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Abstract

The sustainable utilization of excavated soil as a geomaterial requires a comprehensive understanding of its multi-
dimensional properties, but correlating heterogeneous data (e.g., visual, mechanical, and electrical characteristics) remains
a challenge. To address this, an excavated soil information collecting system was developed to acquire multi-source data
including RGB images, cone index (CI) curves, and TDR waveforms—from China’s largest soil transfer platform,
establishing a database of 23,122 sets. A generative-model-aided correlation analysis framework was proposed, leveraging
a denoising diffusion probabilistic model to explore inherent relationships between soil properties. Performance metrics,
such as SSIM, LPIPS, and RMSE, were employed to analyze the model’s training results. Key findings reveal that: (1) soil
images encode water content information, which correlates with CI curves and TDR waveforms; (2) CI and TDR data
cannot capture color-based mineral composition details from images; and (3) TDR waveforms uniquely detect pollution
indicators (e.g., electrical conductivity), undetectable via other methods. This Al-driven approach provides a novel
methodology for analyzing multi-dimensional property correlations in geotechnics, enhancing sustainable soil reuse.
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1 Introduction

1.1 Excavated soils: sustainable geomaterials
with potentials for utilization

Excavated soils are geomaterials generated from building
foundation pit excavation, tunnel excavation, channel
excavation, and other engineering excavations [23]. In
developed countries like European Union, excavated soils
account for 59% of the total construction and demolition
wastes (CDW) generation [16]. In developing countries
like China, excavated soils even account for 70-80% of
CDW generation [22]. Excavated soils are currently
regarded as waste under EU law and commonly disposed in
landfills [18, 21]. However, more than 90% of these soils
are not contaminated and could be utilized according to
their engineering properties, environmental properties, and
resource potentials [56]. For example, pure soils with
moisture content below 1.5 times liquid limit can be
directly backfilled as agricultural land or construction land;
inert soils with organic matter content less than 5% can be
compacted-solidified or casted-solidified as engineering
fillers; soils with pH value 5-10, moisture content < 40%,
and LOI < 50% can be used as sinter-free products or
sintered products [57]. Obviously, the effective reuse of
environment-friendly excavated soils as sustainable geo-
materials depend on a comprehensive understanding of
multiple characteristics including sand content, organic
matter content, mineral compositions, and so on. These
properties are typically captured through diverse detection
methods—such as image-based analysis, stress—strain
curve fitting, and electrical waveform profiling—yet their
interdependencies remain underexplored in practice. The
identification of interrelationships among diverse indicators
facilitates the use of easily measurable parameters as
proxies for critical but labor-intensive measurements,
allowing for efficient on-site assessment and classification
of excavated soils while improving sustainable geomaterial
management.

1.2 Inherent correlations of soil multi-
dimensional properties

Studying the correlations between soil properties is a
classic topic in geomaterial research, helping to infer
indicators that are difficult to measure directly based on
easily obtainable ones. Carter and Bentley [11] presented
typical values of engineering properties for various types of
soils, together with correlations between different proper-
ties. By analyzing a large amount of laboratory data, cor-
relations between difficult-to-measure indices (e.g., frost
susceptibility and swelling potential) and classical indices
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(e.g., grading, plasticity, density, permeability, consolida-
tion, and shear strength) were discussed [12]. Furthermore,
Ameratunga et al. [3] combined numerous field data from
in situ testing such as standard penetration test (SPT), cone
penetration test (CPT), pressuremeter test (PMT),
dilatometer test (DMT), and vane shear test (VST),
bridging the gap between laboratory data and field data.
Verbrugge and Schroeder [52] compiled empirical formu-
las between soil properties and classified them in different
scenarios from the perspective of geotechnical
practitioners.

Nowadays, besides studying soil engineering properties
[26, 59], some scholars have begun to consider environ-
mental properties and resource properties, and compre-
hensively analyze the soil multi-source heterogeneous data
[17, 46]. Meimaroglou and Mouzakis [36] investigated the
influence of clay fraction content, specific surface area
(SSA), cation exchange capacity (CEC), and mineralogy
on earth mortars. It was found that compressive strength
depends mainly on SSA and CEC, with weaker correlations
for clay content and iron oxides. Sainju and Liptzin [44]
and Sainju et al. [45] related soil physicochemical prop-
erties (soil pH, electrical conductivity, CEC, and nutrient
concentrations) to soil health properties. The importance of
CEC, inorganic P, and K was identified, and some novel
indicators such as average slake aggregate (ASA) was
proposed. Studies about correlations between soil physic-
ochemical properties and biological properties were also
implemented. Soil organic matter content (SOM), particle
size distribution (PSD), CEC, porosity, and water holding
capacity are all critical indices discussed [28, 34, 51]. In
addition, soil images containing texture and color infor-
mation were noticed. Teixeira and Basch [49] carried out a
campaign to explore the correlations between visual soil
assessment (VSA) soil indicators (e.g., structure, porosity,
stability, soil color, and surface ponding) and measured soil
properties (infiltration rate, pH and labile organic carbon,
SOM). Olivares et al. [39] analyzed the relationships
between the visual evaluation of soil structure (VESS) and
soil properties. VESS is validated to be a reliable semi-
quantitative method to assess soil quality and could be
considered a promising visual predictor of soil physical
properties such as bulk density, SOM, and soil penetration
resistance.

To note, different soil indicators are multi-source
heterogeneous. For example, the result of CPT is a curve
distributed along the depth, and pH is just a value.
Therefore, when exploring the correlation of these indica-
tors, it is necessary to artificially adjust high-dimension
data, such as extracting the uniformity coefficient (C,) and
coefficient of curvature (C.) from the PSD curve to get
some single values for direct analysis, but this operation
destroyed the richness of the raw data. Classical correlation
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analysis methods include Pearson r correlation, Kendall
rank correlation, and Spearman rank correlation. Pearson
r correlation excels at measuring linear relationships
between two continuous variables, providing intuitive
results (— 1 to 1) with strong interpretability. Spearman
rank correlation is suitable for assessing monotonic rela-
tionships (linear or nonlinear) based on data ranking, while
Kendall rank correlation measures ordinal concordance,
making it ideal for small samples or data with numerous
ties—its results are equally intuitive (t = 1 indicates per-
fect agreement, 7= — 1 perfect disagreement). Both
Spearman and Kendall methods can analyze sequential
data correlations [9, 10, 13]. Fan et al. [19] investigated
aged/rejuvenated asphalt’s chemical-rheological correla-
tions through DSR, BBR, and FTIR tests. Gray entropy
correlation analysis (GECA) revealed strong correlations
(> 0.96) between SI/CI indices and rheological parameters
(G*, 0, S). Ching et al. [15] developed a multivariate
probability distribution model for coarse-grained soil
parameters using the SAND/7/2794 database. The model
effectively captures parameter correlations and serves as a
Bayesian prior, updatable with site-specific data. While
offering a consistent uncertainty integration framework, the
authors caution against extrapolation beyond the database
scope, noting similar limitations apply to conventional
regression approaches. Roy et al. [43] employed machine
learning (GPR, RFR, DTR) to analyze correlations between
mix design parameters and mechanical properties of rice
husk ash concrete. The high R? values (0.964-0.969)
demonstrate strong predictive correlations, particularly for
DTR models. PDP analysis further reveals key parameter-
strength relationships, providing quantitative correlation
insights that surpass conventional experimental approa-
ches. The ML framework effectively captures nonlinear
correlations, offering a robust alternative to labor-intensive
laboratory testing for RHAC optimization. Liu et al. [32]
developed novel correlations between resilient modulus
(M,) and CPTU indices for clayey soils using a multivariate
normal distribution framework. By combining Box-Cox
transformation, Pearson correlation analysis, and Bayesian
updating with bootstrap uncertainty quantification, the
method reliably predicted M, from cone tip resistance,
sleeve frictional resistance, moisture, and dry density.
While showing good accuracy for Jiangsu clays (124
datasets), caution is needed for global applications due to
potential regional biases. In recent years, with the
advancement of deep learning, neural networks have
gained popularity in correlation analysis. They are appli-
cable not only to bivariate correlations but also to ternary
and more complex relationships [58]. Michon et al. [38]
employed quantitative structure—property relationship
(QSPR) methods and neural networks to identify nonlinear
relationships between chemical and rheological properties.

Strechan et al. [48] used artificial neural networks (ANNSs)
to derive correlations between the enthalpy of vaporization,
the surface tension, the molar volume, and the molar mass
of a substance. Karabulut and Koyuncu [27] developed
neural network models to establish correlations of thermal
conductivity with temperature and density for propane.
Asghari et al. [4] proposed a DNN-based framework for
analyzing complex correlations in engineering metrics,
utilizing 1,101 clay samples to study the relationship
between undrained shear strength and factors such as liquid
limit, plastic limit, water content, vertical effective stress,
and preconsolidation stress, demonstrating strong perfor-
mance in handling nonlinear interactions and uncertainties.
Alessandrini et al. [2] introduced a neural network-based
correlation analysis framework to enhance electroen-
cephalography (EEG)-speech stimulus response detection.
By implementing a single multilayer perceptron (MLP)
with a correlation-optimized loss function, their method
outperformed traditional linear canonical correlation anal-
ysis (CCA), achieving a 10.56% improvement in Pearson
correlation. While these studies primarily focus on
numerical (0D) and some sequential (1D) data, they have
yet to explore correlations involving higher-dimensional
data such as images (2D).

1.3 Multimodal generative models for exploring
soil properties

With the popularity of generative Al platforms like
ChatGPT, Google Bard, DALL-E, and Musico, the
potential of generative models including variational
autoencoder (VAE), generative adversarial network
(GAN), and diffusion model in geotechnics has begun to
gain attention [8, 47]. As for soil data optimization, Bai
et al. [7] developed an improved super-resolution method,
SRLGAN, for reconstructing high-resolution soil CT ima-
ges, addressing limitations like blurred boundaries and low
quality. Meng et al. [37] proposed the SS GAN, an unsu-
pervised shadow removal algorithm for soil surface ima-
ges, to improve soil moisture content estimation accuracy.
Wang et al. [53] proposed GCS-CVAE to address missing
data and high energy consumption in wireless soil sensors.
GCS-CVAE demonstrated superior reconstruction accu-
racy, stability, and efficiency in soil monitoring data. As
for soil behavior prediction, Tsimpouris et al. [50] pro-
posed a novel stacked autoencoder-based methodology for
transforming soil spectra into a compressed latent space to
improve soil property prediction accuracy. Applied to
LUCAS 2009 topsoil data, it reduced RMSE by up to 9.9%,
enabling simultaneous prediction of PSD, pH, CEC,
organic carbon, calcium carbonate, and total nitrogen. He
et al. [24] proposed a dynamic SOM estimation model
using GAN to enhance hyperspectral datasets. By
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generating pseudo-samples, the best model, GAN-BPNN,
achieved a 30.8% R” increase and 44.5% RMSE reduction.
Lo Man et al. [33] used VAE to predict embankment set-
tlement and pore water pressure directly from monitoring
data, eliminating the need to update soil parameters. Chen
et al. [14] introduced a hybrid deep learning model com-
bining CVAE and Kriging to predict soil properties from
sparse geotechnical data, which was applied to CPT results.
Obviously, generative models are showing great potential
in geotechnical data imputation and property prediction
due to the capacity of decoding relationship between dif-
ferent forms of data.

Geotechnical researchers usually use classic methods
such as Spearman correlation analysis, Pearson correlation
analysis, and principal component analysis when studying
data correlations [34, 49, 51]. These methods are good at
dealing with property correlation research for data of the
same dimension but cannot handle complex correlation
research involving multi-source heterogeneous data such as
images, waveforms, and values. The Pearson/Spearman
correlation coefficients require one-dimensional numerical
vectors as input and thus cannot directly process two- or
three-dimensional data (e.g., images). Flattening an image
into pixel vectors (e.g., converting 100 x 100 pixels to a
10,000-dimensional vector) for correlation analysis with
waveform (e.g., 1000 data points) would lead to dimen-
sional mismatch (necessitating forced alignment that
compromises physical meaning) and numerical sensitivity
(where unit difference between pixel RGB values and
voltage measurements may induce spurious correlations).
While PCA is partially applicable for cross-modal corre-
lation analysis, it demands rigorous data preprocessing—
requiring transformation of multimodal data into feature
vectors with consistent dimensions. This process risks
losing critical modal characteristics (e.g., local image
topology or waveform phase information), and the results
become highly sensitive to subjective feature selection
decisions. Conversely, generative models are experts in
grasping the physical patterns behind real data, and gen-
erate new data based on the learned physical laws, which
implies potentials for correlation research. Generative
models can directly process raw heterogeneous inputs—
such as 2D/3D images, 1D waveforms, and OD numerical
values—while preserving the complete information of each
modality. By leveraging the multilayer architecture of
neural networks to approximate arbitrarily complex func-
tions and activation functions to introduce nonlinearity,
these models enable deep mining of nonlinear relationships
across modalities. Therefore, how to use advanced gener-
ative Al tools to explore multi-source heterogeneous soil
properties has become the focus of researchers.
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1.4 Objective of the study

In the present work, a generative-model-based analysis
framework for soil multi-source heterogeneous properties
was proposed. Excavated soils with significant differences
in engineering properties, environmental properties, and
resource potentials were regarded as the studied geomate-
rials. An excavated soil information collecting system
(ESICS) was developed to collect soil multi-source
heterogeneous data including soil images (2D information),
cone index curves (1D spatial-series data), and TDR
waveforms (1D time-series data). The advanced generative
model, denoising diffusion model, -aided investigation on
inherent correlations of soil multi-source heterogeneous
data was carried out, including three cases of data con-
version and generation (soil image-cone index, soil image-
TDR waveform, and cone index-TDR waveform). Some
inherent relationship between soil imaging information,
mechanical properties, and electrical properties was found.
This study provides a novel perspective with the support of
artificial intelligence methods for exploring the correlation
between geomaterial properties.

2 Principle and methodology
2.1 Soil properties and their correlations

Figure 1 shows soil three types of properties and their
triangle correlations. The engineering properties include
moisture content, grading, plasticity, permeability, con-
solidation, and shear strength, which are classical concepts
in geotechnics. The environmental properties include pH,
electrical conductivity, CEC, dissolved inorganic com-
pounds (e.g., sulfate, nitrate), and heavy metal content,
which are key indicators in environmental science. The
resource properties reflect the potential for utilization of the
geomaterials and typically include chemical elements,
mineralogy, SOM, and nutrients (e.g., nitrogen, phospho-
rus, potassium), which are of interest in soil science and
agronomy. These properties are intrinsically interrelated
and determine the sustainable utilizations of geomaterials.
For example, as for engineering attribute affecting envi-
ronmental attribute, geomaterials with more fine content
tend to adsorb more heavy metal-like pollutants; as for
environmental attribute affecting engineering attribute,
geomaterials with pollutants after biochemical degradation
will lose mass and have changes in grading, leading to
different constitutive behaviors. Regarding engineering
attribute affecting resource potential, low compressibility
geomaterials dominated by coarse sands are likely to serve
as aggregates for construction materials; regarding
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Fig. 1 Soil properties and their inherent correlations

resource potential affecting engineering attribute, geoma-
terials with rich montmorillonite content are capable of
absorbing more water. For environmental attribute affect-
ing resource potential, acid soil or alkaline soil can serve as
planting materials for certain crops; for resource potential
affecting environmental attribute, peat soils with excessive
SOM tend to adsorb more heavy metals.

For instance, in image analysis applications, soil images
contain both engineering and resource-related property
information. Paul et al. [41] analyzed mortar slump varia-
tions under different rice husk powder ratios through
macroscopic mortar images while examining microstruc-
tural composition via SEM. Similarly, Kashyap et al. [29]
used SEM to observe hydration reactions in modified
concrete, explaining strength variations microscopically.
At macroscopic scales, deep learning has emerged as a
primary tool for geomaterial identification—Zhao et al.
[60] developed an enhanced YOLO model for automated
mucky soil classification in tunneling, while Yan et al. [54]
created a Bayesian-optimized image augmentation frame-
work with AlexNet/GoogLeNet for improved muck iden-
tification. Therefore, establishing bidirectional correlations
between soil images and mechanical/electrical properties
(either predicting properties from images or generating
visual characteristics from physical parameters) would
enhance understanding of fundamental physical mecha-
nisms while enabling interpretable prediction of difficult-
to-measure properties from easily obtainable indicators.

Soil properties are typically represented in different
forms of data. Classical correlation analysis methods, such
as Spearman correlation analysis, Pearson correlation
analysis, and principal component analysis, are applicable
to analyzing the relationships between values (OD). How-
ever, due to the diversity of detection methods, 1D, 2D, and

Resource properties

AEEEmmmm——  ® Chemical element ® Organic matter

® Mineralogy ©® Nutrients

even 3D indicators are more common as raw data in test-
ing. In order to analyze these data with different dimen-
sions, conventional analysis methods often extract critical
information from high-dimension data. This dimensionality
reduction process frequently involves information loss,
making it difficult to fully characterize the true properties
of the target medium. Consequently, the identification of
inherent correlations between properties may be biased or
overlooked. This study aims to explore nondestructive
correlation analysis methods for multi-dimension data by
using soil images (2D data), cone index curves (1D spatial-
series data), and TDR waveforms (1D time-series data).

2.2 Typical generative models

In recent years, with the rapid development of deep
learning, deep generative models have been highly favored
as a novel data processing tool across various disciplines
[1, 35]. Among them, the most commonly used and effi-
cient approaches are variational autoencoders (VAEs),
generative adversarial networks (GANs), and lastly diffu-
sion models (DMs). Figure 2 illustrates their mechanisms.

VAEs, introduced by Kingma [30], are probabilistic
generative models combining autoencoders and variational
inference. VAEs encode data into a lower-dimensional
latent space with a probabilistic interpretation. These low-
dimensional latent variables (z) are latent representation of
the input data, meaning they are abstract symbols of useful
information and physical laws. Later, VAEs decode the
latent space and enable both data reconstruction and new
sample generation by sampling from the latent space.
Usually, the probability distribution of these latent vari-
ables is denoted by Gaussian distribution. VAEs have been

@ Springer



4982

Acta Geotechnica (2025) 20:4977-5005

Input space

Latent space

Output space

Encoder (| NG [
VAE qQ(le) Iil pa(xlz)
Fake data
Random Generator

Real data

Diffusion Po(Xpilx)
models Xp b oo Slx, [---2222--I2C0C0 i Y it Ix

q(xtlxt_l)

Fig. 2 Typical generative models

applied to tasks like image synthesis, anomaly detection,
and representation learning.

GAN:s, introduced by Goodfellow et al. [20], revolu-
tionized generative models with adversarial training
framework. GANs consist of two neural networks: a gen-
erator and a discriminator. The generator learns to produce
realistic data samples, while the discriminator distinguishes
between real and fake data. These networks engage in a
minimax game: the generator aims to “fool” the discrim-
inator by generating realistic data, while the discriminator
improves its ability to identify fake samples. Through this
adversarial process, both networks enhance each other
iteratively, enabling GANs to achieve cutting-edge per-
formance in tasks like image synthesis and data generation.
GANs were considered state-of-the-art generative models
until the recent rise of DMs.

DMs, i.e., denoising diffusion probabilistic models
(DDPMs) introduced by Ho et al. [25], are generative
models that create data by reversing a gradual noising
process. The framework involves two steps: a forward
process that adds random noise to input data step-by-step,
transforming it into pure Gaussian noise, and a reverse
process that learns to denoise this noise to reconstruct the
original data. By using neural networks, the model learns to
fine noise distribution added to training data, and the
realistic image can be reconstructed by gradually removing
the noise. This reverse process is modeled using deep
neural networks like U-Nets or transformers. By explicitly
modeling the denoising steps, DMs achieve high-quality
and diverse sample generation. Unlike GANs, DMs are
likelihood-based, providing a stable training process and
interpretable generation. While GANs and VAEs have
shown success in data generation, their limitations in
modeling soil’s multimodal nonlinearities motivated our
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choice of DDPM. Specifically: (1) The adversarial loss of
GANSs does not have the incentive to cover the entire data
distribution. When the discriminator has been over trained
or catastrophic forgetting happens, the generator might
tend to produce a small part of the data diversity leading to
mode collapse; (2) the latent space of VAEs is much
smaller than the image. This induces the model to predict
an average of pixels to find the optimal solution, resulting
in a blurry image. The low-quality generation might lead to
the information loss in the process of cross-modal
generation.

The evaluation of generative models spans three key
points: high-quality samples, mode coverage (diversity),
and fast sampling. While GANs excel in high-quality
samples and fast sampling, and VAEs achieve good mode
coverage with fast sampling, diffusion models (DMs)
uniquely ensure both high-quality samples and compre-
hensive mode coverage. In this study, given that the reso-
lution of augmented image samples is modified to only
84 x 84, the impact of sampling rate changes exceeding a
certain threshold on the quality of generated samples can
be negligible. Therefore, putting data diversity and sample
fidelity over sampling rate justifies the selection of DMs for
investigating inherent correlations between soil multi-
source heterogeneous data.

2.3 Correlation analysis framework

Based on the principles and characteristics of generative
models, combined with the need for correlation analysis of
multi-dimensional multi-source heterogeneous data, a
generative-model-based framework for soil property cor-
relation analysis is proposed (Fig. 3). Assuming that index
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Fig. 3 Generative-model-based correlation analysis framework for soil properties

x is RGB image and index y is one-dimensional waveform,
the framework’s workflow can be illustrated as follows:

(a)

(b)

(©)

Determine the dimensions of the input variables x
and y: Identify whether the data is 3D (diorama), 2D
(image), 1D (waveform), or 0D (value).

Select an appropriate deep generative model:
Choose a model such as VAEs, GANs, or DMs based
on the data requirements.

Design the model structure based on data dimen-
sions: Adjust the convolutional neural network
(CNN) architecture in the generative model accord-
ing to the input data dimensions. Correlation analysis
of a pair of indices requires training two models. The
process of training the first model is called forward
test (FT), which aims to generate realistic index
y based on the input index x; the process of training
the second model is called reverse test (RT), which
aims to generate realistic index x based on the input
index y.

For example, in DMs, during FT, residual convolution
layers should be adjusted to Convld (as y is one-dimen-
sional), and the U-Net architecture should use Convld
accordingly. While in RT, residual convolution layers are
adjusted to Conv2d (as x is two-dimensional), and the
U-Net architecture should use Conv2d accordingly.

(d) Perform FT and RT sequentially: During model
training and validation, use appropriate performance
metrics to evaluate the model’s effectiveness in FT
and RT. For 2D data generation, metrics such as
Frechet inception distance (FID), learned perceptual
image patch similarity (LPIPS), inception score (IS),
and structural similarity index measure (SSIM) can
be used. For 1D data generation, metrics like root-
mean-square error (RMSE) or mean absolute error
(MAE) are commonly used.

(e) Compare the performance metrics of FT and RT:
Analyze the results to determine the relationship
between x and y.

(f) If performance metrics of one test (FT or RT)
consistently outperforms the other: It suggests that
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there is an information dependency between x and
y. For example, if FT metrics are better than RT
metrics, this implies that x can be transformed into y,
but y cannot be reliably transformed back into x,
indicating that information of y is also contained
within x (v € x).

In this case, x can be “purified” to reduce its informa-
tion content and explore the inherent correlation of the
purified x (x”) with y. Now, x is RGB image (H x W x C,
where C = 3 and values range from 0 to 255), so it can be
purified into grayscale image x’ (H x W x C, where C =1
and values range from 0 to 255). Then, the process from
step (c) to step (e) could be implemented for the second
time. After the new training round, if FT metrics still
outperform RT metrics, grayscale image x’ could be puri-
fied into binary image x“ (H x W x C, where C = 1 and
values are 0 or 1) to implement step (c) to step (e) for the
third time. This process is iterated until FT and RT metrics
both perform well.

The “purification,” i.e., dimensionality reduction pro-
cess, is aimed at uncovering the fundamental reasons
behind correlations between two variables. For instance,
when a high-dimensional index (e.g., a RGB image) can
serve as a hint to generate a certain low-dimensional index
(e.g., numerical values), it implies that the high-dimen-
sional index contains information capable of characterizing
that low-dimensional index. While, if the low-dimensional
index cannot generate the original high-dimensional data
(e.g., the RGB image) conversely, it suggests that the low-
dimensional index carries less information than its high-
dimensional counterpart. In such cases, applying dimen-
sionality reduction (e.g., converting a RGB image to
grayscale or binary image) helps reduce information
redundancy in high-dimensional variables. Subsequently, a
new round of mutual conversion experiments between the
information-reduced high-dimensional indicators and low-
dimensional indicators after redundancy elimination. This
simplification facilitates a deeper analysis, enabling
researchers to systematically dissect the underlying physi-
cal relationships between variables across different
dimensions, leading to isolating the high-dimensional fea-
ture subsets that exhibit strong correlations with low-di-
mensional index.

(g) 1If both FT and RT metrics perform poorly: This
indicates that the two indices cannot be reliably
transformed into one another, implying weak inher-
ent correlation between x and y (x ~ y).

(h) If both FT and RT metrics perform well: This
indicates that the two indices can be reliably
transformed into one another, suggesting strong
inherent correlation between x and y (x ~ y), i.e.,
information of x and y has significant intersections
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(x N'y) or effective information density of x and
y are equivalent (x = y).

The following takes DMs as the chosen generative
models to explore the inherent correlation of soil properties
based on soil image, cone index curve, and TDR waveform
to demonstrate the experimental results of the above
method.

3 Excavated soil multi-source
heterogeneous database

3.1 Excavated soil information collecting system
(ESICS)

In Xiecun Wharf, the largest platform for transferring
excavated soils in China, an excavated soil information
collecting system (ESICS) was developed to sample soil
multi-source heterogeneous data [21, 56]. The Wharf
serves as Hangzhou’s centralized trading hub for excavated
soils, receiving materials transported by vehicles from
nearly 20 foundation and subway projects within a
500-square-kilometer radius. Here, soils are unloaded from
trucks and transferred onto vessels for further transporta-
tion. By consolidating multi-source soil data at Xiecun
Wharf—rather than collecting information separately from
scattered construction sites—data can be more diverse and
be collected more efficiently. This centralized approach
enables a comprehensive analysis of soil types and char-
acteristics across Hangzhou, leading to a representative
dataset. Figure 4 shows the configuration and core ele-
ments of the ESICS. Installed at the entrance of the Xiecun
Wharf, ESICS employed a multi-sensor approach to effi-
ciently gather multi-source heterogeneous data about the
excavated soils carried by vehicles. All sensors were
assembled into the rapid detection and classification sta-
tion. Digital cameras were used to capture soil images
inside vehicle cars from the overhead views. Time domain
reflectometry (TDR) cone penetrometer was used to mea-
sure mechanical properties through the cone index curve
from the soil surface to 40 cm depth subsoil [55]. Addi-
tionally, the TDR cone penetrometer recorded TDR
waveforms at 40 cm depth subsoil, which provided insights
into moisture content, fine particle content, and even ion
compound presence, factors that characterize both engi-
neering and environmental properties of soils. All collected
data, including imaging data, mechanical data, and elec-
trical data were displayed on a soil info interactive panel
and stored for further analysis. This advanced in situ-tool-
based approach allows for accurate identification of soil
types and assessment of their quality, which is vital for
determining their sustainability for various utilizations.
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Rapid detection & classification station

T

Fig. 4 Excavated soil information collecting system (ESICS)

The used TDR cone penetrometer consists of four
semicircularly shaped stainless-steel conductors which
were placed around a 30-mm-diameter poly-ether-ether-
ketone (PEEK) shaft through steel nails. The conductors
had a diameter of 8 mm and a length of 150 mm. One pair
of two opposite conductors was connected to the inner
conductor of a 50 Q-impedance coaxial cable through
soldering. The shield of the coaxial cable was connected to
the other pair of opposite conductors. Considering the
existence of PEEK shaft, the dielectric permittivity and
electrical conductivity measured by TDR penetrometer
need to be converted into that of soil around the probe
through calibration. Mixtures of ethanol (dielectric per-
mittivity is about 16)—deionized water (dielectric per-
mittivity is about 80) with different concentrations (from 0
to 100%, 20% by interval) were selected as target mediums
to calibrate the dielectric permittivity. The dielectric per-
mittivity of target medium measured by three-rod TDR
probe and the At measured by TDR penetrometer can be
fitted. The fitted linear relationship between Af* and
dielectric permittivity (&) are fitted as
£ = —2.878 4+ 1.50 - Ar". The value of R is about 0.99.
CuSO, solution with different concentrations (from O to
0.030 mol/L, 0.005 mol/L by interval) was used as target
mediums to calibrate the electrical conductivity. The
electrical conductivity of target medium measured by
three-rod TDR probe and the V,/V, measured by TDR
penetrometer can be fitted. The fitted linear relationship
between Vy/V . and electrical conductivity (EC) is fitted as

Camera for capturing soil image

Cone index

TDR waveform (Dielectric
constant, Electrical conductivity)

TDR cone penetrometer

Soil info interactive panel

EC = —125.1 +206.8 - V/V,. The value of R* is about
0.99. A calibration procedure was also developed to cor-
relate the TDR cone penetrometer’s force sensor outputs
with standard cone penetrometer measurements, deriving
an empirical transfer function for cone index estimation.

3.2 Database configuration

The data collection for this study began on October 1,
2021, and lasted for approximately two months. Sampling
is conducted daily from 8:00 AM to 4:00 PM. Each day,
one channel is randomly selected for sampling, and every
soil-transport truck passing through that channel undergoes
systematic sampling and data collection. This sampling
strategy ensures data diversity and randomness, enabling
an accurate representation of the distribution patterns of
excavated soil types. A total of 3243 data groups were
collected, with each group consisting of one soil original
image (Fig. 5a), one cone index (CI) curve (Fig. 5b), and
one TDR waveform (Fig. 5c). The original soil image
(Fig. 5a) captures the entire soil inside a vehicle. To
enhance the dataset and better represent small-scale fea-
tures of soil surface morphology, a data augmentation
strategy was applied. In detail, the soil original image in
Fig. 5a was segmented into 93 sub-images of size
224 x 224 like Fig. 5a. Due to the fact that all these 93 soil
sub-images are from the same vehicle, they also share the
same cone index curve, TDR waveform, and soil infor-
mation record. In this way, one piece of data can be
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Fig. 5 Database configuration

expanded into 93 pieces of data, helping the model to learn
the morphological features of soil accurately. This data
augmentation strategy expands 3243 groups of original
data into 23,122 groups, enabling the model to better learn
soil morphological features.

The CI curve represents cone index values across depths
from O to 40 cm in the form of single-column array con-
taining 41 elements (Fig. 5b). This data exhibits strong
spatial-series characteristics, as adjacent values are physi-
cally related. Therefore, CI curves are suggested to be
analyzed holistically rather than as isolated data points.
Similarly, the TDR waveform is time-series data consisting
of 2048 data points over approximately 1000 ns (Fig. 5c).
This data is frequently used to estimate soil moisture
content and electrical conductivity, which are linked to soil
texture, fine particle content, and ion compound content.
Like the CI curve, the TDR waveform also requires holistic
analysis to preserve its temporal correlations.

The ESICS at Xiecun Wharf exemplifies a sophisticated
data collection system that enhances the efficiency of soil
information gathering. By developing the multi-source
heterogeneous database using advanced techniques, it not
only facilitates the processing of vast quantities of geo-
materials but also contributes to a deeper understanding of
soil characteristics.

The particle size distribution (PSD) of soil samples is
shown in the soil texture triangle of Fig. 6. Based on Ayers
et al. [5], the USCS classification can map onto the United
States Department of Agriculture (USDA) triangle and
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Fig. 6 Soil types in the USDA&USCS soil triangle

divide soils into nine types as clean sands (SW and SP),
clean sands to sands with fines of silts (SW/SP-SM), clean
sands to sands with fines of clay (SW/SP-SC), sands with
fines of silts (SM), sands with fines of clay (SC), lean silt
(ML), elastic silt (MH), lean clay (CL), and fat clay (CH).
Obviously, the soil samples in this database were domi-
nated by fine-grained soils, thus the generalization ability
of the model in fine-grained soils can be guaranteed.
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4 Case studies
4.1 Case design

To study the inherent correlation between soil images
(visual information), cone index curves (mechanical indi-
cators) [31], and TDR waveforms (electrical indicators),
three cases were designed to investigate the modal trans-
formation of these multi-source heterogeneous data, as
shown in Fig. 7:

Case 1 aims to investigate the inherent correlations
between soil images and cone index curves. The soil
RGB color image was used as the input data to generate the
cone index curve (forward test); the cone index curve was

then used as the input data to generate the soil RGB color
image (first-round reverse test); next, the RGB images in
the dataset were purified into grayscale images. The cone
index curve was used as input data to generate the soil
grayscale images (second-round reverse test); finally, the
grayscale images were further purified into binary images.
The cone index curve was used as input data to generate the
soil binary images (third-round reverse test).

Case 2 aims to investigate the inherent correlations
between soil images and TDR waveforms. The soil RGB
color image was used as the input data to generate the TDR
waveform (forward test); the TDR waveform was then used
as the input data to generate the soil RGB color image
(first-round reverse test); next, the RGB images in the
dataset were purified into grayscale images. The TDR
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waveform was used as input data to generate the soil
grayscale images (second-round reverse test); finally, the
grayscale images were further purified into binary images.
The TDR waveform was used as input data to generate the
soil binary images (third-round reverse test).

Case 3 aims to investigate the inherent correlations
between cone index curves and TDR waveforms. The
cone index curve was used as the input data to generate the
TDR waveform (forward test); the TDR waveform was
then used as the input data to generate the cone index curve
(reverse test).

The generative-model-based experiments involved the
transformation between 2D data (soil images) and 1D data
(cone index curves and TDR waveforms), as well as the
transformation between 1D datasets. These tests ultimately
revealed the inherent relationships among the three types of
soil indices in different modalities.

4.2 DDPM architecture

Figure 8 illustrates the framework of the denoising diffu-
sion probabilistic models (DDPMs) used in the experiment
[6, 40, 42]. In the forward process, noise is incrementally
added to the data until the original data becomes Gaussian
distribution. At each time step ¢, the data point was sampled
from the Gaussian distribution g(x,lx,.;) derived from the
previous time step x;.;.

qlafrir) = N (x5 /T= Boxir, BT (1)

q(x; x.q)

init.conv

where f3; € (0,1) is the variance schedule; [ is the identity
matrix.

In the reverse process, the goal is to denoise images
iteratively to get an image with less noise. A time-depen-
dent function approximator was employed to predict the
Gaussian distribution p(x,_;lx,) at each step.

p(xi—1lx) = N(xi-1; 1 (xi, 1), 041 (2)

i, (1) ~ % (xt _ %a,) 3)

o :=1—p, (4)

where ¢, is the noise introduced in step 7. The model aims to
learn this distribution to denoise images by reverse con-
ditional probability. So, a neural network ¢y (x;, ) should be
trained to approximate the introduced noise distribution.
The model architecture for this process is typically a U-
Net. During the sampling phase, sinusoidal encoding was
used to encode the timestep ¢, and suitable embedders were
utilized to pass prompts into the model. For example, in the
task of generating soil images from cone index curves, the
cone index curve was encoded as a factor using an LSTM
for cone index curves representing spatial-series data.
Similarly, in the task of generating soil images from TDR
waveforms, LSTM was also used to encode the time-series
data of the TDR waveform. If the input data is an image,
the corresponding encoder should be CNN. The U-Net
structure consisted of down-sampling and up-sampling
streams, connected by skip connections to merge shallow
and deep features. In the encoding part (down-sampling),
blocks of max pooling are followed by convolutional

ResBlock

Skip connection

down2

il
I up0

hdn ===

I
I
T

Fig. 8 DDPM architecture
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layers, group normalization, and GELU (Gaussian error
linear unit) activation functions. The decoding part (up-
sampling) mirrors this structure, using bilinear up-sampling
followed by convolutional layers, group normalization, and
GELU activation functions. To enhance training stability
and gradient flow, ResNet blocks are incorporated into the
sampling modules. Each layer in the framework includes
two residual blocks, with embeddings passed into each
block. Additionally, down-sampled, up-sampled, and pre-
residual values are returned and stored for use in residual
concatenated skip connections. This design ensures effi-
cient feature propagation, enabling the model to effectively
capture hierarchical information and represent complex
data distributions. Specific algorithm parameters are shown
in Tables 1 and 2, as well as some hyperparameters are
shown in Table 3.

5 Model training settings and performance
metrics

During the model training, the number of sampling time-
steps was set to 400. To reduce unnecessary computational
costs, the image resolution in the dataset was resized from
224 x 224 to 84 x 84. The number of epochs was set to
100, with an initial learning rate of le—3. A linearly
decaying learning rate was used to progressively adjust the
learning rate, and the Adam optimizer was employed. The
MSE loss was selected as the loss function.

To evaluate the effectiveness of the trained model, it is
essential to select appropriate performance metrics. For
image generation tasks, the metrics used were structural
similarity index measure (SSIM) and learned perceptual
image patch similarity (LPIPS).

SSIM measures the structural similarity between the
generated and ground truth images, reflecting the preser-
vation of spatial details and perceptual quality.

Table 1 Algorithm parameters in case generating images based on cone index

Component Layer type Parameters Input shape Output Activation
shape
Residual Conv2d + BN + GELU in_chan, out_chan, kernel = 3 x 3, stride = 1, B,in_c, H W B, out_c, H, GELU
ConvBlock padding = 1 w
Conv2d + BN + GELU out_chan, out_chan, kernel = 3 x 3, stride = 1, B,out_c, HL W B, out_c, H GELU
padding = 1 W
UnetDown Residual ConvBlock x 2 in_chan — out_chan B,in_c, H W B, out_c, H/ -
2, W/2
MaxPool2d kernel = 2, stride = 2 B,out_c, HL W B,outc, H /
2, W/2
UnetUp Conv Transpose2d in_chan, out_chan, kernel = 2 x 2, stride = 2 B,in_c, HL W B, out_c, -
2H, 2W
Residual ConvBlock x 2 out_chan — out_chan B, out_c, 2H, B, out_c, GELU
2W 2H, 2W
Embed LSTM input_size = 2, hidden_size = emb_dim, B, B, emb_dim GELU
LST™M num_layers = 2, batch_first = True seq_len = 40,
2
EmbedFC Linear + GELU + Linear input_dim — emb_dim — emb_dim B, input_dim B, emb_dim GELU
CiUnet Initial Conv in_channels = 3 — n_feat = 64 B, 3, 84, 84 B, 64, 84,84 —
Downl 64 — 64 B, 64, 84, 84 B,64,42,42 -
Down2 64 — 128 B, 64, 42, 42 B, 128,21, -
21
AvgPool2d kernel = 4 B, 128, 21, 21 B, 128,5,5 GELU
UpO (Transpose) 128 — 128, kernel = 5, stride = 4 B, 128, 5,5 B, 128, 21, RELU
21
Upl 256 — 64 (with skip from Down2) B, 256, 21, 21 B, 64,42,42 -
Up2 128 — 64 (with skip from Downl) B, 128, 42, 42 B, 64, 84,84 —
Output Conv 128 - 64 - 3 B, 128,84,84 B, 3,84,84 -
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Table 2 Algorithm parameters in case generating cone index based on images

Component Layer type Parameters Input shape  Output Activation
shape
Residual Convld + GELU in_chan, out_chan, kernel = 3, stride = 1, B,in_c, L B, out_c,L GELU
ConvBlock padding = 1
Convld + GELU out_chan, out_chan, kernel = 3, stride = 1, B, out_c, L B, out_c, L GELU
padding = 1
UnetDown Residual ConvBlock x 2 in_chan — out_chan B, in_c, L B,out_c,L/ -
2
MaxPoolld kernel = 2, stride = 2 B,out_c,L B,outc L/ -
2

UnetUp Conv Transposeld in_chan, out_chan, kernel = 2, stride = 2 B,in_c, L B, out_c, 2L -
Residual ConvBlock x 2 out_chan — out_chan B, out_c, 2L B, out_c, 2L GELU

EmbedCNN ResNetl18 + Linear Pretrained ResNet18 — Linear B, 3, 224, B, emb_dim RELU

(512 —» emb_dim) 224
EmbedFC Linear + GELU + Linear input_dim — emb_dim — emb_dim B, B, emb_dim GELU
input_dim

WaveUnet Initial Conv in_channels = 1 — n_feat = 64 B, 1, 40 B, 64, 40 —
Downl 64 — 64 B, 64, 40 B, 64, 20 -
Down2 64 — 128 B, 64, 20 B, 128,10 -
AvgPoolld kernel = 4 B, 128, 10 B, 128, 5 GELU
UpOTranspose 128 — 128, kernel = 2, stride = 2 B, 128, 5 B, 128, 10 RELU
Upl 256 — 64 (with skip from Down2) B, 256, 10 B, 64, 20 -
Up2 128 — 64 (with skip from Downl) B, 128, 20 B, 64, 40 -
Output Conv 128 - 64 - 1 B, 128, 40 B, 1, 40 -

Table 3 Training hyperparameter settings

Parameter CI — img img — CI

Value  Description Value  Description

timesteps 600 Diffusion steps 400 Diffusion steps

n_feat 64 Base channel 64 Base channel
dimension dimension

n_cifeat 10 CI feature 100 Image feature
dimension dimension

height 84 Input image 40 Input waveform
height/width length

batch_size 32 Training batch 32 Training batch
size size

Irate le—3  Initial learning le—3  Initial learning
rate rate

betal/beta2 le—4/ Noise schedule le—4/ Noise schedule

0.02 bounds 0.02 bounds

(u, +C1) 200 + C)

SSIM(x,y) =
(u,% + 5+ C1> <a§ + a2+ C2>

(5)

where p, and p, are the mean values of image x and image
y; o, and o, are the variances of image x and image y; Oy,
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is the covariance between the images; C; and C, are con-
stants to prevent division by zero. The SSIM value ranges
between — 1 and 1. When SSIM = 1, it indicates that the
two images are identical in terms of structure, luminance,
and contrast. When SSIM < 0, it suggests that the gener-
ated image has poor quality and a significant deviation
from the reference image. In general, higher SSIM values
indicate better structural similarity and perceptual quality
between the compared images.

LPIPS measures the perceptual similarity between two
images based on deep network features. Unlike SSIM,
LPIPS focuses on the similarity of images in the deep
feature space, which better aligns with human visual per-
ception. By using a pre-trained CNN (such as VGG or
AlexNet), the deep features of the images are extracted,
and the distance between these features is calculated:

LPIPS(x,y) = Zﬁz fE(how) — £ (how)|[; (6)
1 hw

where f] and f; are the features of the /-th layer in the
network for image x and image y; H; and W, are the height
and width of the feature map at the /-th layer; |la — b||,
denotes the Euclidean distance. The LPIPS typically falls
in the range of O to 1. When LPIPS = 0, it indicates that the
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two images are identical in terms of perceptual similarity
(minimum perceptual distance). When LPIPS ~ 1, it
indicates that the two images are very different perceptu-
ally (maximum perceptual distance). A lower LPIPS value
indicates that the two images are more similar and per-
ceptually closer.

For waveform generation tasks, the performance metrics
adopted were root-mean-square error (RMSE) and mean
absolute error (MAE).

RMSE = ,/%z"j i — 1) (7)

1< -
MAE = ;Z lyi — ¥il (8)
i=1

where y; is the true value, y; is the predicted value, and n is
the sample amount.

The selection of SSIM, LPIPS, RMSE, and MAE as
evaluation metrics provides a comprehensive framework
for assessing generated data quality from multiple per-
spectives. For image data, SSIM is used to measure
structural similarity between generated and real data (lu-
minance, contrast, structure), while LPIPS quantifies per-
ceptual similarity using deep features (VGG/AlexNet) and
captures high-level semantic differences (e.g., texture pat-
terns, morphological features). SSIM and LPIPS work
synergistically to diagnose data errors in generated data
from the perspectives of local structural distortion, global
deviation, and semantic anomalies. Moreover, SSIM is
based on a physiological model of the human visual system
(HVS), and LPIPS encodes object recognition prior
knowledge acquired from ImageNet training, thus provid-
ing physical interpretability. For waveform data, RMSE
and MAE are used to provide quantitative rigor for deter-
ministic tasks and validate whether generated data meet
physical constraints, enabling error diagnosis from the
perspectives of global deviation and numerical drift. When
the generated index y is a two-dimensional, performance
metrics such as SSIM and LPIPS can be chosen to assess
the degree of correlation; when y is one-dimensional, the
RMSE and MAE can be chosen for correlation assessment.

6 Results and analysis
6.1 Image and cone index curve

This case was used to explore the inherent correlation
between soil images and cone index curves. Figure 9
shows the performance metrics (SSIM is black and LPIPS
is red) during the training of the FT and RT models. In the
experiment of generating RGB soil images based on cone

4991
1.0 1.0
—=— SSIM

038 '\ T

0.6 40.6 »n
2 u &
7} e g =
@ .44 u u n ] n L ] L 04 2

0.2 402

0.0 T T T T 0.0

0 20 40 60 80 100
Epoch

(a) Case of colorful soil image generation based on cone index curve

1.0 1.0
—a— SSIM

0.8 —m—LPIPS ] 0.8
E 0.6 1 40.6 g
7] [y
0.4 [ ] 0.4~

i—a—8—8—8— g —808—5—n
0.24 40.2
0.0 T T T T 0.0
0 20 40 60 80 100
Epoch

(b) Case of binary soil image generation based on cone index curve

600 600
480 - 480
m 360 360
‘é’ <
240 - 240 =

120 4 120
0 10
0 100

(c) Case of cone index curve generation based on colorful soil image

Fig. 9 Performance metrics of model training (img < CI)

index curves (Fig. 9a), the training performance stabilized
after approximately 20 epochs. The final SSIM was around
0.34 and LPIPS was around 0.45, indicating that the pixel
similarity between the soil RGB images generated based on
cone index curves and the real images was low, and there
were significant perceptual differences. The overall image
quality was not good. In the experiment of generating
binary soil images based on cone index curves (Fig. 9b),
the training performance also stabilized after approxi-
mately 20 epochs. The final SSIM was around 0.41 and
LPIPS was around 0.32, suggesting that after removing
color-related information from the soil images, the model’s
training performance improved. The pixel similarity
between the binary soil images generated based on cone
index curves and the real binary images was high, and the
perceptual differences were significantly reduced. In the
experiment of generating cone index values based on soil
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Fig. 10 Generated colorful soil images based on cone index curve

RGB images (Fig. 9¢), the training performance stabilized
after approximately 20 epochs. The final RMSE and MAE
reached 30.6 and 24.1, respectively, indicating that the
average deviation between the predicted cone index values
and the actual cone index values was around 30.

Figure 10 shows the model testing results for generating
soil images based on cone index curves. From left to right,
there are based CI curves, the predicted colorful images,
the real colorful images, the predicted binary images, and
the real binary images. When predicting RGB images, the
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model exhibited significant uncertainty. For coarse-grained
soils with CI values above 200 kPa, Fig. 10al, Fig. 10cl,
and Fig. 10d1 were perceptually similar to their corre-
sponding real images Fig. 10a2, Fig. 10c2, and Fig. 10d2.
However, there was a significant color difference between
Fig. 10bl and its corresponding ground truth Fig. 10b2.
For fine-grained soils with CI values below 200 kPa,
Fig. 10el and Fig. 10gl were perceptually similar to their
corresponding real images Fig. 10e2 and Fig. 10g2, but
Fig. 10f1 and Fig. 10hl show considerable color
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differences compared to the real images Fig. 10f2 and
Fig. 10h2. Obviously, it is uncertain to generate RGB
images based on cone index curves, indicating that the
information contained in cone index curves does not
include soil color characteristics. Therefore, when soil
color information was removed, the similarity of binary
images generated from cone index curves improved sig-
nificantly. Figure 10a3-h3 generally reflects the apparent
morphologies of their corresponding real soil images
Fig. 10a4—h4. There is a noticeable discrepancy between
the RGB images generated using the cone index curve as a
hint and the actual RGB images. This implies that the cone
index does not capture information about the soil’s mineral
composition, making it difficult to accurately represent the
soil’s color characteristics. Consequently, the predicted
colorful images exhibit disordered color information.
However, the cone index data can effectively reflect tex-
tural features such as particle size and moisture content. As
aresult, the predicted binary images generated based on the
cone index show a high degree of similarity to the real
binary images. This is because binary images discard color
information, allowing the cone index’s inherent ability to
characterize soil properties to be more effectively excited.

Figure 11 illustrates the model testing results for gen-
erating cone index curves based on soil RGB images. On
the left are the based colorful images, and on the right are
the predicted CI curves (black) compared with the real CI
curves (red). To ensure the physical significance of the
generated cone index curves, normalization was applied in
the training code to guarantee all cone index values remain
positive. It can be observed that the real cone index curves
generally exhibited a trend of gradual increase with depth.
The predicted cone index curves roughly replicated this
trend and fluctuated within the range of the real curves.
However, the predicted curves showed significant data
volatility. For example, in Fig. 11a, the range of the pre-
dicted curve was 168.5 kPa, while the real curve’s range
was 100 kPa. In Fig. 11b, the ranges were 181.4 kPa and
80 kPa. In Fig. 11c, the ranges were 199 kPa and 78 kPa.
In Fig. 11d, the ranges were 161.3 kPa and 76 kPa. In
Fig. 11le, the ranges were 131.4 kPa and 66 kPa. In
Fig. 11f, the ranges were 87.1 kPa and 54 kPa. Moreover,
the predicted curve’s maximum and minimum values
appeared more randomly compared to the real curves,
where the maximum values typically occurred at the
deepest depth and the minimum values at the shallowest
depth. It can be inferred that soil colorful images contain
mechanical characteristics related to the cone index (as the
range and trends of the predicted curves were generally
consistent with the real curves). However, impurities and
random pixels in the images can affect the accuracy of the
generated cone index curves, leading to fluctuations and
discrepancies in the predicted values.

6.2 Image and TDR waveform

This case was used to explore the inherent correlation
between soil images and TDR waveforms. Figure 12 shows
the performance metrics during the training of the FT and
RT models. In the experiment of generating RGB soil
images based on TDR waveforms (Fig. 12a), the training
performance stabilized after approximately 40 epochs. The
final SSIM was around 0.31 and LPIPS was around 0.42,
indicating that the pixel similarity between the soil RGB
images generated based on TDR waveforms and the real
images was also low, and there were significant perceptual
differences. The overall image quality was not good. In the
experiment of generating binary soil images based on TDR
waveforms (Fig. 12b), the training performance stabilized
after approximately 40 epochs. The final SSIM was around
0.40 and LPIPS was around 0.35, suggesting that after
removing color-related information from the soil images,
the model’s training performance also improved. The pixel
similarity between the binary soil images generated based
on TDR waveforms and the real binary images was high,
and the perceptual differences were significantly reduced.
In the experiment of generating TDR waveforms based on
soil RGB images (Fig. 12c¢), the training performance sta-
bilized after approximately 20 epochs. The final RMSE and
MAE reached 0.21 and 0.17, respectively, indicating that
the average deviation between the predicted TDR wave-
forms and the actual TDR waveforms was around 0.20.
Figure 13 shows the model testing results for generating
soil images based on TDR waveforms. From left to right,
there are based TDR waveforms, the predicted colorful
images, the real colorful images, the predicted binary
images, and the real binary images. When predicting RGB
images, the model also exhibited significant uncertainty.
For samples with lower water content and higher coarse
particle content (Fig. 13al-d1) (samples whose peak and
valley in the TDR waveform between 100 and 200 ns have
a shorter time interval), the predicted colorful images
might exhibit significant color distortion or even generate
anomalous samples with abnormal colors, such as
Fig. 13bl. In contrast, for samples with higher water con-
tent and higher fine particle content (Fig. 13el-h1) (sam-
ples whose peak and valley in the TDR waveform between
100 and 200 ns have a larger time interval), there were
significant overexposures on smooth surfaces. Addition-
ally, when the soil’s electrical conductivity was excessively
high (the ultimate voltage of the TDR waveform was too
low), the generated colorful image almost lack visible
pixels, as shown in Fig. 13hl. Similar to the patterns
observed in images generated based on CI curves, once the
RGB images in the training dataset were cleared, the
similarity between the predicted binary images and the real
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Fig. 12 Performance metrics of model training (img < TDR)

images generated based on TDR waveforms improved
significantly. The pixel distribution in the predicted binary
images had similarity to that in the real soil images.
Figure 14 illustrates the TDR waveforms generated
based on colorful images. On the left are the based colorful
images, and on the right are the predicted TDR waveforms
compared to the real waveforms. Generally, the predicted
waveforms appeared relatively smooth, while the real
waveforms exhibited slight fluctuations due to impedance
changes inside the cable of the detection equipment. For
the time interval between peak and valley in the 0-200 ns,
which reflects soil water content information (permittivity
of soil), the predictions demonstrated relatively good
accuracy. Across samples with water content ranging from
low (Fig. 14a) to high (Fig. 14e), there were cases where

the predictions were consistent with the real waveforms.
However, there were significant discrepancies in the pre-
diction of electrical conductivity, represented by the ulti-
mate voltage in the waveform. Some models overestimated
ultimate voltages, while some underestimated. For exam-
ple, in Fig. 14a, the ultimate voltage of the predicted
waveform was 0.64, while the ultimate voltage of the real
waveform was 0.52. In Fig. 14d, the ultimate voltage of the
predicted waveform was 0.12, while the ultimate voltage of
the real waveform was -0.12. It can be found that in cases
of overestimation, the differences between the estimation
and the real values were particularly significant. This is
because soil may contain contaminants or ionic com-
pounds, leading to excessively high electrical conductivity.
However, such contamination information cannot be
characterized in soil images, making it challenging for
TDR waveforms generated from images to accurately
predict real electrical conductivity.

6.3 Cone index curve and TDR waveform

This case was used to explore the inherent correlation
between cone index curves and TDR waveforms. Figure 15
shows the performance metrics during the training of the
FT and RT models. In the experiment of generating cone
index curves based on TDR waveforms (Fig. 15a), the
training performance stabilized after approximately 30
epochs. The final RMSE was around 27.7, and MAE was
around 20.9, indicating that the average deviation between
the predicted CI curves and the actual CI curves was
around 20-30. In the experiment of generating TDR
waveforms based on CI curves (Fig. 15b), the training
performance stabilized after approximately 30 epochs. The
final RMSE was around 0.32, and MAE was around 0.24,
suggesting that the average deviation between the predicted
TDR waveforms and the actual TDR waveforms was
around 0.30. The training performance of the models for
converting the above two types of 1D waveforms into each
other is roughly equivalent, indicating a clear inherent
correlation between them.

Figure 16 shows the model testing results for generating
CI curves based on TDR waveforms. On the left are the
based TDR waveforms, and on the right are the predicted
CI curves compared to the real curves. It can be found that
the fluctuation range of the predicted curves was roughly
equivalent to that of the real curves and showed the same
trend of gradual increase with depth. However, the pre-
dicted CI curves exhibited greater volatility and uncertainty
compared to the real ones. For example, in Fig. 16a, the
range of the predicted curve was 279.4 kPa, while the real
curve’s range was 72 kPa. In Fig. 16b, the ranges were
219.1 kPa and 78 kPa. In Fig. 16¢c, the ranges were
157.5 kPa and 108 kPa. In Fig. 16d, the ranges were
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146.5 kPa and 54 kPa. In Fig. 16e, the ranges were
122.1 kPa and 53 kPa. In Fig. 16f, the ranges were
89.6 kPa and 67 kPa. Moreover, the predicted curve’s
maximum and minimum values appeared more randomly
compared to the real curves, where the maximum values
typically occurred at the deepest depth and the minimum
values at the shallowest depth. It can be inferred that soil
TDR waveforms contain mechanical characteristics related
to the cone index (as the range and trends of the predicted
curves were generally consistent with the real curves).
However, noises in the TDR waveforms and the voltage
changes induced by environmental factors (e.g., ion com-
pounds) can affect the accuracy of the generated CI curves,
leading to fluctuations and discrepancies in the predicted
values.

Figure 17 illustrates the TDR waveforms generated
based on CI curves. On the left are the based CI curves, and
on the right are the predicted TDR waveforms compared to
the real waveforms. Generally, the predicted waveforms
appeared relatively smooth, while the real waveforms
exhibited slight fluctuations due to impedance changes
inside the cable of the detection equipment. For the time
interval between peak and valley in the 0-200 ns, which
reflects soil water content information (permittivity of soil),
the predictions demonstrated relatively good accuracy.
Across samples with water content ranging from low
(Fig. 17a) to high (Fig. 17d), there were cases where the
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predictions were consistent with the real waveforms.
However, there were also significant discrepancies in the
prediction of electrical conductivity, represented by the
ultimate voltage in the waveform. Some models overesti-
mated ultimate voltages. For example, in Fig. 17d, the
ultimate voltage of the predicted waveform was 0.44, while
the ultimate voltage of the real waveform was 0.30. In
Fig. 17e, the ultimate voltage of the predicted waveform
was (.13, while the ultimate voltage of the real waveform
was — 0.02. In Fig. 171, the ultimate voltage of the pre-
dicted waveform was (.28, while the ultimate voltage of
the real waveform was — 0.30. This is because soil may
contain contaminants or ionic compounds, leading to
excessively high electrical conductivity. However, such
contamination information cannot be characterized in CI
curves, making it challenging for TDR waveforms gener-
ated from CI curves to accurately predict real electrical
conductivity.

7 Discussions

7.1 Inherent correlations of soil multi-source
heterogeneous data

Based on the model testing results in Chapter 6, the
inherent correlations of the three types of soil multi-source
heterogeneous data are illustrated in Fig. 18. Since the CI
can be generated from RGB images, it indicates that cone
index information is embedded in soil images. However,
RGB images cannot be generated from CI, while binary
images, which retain only soil texture after removing color
information, can be generated from CI. It suggests that CI
contains texture information about the soil but does not
include color-related information, such as mineral content.
The permittivity-related information in TDR waveforms
can be inferred through RGB images, but electrical con-
ductivity-related information in TDR waveforms cannot be
accurately characterized by RGB images. It indicates that
soil images and TDR waveforms share overlapping infor-
mation related to soil water content, but soil images are
insufficient to directly represent the presence or concen-
tration of pollutants such as ionic compounds. RGB images
cannot be generated from TDR waveforms, but binary
images, which retain only texture information, can be
generated from TDR waveforms. It implies that TDR
waveforms contain texture information about the soil but
not color-related information, such as mineral content.
Since CI can be generated from TDR waveforms, it
indicates that TDR waveforms contain significant infor-
mation that of cone index. The permittivity-related infor-
mation in TDR waveforms can also be converted into CI,
while electrical conductivity-related information in TDR
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Fig. 16 Generated CI curve based on TDR waveform

waveforms cannot be accurately represented by CI. It
indicates that cone index and TDR waveforms share
overlapping information regarding soil water content, but
the cone index cannot represent the presence or concen-
tration of pollutants such as ionic compounds.

In summary, the inherent correlations of the three multi-
source heterogeneous soil indices in different dimensions
can be illustrated as shown in Fig. 18.

7.2 Pros and cons of the correlation analysis
method

The generative-model-aided correlation analysis method
soil properties proposed in this work, aims to address the
challenges of dimensional matching and information loss
encountered during the correlation analysis of multi-di-
mensional raw data. This method introduces a novel
methodology to analyzing property correlations using
neural networks. By applying this method, indices con-
taining extensive raw data with coupling relationship no
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Fig. 17 Generated TDR waveform based on CI curve

longer require feature extraction or information integration
for further analysis, thereby avoiding information loss. In
addition, leveraging the characteristics of generative
models, this method enables the correlation analysis of
indices across one-dimensional, two-dimensional, and

@ Springer

Predicted TDR waveform and real waveform

0.8
« 0.6}
-]
S 0.4¢F -
ze; 0.2} -
< 0.0F = Predicted waveform
& .02} Real waveform
_0.4 i i i i
0 200 400 600 800 1000
Time (ns)
0.8
« 0.6F
-]
S 0.4}
q’f; 0.2} -
< 0.0f = Predicted waveform
& 0.2} Real waveform
_0'4 2 2 2 2
0 200 400 600 800 1000
Time (ns)
0.8
« 0.6F
W
S 04}
:e; 0.2F _
< 0.0F = Predicted waveform
& 0.2 Real waveform
.04 . " " "
0 200 400 600 800 1000
Time (ns)
0.8
« 0.6
=%
S 04
:e; 0.2 i
< 0.0 = Predicted waveform
&~ -0.2 Real waveform
_0.4 2 2 2 2
0 200 400 600 800 1000
Time (ns)
0.8
o 0.6F [=—Predicted waveform
S 04p Real waveform
“ 0.2F
D
= 0.0 "'\f’
& 0.2}
_0.4 2 2 2 2
0 200 400 600 800 1000
Time (ns)
0.8
o 0.6} Predicted waveform
2 0.4}F tkeal waveform
=) .
: 0.2}
z 0.0
5 -0.2} Q
& 0.4}
0.6 . . . .
0 200 400 600 800 1000
Time (ns)

multi-dimensional spaces without the need for dimensional
normalization.

As for applicability, it can be observed that for coarse-
grained soils, the generated soil RGB images exhibit higher
similarity to real soil RGB images. In contrast, for fine-
grained soils, the generated RGB images often display
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Fig. 18 Inherent correlations of multi-source heterogeneous data

overexposed white spots, leading to a loss of image
information and impairing the expressive quality of the
generated results. For example, in Fig. 10, the coarse-
grained samples (a—d) exhibit a stronger granular texture in
the generated soil RGB images, whereas the fine-grained
clay samples (g and h) show excessive overexposed high-
lights in the generated RGB images, compromising the
color representation of the soil. Similarly, in Fig. 13, the
coarse-grained samples (a—c) also demonstrate more sig-
nificant granularity in the generated soil RGB images. In
contrast, the fine-grained samples (d—h) all exhibit over-
exposure, with the overexposure becoming more noticeable
as the particle size decreases and the water content
increases, ultimately leading to color distortion in the
generated clay RGB images. Regarding the generated cone
index, particle size seems not appear to have a significant
impact on the experimental results. For the generated TDR
waveforms, fine-grained samples seem more challenging to
generate accurately. As shown in Fig. 17, the TDR wave-
form generation results for samples d—f deviate consider-
ably from the real measurements. However, fine-grained
soils, due to their large specific surface area and cation
exchange capacity, tend to adsorb more free ions, leading
to inaccuracies in the generated TDR waveforms. In
summary, the coarser the soil particles, the closer the
generated indices are to the real measurements, containing
more detailed information and resulting in better model
performance.

However, this method currently has several limitations.
First, while retaining a large amount of raw data avoids
data loss, it introduces a significant amount of noise and
irrelevant information without physical significance. This
increases the difficulty of correlation analysis and may
affect accuracy. Second, when comparing the performance
metrics of trained models across different dimensions, the
lack of consistent performance metrics makes it challeng-
ing to establish a unified evaluation standard. Third, the
inherent correlations between different indices are complex
and diverse, including containment, intersection, and
complementation. At present, this method is more effective
at handling containment correlations, but it struggles to
quantitatively address intersecting relationships. Further
research on this method will focus on improving the
evaluation framework and exploring quantitative methods
for analyzing complex relationships.

The dataset supporting this study primarily consists of fine-
grained soil samples. Therefore, the findings of this research
are more applicable to silts and clays. Given the substantial
sample size of 23,122, the extensive dataset ensures strong
generalizability of the results. However, due to varying nat-
ural environmental influences across different regions, soils
exhibit distinct mineralogical compositions—such as the
black soils in Northeast China, collapsible loess in Northwest
China, and red clays in Southwest China. Since the database
does not encompass all possible soil types, the research results
inevitably have some limitations.
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To address above limitations, some measures can be
implemented: (1) Advanced Preprocessing Pipelines:
implementing wavelet transform-based denoising for TDR
waveforms to maintain signal integrity while eliminating
high-frequency noise, combined with attention-guided
masking algorithms for soil images to automatically sup-
press non-soil background interference; (2) Physics-
Informed Data Augmentation: generating physically real-
istic synthetic training data through discrete element
modeling of cone penetration tests across varied soil
compositions and stochastic process simulation of TDR
responses governed by Maxwell’s equations; (3) Hybrid
Model Architecture: replacing purely data-driven DDPM
with multimodal gating mechanisms that dynamically
adjust sensor contributions, while integrating uncertainty
quantification modules to identify and flag predictions
compromised by input noise. This integrated approach
synergistically enhances data quality, expands training
diversity with physical constraints, and improves model
robustness through principled architectural innovations.

8 Conclusions

Excavated soil, as a type of sustainable geomaterial charac-
terized by large production, low environment threat, and huge
resource potential, requires a comprehensive understanding of
engineering, environmental, and resource properties for its
utilization. In this work, an excavated soil information col-
lecting system (ESICS) was developed to gather 3243 groups
of multi-source heterogeneous data, including soil RGB
images, cone index curves, and TDR waveforms. After data
augmentation, a big database containing 23,122 sets of data
on soil surface morphology, mechanical properties, and
electrical properties was established. Then, a generative-
model-aided correlation analysis method of soil properties
was proposed. The inherent correlations of soil indices across
different dimensions in the database were investigated. The
key innovations are as follows:

1. Soil database of surface morphology, mechanical
properties, and electrical properties: A multi-source
heterogeneous database containing 23,122 sets of data
was created, including soil images (2D data), cone
index curves (1D spatial-series data), and TDR wave-
forms (1D time-series data). This database character-
izes the engineering, environmental, and resource
properties of excavated soils.

2. Generative-model-aided correlation analysis
method of soil properties: By using generative deep
learning models as research tools, data generation tests
(forward and reverse tests) are implemented between
pairs of indices with unknown relationships. The

@ Springer

performance metrics of the generative models are
compared and analyzed to determine the correlations
among the unknown indices. This method is suitable for
analyzing correlations across different dimensions involv-
ing large amounts of raw data, thereby avoiding data loss.

3. Inherent correlations of soil images, cone index, and

TDR waveforms: Using the database mentioned in (1)
as a case study, the cutting-edge generative model—
diffusion model—was employed to explore the inher-
ent correlations of the multi-source heterogeneous data
of excavated soils. The results revealed that there is
overlapping information between soil images and TDR
waveforms, and the cone index information is con-
tained within both soil images and TDR waveforms.

Future research directions are proposed to enhance the
applicability and robustness of the proposed method. First, the
framework’s application scope could be expanded to envi-
ronmental engineering and soil science domains through the
integration of soil environmental indicators and advanced
characterization data, enabling the development of compre-
hensive predictive models. Second, the multimodal data
system could be strengthened by incorporating 3D
microstructural datasets and designing adaptive fusion algo-
rithms for heterogeneous data types. Third, the deep learning
architecture could be optimized through domain-specific
neural network designs and targeted learning strategies to
improve handling of multi-source soil data. Finally, the crit-
ical transition from laboratory research to field applications
could be facilitated by validating the model under real-world
engineering conditions and developing noise-robust adaptive
algorithms for field data processing. These proposed exten-
sions would significantly advance both the scientific depth
and practical utility of the method while maintaining its rig-
orous theoretical foundation.
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