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Abstract
In Newtonian theory of gravitation, used in Earth’s and planetary sciences, gravitational 
acceleration is standardly regarded as the most fundamental parameter that describes any 
vectorial gravitational field. Considering only conservative gravitational field, the vecto-
rial field can be described by a scalar function of 3D position called gravitational potential 
from which other parameters (particularly gravitational acceleration and gravitational gra-
dient) are derived by applying gradient operators. Gradients of the Earth’s gravity potential 
are nowadays measured with high accuracy and applied in various geodetic and geophysi-
cal applications. In geodesy, the gravity and gravity gradient measurements are used to 
determine the Earth’s gravity potential (i.e., the geopotential) that is related to geometry 
of equipotential surfaces, most notably the geoid approximating globally the mean sea 
surface. Reversely to the application of gradient operator, the application of radial inte-
gral to gravity yields the gravity potential differences and the same application to grav-
ity gradient yields the gravity differences. This procedure was implemented in definitions 
of rigorous orthometric heights and differences between normal and orthometric heights 
(i.e., the geoid-to-quasigeoid separation). Following this concept, we introduce the radi-
ally integrated geopotential, and provide its mathematical definitions in spatial and spec-
tral domains. We also define its relationship with other parameters of the Earth’s gravity 
field via Poisson, Hotine, and Stokes integrals. In numerical studies, we investigate a spa-
tial pattern and spectrum of the radial integral of the disturbing potential (i.e., difference 
between actual and normal gravity potentials) and compare them with other parameters 
of gravity field. We demonstrate that the application of radial integral operator smooths a 
spatial pattern of the disturbing potential. This finding is explained by the fact that more 
detailed features in the disturbing potential (mainly attributed to a gravitational signature of 
lithospheric density structure and geometry) are filtered out proportionally with increasing 
degree of spherical harmonics in this functional. In the global geoidal geometry (and the 
disturbing potential), on the other hand, the gravitational signature of lithosphere is still 
clearly manifested—most notably across large orogens—even after applying either spectral 
decompensation or filtering.
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Article Highlights

•	 We conceptualize the definition of the radial integral of the geopotential
•	 We derive functional relationships between this quantity and other parameters of the 

Earth’s gravity field via Hotine, and Stokes integrals
•	 We demonstrate that application of the radial integral operator smooths a spatial pattern 

of the disturbing potential.

1  Introduction

Gravitational acceleration is the most fundamental parameter describing the vectorial gravita-
tional field. Assuming its conservative form (adopting some simplifications in case of the real 
Earth), it can be described by the scalar function of 3D position called gravitational potential. 
Due to the Earth’s rotation, the superposition of the centrifugal and gravitational potentials 
results in the Earth’s gravity potential (i.e., the geopotential). The static geopotential is a sca-
lar function of 3D position of which unit is m2 s−2. The geopotential plays a crucial role in 
defining geometry of equipotential surfaces of the Earth’s gravity field. In 1828, Gauss pos-
tulated the concept of representing the physical figure of the Earth by the geoid. According 
to his definition, the geoid is the equipotential surface of the static Earth’s gravity field that 
best fits (in the least-squares sense) the global mean sea level extended under the continents. 
The geoid constitutes the height reference (zero-height) surface for defining physical heights 
over the continents used in geodesy and surveying. The accurately determined marine geoid 
model is, on the other hand, crucial in studies of ocean dynamics and sea level changes.

The geopotential cannot be measured by classical methods used in physics, but its dif-
ferences can be observed by atomic clocks based on adopting the relativistic theory of time 
dilatation (cf. Bjerhammar 1975; Vermeer 1983). A mathematical concept of deriving 
values of the geopotential from surface gravity measurements was postulated by Stokes 
(1849), and later discussed in detail by Helmert (1880) in his treatise on physical geodesy. 
The gravitational acceleration is a vector quantity that describes the acceleration excited 
by an attracting body, and its unit is m s−2. The Earth’s gravity acceleration (magnitude of 
the vector or its components) is conventionally measured by gravimeters on and above the 
Earth’s surface. In addition to gravity measurements, gravity gradient observations have 
been conducted (e.g., Meissl 1971), especially after launching the gravity field and steady-
state ocean circulation explorer (GOCE) satellite gravity gradiometry mission (Drinkwater 
et al. 2003; Floberghagen et al. 2011). The gravity gradient describes change of the grav-
ity acceleration in a particular direction. In 3D space, gradients form a 3 × 3 gradiometric 
tensor with unit in s−2. Out of its 9 components, 6 are unique (tensor is symmetric) and in 
mass-free space, only 5 components are independent. It is worth noting that theoretical 
studies have been published on gravity curvatures (i.e., geopotential gradients of the 3rd 
order) that define directional changes of gravity gradients (Šprlák and Novák, 2015; 2016; 
2017), and their possible applications in geodesy and geophysics have been inspected in 
recent theoretical studies (e.g., Ji et al. 2023).

Various parameters of the static gravity field are functionally linked by means of 
applying the gradient operators. The gravity acceleration vector is defined as the first-
order geopotential gradient, and the gravity gradient is defined as the gradient of the 
gravity acceleration vector (i.e., the second-order geopotential gradient tensor). These 
gravity field parameters and their functional relations were formulated and examined in 
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studies by Meissl (1971), Rummel and Van Gelderen (1992), Grafarend (2001), Heck 
(1991; 1997), Martinec (1998; 2003), and references therein. Reversely, the geopoten-
tial difference in a certain direction can be defined in terms of the line integral of the 
gravity acceleration, and the gravity acceleration difference in terms of the line inte-
gral of the gravity gradient. These functions were already applied in physical geodesy. 
Vaníček et  al. (2001), for instance, defined the mean vertical gravity gradient within 
topographic masses as the difference of gravity values at the geoid and topographic 
surface. The integral mean of gravity along the plumbline within topographic masses, 
defined by means of the gravity potential differences of values computed at the geoid 
and topographic surface, was used in the rigorous definition of orthometric heights by 
Tenzer et al. (2005), and later incorporated for an accurate determination of the geoid-
to-quasigeoid separation by Tenzer et al. (2006) and Sjöberg (2006).

For several decades, a significant effort has been dedicated to establish the world 
height system (e.g., Colombo 1980; Burša et al. 1999). Bjerhammar (1985; 1986) pro-
posed the idea of using atomic clocks to measure the geopotential differences in his work 
on relativistic geodesy, while practical aspects of using these measurements for a vertical 
datum unification were investigated among others by Mai (2013), Kopeikin et al. (2018), 
Mehlstäubler et al. (2018), Puetzfeld et al., (2019), and Shen et al. (2011; 2019).

Along with the application of geopotential differences measured by atomic clocks 
for a vertical datum unification, these observations could also be used for the accuracy 
assessment of vertical geodetic controls practically realized by precise leveling and grav-
ity measurements along leveling lines, particularly inspecting a possible presence of 
cumulative systematic errors in leveling measurements. Other applications can be identi-
fied based on defining functional relations between the geopotential differences and the 
geopotential, gravity, and gravity gradient values at the geoid (Tenzer et al. 2005). Since 
the geopotential differences could be used to compute the geopotential values at different 
heights with respect to the known reference geopotential, such as the geoidal geopoten-
tial value W0 , the radial integral of the geopotential might also offer possibilities for its 
practical applications. Moreover, this function could be linked with other parameters of 
the Earth’s gravity field in a similar way to the geopotential differences.

In this study, we conceptualize the definition of the radial integral of the geopoten-
tial and inspect the possibility of applying this function in gravimetric geophysics in 
the context of interpreting the Earth’s inner structure. The study is organized into four 
sections. Fundamental definitions of the radial integral of the geopotential are postu-
lated in Sect. 2. Expressions defining functional relations between the radial integral of 
the geopotential and other parameters of the Earth’s gravity field are derived in Sect. 3. 
Numerical results are presented and discussed in Sect.  4. Theoretical and numerical 
findings are summarized, and the study is concluded in Sect. 5.

2 � Theory

In this section, we introduce the concept of the radial integral of the geopotential and 
summarize its computational formulas in spatial and spectral domains. As the centrifu-
gal acceleration vector (and respective potential) can easily be computed for a given 
geocentric position, the focus is on the gravitational field and its parameters.
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2.1 � Radial Integral of the Gravitational Potential

The gravitational acceleration vector g is functionally related to the conservative gravitational 
potential V by applying the gradient operator in a point positioned by the geocentric vector x , 
i.e., g(x) = −∇V(x) , where the sign convention reflects the attenuation of the gravitational 
field with the increasing distance from gravitating masses. The gravitational potential differ-
ence ΔV can be evaluated as a line integral of the gravitational attraction g in the form of 
ΔV = − ∫ g ⋅ dx , where dx = t ds denotes a product of the unit tangent vector t and the infini-
tesimal length the line segment ds (i.e., infinitesimal displacement vector); the dot operator 
represents a scalar product of two vectors. For the trajectory S with two end points A and B, 
the potential difference ΔV becomes V

(
xB

)
− V

(
xA

)
= −∫

S
g(x) ⋅ t ds.

By analogy with the gravitational potential difference ΔV , we define the line integral of the 
gravitational potential along the trajectory S as follows:

where ℑ is an indefinite integral function of the gravitational potential V  in m3 s−2.
Since the largest geopotential gradient is along a plumbline normal to all equipotential sur-

faces, the line integral in Eq.  (1) can be defined along the plumbline. Adopting the Earth’s 
spherical approximation, i.e., in the spherical coordinates the gravitational potential function 
V depends only on the geocentric radius r (disregarding small geopotential changes due to 
approximating the plumbline by the radial direction). The line integral in Eq. (1) then becomes

where r1 and r2 represent the lower and upper integration limits, respectively.
To find the primitive function ℑ for the radial integral of the gravitational potential in 

Eq. (2), we assume that the Earth is approximated by a radially symmetric mass density sphere 
of which the gravitational potential is simply defined as V(r) = GM∕r , where GM denotes the 
geocentric gravitational constant.

Inserting V(r) = GM∕r to the indefinite radial integral of the gravitational potential in 
Eq. (2), we get

The radial integral of r−1 reads

where C is the integration constant.
Combining Eqs. (3) and (4), we arrive at

As seen in Eq.  (5), the primitive function ℑ of the radial integral of the gravitational 
potential V  is a function of GM multiplied by the natural logarithm of r , as for r ≥ 0 , 
ln|r| = lnr.

(1)ℑ
(
xB

)
−ℑ

(
xA

)
= ∫

S

V(x)ds

(2)ℑ
(
r2
)
−ℑ

(
r1
)
= ∫

r2

r1

V(r)dr

(3)ℑ(r) = ∫ V(r)dr = ∫
GM

r
dr = GM∫ r−1dr

(4)∫ r−1 dr = ln|r| + C

(5)ℑ(r) = GM (lnr + C)
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Substitution from Eq. (5) back to Eq. (2) yields

for r1 ≥ R and r1 < r2 , where R = 6371 × 103 m denotes the mean Earth’s radius. The solu-
tion of the radial integral of the potential in Eq. (6) is defined for the external gravitational 
field of the Earth that is approximated by the mean geocentric sphere with the radius R. 
The unit of ℑ is m3 s−2. Note that the radial integral of the gravitational potential has the 
same unit (dimension) as the geocentric gravitational constant GM. It is also worth noting 
that the application of gradient operator to this function yields gravitational potential, i.e., 
∇ℑ =

�ℑ

�r
= GM

�

�r
lnr = GM r−1 = V .

2.2 � Radial Integral of the Earth’s Gravitational Potential

We further extend the definition of the radial integral of the gravitational potential V  gener-
ated by the Earth. Assuming again the spherical Earth, the Earth’s gravitational potential V  
is defined by Newton’s volume integral in the following form (Kellogg 1967):

The gravitational potential V  in Eq.  (7) is defined for the external computation point 
(r,Ω) , i.e., V(r,Ω) ; where r is the geocentric radius, the pair Ω = (�, �) represents the geo-
centric direction of the computation point with � and � denoting spherical co-latitude and 
longitude, respectively.

The volume integral on the right-hand side of Eq. (7) is evaluated for the 3D mass den-
sity distribution function �(r�,Ω�) within the Earth’s interior limited by the Earth’s sur-
face described by the geocentric radius r� = R + H� that is defined approximately as the 
mean Earth’s radius R plus the topographic height function H with H� = H

(
Ω�

)
 . The term 

dΩ� = sin��d��d�� denotes an infinitesimal surface element of a unit sphere,{Ω� = (��, ��) ∶ 
�� ∈ [0,�] ∧ �� ∈ [0,2�) } represents the full spatial angle, and ∫ dΩ� = ∬ sin��d��d��.

The Euclidean spatial distance � between the computation and integration (running) 
points in Eq. (7) reads

where cos� = cos�cos�� + sin�sin��cos(�� − �) is cosine of the spherical distance � 
between the two points.

By analogy with Eq. (3), we define the radial integral of the Earth’s gravitational poten-
tial V  , see Eq. (7), as follows:

To find the radial integral of the reciprocal distance ∫ �
−1dr on the right-hand side of 

Eq. (9), we first rearrange the expression r2 + r�2 − 2rr�cos� = (r − r�cos�)2 + r�2sin2� , 
and introduce two substitutions u = r − r�cos� and du = dr . We then write

(6)ℑ
(
r2
)
−ℑ

(
r1
)
= ∫

r2

r1

Vdr = GM lnr|r2
r1
= GM

(
lnr2 − lnr1

)
= GMln

r2

r1

(7)V = V(r,Ω) = G∫
R+H�

∫
0

�
(
r�,Ω�

)
�
−1
(
r,� , r�

)
r
�2dr�dΩ�

(8)�
�
r,� , r�

�
=
√
r2 + r

�2 − 2rr� cos�

(9)∫ Vdr = G ∫ R+H�

∫
r�=0

�
(
r�,Ω�

) ∫ �
−1
(
r,� , r�

)
drr

�2dr�dΩ�



878	 Surveys in Geophysics (2025) 46:873–905

Using the table of integrals, e.g., in (Gradshteyn and Ryzhik 2007), the solution of 
Eq. (10) is found to be.

The substitution for u = r − r�os� in Eq. (11) yields.

Inserting from Eq. (12) to Eq. (9), the radial integral of the Earth’s gravitational poten-
tial V  becomes

A primitive function of the radial integral of the Earth’s gravitational potential ℑ(r) is 
now defined in the following form:

It involves integration over the whole Earth’s interior. It is worth noting that a closed-
form (analytical) solution to the radial integral on the right-hand side of Eq. (14) does not 
exist.

Inserting the integration limits, the radial integral of the Earth’s gravitational potential 
in Eq. (14) becomes

2.3 � Spherical Harmonic Series of the Radial Integral of the Earth’s Gravitational 
Potential

The spherical harmonic representation of the Earth’s gravitational potential V  is given by 
(e.g., Heiskanen and Moritz 1967)

(10)∫ �
−1dr = ∫ 1√

r2 + r
�2 − 2rr� cos�

dr = ∫ 1√
u2 + r

�2 sin2 �

du

(11)∫ �
−1dr = ln

||||u +
√

u2 + r
�2 sin2 �

|||| + C

(12)
∫ �

−1dr = ln
���r − r� cos� +

√
r2 + r

�2 − 2rr� cos�
��� + C = ln

���r − r� cos� + �
�
r,� , r�

���� + C

(13)∫ Vdr = G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln
|||r − r� cos� + �

(
r,� , r�

)|||r
�2dr�dΩ�

(14)ℑ(r) = G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln
|||r − r� cos� + �

(
r,� , r�

)|||r
�2 dr�dΩ�

(15)

ℑ
(
r2
)
−ℑ

(
r1
)
=

r2∫
r1

Vdr = G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln
|||r − r� cos� + �

(
r,� , r�

)|||
|||
r2

r1

r
�2dr�dΩ�

= G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln

[|||r2 − r� cos� + �
(
r2,� , r�

)||| − ln
|||r1 − r� cos� + �

(
r1,� , r�

)|||
]
r
�2 dr�dΩ�

= G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln
|||||
r2 − r� cos� + �

(
r2,� , r�

)

r1 − r� cos� + �
(
r1,� , r�

)
|||||
r
�2 dr�dΩ�

(16)V(r,Ω) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

Vn,mYn,m(Ω)
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where Vn,m are the (fully-normalized) numerical coefficients of the gravitational potential V  
of degree n and order m. The (fully-normalized) surface spherical functions Yn,m in Eq. (16) 
are defined by

where Pn,m are the (fully-normalized) associated Legendre functions.
The spherical harmonic representation of the radial integral of the Earth’s gravitational 

potential in Eq. (16) is then given by

The radial integral of r−n−1 on the right-hand side of Eq. (18) is found to be

Substitution from Eq. (19) back to Eq. (18) yields

Setting C = 0 , the indefinite radial integral of the Earth’s gravitational potential in Eq. (20) 
becomes

Inserting the upper and lower integration limits r2 and r1 , respectively, in Eq. (21), the radial 
integral of the Earth’s gravitational potential in spherical harmonics becomes

(17)Yn,m(Ω) = Pn,m(sin𝜑)

{
cosm𝜆, m ≥ 0

sin |m|𝜆, m < 0,

(18)

∫ Vdr =
GM

R

∞∑
n=0

∫ (
R

r

)n+1

dr

n∑
m=−n

Vn,mYn,m(Ω)

=
GM

R

∞∑
n=0

Rn+1 ∫ (
1

r

)n+1

dr

n∑
m=−n

Vn,mYn,m(Ω)

=
GM

R

∞∑
n=0

Rn+1 ∫ r−n−1dr

n∑
m=−n

Vn,mYn,m(Ω)

(19)∫ r−n−1dr =

{
ln r + C (n = 0)

−
1

n
r−n + C (n > 0)

(20)∫ Vdr = GM (lnr + C) − GM
∑∞

n=1
Rn

(
r−n

n
+ C

)∑n

m=−n
Vn,mYn,m(Ω)

(21)∫ Vdr = GM ln r − GM

∞∑
n=1

1

n

(
R

r

)n n∑
m=−n

Vn,mYn,m(Ω)

(22)

r2

∫
r1

Vdr = GM ln r
|||
r2
r1
− GM

∞∑
n=1

Rn

n

|||
r2
r1

n∑
m=−n

Vn,mYn,m(Ω)

= GM
(
ln r2 − ln r1

)
− GM

∞∑
n=1

Rn

n

[
r−n
2

− r−n
1

] n∑
m=−n

Vn,mYn,m(Ω)

= GM ln
r2

r1
− GM

∞∑
n=1

Rn

n

[(
1

r2

)n

−

(
1

r1

)n] n∑
m=−n

Vn,mYn,m(Ω)

= GM ln
r2

r1
− GM

∞∑
n=1

Rn

n

rn
1
− rn

2

rn
2
rn
1

n∑
m=−n

Vn,mYn,m(Ω)
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As seen in Eq.  (22), the radial integral of the gravitational potential consists of two 
terms. The first term defines the radial integral of potential generated by a radially sym-
metric mass density body. The first- and higher-degree spherical harmonics in the second 
term describe the respective contribution of anomalous mass density heterogeneities (with 
respect to a radially symmetric mass density distribution).

2.4 � Radial Integral of the Earth’s Gravity Potential

The Earth’s centrifugal potential Φ is defined by

where � is the mean Earth’s angular velocity, with the unit rad s−1. As seen in Eq. (23), the 
Earth’s centrifugal potential Φ is a function of the uniform Earth’s rotational velocity � and 
the perpendicular distance from the Earth’s axis of rotation defined in terms of the geocen-
tric radius r and the spherical co-latitude �.

From Eq. (23), the radial integral of the Earth’s centrifugal potential is obtained in the 
following form:

The radial integral of the geopotential W (i.e., the sum of the Earth’s gravitational and 
centrifugal potentials V  and Φ , i.e., W = V + Φ ) is then given by

Combining Eqs. (15) and (24), the radial integral of the geopotential is defined by:

The corresponding expression in spherical harmonics reads

2.5 � Radial Integral of the Earth’s Disturbing Gravity Potential

In physical geodesy, the disturbing gravity potential, gravity disturbances, and gravity 
anomalies are used in computations of the gravimetric geoid (e.g., Heiskanen and Moritz 
1967; Bayoud and Sideris 2003). Note that in gravimetric geophysics, various types of grav-
ity anomalies (such as the free-air, Bouguer or mantle gravity anomalies) are used to inter-
pret the Earth’s inner structure (e.g., McKenzie 1967; Watts and Talwani 1974; McKenzie 
and Fairhead 1997; Phillips and Lambeck 1980; Panet et  al. 2014). These quantities are 
obtained from the Earth’s gravity field parameters by subtracting respective parameters of 

(23)Φ =
1

2
�
2
r2 sin2 �

(24)∫ Φdr =
1

2
�
2
sin2 � ∫ r2dr =

1

6
�
2
r3 sin2 �

(25)∫ Wdr = ∫ Vdr + ∫ Φdr

(26)

r2∫
r1

Wdr = G ∫ R+H�

∫
0

�
(
r�,Ω�

)
ln
|||||
r2 − r� cos� + �

(
r2,� , r�r�

)

r1 − r� cos� + �
(
r1,� , r�r�

)
|||||
r
�2 dr�dΩ� +

1

6
�
2(
r3
2
− r3

1

)
sin2 �

(27)

r2∫
r1

Wdr = GM ln
r2

r1
− GM

∞∑
n=1

Rn

n

rn
1
− rn

2

rn
2
rn
1

n∑
m=−n

Vn,mYn,m(Ω) +
1

6
�
2(
r3
2
− r3

1

)
sin2 �
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the normal gravity field (model gravity field generated by a rotating level biaxial ellip-
soid). The disturbing potential T  is defined as the difference between the Earth’s gravity 
potential W and the normal gravity potential U , i.e., T = W − U . The gravity disturbance 
�g is defined as δg = g − � , where g is the actual gravity and � is the normal gravity, both 
stipulated at the same point (their magnitudes are measured and often approximated by 
radial vector components). The gravity anomaly Δg is defined in spherical approximation 
as Δg = δg − 2r−1T  . We note that the gravity anomaly is typically defined as the difference 
between the actual gravity g at the geoid and the normal gravity � at the reference ellipsoid 
(e.g., Heiskanen and Moritz 1967), while a more rigorous definition was given by Vaníček 
et al. (2005).

The disturbing potential T  in spherical harmonics reads (Heiskanen and Moritz 1967)

where Tn,m are (fully-normalized) numerical coefficients of the disturbing potential T  of 
degree n and order m obtained from the (fully-normalized) numerical coefficients Vn,m of 
the Earth’s gravitational potential V  (estimated from observed gravity data) after subtract-
ing the respective numerical coefficients of the normal gravity field (defined analytically). 
Note that the centrifugal potential is absent in Eq. (28) as both the real and normal fields 
include the same centrifugal potential.

By analogy with Eq. (22), the radial integral of the disturbing potential T  is defined in 
the following form:

The expressions in Eq. (28) and (29) include zero- and first-degree spherical harmonics. 
If we consider that the total mass of the Earth is equal to the mass of the reference ellip-
soid, and the center of the Earth’s masses coincides with the origin of the adopted coordi-
nate system, then the summation begins from degree two, so that

3 � Functional Relations Between the Radially Integrated Disturbing 
Potential and Other Gravity Field Parameters

Let us assume that the gravity field above the geoid is harmonic, i.e., the disturbing poten-
tial satisfies the Laplace equation, i.e., ∇2T = 0 for r > R . Mathematically, this is realized 
by subtracting the gravitational potentials of topographic and atmospheric masses from the 
geopotential. For gravity parameters satisfying the Laplace equation, we can use the Pois-
son, Hotine, and Stokes surface integrals and introduce respective solutions for their radial 
integrals that link the radial integral of the disturbing potential with values of the disturb-
ing potential, the gravity disturbance, and the gravity anomaly at the geoid. The proof of 
analytical solutions of radial integrals of Poisson, extended Hotine, and extended Stokes 
kernels (presented below) is given in appendix.
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Let us first define the radial integral of the disturbing potential as a function of the 
disturbing potential at the geoid. This functional relation can be found by radially inte-
grating the Poisson integral that defines the disturbing potential above the geoid in 
terms of the surface spherical integral of disturbing potential values at the geoid, i.e.,

The isotropic spherical Poisson integral kernel function P in Eq. (31) reads

where the Euclidean spatial distance is defined as �(r,� , R) =
√
r2 + R2 − 2rRcos� .

From Eq. (31), the radial integral of the disturbing potential is defined by means of 
the radial integral of the Poisson kernel in the following form:

The solution of the radial integral of the Poisson kernel ∫ Pdr is found to be

We note that the solution for the radially integrated Poisson kernel can be described 
in terms of natural logarithm instead of inverse hyperbolic tangent in the first term on 
the right-hand side Eq. (34), so that

In a similar way, we can define the radially integrated disturbing potential as a func-
tion of gravity disturbances at the geoid by utilizing the Hotine integral.

The extended (generalized) Hotine integral is defined by

where the extended Hotine kernel function in Eq. (35) reads

By analogy with Eq. (33), the radial integral of the disturbing potential is written in 
the following form:

where δg denotes the gravity disturbance.
The radial integral of the Hotine kernel ∫ Hdr is found to be
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By analogy with the solutions for the radially integrated Poisson kernel, the solution for 
the radially integrated Hotine kernel can be expressed in terms of natural logarithm as well 
as inverse hyperbolic tangent. We then write

As seen in Eq.  (37), the radial integral of the disturbing potential ∫ Tdr can be com-
puted from the gravity disturbances δg at the geoid.

The derivation of a functional relation between the radial integral of the disturbing 
potential ∫ Tdr and the gravity anomalies Δg at the geoid involves the Stokes integral 
formula.

The extended (generalized) Stokes integral is defined by

where Δg is the gravity anomaly.
The extended Stokes kernel function in Eq. (39) is given by

According to Eq.  (39), the radial integral of the disturbing potential ∫ Tdr can be 
obtained from the gravity anomalies Δg at the geoid. We then write

The radial integral of the Stokes kernel function is found to be
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In addition to surface integrals for computing the radial integral of the disturbing potential 
from values of the disturbing potential, the gravity disturbance, and the gravity anomaly at the 
geoid, we introduce the relation between radial integrals of the disturbing potential and the 
gravity disturbance ∫ Tdr and ∫ δgdr , respectively.

We first consider only the zero-degree terms T = GM∕r and δg = GM∕r2 of disturbing 
potential and gravity disturbance, respectively. We then write

and

Substituting for T = GM∕r and δg = GM∕r2 in Eqs. (43) and (44), we arrive at

We reorganize Eq. (46) as follows

Combining Eqs. (45) and (47), we arrive at
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∕r1. The expression in Eq.  (48) then 
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For the first- and higher-degree terms of T and �g , i.e.,
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the respective radial integrals ∫ Tdr and ∫ δgdr are derived as follows:
We first write the radial integral of the disturbing potential ∫ Tdr for n ≥ 1 in the fol-

lowing form

Inserting for ∫ r−n−1dr = −
1

n
r−n + C in Eq. (52), we get

The radial integral of the gravity disturance ∫ δgdr for n ≥ 1 is defined by

For ∫ r−n−2dr = −
1

n+1
r−n−1 + C , we have

Combing Eqs. (53) and (55), we arrive at

4 � Numerical Examples

Regional and global maps of the geoid (or less commonly used disturbing potential), 
the gravity anomalies/disturbances, and the gravity gradient have extensively been used 
in gravimetric interpretations of the Earth’s inner structure. To briefly review the most 
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pronounced spatial features in these gravity field parameters, we computed and plotted 
global maps of the geoid N , the gravity disturbance δg , and the disturbing gravity gradi-
ent Γ . The spatial patterns in the geoidal geometry and the disturbing potential are obvi-
ously the same because the geoid height is defined as the disturbing potential T  at the geoid 
divided by the normal gravity �0 at the reference ellipsoid, i.e., N = T∕�0 . We also note that 
spatial patterns in maps of gravity anomalies and gravity disturbances are very similar (cf. 
Vajda et  al. 2007). The computation was realized globally on the 1 arc-deg equiangular 
coordinate grid using the EIGEN-6C4 (Förste et al. 2014) coefficients (for spherical har-
monic degrees: n = 2, 3, …, 2160) according to the following equations:

where �0 is the normal gravity at the reference ellipoid GRS80 (Moritz 2000).
The global maps of geoid heights, gravity disturbances, and disturbing gravity gradients 

are shown in Fig. 1. As seen in Fig. 1a, the global geoid heights are roughly within ± 100 m. 
It is commonly understood that the long-wavelength geoidal geometry reflects a global 
mantle convection pattern with the most pronounced features of the Indian Ocean Geoid 
Low and the West Pacific and North Atlantic Geoid Highs (e.g., Hager et al. 1985; Hager 
and Richards 1989; Steinberger 2000). The additional geoid lows are in North America 
and Southwest Pacific, and the geoid high in Southwest Indian Ocean. Geoid undulations 
attributed to the topographic and ocean-floor relief as well as the lithospheric density struc-
ture are much less pronounced. Maximum geoid modifications by the topographic mass 
surplus of the Himalayas and Tibetan Plateau are up to ~ 30 m. The geoid modifications by 
elevated topography are also clearly recognized across central Andes. The marine geoid 
modifications by the ocean floor relief are most notable along oceanic subductions and vol-
canic arcs.

The spatial pattern of gravity disturbances, see Fig.  1b, is characterized by relatively 
small gravity anomaly fluctuations mostly within ± 100 mGal (± 10−3 m s−2). A long-wave-
length mantle signature is still partially manifested even in the presence of much more pro-
nounced lithospheric signature in the gravity map. Nevertheless, since most of major topo-
graphic features and large lithospheric density structures are in an isostatic equilibrium, the 
largest gravity variations (up to ± 5 × 10−3 m s−2) mark mainly uncompensated lithospheric 
structures along active convergent tectonic margins (including mostly orogenic formations 
and oceanic subductions).

The disturbing gravity gradient globally varies within ± 1.5 × 10−7 s−2, with some of the 
largest variations detected along active convergent tectonic margins, see Fig. 1c. Neverthe-
less, this spatial pattern in the gravity gradient cannot primarily be attributed to tectonic 
features. Rather, it largely reflects a complex terrain and ocean floor relief, while partially 
also horizontal gravity changes across margins of significantly different geological units. A 
long-wavelength mantle signature in the gravity gradient map is completely absent.

The geoid, gravity, and gravity gradient maps in Fig.  1 clearly demonstrate that the 
application of the gradient operator to the (disturbing) gravity potential enhances a 
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lithospheric signature in the gravity map, and a more detailed pattern of the topographic 
and ocean floor relief in the gravity gradient map, while the geoidal geometry is dominated 
by a long-wavelength mantle signature. Consequently, it is expected that the application of 
radial integral operator will have opposite effect, thus smoothing the geoidal geometry (and 
equivalently the disturbing potential). To inspect this assumption, we computed and plotted 

Fig. 1   Global maps of: a geoid heights (m), b gravity disturbances (mGal = 10–5 m s−2), and c disturbing 
gravity gradients (eotvos = 10–9  s−2) computed on the 1 arc-deg equiangular grid using the EIGEN-6C4 
coefficients (n = 2, 3, …, 2160)
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the indefinite radial integral of the disturbing potential, i.e., ℑ(r) for r = R . The computa-
tion was again realized globally on the 1 arc-deg equiangular grid using the EIGEN-6C4 
coefficients (n = 2, 3, …, 2160) according to the following formula:

As seen in Eq. (60), the spherical harmonics Tn,m of the disturbing potential are in this 
case scaled by the factor 1∕n. Consequently, this scaling factor lessens the contribution of 
higher-degree spherical harmonics so that their combined contribution in the indefinite 
radial integral of the disturbing potential become significantly smaller than in the geoidal 
geometry, see Eq. (57). This is evident in Fig. 2, where we plotted the result of Eq. (60), 
computed again on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients 
(n = 2, 3, …, 2160).

A deep mantle structure, dominated by two large antipodal low shear-velocity prov-
inces at the base of the mantle (e.g., Steinberger 2000), is to some extent manifested in 
the geoidal geometry, see Fig. 1a, by two large positive anomalies that are coupled by 
large negative anomalies attributed to mantle downwelling in mantle convection. The 
same long-wavelength pattern can also be recognized in the radially integrated disturb-
ing potential, see Fig. 2, while the lithospheric signature is in this result much less pro-
nounced than in the geoidal geometry. The main reason is that the lithospheric signature 
remains apparent in the long-wavelength geoidal geometry computed from low-degree 
spherical harmonics of the disturbing potential. Similarly, the spectral filtering could not 
completely remove the lithospheric signature from the geoidal geometry. This is evident 
from Figs. 3 and 4, where we plotted the long-wavelength geoid models (for the maxi-
mum degree of spherical harmonics between degrees 5 and 25, with a 5-degree step) 
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Fig. 1   (continued)
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and the spectrally filtered geoid models, respectively. We note that the Gauss filter was 
applied for radii of 4000, 2000, 1300, 1000 and 800 km that closely correspond to maxi-
mum degrees of spherical harmonics used in the spectral decomposition in terms of a 
half-wavelength. We see, for instance, that the gravitational signature of Andes is absent 
only in the geoid model computed to degree 5 of spherical harmonics, see Fig. 3a, while 
is present in all filtered solutions, see Fig. 4a–e. In contrast, the gravitational signature 
of these large orogenic formations is not clearly manifested in the radially integrated 
disturbing potential (Fig.  2). Consequently, the application of radial integral operator 
in combination with the gravimetric forward modeling of lithospheric density structure 
(cf. Tenzer et  al. 2009; 2012; 2015; Tenzer and Chen 2019) using improved seismic 
tomography, mineralogy, density and topography/bathymetry models can be beneficial 
for interpreting lateral density variations within mantle.

We further investigated the power spectra of the radially integrated disturbing poten-
tial, the disturbing potential, the gravity disturbance, and the disturbing gravity gradient. 
For this purpose, we compared the degree variances and the cumulative degree vari-
ances of gravity field parameters involved. The power spectrum analysis is plotted in 
Fig. 5.

For the radial integral of the disturbing potential, the computation of degree vari-
ances (for n = 2160 ) was carried out according to Parseval’s generalized theorem (Gel-
deren van and Koop, 1997)

where Tn,m are the coefficients of the disturbing potential. The corresponding cumulative 
degree variances were calculated from
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Fig. 2   Global map of the indefinite radial integral of the disturbing potential (m3 s−2) computed on the 1 
arc-deg equiangular grid using the EIGEN-6C4 coefficients (n = 2, 3, …, 2160)
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For the disturbing potential, the gravity disturbance, and the disturbing grav-
ity gradient, the respective expressions for computation of the degree variances are 
�2
n
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As seen in Fig. 5a, the disturbing gravity gradient has the lagest signal at the whole spec-

trum (up to n = 2160) among the investigated gravity field parameters, with typically increas-
ing energy at long-wavelengths (up to degree − 120) and a slightly weakening energy beyond 
degree − 300. The power spectra of the disturbing potential, gravity disturbance and the radi-
ally integrated disturbing potential are, on the other hand, characterized by a weakening energy 
at the whole spectrum, most remarkably in the spectrum of the radially integrated disturbing 
potential, while much less in the potential spectrum (i.e., the geoidal geometry). In the gravity 
spectrum, the signal attenuates much more moderately (after degree − 20), while the gravity 
gradient spectrum (beyond degree − 120) has very stable energy. This finding confirmed that 
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Fig. 3   Global maps of long-wavelength geoid models computed on the 1 arc-deg equiangular grid using the 
EIGEN-6C4 coefficients with a spectral resolution complete to a maximum degree of: a 5, b 10, c 15, d 20, 
and e 25
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the application of gradient operator gradually enhances the gravitational signature of more 
detailed geological, tectonic, and topographic features with the increasing degree of spheri-
cal harmonics. Spectral characteristics of the gravity field parameters, see Fig. 5a, are directly 
manifested in their respective cumulative degree variances, see Fig. 5b. Most of the energy 
in the radially integrated disturbing potential and the disturbing potential is accumulated at 
very low degrees of spherical harmonics (up to degree − 10). The same finding applies to the 
gravity disturbances, but in this case, we see an additional moderate energy increase (up to 
degree − 200). In contrast, the energy of the gravity gradient signal increases at the entire spec-
trum investigated up to degree 2160.

Finally, we compared the difference between the integral mean of the disturbing potential 
and the disturbing potential at the geoid. The differences were computed as follows
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Fig. 4   Global maps of long-wavelength geoid models obtained after applying the Gaussian filter with the 
radius of: a 4000 km, b 2000 km, c 1300 km, d 1000 km, and e 800 km. The original geoid model was 
computed on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients (n = 2, 3, …, 2160)
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Fig. 5   Power spectrum of the gravity field parameters: a degree variances and b cumulative degree vari-
ances (for spherical harmonic degrees coefficients n = 2, 3, …, 2160). Log scale is used for the vertical axis
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where the interval of radial integration was taken from the geoid up to the height 
H = 1 × 104 m, i.e., r ∈ ⟨R,R + H⟩ . The result is shown on Fig. 6. We note that the integral 
mean of the disturbing potential was computed instead of the radial integral of the disturb-
ing potential to have the same units for both parameters, i.e., the radial integral of the dis-
turbing potential was scaled by the factor H−1 to get values of 1

H
∫ R+H

R
Tdr in m2 s−2 as for 

the disturbing potential T .
As seen in Fig. 6, differences between the integral mean of the disturbing potential and 

the disturbing potential do not exhibit a long-wavelength mantle signature. Instead, more 
detailed patterns of the largest vertical changes of disturbing potential are revealed that 
closely resemble the gravity map in Fig. 1b. In other words, the mean values of the dis-
turbing potential at the radial interval r ∈ ⟨R,R + H⟩ for H = 1 × 104 m, only slightly differ 
from values of the disturbing potential at the geoid.

5 � Summary and Concluding Remarks

We have introduced the concept of the radial integral of the geopotential and investigated its 
possible applications. In the theoretical part, we defined this functional in spatial and spec-
tral domains, and then derived its relations with other parameters of the Earth’s gravity field. 
According to our results, the radially integrated gravitational potential generated by a radially 
symmetric mass density body (or point mass), i.e., the zero-degree spherical harmonic repre-
sentation of the gravitational potential, is defined as the product of the geocentric gravitational 
constant GM and the natural logarithm of the geocentric distancer , i.e.,ℑ = ∫ Vdr = GMlnr . 
The radially integrated gravitational potential has thus the same unit (m3 s−2) asGM . When 

Fig. 6   Differences between the integral mean of the disturbing potential and the disturbing potential (m2 
s−2) at the geoid computed globally on the 1 arc-deg equiangular grid using the EIGEN-6C4 coefficients 
(n = 2, 3, …, 2160)
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taking into consideration the respective expression for the gravitational potential (of a radi-
ally symmetric mass density body), i.e.,V = GM∕r , we see that the gravitational potential 
is inversely proportional to the geocentric distance, so that it monotonically decreases with 
the distance (when adopting geodetic conventions for the definition of potential), whereas its 
indefinite radial integral function, i.e., the primitive function of radially integrated gravita-
tional potential, monotonically increases. In the spectral expression for the radially integrated 
gravitational potential generated by a heterogonous mass density body, the first- and higher-
degree spherical harmonics of the gravitational potential ( n ≥ 1 ) are scaled by the factor 1∕n , 
thus reducing the contribution of higher-degree spherical harmonic terms.

In numerical examples, we demonstrated that the radial integration of (disturb-
ing) potential smooths the solution, see Fig.  2. This implies that the application of gra-
dient operator to the indefinite radial integral of the disturbing potential (that represents 
the reverse mathematical operation) must exhibit a more detailed pattern in the disturbing 
potential, or equivalently in the geoidal geometry, see Fig. 1a. This is obviously consistent 
with the fact that the gradient operator “roughens” spatially the solution. The application of 
gradient operator to the disturbing potential superimposes the lithospheric signature over a 
mantle signal in the gravity disturbance map, see Fig. 1b. Consequently, the application of 
gradient operator to the gravity disturbance exhibits the signature of topographic and ocean 
floor relief while completely removes a mantle signature in the gravity gradient map, see 
Fig. 1c.

5.1 � Proof of the Radially Integrated Poisson Kernel

Since the direct derivation of the analytical solution for the radially integrated Poisson ker-
nel comprises extensive algebraic operations, we provide the proof of the final solution in 
the form of the radial derivative of indefinite radial integral of the Poisson kernel that obvi-
ously yields the Poisson kernel.

Proposition 1:  According to Eqs. (34), the closed analytical solutions of the radial integral 
of the Poisson kernel read.

and

Based on Lemma 1, it could readily be shown that both solutions for the radial integral 
of the Poisson kennel are equivalent. As seen, the first term can be written either in the 
form of inverse hyperbolic tangent or natural logarithm functions.

Proof:  To provide the proof for the first term in the first solution, see Proposition 1, we 
define the following relation.

where the substitution x is given in Eq. (A.4).

∫ P(r,� , R)dr = ∫
r2 − R2

�3(r,� , R)
dr = tanh−1

[
r − Rcos�

�(r,� , R)

]
−

2r

�(r,� , R)
+ C

∫ P(r,� , R)dr = ln[�(r,� , R) + r − Rcos�] −
2r

�(r,� , R)
+ C

(A.6)�

�x
tanh

−1

u =
1

1 − u2
�u

�x
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The radial derivative of the solution in Eq. (A.6) is given by

The radial derivative of the second term (in the first solution of the radially integrated Pois-
son kernel) yields

According to Lemma 1, we get

Q.E.D.

Appendix

Proofs of the Radial Integrals of Poisson, Extended Hotine, and Extended Stokes 
Kernels

This section provides the proof of analytical solutions for the radial integral of Poisson, 
extended Hotine, and extended Stokes kernels given in Eqs. (34), (38), and (42), respectively. 
The solutions for the radially integrated Poisson and extended Hotine kernels are presented 
in two equivalent forms (for inverse hyperbolic tangent and natural logarithm functions), and 
each of them can be applied to compute the integrals numerically. To begin with, we introduce 
two lemmas that relate these two equivalent solutions, and are used through mathematical der-
ivations of radial integrals of kernels.

Lemma 1  The first expression, used to define the relation between two closed analytical 
solutions for the radially integrated Poisson and (extended) Hotine kernels, reads.

Proof  The relation between inverse hyperbolic tangent and natural logarithm is defined by.

By taking into consideration the following substitution (see Lemma 1)

and applying further simplifications, we get

(A.7)
�

�r
tanh

−1
[
r − Rcos�

�(r,� , R)

]
=

�
2(r,� , R)

R2
(
1 − cos2�

) R
2
(
1 − cos2�

)
�3(r,� , R)

=
1

�(r,� , R)

(A.8)
�

�r

2r

�(r,� , R)
=

−2R + 2R rcos�

�3(r,� , R)

(A.9)
�

�r
ln[�(r,� , R) + r − Rcos�] =

1

�(r,� , R)

tanh−1
[
r − R cos�

�(r,� ,R)

]
= ln [�(r,� ,R) + r − R cos�] + ln (R sin�)

(A.1)tanh−1x =
1

2
ln

1 + x

1 − x
=

1

2
ln

(1 + x)2

1 − x2

(A.2)x =
r − R cos�

�(r,� ,R)
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Lemma 2  The second expression, applied again to define the relation between two closed 
analytical solutions for the radially integrated Poisson and (extended) Hotine kernels, is 
given by.

Proof:  The functional relation in Lemma 2 is verified by considering the following 
substitution.

Inserting from Eq. (A.4) to Eq. (A.1), we get

Proof of the Radially Integrated Extended Hotine Kernel

The extended Hotine kernel in Eq. (36) was initially rewritten into the form consisting of three 
terms to find the solution for its radial integral; see Eq. (38). In this way, each term was inte-
grated separately, and individual results were summed up and further simplified. In the follow-
ing lemmas, the analytical solutions for the radial integral of these terms are derived in detail.

Lemma 3  We begin with the proof of two equivalent solutions for the radial integral of the 
first term in Eq. (38). Hence, we write.

Proof:  Let us rewrite the radial integral in Lamma 3 in the following complete square form:

Introducing the following substitution including its derivative

(A.3)
tanh−1

[
r − R cos�

�(r,� ,R)

]
=

1

2
ln

[
�(r,� ,R) + r − R cos�

R sin�

]2

= ln (�(r,� ,R) + r − R cos�) + ln (R sin�).Q.E.D.

tanh−1
[
R − r cos�

�(r,� ,R)

]
= ln

[
�(r,� ,R)

r
+

R

r
− cos�

]
− ln (sin�)

(A.4)x =
R − rcos�

�(r,� , R)

(A.5)

tanh−1
[
R − rcos�

�(r,� , R)

]
=

1

2
ln

[
�(r,� , R) + R − rcos�

rsin�

]2
= ln

(
�(r,� , R)

r
+

R

r
− cos�

)
+ ln(sin�). Q.E.D.

∫
dr

�(r,� , R)
= ln[�(r,� , R) + r − Rcos�] + C = tanh−1

[
r − Rcos�

�(r,� , R)

]
+ C

(A.10)

∫
dr

�(r,� ,R)
= ∫

dr√
(r − R cos�)2 + R2 − R2 cos2 �

= ∫
dr

R sin�

��
r−R cos�

R sin�

�2

+ 1

(A.11)t =
r − Rcos�

Rsin�
and dt =

dr

Rsin�
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and inserting it to Eq. (A.10), the following standard integral is obtained

Substitution from Eq. (A.11) to Eq. (A.12) then yields

The expression in Eq. (A.13) provides the first solution for the first term in Eq.  (38). 
According to Lemma 1, the second solution is found to be

Lemma 4  The equivalent solutions for the radial integral of the second term in Eq.  (38) 
read.

Proof:  The radial derivative of the first solution in Lemma 4 is found in the following form.

As seen in Eq. (A.14), the primitive function is obtained simply by taking its radial deriva-
tive. The radial derivative of the second solution in Lemma 4 yields the same result.

Solving the third integral is straightforward. We first consider that

then solve the radial integral for the substitution in Eq. (A.15) and insert the result back to 
the solution in Eq. (A.14). The procedure yields

(A.12)∫
dt√
t2 + 1

= ln

�√
t2 + 1 − t

�

(A.13)

ln

⎡
⎢⎢⎣

��
r − Rcos�

Rsin�

�2
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r − Rcos�

Rsin�

⎤
⎥⎥⎦
= ln[�(r,� , R) + r − Rcos�] − lnRsin�

ln

⎡⎢⎢⎣

��
r − Rcos�

Rsin�

�2

+ 1 −
r − Rcos�

Rsin�
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= tanh−1

�
r − Rcos�

�(r,� , R)

�

∫ ln[�(r,� , R) + R − rcos�]dr = rln[�(r,� , R) + R − rcos�] + Rln[�(r,� , R) + r − Rcos�] − r + C

= rtanh−1
[
r − Rcos�

�(r,� , R)

]
− Rtanh−1

[
r − Rcos�

�(r,� , R)

]
− r + C

(A.14)
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�r
{r ln [�(r,� ,R) + R − r cos�] + R

�

�r
{ln [�(r,� ,R) + r − R cos�]} −

�r

�r

= ln [�(r,� ,R) + R − r cos�] +
r

�(r,� ,R) + R − r cos�

[
r − R cos�

�(r,� ,R)
− cos�

]

+
R

�(r,� ,R) + r − R cos�

[
r − R cos�

�(r,� ,R)
+ 1
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− 1

= ln [�(r,� ,R) + R − r cos�]

(A.15)t = r(1 − cos�) and dt = (1 − cos�) dr

(A.16)
∫ ln[r(1 − cos�)]dr =

1

(1 − cos�) ∫ lntdt =
1

(1 − cos�)
t(lnt − 1) = r{ln[r(1 − cos�)] − 1}
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Proposition 2:  According to Eq. (38), the closed analytical solutions of the radially inte-
grated extended Hotine kernel read.

and

Proof:  The radial integral of the extended Hotine kernel in Eq. (38) reads.

The solution of the first and second integrals in Eq. (A.17) is given in Lemmas 1 and 2, 
respectively. The solution of the third integral is found in Eq. (A.16). Proposition 2 is thus 
verified.

Proof of the Radially Integrated Extended Stokes Kernel

The extended Stokes kernel in Eq. (40) was initially rewritten into the form consisting of 
five terms to find the solution for its radial integral; see Eq.  (42). The first term of the 
extended Stokes kernel is the same as that of the extended Hotine kernel for which the 
solution was found in Eq. (A.8). Radial integrals of the second and fourth terms have 
standard solutions. Consequently, the proof is given only for the radial integral of the third 
and fifth terms.

To solve the radial integral of the third term, we must find solutions for some integrals 
first and thereafter use them to obtain the radial integral of the third term.

From Eq. (40), we write the radially integrated Stokes kernel in the following form

Lemma 5  We introduce the following radial integral and its two equivalent solutions in 
terms of natural logarithm and inverse hyperbolic tangent functions.

Proof:  To provide proof for the first integral solution in Lemma 1, we consider the follow-
ing substitution and its radial derivative.

∫ H(r,� , R)dr = Rln[�(r,� , R) + r − Rcos�] − rln[�(r,� , R) + R − rcos�]

+ r + r{ ln[r(1 − cos�)] − 1} + C

∫ H(r,� , R)dr = Rtanh−1
[
r − Rcos�

�(r,� , R)

]
− rtanh−1

[
r − Rcos�

�(r,� , R)

]
+ r + r{ln[r(1 − cos�)] − 1} + C

(A.17)
∫ H(r,� , R)dr = ∫

2R

�(r,� , R)
dr − ∫ ln[�(r,� , R) + R − rcos�]dr + ∫ ln[r(1 − cos�)]dr + C

(A.18)
∫ S(r,� , R)dr = 2R∫

1

�(r,� , R)
dr + R∫ r

−1dr − 3R∫
�(r,� , R)

r2
dr

− 5R2cos� ∫ r
−2dr − 3R2cos� ∫ r

−2ln

[
�(r,� , R) + r − Rcos�

2r

]
dr

∫ 1

r�(r,� ,R)
dr = −

1

R
ln

(
l

r
+

R

r
− cos�

)
+ C = −

1

R
tanh−1

[
R − r cos�

�(r,� ,R)

]
+ C
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Substituting from Eq. (A.19) to the radial integral and writing the result in the form of 
complete square, we arrive at

To change the integral in Eq. (A.20) to a standard form for which the solution is given, 
we apply the following substitution and its radial derivative

Substitution from Eq. (A.21) to Eq. (A.20) yields

Combining Eqs. (A.19)–(A.22), we arrive at

The result in Eq. (A.23) is the first solution, while the second solution is found by apply-
ing Lemma 2.

Lemma 6  We further write the solution for the radial integral of the following radial 
derivative.

Proof:  The radial integral on the right-hand side of Lemma 6 is separated into two inte-
grals, i.e.,

The first integral on the right-hand side of Eq. (A.24) is given in Lemma 3. Based on 
Lemma 4, Lemma 6 is verified.

Lemma 7  We now introduce the following integral and its analytical solution.

(A.19)t =
1

r
, and dt = −

dr

r2

(A.20)∫
1

r�(r,� , R)
dr = ∫

1√
(R t − cos�)2 − cos2� + 1

dr

(A.21)w =
R t − cos�

sin�
and dw =

R dt

sin�

(A.22)
∫

1√
(R t − cos�)2 − cos2� + 1

dr =
1

R ∫
sin�√
w2 + 1

dw =
1

R
ln

�√
w2 + 1 + 1

�
+ C

(A.23)

∫ 1√
(Rt − cos�)2 − cos2 � + 1
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1

R
ln

�
�(r,� ,R)

r
+

R

r
− cos�

�
+ C

= −
1

R
tanh−1

�
R − r cos�

�(r,� ,R)

�
+ C

∫
�

�r

�(r,� , R)

r
dr = tanh−1

[
r − Rcos�

�(r,� , R)

]
+ cos� tanh−1

[
R − rcos�

�(r,� , R)

]
+ C

(A.24)∫
�

�r

�(r,� , R)

r
dr = ∫

1

�(r,� , R)
dr − Rcos� ∫

1

r�(r,� , R)
dr
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Proof:  Let us use the integration by part for the following two terms.

Inserting from Eq. (A.25) back to Lemma 7, we get

Based on Lemma 6, Lemma 7 is verified.

Lemma 8  The equivalent two solutions of the radial integral of the function r−2�−1 read.

Proof:  For t = r−1 we have dt = −r−2dr. Applying this substitution to Lemma 8, we get.

To find the solution of Eq. (A.27), we further introduce the following substitution

for the numerator of the integrant so that we can split the integral into two parts with sim-
ple solutions.

Inserting from Eq. (A.28) back to Eq. (A.27), we arrive at

The solution of the first integral in Eq. (A.29) is given by

The solution of the second integral in Eq. (A.29) is simple after completing the square, 
i.e.,

∫
�(r,� , R)

r2
dr = −

�(r,� , R)

r
+ tanh−1

[
r − Rcos�

�(r,� , R)

]
+ cos� tanh−1
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R − rcos�

�(r,� , R)

]
+ C

(A.25)u(r,� , R) = �(r,� , R), and dv =
dr
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∫
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r R2
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R2
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1

r
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R

r
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)
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1

r R2
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R2
tanh−1
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∫

t dt√
R2t2 − 2R tcos� + 1

=
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R ∫
Rt − cos�√

R2t2 − 2Rtcos� + 1

dt +
cos�

R ∫
dt√

R2t2 − 2Rtcos� + 1

(A.30)
1

R ∫
Rt − cos�√

R2t2 − 2R tcos� + 1

dt =
1

R

�
R2t2 − 2Rtcos� + 1 =
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rR2
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The proof of the logarithmic solution in Lemma 8 is obtained by inserting from Eqs. 
(A.30) and (A.31) back to Eq. (A.29), while the proof for the second solution is found by 
applying Lemma 2.

Lemma 9  The fifth radial integral in Eq. (A.18) has the following closed analytical 
solution.

Proof:  The integral in Lemma 9 is first simplified as follows.

To find the solution for the first integral on the right-hand side of Eq. (A.32), we 
introduce

Inserting from Eq. (A.33) to Eq. (A.32), and applying the integration by part, we get

Based on Eq. (A.9), we see that the integral term on the right-hand side of Eq. (A.34) 
was provided in Lemma 8, hence

The solution of the second integral on the right-hand side of Eq. (A.32) is found by 
integrating by part, hence

Substitution from Eqs. (A.35) and (A.36) to Eq. (A.32) yields

∫ r
−2 ln

[
�(r,� ,R) + r − R cos�

2r

]
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ln
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]
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1

R
tanh−1

[
R − r cos�

�(r,� ,R)

]
+

1

r

(A.32)

∫ r−2 ln

[
�(r,� ,R) + r − R cos�

2r

]
dr = ∫ r−2[�(r,� ,R) + r − R cos�]dr − ∫ r−2 ln (2r)dr

(A.33)u = ln[�(r,� , R) + r − Rcos�] and dv =
dr

r2

(A.34)
∫ r

−2 ln [�(r,� ,R) + r − R cos�]dr = −
1

r
ln [�(r,� ,R) + r − R cos�]

− ∫ �

�r
ln [�(r,� ,R) + r − R cos�]r−1dr

(A.35)

∫ r
−2 ln [�(r,� ,R) + r − R cos�]dr = −

1

r
ln [�(r,� ,R) + r − R cos�] −

1

R
tanh−1

[
R − r cos�

�(r,� ,R)

]
+ C

(A.36)∫ r−2ln2rdr = −r−1ln2r + ∫
1

r
dr + C = −

ln2r + 1

r
+ C
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Proposition 3:  The radial integral of the extended Stokes kernel is given by.

Proof  Taking into consideration the following well-known integral solutions.

and

and applying Lemmas 3, 6, and 9 in Eq. (A.18), Proposition 3 is verified.
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