannot be measured by classical methods used in physics, but its dif-
ferences can be observed by atomic clocks based on adopting the relativistic theory of time
dilatation (cf. Bjerhammar 1975; Vermeer 1983). A mathematical concept of deriving
values of the geopotential from surface gravity measurements was postulated by Stokes
(1849), and later discussed in detail by Helmert (1880) in his treatise on physical geodesy.
The gravitational acceleration is a vector quantity that describes the acceleration excited
by an attracting body, and its unit is m s~2. The Earth’s gravity acceleration (magnitude of
the vector or its components) is conventionally measured by gravimeters on and above the
Earth’s surface. In addition to gravity measurements, gravity gradient observations have
been conducted (e.g., Meissl 1971), especially after launching the gravity field and steady-
state ocean circulation explorer (GOCE) satellite gravity gradiometry mission (Drinkwater
et al. 2003; Floberghagen et al. 2011). The gravity gradient describes change of the grav-
ity acceleration in a particular direction. In 3D space, gradients form a 3 X3 gradiometric
tensor with unit in s~2. Out of its 9 components, 6 are unique (tensor is symmetric) and in
mass-free space, only 5 components are independent. It is worth noting that theoretical
studies have been published on gravity curvatures (i.e., geopotential gradients of the 3rd
order) that define directional changes of gravity gradients (Sprldk and Novak, 2015; 2016;
2017), and their possible applications in geodesy and geophysics have been inspected in
recent theoretical studies (e.g., Ji et al. 2023).

Various parameters of the static gravity field are functionally linked by means of
applying the gradient operators. The gravity acceleration vector is defined as the first-
order geopotential gradient, and the gravity gradient is defined as the gradient of the
gravity acceleration vector (i.e., the second-order geopotential gradient tensor). These
gravity field parameters and their functional relations were formulated and examined in
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studies by Meissl (1971), Rummel and Van Gelderen (1992), Grafarend (2001), Heck
(1991; 1997), Martinec (1998; 2003), and references therein. Reversely, the geopoten-
tial difference in a certain direction can be defined in terms of the line integral of the
gravity acceleration, and the gravity acceleration difference in terms of the line inte-
gral of the gravity gradient. These functions were already applied in physical geodesy.
Vanicek et al. (2001), for instance, defined the mean vertical gravity gradient within
topographic masses as the difference of gravity values at the geoid and topographic
surface. The integral mean of gravity along the plumbline within topographic masses,
defined by means of the gravity potential differences of values computed at the geoid
and topographic surface, was used in the rigorous definition of orthometric heights by
Tenzer et al. (2005), and later incorporated for an accurate determination of the geoid-
to-quasigeoid separation by Tenzer et al. (2006) and Sjoberg (2006).

For several decades, a significant effort has been dedicated to establish the world
height system (e.g., Colombo 1980; BurSa et al. 1999). Bjerhammar (1985; 1986) pro-
posed the idea of using atomic clocks to measure the geopotential differences in his work
on relativistic geodesy, while practical aspects of using these measurements for a vertical
datum unification were investigated among others by Mai (2013), Kopeikin et al. (2018),
Mehlstédubler et al. (2018), Puetzfeld et al., (2019), and Shen et al. (2011; 2019).

Along with the application of geopotential differences measured by atomic clocks
for a vertical datum unification, these observations could also be used for the accuracy
assessment of vertical geodetic controls practically realized by precise leveling and grav-
ity measurements along leveling lines, particularly inspecting a possible presence of
cumulative systematic errors in leveling measurements. Other applications can be identi-
fied based on defining functional relations between the geopotential differences and the
geopotential, gravity, and gravity gradient values at the geoid (Tenzer et al. 2005). Since
the geopotential differences could be used to compute the geopotential values at different
heights with respect to the known reference geopotential, such as the geoidal geopoten-
tial value W,,, the radial integral of the geopotential might also offer possibilities for its
practical applications. Moreover, this function could be linked with other parameters of
the Earth’s gravity field in a similar way to the geopotential differences.

In this study, we conceptualize the definition of the radial integral of the geopoten-
tial and inspect the possibility of applying this function in gravimetric geophysics in
the context of interpreting the Earth’s inner structure. The study is organized into four
sections. Fundamental definitions of the radial integral of the geopotential are postu-
lated in Sect. 2. Expressions defining functional relations between the radial integral of
the geopotential and other parameters of the Earth’s gravity field are derived in Sect. 3.
Numerical results are presented and discussed in Sect. 4. Theoretical and numerical
findings are summarized, and the study is concluded in Sect. 5.

2 Theory

In this section, we introduce the concept of the radial integral of the geopotential and
summarize its computational formulas in spatial and spectral domains. As the centrifu-
gal acceleration vector (and respective potential) can easily be computed for a given
geocentric position, the focus is on the gravitational field and its parameters.
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2.1 Radial Integral of the Gravitational Potential

The gravitational acceleration vector g is functionally related to the conservative gravitational
potential V by applying the gradient operator in a point positioned by the geocentric vector x,
i.e., g(x) = —VV(x), where the sign convention reflects the attenuation of the gravitational
field with the increasing distance from gravitating masses. The gravitational potential differ-
ence AV can be evaluated as a line integral of the gravitational attraction g in the form of
AV =— / g - dx, where dx = ¢ ds denotes a product of the unit tangent vector ¢ and the infini-
tesimal length the line segment ds (i.e., infinitesimal displacement vector); the dot operator
represents a scalar product of two vectors. For the trajectory S with two end points A and B,
the potential difference AV becomes V(xp) — V(x,) = =/ ;8(x) - £ ds.

By analogy with the gravitational potential difference AV, we define the line integral of the
gravitational potential along the trajectory S as follows:

S(xg) —S(xy) = /SV(x)ds (1
where S is an indefinite integral function of the gravitational potential V in m® s 2,

Since the largest geopotential gradient is along a plumbline normal to all equipotential sur-
faces, the line integral in Eq. (1) can be defined along the plumbline. Adopting the Earth’s
spherical approximation, i.e., in the spherical coordinates the gravitational potential function
V depends only on the geocentric radius r (disregarding small geopotential changes due to
approximating the plumbline by the radial direction). The line integral in Eq. (1) then becomes

S(ry) =S(n) =/

where r, and r, represent the lower and upper integration limits, respectively.

To find the primitive function § for the radial integral of the gravitational potential in
Eq. (2), we assume that the Earth is approximated by a radially symmetric mass density sphere
of which the gravitational potential is simply defined as V(r) = GM/r, where GM denotes the
geocentric gravitational constant.

Inserting V(r) = GM/r to the indefinite radial integral of the gravitational potential in
Eq. (2), we get

I

2 V(r)dr 2)

ry

S@r) = / V(rdr = / @deM rldr 3)

The radial integral of 7! reads

</r_1 dr =In|r|+C )
where C is the integration constant.
Combining Egs. (3) and (4), we arrive at
S(r) = GM (Inr + C) 5)

As seen in Eq. (5), the primitive function S of the radial integral of the gravitational
potential V is a function of GM multiplied by the natural logarithm of r, as for r > 0,
In|r| = Inr.
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Substitution from Eq. (5) back to Eq. (2) yields
4]

S(ry) = S(ry) = / Vdr = GM Inr|> = GM (Inr, —Inr;) = GMIn = (6)

Ty

for r, > R and r, < r,, where R = 6371 10> m denotes the mean Earth’s radius. The solu-
tion of the radial integral of the potential in Eq. (6) is defined for the external gravitational
field of the Earth that is approximated by the mean geocentric sphere with the radius R.
The unit of F is m> s72. Note that the radial integral of the gravitational potential has the
same unit (dimension) as the geocentric gravitational constant GM. It is also worth noting
that the application of gradient operator to this function yields gravitational potential, i.e.,
VS =2 =GMZlnr=GM ' = V.

2.2 Radial Integral of the Earth’s Gravitational Potential

We further extend the definition of the radial integral of the gravitational potential V gener-
ated by the Earth. Assuming again the spherical Earth, the Earth’s gravitational potential V
is defined by Newton’s volume integral in the following form (Kellogg 1967):

R+H'

V=VrQ)= G/ / p(r’,Q’)f‘l (r, v, r’)rlzdr’dQ' 7
0

The gravitational potential V in Eq. (7) is defined for the external computation point
(r,Q), i.e., V(r,Q); where r is the geocentric radius, the pair Q = (0, 1) represents the geo-
centric direction of the computation point with  and A denoting spherical co-latitude and
longitude, respectively.

The volume integral on the right-hand side of Eq. (7) is evaluated for the 3D mass den-
sity distribution function p(r/, Qr) within the Earth’s interior limited by the Earth’s sur-
face described by the geocentric radius r/ = R + H/ that is defined approximately as the
mean Earth’s radius R plus the topographic height function H with H' = H (Q’ ) The term
dQs = sinf7dfrd Ar denotes an infinitesimal surface element of a unit sphere,{Q/ = (67, A7) :
0r € [0, 7] A A7 € [0,27) } represents the full spatial angle, and / dQr = /f sin@rdordAr.

The Euclidean spatial distance £ between the computation and integration (running)
points in Eq. (7) reads

¢(roy,r') =2+ 12 =2 cosy (3)

where cosy = cosfcosf’ + sinfsinf/cos(A — A) is cosine of the spherical distance
between the two points.

By analogy with Eq. (3), we define the radial integral of the Earth’s gravitational poten-
tial V, see Eq. (7), as follows:

R+H'
JVar=G[ | p(r,Q) [ ¢ (ry,r)drr*dr dQ ©9)
r'=0
To find the radial integral of the reciprocal distance [ #~'dr on the right-hand side of
Eq. (9), we first rearrange the expression 12 + 2 — 2rricosy = (r — rfcosy)” + r'2sin’y,
and introduce two substitutions # = r — r/cosy and du = dr. We then write
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[ dr= [ ! dr=f——t—au (10)

\/r2 + 12 —=2rr cosy Vu? +r? sin? %

Using the table of integrals, e.g., in (Gradshteyn and Ryzhik 2007), the solution of

Eq. (10) is found to be.
u+\/u2+r’zsin2u/‘+c (11)

The substitution for u = r — r'osy in Eq. (11) yields.

[ 'dr=1n

S¢Ydr=1n r—r'cosu/+\/r2+r’2—2rr’cosw|+C=1n|r—r'c0sy/+f(r,x//,r')|+C

(12)
Inserting from Eq. (12) to Eq. (9), the radial integral of the Earth’s gravitational poten-
tial V becomes

R+H'

[Vdr=G/[ [ p(r’,Q’)ln‘r—r’cosy/+f(r,q/,r’) r2drdQ (13)
0

A primitive function of the radial integral of the Earth’s gravitational potential J(r) is
now defined in the following form:

R+H'

SO =G/ [ p(r Q) In|r—r cosw +(ry.r)|* dr'aet (14)
0

It involves integration over the whole Earth’s interior. It is worth noting that a closed-
form (analytical) solution to the radial integral on the right-hand side of Eq. (14) does not
exist.

Inserting the integration limits, the radial integral of the Earth’s gravitational potential
in Eq. (14) becomes

) R+H' o,
S(rQ) - S(rl) =[/Vdr=G[ [ p(r’,Q/) In ‘r — 7 cosy + f(r,y/,r/)H r2dr'dQ’
r 0 n
R+H' 4
=G/ [ o(r.&)In Hr2 —r cosy + f(r2,1//,r’)| —1In |r] = cosy +£(r, v, r’)”r2 dr'dQ
0

R+H'

_6s p(r’,Q/)ln r2—r'cosu/+f(r2,y/,r’)
0

r2drdsy

ri—rcosy +7(r,w, 1)
(15)

2.3 Spherical Harmonic Series of the Radial Integral of the Earth’s Gravitational
Potential

The spherical harmonic representation of the Earth’s gravitational potential V is given by
(e.g., Heiskanen and Moritz 1967)

Vo2 =S (BYT S v, p@ (16)

n=0 m=-—n
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where V, , are the (fully-normalized) numerical coefficients of the gravitational potential V
of degree n and order m. The (fully-normalized) surface spherical functions Y, , in Eq. (16)
are defined by

cosmA, m>0

sin [m|4, m <O, a7

Y, m(€) = P, ,(sin @) {

where P, , are the (fully-normalized) associated Legendre functions.
The spherical harmonic representation of the radial integral of the Earth’s gravitational
potential in Eq. (16) is then given by

/Vdr—— 2/( )n+ldr Z VYo

GM ZRn+1/ (%)n ld;» Z VoY () (18)
n=0 m==—n

_au

o 2R YV, Y@

n,m* n,m
n=0 m=—n

The radial integral of ¥~*~! on the right-hand side of Eq. (18) is found to be

/r_”_ldr={ Inr+C (n=0)

“Lni e >0 (19)

Substitution from Eq. (19) back to Eq. (18) yields
/ Vdr=GM (Inr+C)~GM Y~ R" ( + C)Z:’nz VonYam(@  (20)

Setting C = 0, the indefinite radial integral of the Earth’s gravitational potential in Eq. (20)
becomes

/Vdr:GMlnr—GMil< ) Z an V() @1
n=1 m=—

Inserting the upper and lower integration limits r, and r}, respectively, in Eq. (21), the radial
integral of the Earth’s gravitational potential in spherical harmonics becomes

r o
s-any
L8

n=1

/Vdr:GMlnr

L5

n
Bl ¥ i@

m=-—n

e n
ZGM(IIII"2 lnrl G ZR_ —n_r ] Z Vannm(Q)
n=1 n m=—n (22)
=GM1 GMOOR" VoY (Q
—amnZ-an 3 [(L) - (1)] 3 v
» CRNTTN S
_GMlnr—l—GMn:17 o ";nVannm(Q)
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As seen in Eq. (22), the radial integral of the gravitational potential consists of two
terms. The first term defines the radial integral of potential generated by a radially sym-
metric mass density body. The first- and higher-degree spherical harmonics in the second
term describe the respective contribution of anomalous mass density heterogeneities (with
respect to a radially symmetric mass density distribution).

2.4 Radial Integral of the Earth’s Gravity Potential
The Earth’s centrifugal potential ® is defined by
o= %Ezrz sin” (23)

where w is the mean Earth’s angular velocity, with the unit rad s™'. As seen in Eq. (23), the
Earth’s centrifugal potential @ is a function of the uniform Earth’s rotational velocity @ and
the perpendicular distance from the Earth’s axis of rotation defined in terms of the geocen-
tric radius  and the spherical co-latitude 6.

From Eq. (23), the radial integral of the Earth’s centrifugal potential is obtained in the
following form:

/ ®dr = %52 sin 6 [ rdr = éazﬁ sin” 0 24)

The radial integral of the geopotential W (i.e., the sum of the Earth’s gravitational and
centrifugal potentials V and @, i.e., W = V + ®) is then given by

/Wdr:/Vdr+/<I>dr (25)

Combining Egs. (15) and (24), the radial integral of the geopotential is defined by:

r R+H'
SWdr=G/[ [ p(F,Q)In
0

r
1

rz—r’cosy/+f(r2,y/,r’r’) 1

r2dr'dQ + 652(@ - r?) sin @

ry—r' cosy + z,”(rl,y/, r’r’)
(26)

The corresponding expression in spherical harmonics reads

RN

J
no

D ViY@ + éaz(r; —13) sin® @

m=-—n

rz r 0
[ Wdr=GMIn=2-GM ),
}"1 n=1

1

@7

2.5 Radial Integral of the Earth'’s Disturbing Gravity Potential

In physical geodesy, the disturbing gravity potential, gravity disturbances, and gravity
anomalies are used in computations of the gravimetric geoid (e.g., Heiskanen and Moritz
1967; Bayoud and Sideris 2003). Note that in gravimetric geophysics, various types of grav-
ity anomalies (such as the free-air, Bouguer or mantle gravity anomalies) are used to inter-
pret the Earth’s inner structure (e.g., McKenzie 1967; Watts and Talwani 1974; McKenzie
and Fairhead 1997; Phillips and Lambeck 1980; Panet et al. 2014). These quantities are
obtained from the Earth’s gravity field parameters by subtracting respective parameters of
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the normal gravity field (model gravity field generated by a rotating level biaxial ellip-
soid). The disturbing potential 7 is defined as the difference between the Earth’s gravity
potential W and the normal gravity potential U, i.e., T = W — U. The gravity disturbance
6g is defined as 6g = g — y, where g is the actual gravity and y is the normal gravity, both
stipulated at the same point (their magnitudes are measured and often approximated by
radial vector components). The gravity anomaly Ag is defined in spherical approximation
as Ag = 8g — 2r~!T. We note that the gravity anomaly is typically defined as the difference
between the actual gravity g at the geoid and the normal gravity y at the reference ellipsoid
(e.g., Heiskanen and Moritz 1967), while a more rigorous definition was given by Vanic¢ek
et al. (2005).
The disturbing potential 7" in spherical harmonics reads (Heiskanen and Moritz 1967)

10,0 = ( )Y Tb@ 8)

m=—n

where T, ,, are (fully-normalized) numerical coefficients of the disturbing potential 7' of
degree n and order m obtained from the (fully-normalized) numerical coefficients V, , of
the Earth’s gravitational potential V (estimated from observed gravity data) after subtract-
ing the respective numerical coefficients of the normal gravity field (defined analytically).
Note that the centrifugal potential is absent in Eq. (28) as both the real and normal fields
include the same centrifugal potential.

By analogy with Eq. (22), the radial integral of the disturbing potential 7 is defined in
the following form:

(o] Rn rn
der—GMln——GMZ - lnrnz Z nn V() 29)
ry r n=1 m=—n
The expressions in Eq. (28) and (29) include zero- and first-degree spherical harmonics.
If we consider that the total mass of the Earth is equal to the mass of the reference ellip-
soid, and the center of the Earth’s masses coincides with the origin of the adopted coordi-

nate system, then the summation begins from degree two, so that

/Tdr——GMZ . ! ,,rnz Z . g (0) 30)

m=—n

3 Functional Relations Between the Radially Integrated Disturbing
Potential and Other Gravity Field Parameters

Let us assume that the gravity field above the geoid is harmonic, i.e., the disturbing poten-
tial satisfies the Laplace equation, i.e., V2T = 0 for r > R. Mathematically, this is realized
by subtracting the gravitational potentials of topographic and atmospheric masses from the
geopotential. For gravity parameters satisfying the Laplace equation, we can use the Pois-
son, Hotine, and Stokes surface integrals and introduce respective solutions for their radial
integrals that link the radial integral of the disturbing potential with values of the disturb-
ing potential, the gravity disturbance, and the gravity anomaly at the geoid. The proof of
analytical solutions of radial integrals of Poisson, extended Hotine, and extended Stokes
kernels (presented below) is given in appendix.
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Let us first define the radial integral of the disturbing potential as a function of the
disturbing potential at the geoid. This functional relation can be found by radially inte-
grating the Poisson integral that defines the disturbing potential above the geoid in
terms of the surface spherical integral of disturbing potential values at the geoid, i.e.,

T(r.Q) = % J PGy, T (R, Q)<Y 31)

The isotropic spherical Poisson integral kernel function P in Eq. (31) reads

2 —R?
P(r,y,R) = m 32)

where the Euclidean spatial distance is defined as £ (r, y,R) = \/ r2 +R? — 2rRcosy.
From Eq. (31), the radial integral of the disturbing potential is defined by means of
the radial integral of the Poisson kernel in the following form:

[ T(rydr = ﬁ J | Pr.w.RdrT(R, ' )d< 33)

The solution of the radial integral of the Poisson kernel / Pdr is found to be

2 _R2 r — Rcosy 2r
Py Rdr = | =R 4r = tann™! - C
/'Uw)r /ﬂmwﬁfﬁan LMWR) fm%m+ S

We note that the solution for the radially integrated Poisson kernel can be described
in terms of natural logarithm instead of inverse hyperbolic tangent in the first term on
the right-hand side Eq. (34), so that

2r

—F— +C.
Z(r,w,R)

/P(r, w,R)dr = In[£(r,y,R) + r — Rcosy ] —
In a similar way, we can define the radially integrated disturbing potential as a func-
tion of gravity disturbances at the geoid by utilizing the Hotine integral.
The extended (generalized) Hotine integral is defined by

T(r,Q) = ﬁ JH(@r,y,R) 6g(R,Q)dQ (35)

where the extended Hotine kernel function in Eq. (35) reads

2R n Z(r,yv,R) + R — rcosy

Hrw.R) =220 (1 — cosy)

(36)

By analogy with Eq. (33), the radial integral of the disturbing potential is written in
the following form:

[ T(rdr = ﬁ [ [ H(r,w,Rydr 6g(R,Q')dQ (37)

where g denotes the gravity disturbance.
The radial integral of the Hotine kernel / Hdr is found to be
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JSH@r,w,R)dr=[ 2—Ra'r — [ In[Z(r,w,R)+ R —rcosyldr+ [ In[r(l — cosy)ldr
£(r.y.R)

=2RIn[¢(r,w,R)+r—Rcosy] —rin[£(r,w,R) + R — rcosy]

—RIn[¢(r,y,R)+r—Rcosyl+r+r{ln[r(l —cosy)]—1}+C

=RIn[¢(r,y,R)+r—Rcosy] —rIn[f(r,y,R)+ R—rcosy]+r+r{ln[r(l —cosy)] -1} +C

(38)

By analogy with the solutions for the radially integrated Poisson kernel, the solution for
the radially integrated Hotine kernel can be expressed in terms of natural logarithm as well
as inverse hyperbolic tangent. We then write

-R -R
J H(r,y,R)dr = Rtanh™ [ﬂ] — rtanh™! [ﬂ

) 7w R) ] +r+r{ln[r(l —cosy)] -1} +C

As seen in Eq. (37), the radial integral of the disturbing potential / Tdr can be com-
puted from the gravity disturbances dg at the geoid.

The derivation of a functional relation between the radial integral of the disturbing
potential f Tdr and the gravity anomalies Ag at the geoid involves the Stokes integral
formula.

The extended (generalized) Stokes integral is defined by

T(r,Q) = i J S(r.w, R) Ag(R.Q')dQ’ (39)
where Ag is the gravity anomaly.
The extended Stokes kernel function in Eq. (39) is given by

2R R ,R R)?
Sr,w,R) = ——— + — =3=7(r, ,R—(—) 5431
(r,y,R) 7w R + p 2 (r,y,R) " cosy/{ + n[

£(r,y,R) + r — Rcosy
2r
(40)
According to Eq. (39), the radial integral of the disturbing potential / Tdr can be
obtained from the gravity anomalies Ag at the geoid. We then write

R
JTydr = — [ [ Str.w, Rydr Ag(R,Q')deY 1)
The radial integral of the Stokes kernel function is found to be

R
ISy Rdr = 2R [ ——dr + R [ dr — 3R f LU YR
£(r,w, R) r?

Z(r,w,R)+r—Rcosy
2r
Z(r,y,R _ -R 4 |R—-
+RIn(r) — 3R —M+tanh1 [—Reosw +cosq/tanh1 Roreosy
r Z(r,y.R) Z(r,y.R)
f’(r,u/,R)+r—Rcosu/] —ltanh‘l [R—rcosy/ } c

dr — 5R? cosy [ r 2dr

—3R%cosy [ r2In [ ]dr =2R In[Z(r,yw,R) +r — Rcosy]

+5cos R—2 —3R?cos 1.1 In _
v r v ror 2r R Z(ryy,R)

R — <
=2R In[¢(r,y,R)+r—Rcosy]+RIn(r) + 3R @y, )—tanh‘l r—Rcosy
r £(r,w,R)

2 4 R -R
+SCosy/R——3R2cosu/{l—lln[ ry, Ry +r COSW]}+C
r ror 2r

42)
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In addition to surface integrals for computing the radial integral of the disturbing potential
from values of the disturbing potential, the gravity disturbance, and the gravity anomaly at the
geoid, we introduce the relation between radial integrals of the disturbing potential and the
gravity disturbance [ Tdr and / 8gdr, respectively.

We first consider only the zero-degree terms T = GM/r and 8g = GM/r? of disturbing
potential and gravity disturbance, respectively. We then write

4]
S(ry) =S(ry) = / T(r) dr (43)
4]
and
29T(r "2
T(r))=T(ry) = —/ 0( ) dr _/ dg(r) dr (44)
r r
Substituting for T = GM/r and 8g = GM/r? in Eqs. (43) and (44), we arrive at
r r2
T(r)dr = GMIn—= (45)
ry r
& GM GM n-r
/ 8g(r) dr =T(r)) = T(r,) = =— - =—— = GM =— (46)
I r r rnr

We reorganize Eq. (46) as follows
2 f g(rydr = GM 7
rp—="ryn

Combining Egs. (45) and (47), we arrive at

R nh

7T(r)dr In = } égdr (48)

Ty ryry="rin

For r,—r; <R we have Inr,/r = (r,—r )/r;. The expression in Eq. (48) then
becomesand

" =1 I 7
S T(rydr 2 —————— [ 6g(r)dr
r ry rnp—rmn

f T(rydr =r, f 6g(rydr (49)

L5

For the first- and higher-degree terms of 7" and 6g, i.e.,

e =%y (&) X Tl (50)
ber, ) = 2 le (2 )"+2(n )T Y, () 1)
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the respective radial integrals / 7dr and / 8gdr are derived as follows:
We first write the radial integral of the disturbing potential / Tdr for n > 1 in the fol-
lowing form

GM " n—
/Tdr— = LR +1/r Ydr Z A A () (52)

n=1 m=-n

Inserting for / rldr = —ir"’ + Cin Eq. (52), we get

"2 GM R”Jr S
[ T(dr = -== |7 Z . A (o))
T n=1 m=—n
GM ~ R™' [ 1
=—-— - - = Q
R ngl n <rg >m_z_n n.m I’lﬂ’l( )
(9] rl’l rn (53)
Ry =1
=-GM — Q
2T 2 et
RN
=GM — . (Q)
ZT” i ,.Z‘ o
The radial integral of the gravity disturance / 8gdr for n > 1is defined by
/ Sg(rydr = == ZR"” / r2dr(n + 1) Z A AN (9)) (54)
m=-—n
For [ r™=2dr = ——L =14 C, we have
n+l
" _ GM - +2  —n—1 nn+1 c
rflég(r)dr——ﬁ ZR'! P e ; I AN (9))
_ GM S n+2
=~ MR <1 nH) 2 Ton¥oun(@ (55)
n=1 2 m=-n
GM ) n+1 n+1 n
=0 n,m nm(Q)
R n=1 rn+lrn+l m;n
Combing Eqs. (53) and (55), we arrive at
© Rrry-r) n
/r’lz T(r)dr Zn:l T ;gr?I Zm——n n.m nm(g)
7 = Ll (56)
Rfrl2 og(r)dr Z'olo: Rn jm HLI L Ty Yum(Q)

4 Numerical Examples
Regional and global maps of the geoid (or less commonly used disturbing potential),

the gravity anomalies/disturbances, and the gravity gradient have extensively been used
in gravimetric interpretations of the Earth’s inner structure. To briefly review the most
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pronounced spatial features in these gravity field parameters, we computed and plotted
global maps of the geoid N, the gravity disturbance g, and the disturbing gravity gradi-
ent I'. The spatial patterns in the geoidal geometry and the disturbing potential are obvi-
ously the same because the geoid height is defined as the disturbing potential 7" at the geoid
divided by the normal gravity y, at the reference ellipsoid, i.e., N = T/y,. We also note that
spatial patterns in maps of gravity anomalies and gravity disturbances are very similar (cf.
Vajda et al. 2007). The computation was realized globally on the 1 arc-deg equiangular
coordinate grid using the EIGEN-6C4 (Forste et al. 2014) coefficients (for spherical har-

monic degrees: n=2, 3, ..., 2160) according to the following equations:
T(R, Q) 1 GM 2160
N= o Zm——n nm- N, m(Q) (57)
0T GM 2160 n
by =6sR.Q =20 = =53+ 1) DI v A () (58)
T GM 216(
r==—>= Z +D(n+2) Z [ KR A (0) (59)

where y, is the normal gravity at the reference ellipoid GRS80 (Moritz 2000).

The global maps of geoid heights, gravity disturbances, and disturbing gravity gradients
are shown in Fig. 1. As seen in Fig. 1a, the global geoid heights are roughly within+ 100 m.
It is commonly understood that the long-wavelength geoidal geometry reflects a global
mantle convection pattern with the most pronounced features of the Indian Ocean Geoid
Low and the West Pacific and North Atlantic Geoid Highs (e.g., Hager et al. 1985; Hager
and Richards 1989; Steinberger 2000). The additional geoid lows are in North America
and Southwest Pacific, and the geoid high in Southwest Indian Ocean. Geoid undulations
attributed to the topographic and ocean-floor relief as well as the lithospheric density struc-
ture are much less pronounced. Maximum geoid modifications by the topographic mass
surplus of the Himalayas and Tibetan Plateau are up to~30 m. The geoid modifications by
elevated topography are also clearly recognized across central Andes. The marine geoid
modifications by the ocean floor relief are most notable along oceanic subductions and vol-
canic arcs.

The spatial pattern of gravity disturbances, see Fig. 1b, is characterized by relatively
small gravity anomaly fluctuations mostly within + 100 mGal (107> m s72). A long-wave-
length mantle signature is still partially manifested even in the presence of much more pro-
nounced lithospheric signature in the gravity map. Nevertheless, since most of major topo-
graphic features and large lithospheric density structures are in an isostatic equilibrium, the
largest gravity variations (up to+5x 107> m s™2) mark mainly uncompensated lithospheric
structures along active convergent tectonic margins (including mostly orogenic formations
and oceanic subductions).

The disturbing gravity gradient globally varies within+1.5x 107’ s72, with some of the
largest variations detected along active convergent tectonic margins, see Fig. 1c. Neverthe-
less, this spatial pattern in the gravity gradient cannot primarily be attributed to tectonic
features. Rather, it largely reflects a complex terrain and ocean floor relief, while partially
also horizontal gravity changes across margins of significantly different geological units. A
long-wavelength mantle signature in the gravity gradient map is completely absent.

The geoid, gravity, and gravity gradient maps in Fig. 1 clearly demonstrate that the
application of the gradient operator to the (disturbing) gravity potential enhances a
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Fig. 1 Global maps of: a geoid heights (m), b gravity disturbances (mGal=10" m s72), and ¢ disturbing
gravity gradients (eotvos=10" s72) computed on the 1 arc-deg equiangular grid using the EIGEN-6C4
coefficients (n=2, 3, ..., 2160)

lithospheric signature in the gravity map, and a more detailed pattern of the topographic
and ocean floor relief in the gravity gradient map, while the geoidal geometry is dominated
by a long-wavelength mantle signature. Consequently, it is expected that the application of
radial integral operator will have opposite effect, thus smoothing the geoidal geometry (and
equivalently the disturbing potential). To inspect this assumption, we computed and plotted
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Fig.1 (continued)

the indefinite radial integral of the disturbing potential, i.e., S(r) for r = R. The computa-
tion was again realized globally on the 1 arc-deg equiangular grid using the EIGEN-6C4
coefficients (n=2, 3, ..., 2160) according to the following formula:

2160 n
1
SRR, Q) =GM E - E T, .Y, .(
"S( ) =~ n nm n,m( ) (60)

m=—n

As seen in Eq. (60), the spherical harmonics T, , of the disturbing potential are in this
case scaled by the factor 1/n. Consequently, this scaling factor lessens the contribution of
higher-degree spherical harmonics so that their combined contribution in the indefinite
radial integral of the disturbing potential become significantly smaller than in the geoidal
geometry, see Eq. (57). This is evident in Fig. 2, where we plotted the result of Eq. (60),
computed again on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients
(n=2,3, ..., 2160).

A deep mantle structure, dominated by two large antipodal low shear-velocity prov-
inces at the base of the mantle (e.g., Steinberger 2000), is to some extent manifested in
the geoidal geometry, see Fig. la, by two large positive anomalies that are coupled by
large negative anomalies attributed to mantle downwelling in mantle convection. The
same long-wavelength pattern can also be recognized in the radially integrated disturb-
ing potential, see Fig. 2, while the lithospheric signature is in this result much less pro-
nounced than in the geoidal geometry. The main reason is that the lithospheric signature
remains apparent in the long-wavelength geoidal geometry computed from low-degree
spherical harmonics of the disturbing potential. Similarly, the spectral filtering could not
completely remove the lithospheric signature from the geoidal geometry. This is evident
from Figs. 3 and 4, where we plotted the long-wavelength geoid models (for the maxi-
mum degree of spherical harmonics between degrees 5 and 25, with a 5-degree step)
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and the spectrally filtered geoid models, respectively. We note that the Gauss filter was
applied for radii of 4000, 2000, 1300, 1000 and 800 km that closely correspond to maxi-
mum degrees of spherical harmonics used in the spectral decomposition in terms of a
half-wavelength. We see, for instance, that the gravitational signature of Andes is absent
only in the geoid model computed to degree 5 of spherical harmonics, see Fig. 3a, while
is present in all filtered solutions, see Fig. 4a—e. In contrast, the gravitational signature
of these large orogenic formations is not clearly manifested in the radially integrated
disturbing potential (Fig. 2). Consequently, the application of radial integral operator
in combination with the gravimetric forward modeling of lithospheric density structure
(cf. Tenzer et al. 2009; 2012; 2015; Tenzer and Chen 2019) using improved seismic
tomography, mineralogy, density and topography/bathymetry models can be beneficial
for interpreting lateral density variations within mantle.

We further investigated the power spectra of the radially integrated disturbing poten-
tial, the disturbing potential, the gravity disturbance, and the disturbing gravity gradient.
For this purpose, we compared the degree variances and the cumulative degree vari-
ances of gravity field parameters involved. The power spectrum analysis is plotted in
Fig. 5.

For the radial integral of the disturbing potential, the computation of degree vari-
ances (for n = 2160) was carried out according to Parseval’s generalized theorem (Gel-
deren van and Koop, 1997)

1 n
([ 1) = F B ) 1

where T, , are the coefficients of the disturbing potential. The corresponding cumulative
degree variances were calculated from

-160° -120° -80° -40° 0° 40° 80° 120° 160°

-160° -120° -80° -40° 0° 40° 80° 120° 160°

-15 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig.2 Global map of the indefinite radial integral of the disturbing potential (m* s~2) computed on the 1
arc-deg equiangular grid using the EIGEN-6C4 coefficients (n=2, 3, ..., 2160)
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Fig.3 Global maps of long-wavelength geoid models computed on the 1 arc-deg equiangular grid using the
EIGEN-6C4 coefficients with a spectral resolution complete to a maximum degree of: a 5, b 10, ¢ 15, d 20,
and e 25

O/ Tdr = ¥ o2/ Tdr) = Y ni2 3 (T,.) 62)
n=2 n=2

m=—n

For the disturbing potential, the gravity disturbance, and the disturbing grav-
ity gradient, the respective expressions for computation of the degree variances are

AN =" (Ton)0268) =+ 1)°Y"__ (T,n)’s and  62(IT) = (n+ 1)*(n+2)

T (o)

As seen in Fig. 5a, the disturbing gravity gradient has the lagest signal at the whole spec-
trum (up to n=2160) among the investigated gravity field parameters, with typically increas-
ing energy at long-wavelengths (up to degree — 120) and a slightly weakening energy beyond
degree —300. The power spectra of the disturbing potential, gravity disturbance and the radi-
ally integrated disturbing potential are, on the other hand, characterized by a weakening energy
at the whole spectrum, most remarkably in the spectrum of the radially integrated disturbing
potential, while much less in the potential spectrum (i.e., the geoidal geometry). In the gravity
spectrum, the signal attenuates much more moderately (after degree —20), while the gravity
gradient spectrum (beyond degree —120) has very stable energy. This finding confirmed that
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Fig.4 Global maps of long-wavelength geoid models obtained after applying the Gaussian filter with the
radius of: a 4000 km, b 2000 km, ¢ 1300 km, d 1000 km, and e 800 km. The original geoid model was
computed on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients (n=2, 3, ..., 2160)

the application of gradient operator gradually enhances the gravitational signature of more
detailed geological, tectonic, and topographic features with the increasing degree of spheri-
cal harmonics. Spectral characteristics of the gravity field parameters, see Fig. 5a, are directly
manifested in their respective cumulative degree variances, see Fig. Sb. Most of the energy
in the radially integrated disturbing potential and the disturbing potential is accumulated at
very low degrees of spherical harmonics (up to degree — 10). The same finding applies to the
gravity disturbances, but in this case, we see an additional moderate energy increase (up to
degree —200). In contrast, the energy of the gravity gradient signal increases at the entire spec-
trum investigated up to degree 2160.

Finally, we compared the difference between the integral mean of the disturbing potential
and the disturbing potential at the geoid. The differences were computed as follows

| Ret I PN L
~ [ Tdr—-T,= ~GM -1—(———)] T, Y, Q) — 22 T, Y, (@
i ] e tm oM N1 ()| Z et - S 3 3 nat@

(63)
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Fig.5 Power spectrum of the gravity field parameters: a degree variances and b cumulative degree vari-
ances (for spherical harmonic degrees coefficients n=2, 3, ..., 2160). Log scale is used for the vertical axis
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where the interval of radial integration was taken from the geoid up to the height
H=1x10*m, ie., r € (R,R + H). The result is shown on Fig. 6. We note that the integral
mean of the disturbing potential was computed instead of the radial integral of the disturb-
ing potential to have the same units for both parameters, i.e., the radial integral of the dis-
turbing potential was scaled by the factor H! to get values of % / §+HTdr in m? 572 as for
the disturbing potential 7.

As seen in Fig. 6, differences between the integral mean of the disturbing potential and
the disturbing potential do not exhibit a long-wavelength mantle signature. Instead, more
detailed patterns of the largest vertical changes of disturbing potential are revealed that
closely resemble the gravity map in Fig. 1b. In other words, the mean values of the dis-
turbing potential at the radial interval » € (R,R + H) for H=1x 10* m, only slightly differ
from values of the disturbing potential at the geoid.

5 Summary and Concluding Remarks

We have introduced the concept of the radial integral of the geopotential and investigated its
possible applications. In the theoretical part, we defined this functional in spatial and spec-
tral domains, and then derived its relations with other parameters of the Earth’s gravity field.
According to our results, the radially integrated gravitational potential generated by a radially
symmetric mass density body (or point mass), i.e., the zero-degree spherical harmonic repre-
sentation of the gravitational potential, is defined as the product of the geocentric gravitational
constant GM and the natural logarithm of the geocentric distancer, i.e.,.3 = f Vdr = GMlnr.
The radially integrated gravitational potential has thus the same unit (m? s~2) asGM. When

-160° -120° -80° -40° 0° 40° 80° 120° 160°

-160° -120° -80° -40° 0° 40° 80° 120° 160°

Fig.6 Differences between the integral mean of the disturbing potential and the disturbing potential (m?
s72) at the geoid computed globally on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients
(n=2,3, ...,2160)
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taking into consideration the respective expression for the gravitational potential (of a radi-
ally symmetric mass density body), i.e.,V = GM/r, we see that the gravitational potential
is inversely proportional to the geocentric distance, so that it monotonically decreases with
the distance (when adopting geodetic conventions for the definition of potential), whereas its
indefinite radial integral function, i.e., the primitive function of radially integrated gravita-
tional potential, monotonically increases. In the spectral expression for the radially integrated
gravitational potential generated by a heterogonous mass density body, the first- and higher-
degree spherical harmonics of the gravitational potential (n > 1) are scaled by the factor 1 /n,
thus reducing the contribution of higher-degree spherical harmonic terms.

In numerical examples, we demonstrated that the radial integration of (disturb-
ing) potential smooths the solution, see Fig. 2. This implies that the application of gra-
dient operator to the indefinite radial integral of the disturbing potential (that represents
the reverse mathematical operation) must exhibit a more detailed pattern in the disturbing
potential, or equivalently in the geoidal geometry, see Fig. 1a. This is obviously consistent
with the fact that the gradient operator “roughens” spatially the solution. The application of
gradient operator to the disturbing potential superimposes the lithospheric signature over a
mantle signal in the gravity disturbance map, see Fig. 1b. Consequently, the application of
gradient operator to the gravity disturbance exhibits the signature of topographic and ocean
floor relief while completely removes a mantle signature in the gravity gradient map, see
Fig. lc.

5.1 Proof of the Radially Integrated Poisson Kernel

Since the direct derivation of the analytical solution for the radially integrated Poisson ker-
nel comprises extensive algebraic operations, we provide the proof of the final solution in
the form of the radial derivative of indefinite radial integral of the Poisson kernel that obvi-
ously yields the Poisson kernel.

Proposition 1: According to Egs. (34), the closed analytical solutions of the radial integral
of the Poisson kernel read.

2 _p2 3
/P(’”, v, R)dr = / idr — tanh~' | ” Reosy | 2 Lc
£3(r,w,R) £(r,yw,R) Z(r,w,R)
and
/ P(r,y, R)dr = In[£(r,y, R) + 1 — Reosy] — S G
£(r,y,R)

Based on Lemma 1, it could readily be shown that both solutions for the radial integral
of the Poisson kennel are equivalent. As seen, the first term can be written either in the
form of inverse hyperbolic tangent or natural logarithm functions.

Proof: To provide the proof for the first term in the first solution, see Proposition 1, we
define the following relation.

itamh U= ——— (A.6)
ox

where the substitution x is given in Eq. (A.4).
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The radial derivative of the solution in Eq. (A.6) is given by

0 tanh_l [r - Rcosy/] _ Xrw.R) R?(1 - cos’y) _ 1 (A7)
or f(”, v, R) R2(1 —COSZIII) 53(’-7 v, R) Lp("? W7R) '

The radial derivative of the second term (in the first solution of the radially integrated Pois-
son kernel) yields

7} 2r _ —2R + 2R rcosy
rfrw R PR (A8)
According to Lemma 1, we get
iln[f(r R) + r — Rcosy | = _r
or W, yl= 2w R (A.9)
Q.ED.
Appendix

Proofs of the Radial Integrals of Poisson, Extended Hotine, and Extended Stokes
Kernels

This section provides the proof of analytical solutions for the radial integral of Poisson,
extended Hotine, and extended Stokes kernels given in Eqgs. (34), (38), and (42), respectively.
The solutions for the radially integrated Poisson and extended Hotine kernels are presented
in two equivalent forms (for inverse hyperbolic tangent and natural logarithm functions), and
each of them can be applied to compute the integrals numerically. To begin with, we introduce
two lemmas that relate these two equivalent solutions, and are used through mathematical der-
ivations of radial integrals of kernels.

Lemma 1 The first expression, used to define the relation between two closed analytical
solutions for the radially integrated Poisson and (extended) Hotine kernels, reads.

tanh-! [r — Rcosy

7o R ] =In[f(r,w,R)+r—Rcosy]+In(Rsiny)

Proof The relation between inverse hyperbolic tangent and natural logarithm is defined by.

o 1o l4+x 1 (1+x?
tanh™'x = = 1 =-1 Al
anh™'x = ZIn-—=>In—— (A.T)
By taking into consideration the following substitution (see Lemma 1)
r—Rcosy
= R (A-2)

and applying further simplifications, we get
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ranh-! [r—Rcosy/] 1 [f(r,w,R)+r—Rcosu/ 2

‘v R |2 8 Rsiny (A3)
=In(¢(r,w,R)+r—Rcosy)+In(Rsiny).Q.E.D.

Lemma 2 The second expression, applied again to define the relation between two closed
analytical solutions for the radially integrated Poisson and (extended) Hotine kernels, is
given by.

R - R
tanh™! [—rcosw] =In [—f(r, v, R + R

Zw R p - cosy n (siny)

Proof: The functional relation in Lemma 2 is verified by considering the following
substitution.

R — rcosy

X = —f(r, v.R) (A.4)

Inserting from Eq. (A.4) to Eq. (A.1), we get

2
R - R)+R - R
canh-! [ rcosy/] %ln[f(r, v,R) + rcosy/] _ 1n< £(r,y,R) N R

70w R) = rsiny p i COSI[I) + In(siny). Q.E.D.
(A.5)

Proof of the Radially Integrated Extended Hotine Kernel

The extended Hotine kernel in Eq. (36) was initially rewritten into the form consisting of three
terms to find the solution for its radial integral; see Eq. (38). In this way, each term was inte-
grated separately, and individual results were summed up and further simplified. In the follow-
ing lemmas, the analytical solutions for the radial integral of these terms are derived in detail.

Lemma 3 We begin with the proof of two equivalent solutions for the radial integral of the
first term in Eq. (38). Hence, we write.

r — Rcosy

+C
£(r,y.R)

/ m’d—l;’R) = In[£(r,y,R) + r — Rcosy] + C = tanh™' [

Proof: Let us rewrite the radial integral in Lamma 3 in the following complete square form:

/ dr dr _ dr
£y, R) _ TR Ry 2
\/(r Rcosy)” + R? — R? cos? y Rsiny (,;Iiic:;w> +1
(A.10)
Introducing the following substitution including its derivative
- R
= LSO g dr= 9 (A11)
Rsiny Rsiny
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and inserting it to Eq. (A.10), the following standard integral is obtained

dr
VErl (Ve +1-1) (A12)

Substitution from Eq. (A.11) to Eq. (A.12) then yields

2

-R -R

In r_ﬂ +1- r_ﬂ = In[Z(r,y,R) + r — Rcosy] — InRsiny
Rsiny Rsiny

(A.13)

The expression in Eq. (A.13) provides the first solution for the first term in Eq. (38).
According to Lemma 1, the second solution is found to be

2
—R —R —
In r .cosw | r .cosu/ tanh-"! r — Rcosy
Rsiny Rsiny Z(r,y,R)

Lemma 4 The equivalent solutions for the radial integral of the second term in Eq. (38)
read.
/ In[Z(r,w,R) + R — rcosy]dr = rIn[£(r,w,R) + R — rcosy] + RIn[£(r,y,R) + r — Rcosy] —r+ C

r — Rcosy
Z(r,w,R)

~ Reanh™! [ﬂ —riC

_ -1
= rtanh [ 70w R

Proof: The radial derivative of the first solution in Lemma 4 is found in the following form.

i{rln[z,”(r,y/,R)+R—rcost//] +Ri{ln[f(r,y/,R)+r—Rcosu/]} _or
ar oar or

r r— Rcosy
=In[f@r,w,R)+R— + -
n[e(r.y. R) reosyl f(r,q/,R)+R—rcosy/[f(r,q/,R) COSW]
+ R r— Rcosy w1l =1
Z(r,w,R)+r—Rcosy | £(r,w,R)
=In[Z@,v,R)+ R —rcosy]
(A.14)

As seen in Eq. (A.14), the primitive function is obtained simply by taking its radial deriva-
tive. The radial derivative of the second solution in Lemma 4 yields the same result.
Solving the third integral is straightforward. We first consider that

t =r(1 —cosy) and df = (1 — cosy) dr (A.15)

then solve the radial integral for the substitution in Eq. (A.15) and insert the result back to
the solution in Eq. (A.14). The procedure yields

/ln[r(l —cosy)]dr = _ / Inrdt = ;t(lnt — 1) =r{In[r(1 = cosy)] — 1}
(1 = cosy) (1 = cosy)
(A.16)
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Proposition 2: According to Eq. (38), the closed analytical solutions of the radially inte-
grated extended Hotine kernel read.

/ H(r, w,R)dr = RIn[Z(r, w,R) + r — Rcosy ] — rIn[Z(r,y,R) + R — rcosy]
+r+r{In[r(1 —cosy)| -1} +C
and

r — Rcosy rtanh-! [r — Rcosy

70w R) 2. w,R)] + 7+ r{ln[r(1 —cosy)] -1} +C

/ H(r,y,R)dr = Rtanh™! [

Proof: The radial integral of the extended Hotine kernel in Eq. (38) reads.

/ H(r,w,R)dr = / 2—Rdr - / In[Z(r,y,R) + R — rcosy]dr + / In[r(1 — cosy)]dr + C
(r,w,R)
(A.17)

The solution of the first and second integrals in Eq. (A.17) is given in Lemmas 1 and 2,
respectively. The solution of the third integral is found in Eq. (A.16). Proposition 2 is thus
verified.

Proof of the Radially Integrated Extended Stokes Kernel

The extended Stokes kernel in Eq. (40) was initially rewritten into the form consisting of
five terms to find the solution for its radial integral; see Eq. (42). The first term of the
extended Stokes kernel is the same as that of the extended Hotine kernel for which the
solution was found in Eq. (A.8). Radial integrals of the second and fourth terms have
standard solutions. Consequently, the proof is given only for the radial integral of the third
and fifth terms.

To solve the radial integral of the third term, we must find solutions for some integrals
first and thereafter use them to obtain the radial integral of the third term.

From Eq. (40), we write the radially integrated Stokes kernel in the following form

- 1 -1 Z(r.y,R)
/S(r,y/,R)dr—ZR/ f(r,y/,R)dr+R/r dr—3R/r—2dr

£(r,y,R)+r—R
_SRZCOSW/r‘zdr—Schosw/r‘zln[ .y, R)+r COSW]dr

(A.18)

2r

Lemma 5 We introduce the following radial integral and its two equivalent solutions in
terms of natural logarithm and inverse hyperbolic tangent functions.

l

f;d =—lln<—+£—cosu/>+C=—ltanh_l[
ror R

, R —rcosy
re(r,w,R) R

£y, R)

Proof: To provide proof for the first integral solution in Lemma 1, we consider the follow-
ing substitution and its radial derivative.
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dr (A.19)

Substituting from Eq. (A.19) to the radial integral and writing the result in the form of

complete square, we arrive at

/ 1 dr / ! dr
- dr= A.20
ré(r,y,R) V(R 1 = cosy)? — costy + 1 ( )

To change the integral in Eq. (A.20) to a standard form for which the solution is given,

we apply the following substitution and its radial derivative

Rit-—
=~ SO and dw = Bdr (A.21)
siny siny

Substitution from Eq. (A.21) to Eq. (A.20) yields
! dr=L [ S dw=lln(\/w2+1+1)+c
RJ Vw2t R
(A.22)

Combining Egs. (A.19)—(A.22), we arrive at

R
1 dr=_11n<M+B_cow)+c
r r

VR t = cosy)? — coswy + 1

A
V(Rt — cosy)? — cos?y + 1

__1 tanh™! R=rcosy C
R Z(r,y,R)

(A.23)

The result in Eq. (A.23) is the first solution, while the second solution is found by apply-
ing Lemma 2.

Lemma 6 We further write the solution for the radial integral of the following radial

derivative.
R — rcos
—W] + C

/ iMdr = tanh™! r_Rﬂ + cosytanh™
or r £(r,y,R) Z(r,w,R)
Proof: The radial integral on the right-hand side of Lemma 6 is separated into two inte-

grals, i.e.,

0 (r,y,R) / 1 / 1
LASANAL AL Py N S— S S—
/ o+ VT ) e T eenY A2

The first integral on the right-hand side of Eq. (A.24) is given in Lemma 3. Based on

Lemma 4, Lemma 6 is verified.

Lemma 7 We now introduce the following integral and its analytical solution.
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R — rcosy
£(r,y,R)

/ 2(r, t[/,R)dr _ _f(r, v,R) + tanh"! r — Rcosy
r? r £(r,y,R)

+ cosu/tanh‘] [

Proof: Let us use the integration by part for the following two terms.

dr

u(r,y,R)=7¢(r,y,R), and dv = ) (A.25)

Inserting from Eq. (A.25) back to Lemma 7, we get
R R
/ (ry, ) dr = _Z(r,y,R) +/ M(r,w,R)dr

72 r ror

(A.26)
Based on Lemma 6, Lemma 7 is verified.

Lemma 8 The equivalent two solutions of the radial integral of the function r=>¢~" read.

dr 1 cosy 1 R 1 cosy _1| R = rcosy
——=-—+ 1n(—+——cos >+C:——— tanh™ [ ———| +C
/ r2¢(r,w,R) rR*  R? roor v rR*>  R? [ £(r,y,R)

Proof: Fort = r~! we have dt = —r~2dr. Applying this substitution to Lemma 8, we get.

/ dr _ / tdt
rPe(r,w,R) VR?2 — 2R rcosy + 1 a-27)
To find the solution of Eq. (A.27), we further introduce the following substitution

1 cosy

t = — (2R?*t — 2Rcosy ) + A28
el ) (A.28)
for the numerator of the integrant so that we can split the integral into two parts with sim-
ple solutions.
Inserting from Eq. (A.28) back to Eq. (A.27), we arrive at

tdt _1 Rt — cosy

_1 dr 4+ SOV / dr
R%12 — 2R rcosy + 1 R R%#2 — 2Recosy + 1 R R?12 — 2Recosy + 1
(A.29)

The solution of the first integral in Eq. (A.29) is given by

Rt —
1 / cosy dr = l\/R%Z —2Rtcosy + 1 = Lz (A.30)
RJ V/R%2 - 2R tcosy + 1 R &

The solution of the second integral in Eq. (A.29) is simple after completing the square,
ie.,

cosw / dr =S¥ n(1+ R —cop) e gy
R V/R?22 — 2Rtcosy + 1 R T
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The proof of the logarithmic solution in Lemma 8 is obtained by inserting from Eqs.
(A.30) and (A.31) back to Eq. (A.29), while the proof for the second solution is found by
applying Lemma 2.

Lemma 9 The fifth radial integral in Eq. (A.18) has the following closed analytical
solution.

/r’zln[f(r’W’R)+r_RCOSW]dr=_lln[M] 1

_ X -1
2r 2r tanh [

R —rcosy 1
R

r ‘R

Proof: The integral in Lemma 9 is first simplified as follows.

Z(r,w,R)+r—Rcosy
2r

S 2In [ ]dr = [ 2[¢(r,w,R) + r — Rcosyldr — [ ¥~ 2 In(2r)dr
(A.32)
To find the solution for the first integral on the right-hand side of Eq. (A.32), we
introduce

u=In[f(r,y,R) +r—Rcosy] and dv = d—: (A.33)
r

Inserting from Eq. (A.33) to Eq. (A.32), and applying the integration by part, we get
S r2In[é(r,w,R) + r— Rcosyldr = — 1 In[Z(r,w,R)+r— Rcosy]
r

P (A.34)
-/ > In[£(r,w,R) +r—Rcosylr 'dr
.

Based on Eq. (A.9), we see that the integral term on the right-hand side of Eq. (A.34)
was provided in Lemma 8, hence

R— .
[ 20 (G w, R) + F — Reos wldr = — - In [£(r, i, R) + r — Rcos y] — % tanh™! [ﬂ] c
r

0y, R)
(A.35)

The solution of the second integral on the right-hand side of Eq. (A.32) is found by
integrating by part, hence

/r_21n2rdr = —r n2r + / ldr +C= _In2r+1 +C (A.36)
r r

Substitution from Eqgs. (A.35) and (A.36) to Eq. (A.32) yields
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R - R
/7 2In [f(r, v )J;r Cosw]drz [ 2E(rw, R) + r — Reoswldr — [ r=21n (2r)dr
r

1 1 _1 |R—=rcosy In2r+1
=——In[Z(r,w,R) +r— Rcosy] — = tanh +C

p n[f(r,w,R)+r cosy] ? an [f(r,y/,R) p

1 In2r 1 4 [R=rcosy] 1
=——In[Z(r,v,R -R — ——tanh™ [———+~-+C

" n[f(r,w,R)+r cosy] + " ? an [f(r,l//,R) + r+
=—lln £(r,w,R)+r—Rcosy —ltanh_l R —rcosy +1+C

r 2r R Z(r,w,R) r

(A.37)

Proposition 3: The radial integral of the extended Stokes kernel is given by.

r—Rcosy

/ S(r,y,R)dr = 2R tanh™" [ 7y B +RIn(r)
£(ry,R) _1 |r—Rcosy 1 [R=rcosy
3R = ! || tanh-! | 22 COSW
+ { . an [ f(r, v, R) COs Yy tan f(r, v R)
5 1 5 1 £(r,w,R)+r—Rcosy 1 _t|[R—reosy | 1
+5R* cosy p + 3R cos u/{ p In [ > +R tanh —f(r, VR p
(A.38)
Proof Taking into consideration the following well-known integral solutions.
Srildr=Inr+C (A.39)
and
[ridr=-r"+C (A.40)

and applying Lemmas 3, 6, and 9 in Eq. (A.18), Proposition 3 is verified.
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