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Abstract

The sensorless control method for built-in interior permanent magnet synchronous motors (IPMSMs) based on high-fre-
quency square-wave (HF) injection is being increasingly applied in electric vehicles due to its compact size and low cost.
However, sensorless IPMSMs have weak anti-interference capability and poor dynamic performance, especially at low
speeds. A novel adaptive extended state observer (AESO) for the active disturbance rejection control (ADRC) of a sensorless
IPMSM with HF square-wave injection is proposed. First, HF square-wave signals are injected into the estimated rotational
coordinate system of the IPMSM, and the rotor position estimation error is obtained through signal response extraction and
processing. Then, a novel AESO-based ADRC (AESO_ADRC ) is designed to replace the traditional PI controller in the
speed loop. The characteristics of the AESO are obtained by allocating time-varying eigenvalues based on the differential
algebraic spectrum theory (DAST) of the estimation errors of the rotor position, speed, and total disturbances to reduce the
disturbance of the state estimation error and the total disturbance. Simulation and experimental results demonstrate that the
stabilization time of the AESO_ADRC method is the shortest under sudden changes in load and speed, with nearly zero
overshoot. These results indicate that the AESO_ADRC method has good dynamic performance and strong anti-interference
capability. Moreover, the method performs well at low speeds of 10 r/min, and the rotor position estimation error is minimum.

Keywords IPMSM - Position sensorless control - High-frequency square-wave injection - ADRC - AESO

1 Introduction

IPMSMs are widely used in electric vehicles and other
fields due to their merits, such as compact structure, high
power density, and wide speed range [1]. Sensorless control
technology for IPMSMs is gradually replacing traditional
sensor-based methods, because it reduces motor volume and
cost while increasing the system reliability [2]. However,
the high-performance control of IPMSMs is still extremely
challenging, especially when the motor operates at low
speeds. Modeling uncertainties, inverter nonlinearity, and
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other factors result in low signal-to-noise ratio and external
interference, which degrade its dynamic performance. Thus,
developing control methods to improve the dynamic perfor-
mance and anti-interference capability of sensorless IPMSM
systems has become a research hotspot [3].
High-frequency signal injection has become an effective
approach for sensorless control in the low-speed domain
of IPMSM, due to its low sensitivity to motor parameters
and good position estimation accuracy [4]. However, tra-
ditional methods of injecting high-frequency sine signals
or high-frequency pulse signals require the use of a large
number of filters in the signal processing, which increases
system costs, limits the bandwidth, and reduces dynamic
performance [5]. To overcome this weakness, the square-
wave signal injection method, which increases the signal
frequency, has been proposed [6, 7]. Therefore, this method
increases the bandwidth of the controller and improves the
robustness of the system [8, 9]. Nevertheless, there is still
poor low-speed dynamic performance. Thus, most meth-
ods focus on improving injection signals for better results.
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The authors of [10] used traditional high-frequency square-
wave voltage injection (HFSVI) and high-frequency pulse
voltage injection (HFPVI) [11], while the authors of [12]
used adjustable high-frequency square-wave voltage injec-
tion. These methods have achieved certain improvements in
dynamic performance at low speeds. However, due to uncer-
tainty factors such as the lack of internal dynamic models
and external disturbances, the control dynamic performance
of the IPMSM may seriously deteriorate. To achieve high-
performance control of IPMSM, it is necessary to further
improve the dynamic performance and anti-interference
capability of sensorless control [11].

Since ADRC does not rely on accurate mathematical
models and has strong anti-interference capability, it is used
for the control of high-frequency square-wave injection in
position sensorless IPMSM. This method combines the
unknown dynamics and external disturbances of the system
into a total disturbance, which is represented by an extended
state, that is estimated and compensated [13]. In the design
of nonlinear ADRC of the IPMSM, due to its complex struc-
ture, a large number of parameters need to be adjusted, mak-
ing it difficult to analyze the stability and estimation error
[14]. To simplify the controller design, the authors of [15,
16] proposed a linearized active disturbance rejection control
(LADRC) method, carried out a complete stability analysis
of LADRC, and introduced a parameter adjustment method
that only requires adjusting the bandwidth. The authors of
[17, 18] designed a fuzzy linear active disturbance rejection
control (Fuzzy-LADRC) based on IPMSM speed loop con-
trol with fuzzy linear active disturbance rejection control,
resulting in smaller motor speed fluctuations. The authors of
[19, 20] designed an active disturbance rejection controller
(ADRC) for the current inner loop, which is independent of
the permanent magnet flux linkage parameters. This method
achieves good rotor position estimation and demonstrates
excellent steady-state performance. The authors of [21] used
ESO and NLEF of ADRC to estimate and compensate for
nonlinear and uncertain disturbances. The authors of [22]
proposed an extended state observer (LESO) that estimates
position and speed while accounting for disturbance. How-
ever, ADRC may sacrifice its flexibility to improve perfor-
mance. In addition, the larger observer gain may exceed its
bandwidth. Furthermore, for the high gain observer, when
the initial real state and the estimated state do not match,
the oscillation peak phenomenon may occur. The IPMSM
control based on ADRC still has state estimation errors and
total disturbances, which affect the dynamic performance.

In this paper, to further enhance dynamic performance
and anti-interference capability, a novel adaptive extended
state observer (AESO) method is proposed for the active
disturbance rejection control (ADRC) of sensorless IPMSMs
using high-frequency (HF) square-wave injection. The key
idea of AESO_ADRC is to enhance the core component
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of ADRC, the extended state observer (ESO), by making
it adaptive. Specifically, AESO achieves this by allocating
time-varying eigenvalues through differential algebraic spec-
trum theory (DAST), using estimation errors of rotor posi-
tion, speed, and total disturbance. This approach reduces
both state estimation errors and the effects of total distur-
bance interference.

First, a high-frequency square-wave is injected into the
estimated rotating coordinate system, and the rotor position
estimation error is obtained through signal extraction and
processing. Then, an adaptive ESO based on the DAST in
[17] is designed using the error signal to estimate the total
disturbance and state variables of the system, obtain accurate
rotor position information, and construct an AESO for the
ADRC controller to replace the traditional PI controller in
the speed loop. Finally, the effectiveness of the proposed
method is verified through MATLAB/Simulink simulation
results and experimental results.

2 Principle of high-frequency square-wave
injection for position estimation

In the synchronous rotating coordinate system, when the
IPMSM operates at low speed, the counter electromotive
force and the voltage drop of the stator resistance can be
ignored. The voltage equation of the IPMSM after injecting
HF signals is expressed as Eq. (1) [9, 20].

Ugp Ly, O L
= pPl. | 1
l ”dh] [ 0 th] l ldh] W

where the subscript i represents the corresponding HF
component. p is a differential operator. u,, and u,, are the
HF stator voltage along the d- and g-axes, respectively. iy,
and i,, are the HF stator currents along the d- and g-axes,
respectively. L, and L, are the inductances along the d- and
g-axes, respectively.

The HF square-wave voltage signals injected in the d°
axis of the estimated coordinate are described in (2) and (3).

Y|y ]!
w=iz]=vlo ®

_ ) Vpte2nT,2n+ 1T] ~
Y= { -V,,tel[@n+ DT, 2n+2)T,’ n=0,1... (3)

where u;,;

estimated rotational coordinate system. u

is the vector of the injected HF square wave in the

e e
" and U, are the

d®- and g°-axis stator voltages of the injected HF square
wave. V;, represents the injected HF square wave. ¢ is the
time variable. T is the duration of the positive and negative
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Fig.1 Schematic diagram of HF square-wave signal injection

voltage, V), is the amplitude of the injection voltage, and n
is the number of sequences. The schematic diagram of the
injected square-wave signal is shown in Fig. 1.

In Fig. 1, @ and p form a stationary coordinate system.
0., is the error of the estimated rotor position, defined
as 0, =60 _— 0. In addition, 6, and 0, are the actual and
estimated values of the rotor position, respectively. w, and
@, are the actual and estimated values of the rotor angular
velocity, respectively.

According to Eq. (1), when the HF square-wave signal
is injected, the HF current responses in the stationary af
coordinate system are Ai,, and Aig,, respectively

-1
Ai, » L, O /

=R'(0 R(6 - dt, 4
lAiﬂh] (©.) lo th] (Bur) @

where the coordinate transformation matrix R(6,) is repre-
sented by Eq. (5), and R(6,,,) is the same transformation
matrix.

R(0,) = [005(0,) sin(6,) ]

—sin(8,) cos(6,) )

The HF current response can be derived from (4)

lAiah] V, AT, [thcos(ar)cos(eerr)+thsin((9r)sin(0m)]

Aig, - LapLyy, | Lysin(8,)cos(8,,,) — Ly,cos(6,)sin(b,,,)
(6)
When 6., approaches 0, the envelope of the HF current

response with rotor position information can be simpli-

fied from Eq. (6) to Eq. (7). Aiy, and Aip, are expressed

by I, and I

sin

Isin _ Aiah VinATs COS(gr) 7
Loos - Aiﬂh - Ly, Sin(er) . @
From Eq. (7), rotor position information can be obtained

by setting a suitable position observer. Figure 2 gives the
demodulation block diagram of the position error signal

Fig.2 Demodulation block diagram of the position error signal

of the high-frequency square-wave injection method [17].
Here, Sgn is a sign function

3 Novel adaptive extended state observer
of ADRC

3.1 IPMSM mathematical model with disturbance

In the dg synchronous rotating coordinate system, the elec-
tromagnetic torque equation of the IPMSM is expressed as
[16]

T, = %np [wl,siny — (L, — L,)>sinycosy|, 3)

where T, is the electromagnetic torque, n, is the number
of poles of the IPMSM, and y; is the magnetic flux of the
permanent magnet. /; is the amplitude of the stator current,
and y is the angle between the stator flux vector and the
permanent magnet flux vector. L, and L, are the inductances
along d- and g-axes, respectively.

Based on Eq. (8), the electrical angular velocity can be

expressed as [16]
n B
d)r = 7P(Te - TL) - 7wr = bOIs +f’ (9)

where B is the damping coefficient, 7 is the load torque, and
J is the moment of inertia. fis the total disturbance, which
is expressed as [16]

n
f= %np(Ld — L,)I*sinycosy — 7pTL - ?a}, = (b=by)1,
(10)
where
b= Snly lsi
= 57mvrlsiny (11)
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3 00,
by = —n -yl siny, 12
07 gy P (12)

where b is the intermediate variable, and b, is the compen-
sation factor. The top mark - indicates the first-order deri-
vation, and the top mark " represents the estimated value.
Thus, the equation of the state of the IPMSM is extended
to Eq. (14)

0 = w,
d)r = b()lx +f (13)
f = h(x,w)

Here, h(x,w) is an unknown and bounded function,
which can be observed and compensated for.

3.2 ADRC controller

ADRC consists of a tracking differentiator (TD), a nonlin-
ear state error feedback control law (NLSEF), an extended
state observer (ESO), and a disturbance compensation.
The structural schematic diagram of the second-order
ADRC is shown in Fig. 3.

The reference signal generates the transition signal x;
and its differential signal x, through TD. Comparing the
transition signal and its differential signal with the system
output feedback signal and its differential signal, the state
errors e; and e, are generated. The state error is input into
the NLSEF to generate a preliminary control signal u,.
The ESO estimates the system state and total disturbance
in real time, and adds the disturbance compensation signal
to the control signal u. The control signal acts on the con-
trolled object to improve the control performance.

The tracking differentiator (TD) in ADRC quickly
tracks input instructions and obtains differentiation of the
tracking signal. Assuming the input signal is v(t), the dis-
cretization of the fastest tracking differentiator for second-
order systems is (14)

X il
v — >R Uy u|controlled| ”
> TD |5 f o e |NLSEF sbjoct
|4

Fig. 3 Structure diagram of the ADRC controller
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e(k) = x; (k) — v(k)

fh = fhan(e(k), x,(k), ro, hy)
x,(k + 1) = x, (k) + hxy (k)
Xy (k+ 1) = x,(k) + hfh

4

where k is the number of discretization iterations, x, (k) is the
k-th order discretization tracking signal of the input signal
v(t), x,(k) is the differential signal of the k-order discretiza-
tion v(k) of the input signal v(¢), and e(k) represents the k-th
estimation error. The maximum of x, differentiation is r,
h is the sampling period, r, is the speed factor, where the
larger the value of r, the better its tracking performance.
hy is the filtering factor, and the larger the value of k), the
stronger the noise filtering. r, and A are both adjustable
parameters. The function fhan(-) is the fastest tracking syn-
thesis function of a discrete system, expressed as (15)

fhan = —r, [a/d _ sign(a)] s, — rosign(a). (15)

The intermediate variables are defined as follows:

-

g2
d = ryhg
ay = hyx,
y = xl +a0

Ja= Vd(d + 8|yl)

a, =ay+ 1/2Sgn(y)(a, — d)

s, =1/2[Sgn(y + d) — Sgn(y — d)]
a= (a0+y—a2)sy+a2

s, = 1/2[Sgn(a + d) — Sgn(a — d)]

(16)

In addition, Sgn is a sign function, which is defined as:
when > 0, Sgn r= 1; when t= 0, Sgn r= 0; when < 0,
Sgnt=—1.

The ESO algorithm is shown in Eq. (17)

E=z21)Y

2, = 2o — Py fal(e.a,,0)

2 = 23 — Boofal(€,5,6) + fo(21,25) + by’
23 = —Pysfal(e,az,0)

a7

where fal(-) is a nonlinear function, represented by (18)

ey = /0 el < |
ale,a, = s
| Sen(e)le|“,le| > 6 (1%)

where ¢ is the error between the output of the controlled
object and its observed value. The output signals z;, z,, and
z3 of the ESO are the estimated output values of the system,
its estimated output differential values, and the estimated
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total disturbance values, respectively. f;, S, and f; are
the observer gain of the ESO, and ¢ is the filtering factor. u
is the input, and f; is disturbance.

The input of nonlinear state error feedback control
(NLSEF) is the error of the TD output tracking signal x,
and the tracking differential signal x, with ESO estimated
signals z, and z,, respectively. The algorithm is as follows:

uy = Pifal(eyy.a4,69) + Pafal(ey,.as.6), (19)

where i, is the control variable of the controller, 3, and f,
are the proportional gains, ¢,; and ¢, are the output and
observation errors of the control objects of the two nonlinear
functions fa(-) in Eq. (19), a, and a5 are the powers of the
two nonlinear functions fal(-), and d, is the filtering factor.

Based on the disturbance estimation signal output by the
ESO and the known part of the controlled object, the com-
pensation process for disturbances can be obtained as Eq.
(20)

u =1y~ 23/ by, (20)
where u is the input signal of the controlled object, and b is

the compensation factor.

3.3 Design of the adaptive extended state observer

According to Eq. (17), the adaptive extended state observer
(AESO) can be designed as (20)

ep=0.-90,
0. =ad, —1,(t) - my(e;)
&, =+ bol, — Ly(t) - my(e,)

F==15() - my(ey)

@1

where e, e,, and e; are the estimation errors of the rotor
position, speed, and total disturbance, which can be defined
ase, =0, —0.e,=d, —w,, and e; =f — f, respectively.
Thus, a third-order error dynamic equation can be derived
as Eq. (22)

ey = ey —1(1)-my(ey)
é2 = 63 - lz(t) . mz(el) s (22)
ey = —=l;(t) - msy(e;) — h(x, w)

where m,(e,) is a fal(-) function, [,(?), ,(¢), and [5(?) are non-
linear functions. According to differential algebraic spec-
trum theory (DAST), time-varying eigenvalues are allocated
to achieve adaptive characteristics, thereby reducing the state
estimation errors and the total disturbance interference. In
the improved adaptive AESO, m,(e|) =e, is selected.

Based on Eq. (22), the state space of the error dynamic
equation can be described as

¢ =A.(t)e — B,h(x,w), (23)
L, 10

where e= [e}, e,, e5]", A()=| —L,(H) 0 1], and B, =
~L,®) 00

[0,0,1]17; x is the state variable, and w is the external
disturbance.

Definition: The observer gain matrix is L(¢) =[—1,(2),
-0, - l3(t)]T. Equation (23) is a controllable linear time-
varying (LTV) system with unknown but bounded inputs. The
gain matrix A(t) is designed to ensure the stability of Eq. (23)
and to achieve good estimation performance. First, the AESO
error dynamic equation is converted to standard form using a
Lyapunov transformation, as shown in Eq. (24)

= A1) - B.h(x,w), (24)
0 0 0
where A, () =| 0 0 0 ,B.=10,0,1]".

—81(1) =82(1) —g3(1)
The controllable standard form (24) is an implementation of
a linear scalar differential system described by Eq. (25), where
the elements in A .. (¢) are the coefficients of the equation. Here,
£ represents the variables of a linear system

£V + g;(0E? + g, (D€ + 8, (D€ = B(—h(xw)),  (25)

where the superscript (3), (2), and - represent the third, sec-

ond, and first derivatives, respectively.
The observer gain matrix L(t) can be transformed into

T

Lt) = | =850 = (820 = 2850). = (810 + 870 = 20 | -

(26)

The observer gain /; (¢) is designed to be converted into a

time-varying parameter g;(f) to stabilize the AESO and maxi-

mize its performance. The homogeneous equation of the linear
scalar differential Eq. (25) is expressed as

E9) + g3(0ED + g, (NE + g,(1) = 0. 27

Using the scalar polynomial differential operator (SPDO),
the LTV system (27) is represented as D, {&} = 0, as shown
in Eq. (28)

D, =89 + g;(1)6® + g,(1)5 + g, (1), (28)

where 0= d/dt is the derivative operator, and D, represents
the scalar polynomial differential operator. The unified gen-
eral theory of the LTV is established through the classical
factorization of the SPDO with the Floquet theory. Floquet
factorization is

D, = (6= 23(0)(6 — 4(0) (6 — 4,(1)). (29)
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In the unified spectrum theory, the set {4,(1)}/_, in
Eq. (29) is called the SD spectrum of D (£). The set
{p(t) = A, (D }_, 1s called the PD spectrum of D (&), where
41 4(0) denotes n special solutions of 4,(¢) that satisfies certain
nonlinear independent constraints. A .(¢) is referred to as the
companion matrix associated with D,. The diagonal matrix
diag[(p,(t), p;(t), p;(t)] is called the standard form of the
parallel spectrum (PD) of D, and A_(?).

The companion matrix A(¢) is simplified to its related
canonical form #(f) by the transformation matrix V(f), and
n(t) can be given as

n(t) = V'0[A. 0OV (@) - V©). (30)

To calculate g,(f) through p,(?), the following two theo-
rems are introduced.

Theorem 1: Let { ,ol-(t)}’;=1 be the PD spectrum of the
order p SPDO(D,), and let V| (¢) be the determinant of the
k-th order transformation matrix in Eq. (30). Then, the SD
spectrum of D, i.e. { ,(t) }_, is obtained

(1) = p(0) + V(D) Vi (0) = Vi (0] Vi, (1), 3D

where j=1, ..., pand V(1) =1.

Theorem 2: Let {/li(t)}le be the SD spectrum of the
order p SPDO(D ), and let the p coefficients of D, be defined
as g, (1), &xo(H) =0, and g; (1) =1. Then, g, (#) can be
recursively calculated as

gpd(t) = gp—lJ(t) - j’pgp—lJ(t) + gp—lJ—l(t)s (32)

where j=1,...,pand k= 1,...,p—1. Let y be the SD spectrum
of the order-p spdo(f).

According to theorems 1 and 2, g,(f) can be obtained by
allocating appropriate eigenvalues p(f).

3.4 Parameter design of the AESO_ADRC

The parameters that need to be designed and adjusted in
this paper include the relevant parameters of TD, AESO,
and NLSEF.

(1) Design of TD parameters

The parameters of TD include the velocity factor r, and the
filtering factor k. r,, determines the tracking speed of the sig-
nal. The larger r,, is, the faster the transition process is tracked,
the smaller the phase lag, and the smaller the amplitude attenu-
ation, resulting in a closer approximation to the true value.
However, due to the limitations of the physical characteristics
and control variables of the controlled object, r, cannot be too
large, because an excessively large r,, may exacerbate oscilla-
tion. An appropriate value of 4, can eliminate overshoot and
reduce the static error. Generally, /4 should be larger than the
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calculation step size of a discrete system, and it is usually set
to twice the step size. However, an excessively &, can lead to
phase lag, amplitude attenuation, and reduced speed.

(2) Design of the conventional ESO parameters

Conventional parameters include By, By, Boz. a1, aas a3,
and 6. Usually, a,, a,, a;, and 6 are designed as fixed param-
eters. If 0<a;< 1 (i=1, 2, 3), the smaller a,, the better the
tracking effect. In this section, ¢, = 0.75, a,= 0.5, and a;=
0.25. 6 is the filtering factor, and the larger the value of 9,
the better the filtering effect. However, this also increases the
tracking delay. Generally, 6 should be within the range of [5
T, 10 T], where T is the sampling period. In this section, § =
0.01 is selected [13]. The observer gain f3,,, f,, and f3; need
to be set, and their values determine the estimation accuracy
of the observer. The other observer parameters are tuned and
simplified to a tuning optimization of w [12], i.e., By, = 3w,
Bor=3w,?, and B, = w,’. @, should be maximized as much
as possible within the allowable range of noise sensitivity
and sampling delay. Excessive f3,, can lead to oscillation or
even divergence. f,, is usually on the same order of magni-
tude as 1/h. If f, is too small, it can cause divergence; if it
is too large, it can introduce high-frequency noise. If fy; is
too small, it can reduce the tracking speed; and if f; is too
large, it can cause oscillation.

(3) Design of the AESO parameters

According to the analysis of AESO in Sect. 3.3 of this
paper, the observer gains /,(¢) to [;(¢) are designed as the
time-varying parameters g,(¢) to g;(¢) to stabilize AESO and
maximize its performance. Based on differential algebraic
spectrum theory, time-varying eigenvalues are allocated to
obtain adaptive characteristics. This is done to reduce the
estimation errors of the states and the interference from the
total disturbances.

The observer gains /,(¢) to [;(¢) are obtained by setting the
eigenvalues as shown in Eq. (33)

pi(D) = pioo(t)i = 1,2,3, (33)

where p; represents the reference eigenvalues, and w(?) is
a time-varying multiplier. The nominal eigenvalues are
selected as p; = —w, and p,; = —(=0.5 £ j0.866)w, to
obtain the time-varying bandwidth (1) = wyw(f) of AESO.
From Egs. (31) and (32), it is obtained that

&) = —(5152/_’3)0)3(0
&0 = (7192 + 7173 + 020, )0 () + (1 + P2+ 1) (1)
~0 (1) w(t) + & ()] (1) '
&(1) = (1 + 2 + p2) (1) — ()] (1)
(34)
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By defining a time-based function, the multiplier w(?)
is designed as shown in Eq. (35)

o(f) = { ©0f3. 15T, (35)

w, t>T,

o(t) and its derivative are generated by a Butterworth filter
with (?) as the input to the filter. When t<T,, &(?) is set to
wy/3; when t>T,, w(t) is set to w, which is beneficial for
resolving conflicts between the speed and the overshoot. T,

is the time constant of the ESO.
(4) Design of the NLSEF parameters

The parameters of the NLSEF include f,, 3,, a4, as, and
0p- For linear SEF, the parameters that need to be tuned are
p and f,, which are equivalent to the proportional gain K,
and the differential gain K, by the PD control. For NLSEF,
the selection of the parameters f, and /3, is similar to that
of the linear SEF. To avoid the speed fluctuations caused
by an excessive gain, a, is generally smaller than a5, with
0<a,< 1<as. Typically, a,= 0.25 and a5= 1.5. §, is a
parameter related to the range and control accuracy of the
controlled quantity, and is usually set to 6,= 0.22 [22].

(5) Design of the compensation parameters for distur-
bances

b is the compensation factor, an estimated value of the
compensation coefficient, which is an important parameter
affecting system stability. The selection of b, should be a
compromise between stability and response speed. Within
a certain range, increasing b also increases the stability
domain of the system. However, an excessively large b
causes the control signal to be too small, resulting in a
slower system response. The smaller the value of b, the
faster the disturbance compensation response and the bet-
ter the dynamic performance of the IPMSM. However, too
small a b, can cause overshoot and fluctuations.

In summary, the control block diagram of AESO_ADRC
for a position sensorless IPMSM based on HP square-wave
injection is shown in Fig. 4. Rotor position information
is extracted through high-frequency signal injection and
signal processing. Combined with the real-time state
estimation and disturbance compensation of ESO and
the nonlinear control law of NLSEF, high-precision and
strong robustness control of the IPMSM is realized. Fig-
ure 5 shows the structural diagram of AESO_ADRC. The
speed reference signal o, ..; generates the transition sig-
nal w ,, and the differential signal @,; through TD. AESO

obtains the rotor position estimate @, the speed estimate

o, = 6, and the total disturbance estimate 7. Through the

SVPWM
Inverter

; af {4 2
iyl igi|LPF| is |
g
i
99” position error ,ah
: 1y, |HPF
extracting process | _#

Fig.4 Control block diagram of AESO_ADRC for a sensorless
IPMSM based on HP square-wave injection

Fig.5 Schematic diagram of AESO_ ADRC

differential algebraic spectrum theory (DAST), time-var-
ying eigenvalues are allocated to optimize the dynamic
response and estimation accuracy of the observer. The
NLSEF generates the control signal ij; based on the error.

4 Simulation verification and analysis

To verify the effectiveness and feasibility of the novel con-
trol strategy proposed in this paper, simulation verification
and analysis were conducted. A sensorless control system for
an IPMSM based on LADRC, NADRC, and AESO_ADRC
controllers was built on the MATLAB/Simulink platform.
The simulation parameters of the [IPMSM are shown in
Table 1. In the simulation, the switching frequency of the
PWM is 10 kHz, and the dead time is set to 2.0 ps. The cur-
rent sampling frequency is the same as the PWM switching
frequency. The injected HF square-wave voltage signal has
a frequency of 5 kHz and an amplitude of 20 V.

The parameters of each part of the ADRC controller are
selected as follows.

Sampling step size: h=0.01.

Transition process parameters: r,= 20,000.

Nonlinear state error feedback parameters:

ﬂl = 1.0, ﬁz = 1.5, a4 = 0.25, andas = 1.5, 50 = 0.22.

LESO parameters: 3, = 100, ,, = 30,000, and S, = 10°.
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Table 1 IPMSM parameters

Parameter Value
Phase number m 3
Number of pole pairs n, 4
Rated speed r/min 1500
Rated power/kW 22
Stator phase resistance R/m&Q 958
Direct inductance Ly/mH 1.23
Quadratic inductance Lq/mH 5.25
DC side voltage Uy/V 500

NESO parameters: f,, = 100, f;, = 30,000, ;= 10°,
a;=0.75,a,=0.5, a;=0.25, and 5= 0.01.

Disturbance compensation parameters: b, = 0.5b.

To compare and analyze the dynamic performance
and anti-interference performance of LADRC, NADRC,
AESO_ADRC, and the traditional PI, simulation results
were analyzed under different operating conditions and
external disturbances of the IPMSM.

4.1 Comparison of dynamic performance
during sudden load torque changes
with the addition of random disturbances

As shown in Fig. 6a—d, the waveforms of the speed and
stator current of the four control methods of the IPMSM
are presented when the load torque suddenly increases
from O to 20 Nm at 0.2 s and then suddenly decreases to
10 Nm at 0.4 s, under a given speed of 200 r/min and a
random disturbance.

As shown in Fig. 6, when the load torque suddenly
increases from O to 20 N-m at 0.2 s, the settling times
of LADRC, NADRC, AESO_ADRC, and the traditional
PI control methods for the IPMSM are 0.022 s, 0.018 s,
0.012 s, and 0.1 s, respectively. When the load torque sud-
denly decreases at 0.4 s, the stabilization times are 0.0032
s, 0.0074 s, 0.0010 s, and 0.08 s, respectively. At 0.4 s,
the load torque suddenly decreased from 20 to 10, and
the settling times of the four control methods are 0.0032
s, 0.0074 s, 0.0010 s, and 0.08 s, respectively. Addition-
ally, when the load is suddenly increased or decreased,
the traditional PI overshoot is the largest, while the
AESO_ADRC overshoot is the smallest.

Thus, the method proposed in this paper demonstrates
the shortest stability time during sudden load changes,
near-zero overshoot, good dynamic performance, and
strong anti-interference ability.
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Fig.6 Simulation waveforms of sudden changes at a speed of 200
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4.2 Comparison of dynamic performance
during sudden velocity changes
with the addition of random disturbances

As shown in Fig. 7a—d, the waveforms of the speed and
stator current of the four control methods of the IPMSM
are presented when the speed suddenly increases from 10
to 200 r/min at 0.3 s and then suddenly decreases to 100 r/
min at 0.6 s, under a given torque of 15 N-m with a random
disturbance.

As shown in Fig. 7, at 0.3 s, the speed suddenly
increases from 10 r/min to 200 r/min, the settling times
of LADRC, NADRC, AESO_ADRC, and the traditional
PI control methods for the IPMSM are 0.012 s, 0.016
s, 0.014 s, and 0.335 s, respectively. At 0.6 s, the speed
suddenly decreases from 200 r/min to 100 r/min, and the
settling times of LADRC, NADRC, AESO_ADRC, and
the traditional PI control methods are 0.009 s, 0.014 s,
0.009 s, and 0.01 s, respectively. Additionally, NADRC
and AESO_ADRC have almost no overshoot, LADRC has
a small amount of overshoot, and the traditional PI has
a large overshoot. At the same time, it can be seen that
AESO_ADRC has good performance at a low speed of
10 r/min.

Therefore, the method proposed in this paper has the
shortest stability time during sudden speed changes, which
exhibits near-zero overshoot, possesses good dynamic per-
formance, and strong anti-interference ability. At the same
time, the proposed method performs well at low speeds.
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4.3 Comparison of rotor position estimation
accuracy with sudden load changes
under external random disturbance

As shown in Fig. 8a—d, the rotor position estimation accu-
racies of the sensorless control methods for the IPMSM
are compared under variable load torque conditions using
LADRC, NADRC, AESO_ADRC, and the traditional PI.
Given a speed of 200 r/min, under the condition of exter-
nal limiting random disturbance, the load torque increases
from 0 to 20 Nm at 2 s and decreases from 20 to 10 Nm
at 4 s. After reaching a steady state, the maximum errors
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Fig.8 Rotor estimation accuracy under sudden changes in the torque
value of 0, 20, and 10 Nm at a speed of 200 r/min

in the rotor position estimation for LADRC, NADRC, and
AESO_ADRC are 0.18 rad/s, 0.2 rad/s, and 0.17 rad/s,
respectively.

It can be observed that the rotor position estimation accu-
racy of AESO_ADRC is higher than the other two ADRC
methods, while the traditional PI control method has the
highest rotor position estimation accuracy among the four
methods when the load suddenly changes.

4.4 Comparison of rotor position estimation
accuracy with speed variation under external
random disturbance

As shown in Fig. 9a—d, the rotor position and position esti-
mation error waveforms of the IPMSM sensorless control
methods using LADRC, NADRC, AESO_ADRC, and the
traditional PI, with a given torque of 15 Nm and a random
external disturbance, where the speed command increases
from 20 to 200 r/min at 2 s and decreases from 200 to 100 1/
min at 4 s, are presented.

As shown in Fig. 8a—d, the rotor position and position
estimation error waveforms of the IPMSM sensorless control
methods using LADRC, NADRC, AESO_ADRC, and the
traditional PI, with a given torque of 15 Nm and a random
external disturbance, where the speed command increases
from 20 to 200 r/min at 2 s and decreases from 200 to 100 r/
min at 4 s, are presented.

At the steady state, the maximum estimation errors of
the rotor position estimation for LADRC, NADRC, AESO_
ADRC, and the traditional PI are 0.165 rad/s, 0.200 rad/s,
0.1 rad/s, and 0.12 rad/s, respectively. It can be seen that the
AESO_ADRC method achieves the highest rotor position
estimation accuracy and its rotor position estimation error
is the smallest during low-speed sudden changes.

It can be concluded that under sudden changes in the
load torque and speed, the AESO_ADRC proposed in this
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Fig. 9 Rotor estimation accuracy under sudden changes at a torque of
15 N-m and given speeds of 20 r/min, 200 r/min, and 100 r/min
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paper has better dynamic performance, faster tracking speed,
strong anti-interference ability, and good performance at low
speeds compared to LADRC, NADRC, and PI control in the
position sensorless control method of the IPMSM based on
HF square-wave injection. Compared with the traditional PI,
AESO_ADRC has fewer dynamic position estimation errors.
Additionally, AESO_ADRC has higher position estimation
accuracy than LADRC and NADRC.

5 Experimental verification and analysis

Figure 10 shows the experimental platform of a 2.2 kW
IPMSM drive system driven by an inverter built in the labo-
ratory. The parameters of the IPMSM are roughly the same
as those listed in Table 1. The differences are as following:
the stator phase resistance R, is 839 mQ, the direct induct-
ance L;is 5.05 mH, the quadratic inductance Lq is 15.35 mH,
and the moment of inertia J is 0.00376 kg-m?.

5.1 Operating conditions with sudden load torque
changes

To verify the dynamic performance of the load torque varia-
tion and the accuracy of the rotor position estimation, exper-
iments were conducted under the conditions of a constant
speed and variable load torque.

As shown in Figs. 11 and 12, when the load suddenly
changes, the estimated rotor position is basically consistent
with the actual value, and the steady-state position estima-
tion error is within the range of 0.2 rad. The IPMSM speed
has short-term fluctuations. It can be observed that the pro-
posed control algorithm has good dynamic performance and
accurate rotor position estimation under sudden load torque
changes.

Fig. 10 Experimental platform of a 2.2 kW IPMSM drive
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5.2 Operating conditions with sudden speed
changes

To verify the dynamic performance and accuracy of the
rotor position estimation during speed changes, experi-
mental verification was conducted under conditions of
constant load and sudden speed changes.

As shown in Figs. 12 and 13, when the speed suddenly
changes, the estimated rotor position is basically consist-
ent with the actual value, and the maximum position esti-
mation error is within the range of 0.2 rad. The IPMSM
speed has short-term fluctuations (Fig. 14).

It can be seen that the control algorithm proposed in
this paper has good dynamic performance and accurate
rotor position estimation under speed changes.
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Fig. 12 Experimental results of a load torque drop from 50% to 0 Ty
at a speed of 400 r/min
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6 Conclusion and further work

This paper proposed a novel adaptive ESO method for
the active disturbance rejection control (AESO_ADRC)
of position sensorless IPMSMs based on high-frequency
square-wave injection. The proposed method can solve the
problem of poor dynamics and the weak anti-interference
performance of sensorless IPMSMs, especially at low
speeds. The main work and contributions of this paper
are as follows:

First, high-frequency square waves are injected into the
estimated rotational coordinate system of an IPMSM, and
the estimation error of rotor position is obtained through
the extraction and processing of injected signals and their
responses.

Second, an adaptive extended state observer AESO
based on the differential algebraic spectrum theory is
designed using error signals, which estimate the total
disturbance and state variables of the system to obtain
accurate rotor position information. When the load torque

and speed suddenly change, the AESO_ADRC has smaller
dynamic position estimation errors than PI control. The
AESO_ADRC has a higher position estimation accuracy
compared with LADRC and NADRC. Furthermore, during
low-speed sudden changes, the rotor position estimation
error is minimized.

Finally, the novel AESO_ADRC with an adaptive
extended state observer replaces the traditional PI controller
in the speed loop. Under sudden changes in the load torque
and speed, under random disturbances, the AESO_ADRC
proposed in this paper has better dynamic performance,
faster tracking speed, stronger anti-interference ability, and
better performance at low speeds than LADRC, NADRC,
and PI control.

Due to limitations in the experimental conditions, the
experimental process did not fully correspond to the simu-
lation. In addition, the parameters design the AESO-ADRC
which does not provide clear rules for parameter adjustment.
To achieve better dynamic performance, the next step is to
study the relevant parameter adjusting rules and improve
the experiments.
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