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Abstract 
The sensorless control method for built-in interior permanent magnet synchronous motors (IPMSMs) based on high-fre-
quency square-wave (HF) injection is being increasingly applied in electric vehicles due to its compact size and low cost. 
However, sensorless IPMSMs have weak anti-interference capability and poor dynamic performance, especially at low 
speeds. A novel adaptive extended state observer (AESO) for the active disturbance rejection control (ADRC) of a sensorless 
IPMSM with HF square-wave injection is proposed. First, HF square-wave signals are injected into the estimated rotational 
coordinate system of the IPMSM, and the rotor position estimation error is obtained through signal response extraction and 
processing. Then, a novel AESO-based ADRC (AESO_ADRC) is designed to replace the traditional PI controller in the 
speed loop. The characteristics of the AESO are obtained by allocating time-varying eigenvalues based on the differential 
algebraic spectrum theory (DAST) of the estimation errors of the rotor position, speed, and total disturbances to reduce the 
disturbance of the state estimation error and the total disturbance. Simulation and experimental results demonstrate that the 
stabilization time of the AESO_ADRC method is the shortest under sudden changes in load and speed, with nearly zero 
overshoot. These results indicate that the AESO_ADRC method has good dynamic performance and strong anti-interference 
capability. Moreover, the method performs well at low speeds of 10 r/min, and the rotor position estimation error is minimum.      

Keywords  IPMSM · Position sensorless control · High-frequency square-wave injection · ADRC · AESO

1  Introduction

IPMSMs are widely used in electric vehicles and other 
fields due to their merits, such as compact structure, high 
power density, and wide speed range [1]. Sensorless control 
technology for IPMSMs is gradually replacing traditional 
sensor-based methods, because it reduces motor volume and 
cost while increasing the system reliability [2]. However, 
the high-performance control of IPMSMs is still extremely 
challenging, especially when the motor operates at low 
speeds. Modeling uncertainties, inverter nonlinearity, and 

other factors result in low signal-to-noise ratio and external 
interference, which degrade its dynamic performance. Thus, 
developing control methods to improve the dynamic perfor-
mance and anti-interference capability of sensorless IPMSM 
systems has become a research hotspot [3].

High-frequency signal injection has become an effective 
approach for sensorless control in the low-speed domain 
of IPMSM, due to its low sensitivity to motor parameters 
and good position estimation accuracy [4]. However, tra-
ditional methods of injecting high-frequency sine signals 
or high-frequency pulse signals require the use of a large 
number of filters in the signal processing, which increases 
system costs, limits the bandwidth, and reduces dynamic 
performance [5]. To overcome this weakness, the square-
wave signal injection method, which increases the signal 
frequency, has been proposed [6, 7]. Therefore, this method 
increases the bandwidth of the controller and improves the 
robustness of the system [8, 9]. Nevertheless, there is still 
poor low-speed dynamic performance. Thus, most meth-
ods focus on improving injection signals for better results. 
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The authors of [10] used traditional high-frequency square-
wave voltage injection (HFSVI) and high-frequency pulse 
voltage injection (HFPVI) [11], while the authors of [12] 
used adjustable high-frequency square-wave voltage injec-
tion. These methods have achieved certain improvements in 
dynamic performance at low speeds. However, due to uncer-
tainty factors such as the lack of internal dynamic models 
and external disturbances, the control dynamic performance 
of the IPMSM may seriously deteriorate. To achieve high-
performance control of IPMSM, it is necessary to further 
improve the dynamic performance and anti-interference 
capability of sensorless control [11].

Since ADRC does not rely on accurate mathematical 
models and has strong anti-interference capability, it is used 
for the control of high-frequency square-wave injection in 
position sensorless IPMSM. This method combines the 
unknown dynamics and external disturbances of the system 
into a total disturbance, which is represented by an extended 
state, that is estimated and compensated [13]. In the design 
of nonlinear ADRC of the IPMSM, due to its complex struc-
ture, a large number of parameters need to be adjusted, mak-
ing it difficult to analyze the stability and estimation error 
[14]. To simplify the controller design, the authors of [15, 
16] proposed a linearized active disturbance rejection control 
(LADRC) method, carried out a complete stability analysis 
of LADRC, and introduced a parameter adjustment method 
that only requires adjusting the bandwidth. The authors of 
[17, 18] designed a fuzzy linear active disturbance rejection 
control (Fuzzy-LADRC) based on IPMSM speed loop con-
trol with fuzzy linear active disturbance rejection control, 
resulting in smaller motor speed fluctuations. The authors of 
[19, 20] designed an active disturbance rejection controller 
(ADRC) for the current inner loop, which is independent of 
the permanent magnet flux linkage parameters. This method 
achieves good rotor position estimation and demonstrates 
excellent steady-state performance. The authors of [21] used 
ESO and NLEF of ADRC to estimate and compensate for 
nonlinear and uncertain disturbances. The authors of [22] 
proposed an extended state observer (LESO) that estimates 
position and speed while accounting for disturbance. How-
ever, ADRC may sacrifice its flexibility to improve perfor-
mance. In addition, the larger observer gain may exceed its 
bandwidth. Furthermore, for the high gain observer, when 
the initial real state and the estimated state do not match, 
the oscillation peak phenomenon may occur. The IPMSM 
control based on ADRC still has state estimation errors and 
total disturbances, which affect the dynamic performance.

In this paper, to further enhance dynamic performance 
and anti-interference capability, a novel adaptive extended 
state observer (AESO) method is proposed for the active 
disturbance rejection control (ADRC) of sensorless IPMSMs 
using high-frequency (HF) square-wave injection. The key 
idea of AESO_ADRC is to enhance the core component 

of ADRC, the extended state observer (ESO), by making 
it adaptive. Specifically, AESO achieves this by allocating 
time-varying eigenvalues through differential algebraic spec-
trum theory (DAST), using estimation errors of rotor posi-
tion, speed, and total disturbance. This approach reduces 
both state estimation errors and the effects of total distur-
bance interference.

First, a high-frequency square-wave is injected into the 
estimated rotating coordinate system, and the rotor position 
estimation error is obtained through signal extraction and 
processing. Then, an adaptive ESO based on the DAST in 
[17] is designed using the error signal to estimate the total 
disturbance and state variables of the system, obtain accurate 
rotor position information, and construct an AESO for the 
ADRC controller to replace the traditional PI controller in 
the speed loop. Finally, the effectiveness of the proposed 
method is verified through MATLAB/Simulink simulation 
results and experimental results.

2 � Principle of high‑frequency square‑wave 
injection for position estimation

In the synchronous rotating coordinate system, when the 
IPMSM operates at low speed, the counter electromotive 
force and the voltage drop of the stator resistance can be 
ignored. The voltage equation of the IPMSM after injecting 
HF signals is expressed as Eq. (1) [9, 20].

where the subscript h represents the corresponding HF 
component. p is a differential operator. udh and uqh are the 
HF stator voltage along the d- and q-axes, respectively. idh 
and iqh are the HF stator currents along the d- and q-axes, 
respectively. Ldh and Lqh are the inductances along the d- and 
q-axes, respectively.

The HF square-wave voltage signals injected in the de 
axis of the estimated coordinate are described in (2) and (3).

where uinj is the vector of the injected HF square wave in the 
estimated rotational coordinate system. ue

dh
 and ue

qh
 are the 

de- and qe-axis stator voltages of the injected HF square 
wave. Vin represents the injected HF square wave. t is the 
time variable. Ts is the duration of the positive and negative 

(1)

[
udh

udh

]
=

[
Ldh 0

0 Ldh

]
p

[
idh

idh

]
,

(2)uinj =

[
ue
dh

ue
qh

]
= Vin

[
1

0

]

(3)Vin =

{
Vh, t ∈ [2nTs, (2n + 1)Ts]

−Vh, t ∈ [(2n + 1)Ts, (2n + 2)Ts
, n = 0, 1…
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voltage, Vh is the amplitude of the injection voltage, and n 
is the number of sequences. The schematic diagram of the 
injected square-wave signal is shown in Fig. 1.

In Fig. 1, α and β form a stationary coordinate system. 
θerr is the error of the estimated rotor position, defined 
as 𝜃err = 𝜃r − 𝜃̂r . In addition, θr and 𝜃̂r are the actual and 
estimated values of the rotor position, respectively. ωr and 
𝜔̂r are the actual and estimated values of the rotor angular 
velocity, respectively.

According to Eq. (1), when the HF square-wave signal 
is injected, the HF current responses in the stationary αβ 
coordinate system are Δiαh and Δiβh, respectively

where the coordinate transformation matrix R(θr) is repre-
sented by Eq. (5), and R(θerr) is the same transformation 
matrix.

The HF current response can be derived from (4)

When θerr approaches 0, the envelope of the HF current 
response with rotor position information can be simpli-
fied from Eq. (6) to Eq. (7). Δiαh and Δiβh are expressed 
by Isin and Icos

From Eq. (7), rotor position information can be obtained 
by setting a suitable position observer. Figure 2 gives the 
demodulation block diagram of the position error signal 

(4)

[
Δi�h

Δi�h

]
= R−1

(
�r
)[Ldh 0

0 Ldh

]−1

R
(
�err

)
∫ uinjdt,

(5)R
(
�r
)
=

[
cos(�r) sin(�r)

−sin(�r) cos(�r)

]
.

(6)

[
Δi�h

Δi�h

]
=

VinΔTs

LdhLqh

[
Lqhcos(�r)cos(�err) + Ldhsin(�r)sin(�err)

Lqhsin(�r)cos(�err) − Ldhcos(�r)sin(�err)

]
.

(7)

[
Isin

Icos

]
=

[
Δi�h

Δi�h

]
≈

VinΔTs

Ldh

[
cos(�r)

sin(�r)

]
.

of the high-frequency square-wave injection method [17]. 
Here, Sgn is a sign function

3 � Novel adaptive extended state observer 
of ADRC

3.1 � IPMSM mathematical model with disturbance

In the dq synchronous rotating coordinate system, the elec-
tromagnetic torque equation of the IPMSM is expressed as 
[16]

where Te is the electromagnetic torque, np is the number 
of poles of the IPMSM, and ψf is the magnetic flux of the 
permanent magnet. Is is the amplitude of the stator current, 
and γ is the angle between the stator flux vector and the 
permanent magnet flux vector. Ld and Lq are the inductances 
along d- and q-axes, respectively.

Based on Eq. (8), the electrical angular velocity can be 
expressed as [16]

where B is the damping coefficient, TL is the load torque, and 
J is the moment of inertia. f is the total disturbance, which 
is expressed as [16]

where

(8)Te =
3

2
np
[
�f Issin� −

(
Ld − Lq

)
I2
s
sin�cos�

]
,

(9)𝜔̇r =
np

J

(
Te − TL

)
−

B

J
𝜔r = b0Is + f ,

(10)

f =
3

2
np
(
Ld − Lq

)
I2
s
sin�cos� −

np

J
TL −

B

J
�r −

(
b − b0

)
Is,

(11)b =
3

2J
n2
p
�f Issin�

Fig. 1   Schematic diagram of HF square-wave signal injection
Fig. 2   Demodulation block diagram of the position error signal
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where b is the intermediate variable, and b0 is the compen-
sation factor. The top mark · indicates the first-order deri-
vation, and the top mark ^ represents the estimated value. 
Thus, the equation of the state of the IPMSM is extended 
to Eq. (14)

Here, h(x,w) is an unknown and bounded function, 
which can be observed and compensated for.

3.2 � ADRC controller

ADRC consists of a tracking differentiator (TD), a nonlin-
ear state error feedback control law (NLSEF), an extended 
state observer (ESO), and a disturbance compensation. 
The structural schematic diagram of the second-order 
ADRC is shown in Fig. 3.

The reference signal generates the transition signal x1 
and its differential signal x2 through TD. Comparing the 
transition signal and its differential signal with the system 
output feedback signal and its differential signal, the state 
errors e1 and e2 are generated. The state error is input into 
the NLSEF to generate a preliminary control signal u0. 
The ESO estimates the system state and total disturbance 
in real time, and adds the disturbance compensation signal 
to the control signal u. The control signal acts on the con-
trolled object to improve the control performance.

The tracking differentiator (TD) in ADRC quickly 
tracks input instructions and obtains differentiation of the 
tracking signal. Assuming the input signal is v(t), the dis-
cretization of the fastest tracking differentiator for second-
order systems is (14)

(12)b0 =
3

2Ĵ
n2
p
𝜓̂f Issin𝛾̂ ,

(13)

⎧
⎪⎨⎪⎩

𝜃̇r = 𝜔r

𝜔̇r = b0Is + f

ḟ = h(x,w) .

where k is the number of discretization iterations, x1(k) is the 
k-th order discretization tracking signal of the input signal 
v(t), x2(k) is the differential signal of the k-order discretiza-
tion v(k) of the input signal v(t), and e(k) represents the k-th 
estimation error. The maximum of x2 differentiation is r0, 
h is the sampling period, r0 is the speed factor, where the 
larger the value of r0, the better its tracking performance. 
h0 is the filtering factor, and the larger the value of h0, the 
stronger the noise filtering. r0 and h0 are both adjustable 
parameters. The function fhan(·) is the fastest tracking syn-
thesis function of a discrete system, expressed as (15)

The intermediate variables are defined as follows:

In addition, Sgn is a sign function, which is defined as: 
when t > 0, Sgn t = 1; when t = 0, Sgn t = 0; when t < 0, 
Sgn t = − 1.

The ESO algorithm is shown in Eq. (17)

where fal(·) is a nonlinear function, represented by (18)

where ɛ is the error between the output of the controlled 
object and its observed value. The output signals z1, z2, and 
z3 of the ESO are the estimated output values of the system, 
its estimated output differential values, and the estimated 

(14)

⎧
⎪⎪⎨⎪⎪⎩

e(k) = x1(k) − v(k)

fh = fhan
�
e(k), x2(k), r0, h0

�
x1(k + 1) = x1(k) + hx2(k)

x2(k + 1) = x2(k) + hfh

,

(15)fhan = −r0
[
a∕d − sign(a)

]
sa − r0sign(a).

(16)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d = r0h
2
0

a0 = h0x2

y = x1 + a0

a1 =
√
d(d + 8�y�)

a2 = a0 + 1∕2Sgn(y)(a1 − d)

sy = 1∕2[Sgn(y + d) − Sgn(y − d)]

a =
�
a0 + y − a2

�
sy + a2

sa = 1∕2[Sgn(a + d) − Sgn(a − d)]

.

(17)

⎧⎪⎪⎨⎪⎪⎩

𝜀 = z1 − y

ż1 = z2 − 𝛽01fal(𝜀,a1,𝛿)

ż2 = z3 − 𝛽02fal(𝜀,a2,𝛿) + f0(z1,z2) + b0u

ż3 = −𝛽03fal(𝜀,a3,𝛿)

,

(18)fal(𝜀,a,𝛿) =

{
𝜀
/
𝛿(1−a),|𝜀| ≤ 𝛿

Sgn(𝜀)|𝜀|a,|𝜀| > 𝛿
,

Fig. 3   Structure diagram of the ADRC controller
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total disturbance values, respectively. β01, β02, and β03 are 
the observer gain of the ESO, and δ is the filtering factor. u 
is the input, and f0 is disturbance.

The input of nonlinear state error feedback control 
(NLSEF) is the error of the TD output tracking signal x1 
and the tracking differential signal x2 with ESO estimated 
signals z1 and z2, respectively. The algorithm is as follows:

where u0 is the control variable of the controller, β1 and β2 
are the proportional gains, e01 and e02 are the output and 
observation errors of the control objects of the two nonlinear 
functions fa(·) in Eq. (19), a4 and a5 are the powers of the 
two nonlinear functions fal(·), and δ0 is the filtering factor.

Based on the disturbance estimation signal output by the 
ESO and the known part of the controlled object, the com-
pensation process for disturbances can be obtained as Eq. 
(20)

where u is the input signal of the controlled object, and b0 is 
the compensation factor.

3.3 � Design of the adaptive extended state observer

According to Eq. (17), the adaptive extended state observer 
(AESO) can be designed as (20)

where e1, e2, and e3 are the estimation errors of the rotor 
position, speed, and total disturbance, which can be defined 
as e1 = 𝜃̂r − 𝜃r,e2 = 𝜔̂r − 𝜔r , and e3 = f̂ − f  , respectively. 
Thus, a third-order error dynamic equation can be derived 
as Eq. (22)

where mi(e1) is a fal(·) function, l1(t), l2(t), and l3(t) are non-
linear functions. According to differential algebraic spec-
trum theory (DAST), time-varying eigenvalues are allocated 
to achieve adaptive characteristics, thereby reducing the state 
estimation errors and the total disturbance interference. In 
the improved adaptive AESO, mi(e1) = e1 is selected.

Based on Eq. (22), the state space of the error dynamic 
equation can be described as

(19)u0 = �1fal(e01,a4,�0) + �2fal(e02,a5,�0),

(20)u = u0 − z3
/
b0,

(21)

⎧⎪⎪⎨⎪⎪⎩

ė1 = 𝜃̂r − 𝜃r

̇̂
𝜃r = 𝜔̂r − l1(t) ⋅ m1(e1)

̇̂𝜔r = f̂ + b0Is − l2(t) ⋅ m2(e1)

̇̂
f = −l3(t) ⋅ m3(e1)

,

(22)

⎧⎪⎨⎪⎩

ė1 = e2 − l1(t) ⋅ m1(e1)

ė2 = e3 − l2(t) ⋅ m2(e1)

ė3 = −l3(t) ⋅ m3(e1) − h(x,w)

,

where e = [e1, e2, e3]T, A(t) =

⎡
⎢⎢⎢⎣

−l1(t) 1 0

−l2(t) 0 1

−l3(t) 0 0

⎤
⎥⎥⎥⎦
 , and Bc = 

[0,0,1]T; x is the state variable, and w is the external 
disturbance.

Definition: The observer gain matrix is L(t) = [− l1(t), 
− l2(t), − l3(t)]T. Equation (23) is a controllable linear time-
varying (LTV) system with unknown but bounded inputs. The 
gain matrix A(t) is designed to ensure the stability of Eq. (23) 
and to achieve good estimation performance. First, the AESO 
error dynamic equation is converted to standard form using a 
Lyapunov transformation, as shown in Eq. (24)

where Ac(t) =

⎡⎢⎢⎣

0 0 0

0 0 0

−g1(t) −g2(t) −g3(t)

⎤⎥⎥⎦
 , Bc = [0,0,1]T.

The controllable standard form (24) is an implementation of 
a linear scalar differential system described by Eq. (25), where 
the elements in Ac (t) are the coefficients of the equation. Here, 
ξ represents the variables of a linear system

where the superscript (3), (2), and · represent the third, sec-
ond, and first derivatives, respectively.

The observer gain matrix L(t) can be transformed into

The observer gain li (t) is designed to be converted into a 
time-varying parameter gi(t) to stabilize the AESO and maxi-
mize its performance. The homogeneous equation of the linear 
scalar differential Eq. (25) is expressed as

Using the scalar polynomial differential operator (SPDO), 
the LTV system (27) is represented as Da{�} = 0 , as shown 
in Eq. (28)

where δ = d/dt is the derivative operator, and Da represents 
the scalar polynomial differential operator. The unified gen-
eral theory of the LTV is established through the classical 
factorization of the SPDO with the Floquet theory. Floquet 
factorization is

(23)ė = Ac(t)e − Beh(x,w),

(24)ż = Ac(t) − Bch(x,w),

(25)𝜉(3) + g3(t)𝜉
(2) + g2(t)𝜉̇ + g1(t)𝜉 = Bc( − h(x,w)),

(26)
L(t) =

[
−g3(t),−

(
g2(t) − 2ġ3(t)

)
,−

(
g1(t) + g

(2)

3
(t) − ġ2(t)

)]T
.

(27)𝜉(3) + g3(t)𝜉
(2) + g2(t)𝜉̇ + g1(t) = 0.

(28)Da = �(3) + g3(t)�
(2) + g2(t)� + g1(t),

(29)Da =
(
� − �3(t)

)(
� − �2(t)

)(
� − �1(t)

)
.
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In the unified spectrum theory, the set {�i(t)}nk=1 in 
Eq. (29) is called the SD spectrum of Da(ξ). The set 
{�(t) = �1,k(t)}

n
k=1

 is called the PD spectrum of Da(ξ), where 
λ1,k(t) denotes n special solutions of λ1(t) that satisfies certain 
nonlinear independent constraints. Ac(t) is referred to as the 
companion matrix associated with Da. The diagonal matrix 
diag[(ρ1(t), ρ1(t), ρ1(t)] is called the standard form of the 
parallel spectrum (PD) of Da and Ac(t).

The companion matrix Ac(t) is simplified to its related 
canonical form η(t) by the transformation matrix V(t), and 
η(t) can be given as

To calculate gi(t) through ρi(t), the following two theo-
rems are introduced.

Theorem 1: Let 
{
�i(t)

}p

i=1
 be the PD spectrum of the 

order p SPDO(Da), and let Vk(t) be the determinant of the 
k-th order transformation matrix in Eq. (30). Then, the SD 
spectrum of Da, i.e. 

{
�i(t)

}p

i=1
 is obtained

where j = 1, …, p and V0(t) = 1.
Theorem 2: Let 

{
�i(t)

}p

i=1
 be the SD spectrum of the 

order p SPDO(Da), and let the p coefficients of Da be defined 
as gp,j(t), gk,0(t) = 0, and gk,k+1(t) = 1. Then, gp,j(t) can be 
recursively calculated as

where j = 1,…,p and k = 1,…,p−1. Let y be the SD spectrum 
of the order-p spdo(f).

According to theorems 1 and 2, gi(t) can be obtained by 
allocating appropriate eigenvalues ρi(t).

3.4 � Parameter design of the AESO_ADRC

The parameters that need to be designed and adjusted in 
this paper include the relevant parameters of TD, AESO, 
and NLSEF.

(1)	 Design of TD parameters

The parameters of TD include the velocity factor r0 and the 
filtering factor h0. r0 determines the tracking speed of the sig-
nal. The larger r0 is, the faster the transition process is tracked, 
the smaller the phase lag, and the smaller the amplitude attenu-
ation, resulting in a closer approximation to the true value. 
However, due to the limitations of the physical characteristics 
and control variables of the controlled object, r0 cannot be too 
large, because an excessively large r0 may exacerbate oscilla-
tion. An appropriate value of h0 can eliminate overshoot and 
reduce the static error. Generally, h0 should be larger than the 

(30)𝜂(t) = V−1(t)
[
Ac(t)V(t) − V̇(t)

]
.

(31)𝜆k(t) = 𝜌k(t) + V̇k(t)∕Vk(t) − V̇k−1(t)∕Vk−1(t),

(32)gp,j(t) = ġp−1,j(t) − 𝜆pgp−1,j(t) + gp−1,j−1(t),

calculation step size of a discrete system, and it is usually set 
to twice the step size. However, an excessively h0 can lead to 
phase lag, amplitude attenuation, and reduced speed.

(2)	 Design of the conventional ESO parameters

Conventional parameters include β01, β02, β03, a1, a2, a3, 
and δ. Usually, a1, a2, a3, and δ are designed as fixed param-
eters. If 0 < ai ≤ 1 (i = 1, 2, 3), the smaller ai, the better the 
tracking effect. In this section, a1 = 0.75, a2 = 0.5, and a3 = 
0.25. δ is the filtering factor, and the larger the value of δ, 
the better the filtering effect. However, this also increases the 
tracking delay. Generally, δ should be within the range of [5 
T, 10 T], where T is the sampling period. In this section, δ = 
0.01 is selected [13]. The observer gain β01, β02, and β03 need 
to be set, and their values determine the estimation accuracy 
of the observer. The other observer parameters are tuned and 
simplified to a tuning optimization of ω0 [12], i.e., β01 = 3ω0, 
β02 = 3ω0

2, and β03 = ω0
3. ω0 should be maximized as much 

as possible within the allowable range of noise sensitivity 
and sampling delay. Excessive β01 can lead to oscillation or 
even divergence. β01 is usually on the same order of magni-
tude as 1/h. If β02 is too small, it can cause divergence; if it 
is too large, it can introduce high-frequency noise. If β03 is 
too small, it can reduce the tracking speed; and if β03 is too 
large, it can cause oscillation.

(3)	 Design of the AESO parameters

According to the analysis of AESO in Sect. 3.3 of this 
paper, the observer gains l1(t) to l3(t) are designed as the 
time-varying parameters g1(t) to g3(t) to stabilize AESO and 
maximize its performance. Based on differential algebraic 
spectrum theory, time-varying eigenvalues are allocated to 
obtain adaptive characteristics. This is done to reduce the 
estimation errors of the states and the interference from the 
total disturbances.

The observer gains l1(t) to l3(t) are obtained by setting the 
eigenvalues as shown in Eq. (33)

where �i represents the reference eigenvalues, and ω(t) is 
a time-varying multiplier. The nominal eigenvalues are 
selected as �1 = −�0 and �2,3 = −(−0.5 ± j0.866)�0 to 
obtain the time-varying bandwidth ωn(t) = ω0ω(t) of AESO. 
From Eqs. (31) and (32), it is obtained that

(33)�i(t) = �i�(t),i = 1, 2, 3,

(34)

⎧⎪⎪⎨⎪⎪⎩

g1(t) = −
�
𝜌1𝜌2𝜌3

�
𝜔3(t)

g2(t) =
�
𝜌1𝜌2 + 𝜌1𝜌3 + 𝜌2𝜌2

�
𝜔2(t) +

�
𝜌1 + 𝜌2 + 𝜌2

�
𝜔̇(t)

−𝜔(2)(t)
�
𝜔(t) + 𝜔̇2(t)

�
𝜔2(t)

g3(t) =
�
𝜌1 + 𝜌2 + 𝜌2

�
(t) − 𝜔̇(t)∕𝜔(t)

.
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By defining a time-based function, the multiplier ω(t) 
is designed as shown in Eq. (35)

ω(t) and its derivative are generated by a Butterworth filter 
with ω(t) as the input to the filter. When t ≤ Tω, ω(t) is set to 
ω0/3; when t > Tω, ω(t) is set to ω0, which is beneficial for 
resolving conflicts between the speed and the overshoot. Tω 
is the time constant of the ESO.

(4)	 Design of the NLSEF parameters

The parameters of the NLSEF include β1, β2, a4, a5, and 
δ0. For linear SEF, the parameters that need to be tuned are 
β1 and β2, which are equivalent to the proportional gain Kp 
and the differential gain Kd by the PD control. For NLSEF, 
the selection of the parameters β1 and β2 is similar to that 
of the linear SEF. To avoid the speed fluctuations caused 
by an excessive gain, a4 is generally smaller than a5, with 
0 ≤ a4 ≤ 1 ≤ a5. Typically, a4 = 0.25 and a5 = 1.5. δ0 is a 
parameter related to the range and control accuracy of the 
controlled quantity, and is usually set to δ0 = 0.22 [22].

(5)	 Design of the compensation parameters for distur-
bances

b0 is the compensation factor, an estimated value of the 
compensation coefficient, which is an important parameter 
affecting system stability. The selection of b0 should be a 
compromise between stability and response speed. Within 
a certain range, increasing b0 also increases the stability 
domain of the system. However, an excessively large b0 
causes the control signal to be too small, resulting in a 
slower system response. The smaller the value of b0, the 
faster the disturbance compensation response and the bet-
ter the dynamic performance of the IPMSM. However, too 
small a b0 can cause overshoot and fluctuations.

In summary, the control block diagram of AESO_ADRC 
for a position sensorless IPMSM based on HP square-wave 
injection is shown in Fig. 4. Rotor position information 
is extracted through high-frequency signal injection and 
signal processing. Combined with the real-time state 
estimation and disturbance compensation of ESO and 
the nonlinear control law of NLSEF, high-precision and 
strong robustness control of the IPMSM is realized. Fig-
ure 5 shows the structural diagram of AESO_ADRC. The 
speed reference signal ωr-ref generates the transition sig-
nal ω r1 and the differential signal 𝜔̇r1 through TD. AESO 
obtains the rotor position estimate 𝜃̂r , the speed estimate 
𝜔̂r =

̇̂
𝜃 , and the total disturbance estimate f̂  . Through the 

(35)𝜔(t) =

{
𝜔0

/
3, t ≤ T𝜔

𝜔0 ,t > T𝜔
;

differential algebraic spectrum theory (DAST), time-var-
ying eigenvalues are allocated to optimize the dynamic 
response and estimation accuracy of the observer. The 
NLSEF generates the control signal i∗

q
 based on the error.

4 � Simulation verification and analysis

To verify the effectiveness and feasibility of the novel con-
trol strategy proposed in this paper, simulation verification 
and analysis were conducted. A sensorless control system for 
an IPMSM based on LADRC, NADRC, and AESO_ADRC 
controllers was built on the MATLAB/Simulink platform. 
The simulation parameters of the IPMSM are shown in 
Table 1. In the simulation, the switching frequency of the 
PWM is 10 kHz, and the dead time is set to 2.0 μs. The cur-
rent sampling frequency is the same as the PWM switching 
frequency. The injected HF square-wave voltage signal has 
a frequency of 5 kHz and an amplitude of 20 V.

The parameters of each part of the ADRC controller are 
selected as follows.

Sampling step size: h = 0.01.
Transition process parameters: r0 = 20,000.
Nonlinear state error feedback parameters:

LESO parameters: β01 = 100, β02 = 30,000, and β03 = 106.

�1 = 1.0, �2 = 1.5, a4 = 0.25, and a5 = 1.5, �0 = 0.22.

Fig. 4   Control block diagram of AESO_ADRC for a sensorless 
IPMSM based on HP square-wave injection

·

·

Fig. 5   Schematic diagram of AESO_ ADRC
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NESO parameters: β01 = 100, β02 = 30,000, β03 = 106, 
a1 = 0.75, a2 = 0.5, a3 = 0.25, and δ = 0.01.

Disturbance compensation parameters: b0 = 0.5b.
To compare and analyze the dynamic performance 

and anti-interference performance of LADRC, NADRC, 
AESO_ADRC, and the traditional PI, simulation results 
were analyzed under different operating conditions and 
external disturbances of the IPMSM.

4.1 � Comparison of dynamic performance 
during sudden load torque changes 
with the addition of random disturbances

As shown in Fig. 6a–d, the waveforms of the speed and 
stator current of the four control methods of the IPMSM 
are presented when the load torque suddenly increases 
from 0 to 20 Nm at 0.2 s and then suddenly decreases to 
10 Nm at 0.4 s, under a given speed of 200 r/min and a 
random disturbance.

As shown in Fig. 6, when the load torque suddenly 
increases from 0 to 20 N·m at 0.2 s, the settling times 
of LADRC, NADRC, AESO_ADRC, and the traditional 
PI control methods for the IPMSM are 0.022 s, 0.018 s, 
0.012 s, and 0.1 s, respectively. When the load torque sud-
denly decreases at 0.4 s, the stabilization times are 0.0032 
s, 0.0074 s, 0.0010 s, and 0.08 s, respectively. At 0.4 s, 
the load torque suddenly decreased from 20 to 10, and 
the settling times of the four control methods are 0.0032 
s, 0.0074 s, 0.0010 s, and 0.08 s, respectively. Addition-
ally, when the load is suddenly increased or decreased, 
the traditional PI overshoot is the largest, while the 
AESO_ADRC overshoot is the smallest.

Thus, the method proposed in this paper demonstrates 
the shortest stability time during sudden load changes, 
near-zero overshoot, good dynamic performance, and 
strong anti-interference ability.

4.2 � Comparison of dynamic performance 
during sudden velocity changes 
with the addition of random disturbances

As shown in Fig. 7a–d, the waveforms of the speed and 
stator current of the four control methods of the IPMSM 
are presented when the speed suddenly increases from 10 
to 200 r/min at 0.3 s and then suddenly decreases to 100 r/
min at 0.6 s, under a given torque of 15 N·m with a random 
disturbance.

As shown in Fig.  7, at 0.3 s, the speed suddenly 
increases from 10 r/min to 200 r/min, the settling times 
of LADRC, NADRC, AESO_ADRC, and the traditional 
PI control methods for the IPMSM are 0.012 s, 0.016 
s, 0.014 s, and 0.335 s, respectively. At 0.6 s, the speed 
suddenly decreases from 200 r/min to 100 r/min, and the 
settling times of LADRC, NADRC, AESO_ADRC, and 
the traditional PI control methods are 0.009 s, 0.014 s, 
0.009 s, and 0.01 s, respectively. Additionally, NADRC 
and AESO_ADRC have almost no overshoot, LADRC has 
a small amount of overshoot, and the traditional PI has 
a large overshoot. At the same time, it can be seen that 
AESO_ADRC has good performance at a low speed of 
10 r/min.

Therefore, the method proposed in this paper has the 
shortest stability time during sudden speed changes, which 
exhibits near-zero overshoot, possesses good dynamic per-
formance, and strong anti-interference ability. At the same 
time, the proposed method performs well at low speeds.

Table 1   IPMSM parameters

Parameter Value

Phase number m 3
Number of pole pairs np 4
Rated speed r/min 1500
Rated power/kW 2.2
Stator phase resistance Rs/mΩ 958
Direct inductance Ld/mH 1.23
Quadratic inductance Lq/mH 5.25
DC side voltage Ud/V 500
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Fig. 6   Simulation waveforms of sudden changes at a speed of 200 
rpm and given torque values of 0, 20, and 10 Nm
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4.3 � Comparison of rotor position estimation 
accuracy with sudden load changes 
under external random disturbance

As shown in Fig. 8a–d, the rotor position estimation accu-
racies of the sensorless control methods for the IPMSM 
are compared under variable load torque conditions using 
LADRC, NADRC, AESO_ADRC, and the traditional PI.

Given a speed of 200 r/min, under the condition of exter-
nal limiting random disturbance, the load torque increases 
from 0 to 20 Nm at 2 s and decreases from 20 to 10 Nm 
at 4 s. After reaching a steady state, the maximum errors 

in the rotor position estimation for LADRC, NADRC, and 
AESO_ADRC are 0.18 rad/s, 0.2 rad/s, and 0.17 rad/s, 
respectively.

It can be observed that the rotor position estimation accu-
racy of AESO_ADRC is higher than the other two ADRC 
methods, while the traditional PI control method has the 
highest rotor position estimation accuracy among the four 
methods when the load suddenly changes.

4.4 � Comparison of rotor position estimation 
accuracy with speed variation under external 
random disturbance

As shown in Fig. 9a–d, the rotor position and position esti-
mation error waveforms of the IPMSM sensorless control 
methods using LADRC, NADRC, AESO_ADRC, and the 
traditional PI, with a given torque of 15 Nm and a random 
external disturbance, where the speed command increases 
from 20 to 200 r/min at 2 s and decreases from 200 to 100 r/
min at 4 s, are presented.

As shown in Fig. 8a–d, the rotor position and position 
estimation error waveforms of the IPMSM sensorless control 
methods using LADRC, NADRC, AESO_ADRC, and the 
traditional PI, with a given torque of 15 Nm and a random 
external disturbance, where the speed command increases 
from 20 to 200 r/min at 2 s and decreases from 200 to 100 r/
min at 4 s, are presented.

At the steady state, the maximum estimation errors of 
the rotor position estimation for LADRC, NADRC, AESO_
ADRC, and the traditional PI are 0.165 rad/s, 0.200 rad/s, 
0.1 rad/s, and 0.12 rad/s, respectively. It can be seen that the 
AESO_ADRC method achieves the highest rotor position 
estimation accuracy and its rotor position estimation error 
is the smallest during low-speed sudden changes.

It can be concluded that under sudden changes in the 
load torque and speed, the AESO_ADRC proposed in this 

Fig. 7   Simulation waveform of sudden changes at a torque of 15 Nm 
and given speeds of 10, 200, and 100 rpm

Fig. 8   Rotor estimation accuracy under sudden changes in the torque 
value of 0, 20, and 10 Nm at a speed of 200 r/min

Fig. 9   Rotor estimation accuracy under sudden changes at a torque of 
15 N·m and given speeds of 20 r/min, 200 r/min, and 100 r/min
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paper has better dynamic performance, faster tracking speed, 
strong anti-interference ability, and good performance at low 
speeds compared to LADRC, NADRC, and PI control in the 
position sensorless control method of the IPMSM based on 
HF square-wave injection. Compared with the traditional PI, 
AESO_ADRC has fewer dynamic position estimation errors. 
Additionally, AESO_ADRC has higher position estimation 
accuracy than LADRC and NADRC.

5 � Experimental verification and analysis

Figure 10 shows the experimental platform of a 2.2 kW 
IPMSM drive system driven by an inverter built in the labo-
ratory. The parameters of the IPMSM are roughly the same 
as those listed in Table 1. The differences are as following: 
the stator phase resistance Rs is 839 mΩ, the direct induct-
ance Ld is 5.05 mH, the quadratic inductance Lq is 15.35 mH, 
and the moment of inertia J is 0.00376 kg·m2.  

5.1 � Operating conditions with sudden load torque 
changes

To verify the dynamic performance of the load torque varia-
tion and the accuracy of the rotor position estimation, exper-
iments were conducted under the conditions of a constant 
speed and variable load torque.

As shown in Figs. 11 and 12, when the load suddenly 
changes, the estimated rotor position is basically consistent 
with the actual value, and the steady-state position estima-
tion error is within the range of 0.2 rad. The IPMSM speed 
has short-term fluctuations. It can be observed that the pro-
posed control algorithm has good dynamic performance and 
accurate rotor position estimation under sudden load torque 
changes.

5.2 � Operating conditions with sudden speed 
changes

To verify the dynamic performance and accuracy of the 
rotor position estimation during speed changes, experi-
mental verification was conducted under conditions of 
constant load and sudden speed changes.

As shown in Figs. 12 and 13, when the speed suddenly 
changes, the estimated rotor position is basically consist-
ent with the actual value, and the maximum position esti-
mation error is within the range of 0.2 rad. The IPMSM 
speed has short-term fluctuations (Fig. 14).  

It can be seen that the control algorithm proposed in 
this paper has good dynamic performance and accurate 
rotor position estimation under speed changes.

Fig. 10   Experimental platform of a 2.2 kW IPMSM drive

Fig. 11   Experimental results of a load torque increases from 0 to 50% 
TN at a speed of 400 r/min

Fig. 12   Experimental results of a load torque drop from 50% to 0 TN 
at a speed of 400 r/min
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6 � Conclusion and further work

This paper proposed a novel adaptive ESO method for 
the active disturbance rejection control (AESO_ADRC) 
of position sensorless IPMSMs based on high-frequency 
square-wave injection. The proposed method can solve the 
problem of poor dynamics and the weak anti-interference 
performance of sensorless IPMSMs, especially at low 
speeds. The main work and contributions of this paper 
are as follows:

First, high-frequency square waves are injected into the 
estimated rotational coordinate system of an IPMSM, and 
the estimation error of rotor position is obtained through 
the extraction and processing of injected signals and their 
responses.

Second, an adaptive extended state observer AESO 
based on the differential algebraic spectrum theory is 
designed using error signals, which estimate the total 
disturbance and state variables of the system to obtain 
accurate rotor position information. When the load torque 

and speed suddenly change, the AESO_ADRC has smaller 
dynamic position estimation errors than PI control. The 
AESO_ADRC has a higher position estimation accuracy 
compared with LADRC and NADRC. Furthermore, during 
low-speed sudden changes, the rotor position estimation 
error is minimized.

Finally, the novel AESO_ADRC with an adaptive 
extended state observer replaces the traditional PI controller 
in the speed loop. Under sudden changes in the load torque 
and speed, under random disturbances, the AESO_ADRC 
proposed in this paper has better dynamic performance, 
faster tracking speed, stronger anti-interference ability, and 
better performance at low speeds than LADRC, NADRC, 
and PI control.

Due to limitations in the experimental conditions, the 
experimental process did not fully correspond to the simu-
lation. In addition, the parameters design the AESO-ADRC 
which does not provide clear rules for parameter adjustment. 
To achieve better dynamic performance, the next step is to 
study the relevant parameter adjusting rules and improve 
the experiments.
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