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Abstract
The sustainable utilization of excavated soil as a geomaterial requires a comprehensive understanding of its multi-

dimensional properties, but correlating heterogeneous data (e.g., visual, mechanical, and electrical characteristics) remains

a challenge. To address this, an excavated soil information collecting system was developed to acquire multi-source data

including RGB images, cone index (CI) curves, and TDR waveforms—from China’s largest soil transfer platform,

establishing a database of 23,122 sets. A generative-model-aided correlation analysis framework was proposed, leveraging

a denoising diffusion probabilistic model to explore inherent relationships between soil properties. Performance metrics,

such as SSIM, LPIPS, and RMSE, were employed to analyze the model’s training results. Key findings reveal that: (1) soil

images encode water content information, which correlates with CI curves and TDR waveforms; (2) CI and TDR data

cannot capture color-based mineral composition details from images; and (3) TDR waveforms uniquely detect pollution

indicators (e.g., electrical conductivity), undetectable via other methods. This AI-driven approach provides a novel

methodology for analyzing multi-dimensional property correlations in geotechnics, enhancing sustainable soil reuse.
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1 Introduction

1.1 Excavated soils: sustainable geomaterials
with potentials for utilization

Excavated soils are geomaterials generated from building

foundation pit excavation, tunnel excavation, channel

excavation, and other engineering excavations [23]. In

developed countries like European Union, excavated soils

account for 59% of the total construction and demolition

wastes (CDW) generation [16]. In developing countries

like China, excavated soils even account for 70–80% of

CDW generation [22]. Excavated soils are currently

regarded as waste under EU law and commonly disposed in

landfills [18, 21]. However, more than 90% of these soils

are not contaminated and could be utilized according to

their engineering properties, environmental properties, and

resource potentials [56]. For example, pure soils with

moisture content below 1.5 times liquid limit can be

directly backfilled as agricultural land or construction land;

inert soils with organic matter content less than 5% can be

compacted-solidified or casted-solidified as engineering

fillers; soils with pH value 5–10, moisture content\ 40%,

and LOI\ 50% can be used as sinter-free products or

sintered products [57]. Obviously, the effective reuse of

environment-friendly excavated soils as sustainable geo-

materials depend on a comprehensive understanding of

multiple characteristics including sand content, organic

matter content, mineral compositions, and so on. These

properties are typically captured through diverse detection

methods—such as image-based analysis, stress–strain

curve fitting, and electrical waveform profiling—yet their

interdependencies remain underexplored in practice. The

identification of interrelationships among diverse indicators

facilitates the use of easily measurable parameters as

proxies for critical but labor-intensive measurements,

allowing for efficient on-site assessment and classification

of excavated soils while improving sustainable geomaterial

management.

1.2 Inherent correlations of soil multi-
dimensional properties

Studying the correlations between soil properties is a

classic topic in geomaterial research, helping to infer

indicators that are difficult to measure directly based on

easily obtainable ones. Carter and Bentley [11] presented

typical values of engineering properties for various types of

soils, together with correlations between different proper-

ties. By analyzing a large amount of laboratory data, cor-

relations between difficult-to-measure indices (e.g., frost

susceptibility and swelling potential) and classical indices

(e.g., grading, plasticity, density, permeability, consolida-

tion, and shear strength) were discussed [12]. Furthermore,

Ameratunga et al. [3] combined numerous field data from

in situ testing such as standard penetration test (SPT), cone

penetration test (CPT), pressuremeter test (PMT),

dilatometer test (DMT), and vane shear test (VST),

bridging the gap between laboratory data and field data.

Verbrugge and Schroeder [52] compiled empirical formu-

las between soil properties and classified them in different

scenarios from the perspective of geotechnical

practitioners.

Nowadays, besides studying soil engineering properties

[26, 59], some scholars have begun to consider environ-

mental properties and resource properties, and compre-

hensively analyze the soil multi-source heterogeneous data

[17, 46]. Meimaroglou and Mouzakis [36] investigated the

influence of clay fraction content, specific surface area

(SSA), cation exchange capacity (CEC), and mineralogy

on earth mortars. It was found that compressive strength

depends mainly on SSA and CEC, with weaker correlations

for clay content and iron oxides. Sainju and Liptzin [44]

and Sainju et al. [45] related soil physicochemical prop-

erties (soil pH, electrical conductivity, CEC, and nutrient

concentrations) to soil health properties. The importance of

CEC, inorganic P, and K was identified, and some novel

indicators such as average slake aggregate (ASA) was

proposed. Studies about correlations between soil physic-

ochemical properties and biological properties were also

implemented. Soil organic matter content (SOM), particle

size distribution (PSD), CEC, porosity, and water holding

capacity are all critical indices discussed [28, 34, 51]. In

addition, soil images containing texture and color infor-

mation were noticed. Teixeira and Basch [49] carried out a

campaign to explore the correlations between visual soil

assessment (VSA) soil indicators (e.g., structure, porosity,

stability, soil color, and surface ponding) and measured soil

properties (infiltration rate, pH and labile organic carbon,

SOM). Olivares et al. [39] analyzed the relationships

between the visual evaluation of soil structure (VESS) and

soil properties. VESS is validated to be a reliable semi-

quantitative method to assess soil quality and could be

considered a promising visual predictor of soil physical

properties such as bulk density, SOM, and soil penetration

resistance.

To note, different soil indicators are multi-source

heterogeneous. For example, the result of CPT is a curve

distributed along the depth, and pH is just a value.

Therefore, when exploring the correlation of these indica-

tors, it is necessary to artificially adjust high-dimension

data, such as extracting the uniformity coefficient (Cu) and

coefficient of curvature (Cc) from the PSD curve to get

some single values for direct analysis, but this operation

destroyed the richness of the raw data. Classical correlation
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analysis methods include Pearson r correlation, Kendall

rank correlation, and Spearman rank correlation. Pearson

r correlation excels at measuring linear relationships

between two continuous variables, providing intuitive

results (- 1 to 1) with strong interpretability. Spearman

rank correlation is suitable for assessing monotonic rela-

tionships (linear or nonlinear) based on data ranking, while

Kendall rank correlation measures ordinal concordance,

making it ideal for small samples or data with numerous

ties—its results are equally intuitive (s = 1 indicates per-

fect agreement, s = - 1 perfect disagreement). Both

Spearman and Kendall methods can analyze sequential

data correlations [9, 10, 13]. Fan et al. [19] investigated

aged/rejuvenated asphalt’s chemical-rheological correla-

tions through DSR, BBR, and FTIR tests. Gray entropy

correlation analysis (GECA) revealed strong correlations

([ 0.96) between SI/CI indices and rheological parameters

(G*, d, S). Ching et al. [15] developed a multivariate

probability distribution model for coarse-grained soil

parameters using the SAND/7/2794 database. The model

effectively captures parameter correlations and serves as a

Bayesian prior, updatable with site-specific data. While

offering a consistent uncertainty integration framework, the

authors caution against extrapolation beyond the database

scope, noting similar limitations apply to conventional

regression approaches. Roy et al. [43] employed machine

learning (GPR, RFR, DTR) to analyze correlations between

mix design parameters and mechanical properties of rice

husk ash concrete. The high R2 values (0.964–0.969)

demonstrate strong predictive correlations, particularly for

DTR models. PDP analysis further reveals key parameter-

strength relationships, providing quantitative correlation

insights that surpass conventional experimental approa-

ches. The ML framework effectively captures nonlinear

correlations, offering a robust alternative to labor-intensive

laboratory testing for RHAC optimization. Liu et al. [32]

developed novel correlations between resilient modulus

(Mr) and CPTU indices for clayey soils using a multivariate

normal distribution framework. By combining Box-Cox

transformation, Pearson correlation analysis, and Bayesian

updating with bootstrap uncertainty quantification, the

method reliably predicted Mr from cone tip resistance,

sleeve frictional resistance, moisture, and dry density.

While showing good accuracy for Jiangsu clays (124

datasets), caution is needed for global applications due to

potential regional biases. In recent years, with the

advancement of deep learning, neural networks have

gained popularity in correlation analysis. They are appli-

cable not only to bivariate correlations but also to ternary

and more complex relationships [58]. Michon et al. [38]

employed quantitative structure–property relationship

(QSPR) methods and neural networks to identify nonlinear

relationships between chemical and rheological properties.

Strechan et al. [48] used artificial neural networks (ANNs)

to derive correlations between the enthalpy of vaporization,

the surface tension, the molar volume, and the molar mass

of a substance. Karabulut and Koyuncu [27] developed

neural network models to establish correlations of thermal

conductivity with temperature and density for propane.

Asghari et al. [4] proposed a DNN-based framework for

analyzing complex correlations in engineering metrics,

utilizing 1,101 clay samples to study the relationship

between undrained shear strength and factors such as liquid

limit, plastic limit, water content, vertical effective stress,

and preconsolidation stress, demonstrating strong perfor-

mance in handling nonlinear interactions and uncertainties.

Alessandrini et al. [2] introduced a neural network-based

correlation analysis framework to enhance electroen-

cephalography (EEG)-speech stimulus response detection.

By implementing a single multilayer perceptron (MLP)

with a correlation-optimized loss function, their method

outperformed traditional linear canonical correlation anal-

ysis (CCA), achieving a 10.56% improvement in Pearson

correlation. While these studies primarily focus on

numerical (0D) and some sequential (1D) data, they have

yet to explore correlations involving higher-dimensional

data such as images (2D).

1.3 Multimodal generative models for exploring
soil properties

With the popularity of generative AI platforms like

ChatGPT, Google Bard, DALL-E, and Musico, the

potential of generative models including variational

autoencoder (VAE), generative adversarial network

(GAN), and diffusion model in geotechnics has begun to

gain attention [8, 47]. As for soil data optimization, Bai

et al. [7] developed an improved super-resolution method,

SRLGAN, for reconstructing high-resolution soil CT ima-

ges, addressing limitations like blurred boundaries and low

quality. Meng et al. [37] proposed the SS GAN, an unsu-

pervised shadow removal algorithm for soil surface ima-

ges, to improve soil moisture content estimation accuracy.

Wang et al. [53] proposed GCS-CVAE to address missing

data and high energy consumption in wireless soil sensors.

GCS-CVAE demonstrated superior reconstruction accu-

racy, stability, and efficiency in soil monitoring data. As

for soil behavior prediction, Tsimpouris et al. [50] pro-

posed a novel stacked autoencoder-based methodology for

transforming soil spectra into a compressed latent space to

improve soil property prediction accuracy. Applied to

LUCAS 2009 topsoil data, it reduced RMSE by up to 9.9%,

enabling simultaneous prediction of PSD, pH, CEC,

organic carbon, calcium carbonate, and total nitrogen. He

et al. [24] proposed a dynamic SOM estimation model

using GAN to enhance hyperspectral datasets. By
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generating pseudo-samples, the best model, GAN-BPNN,

achieved a 30.8% R2 increase and 44.5% RMSE reduction.

Lo Man et al. [33] used VAE to predict embankment set-

tlement and pore water pressure directly from monitoring

data, eliminating the need to update soil parameters. Chen

et al. [14] introduced a hybrid deep learning model com-

bining CVAE and Kriging to predict soil properties from

sparse geotechnical data, which was applied to CPT results.

Obviously, generative models are showing great potential

in geotechnical data imputation and property prediction

due to the capacity of decoding relationship between dif-

ferent forms of data.

Geotechnical researchers usually use classic methods

such as Spearman correlation analysis, Pearson correlation

analysis, and principal component analysis when studying

data correlations [34, 49, 51]. These methods are good at

dealing with property correlation research for data of the

same dimension but cannot handle complex correlation

research involving multi-source heterogeneous data such as

images, waveforms, and values. The Pearson/Spearman

correlation coefficients require one-dimensional numerical

vectors as input and thus cannot directly process two- or

three-dimensional data (e.g., images). Flattening an image

into pixel vectors (e.g., converting 100 9 100 pixels to a

10,000-dimensional vector) for correlation analysis with

waveform (e.g., 1000 data points) would lead to dimen-

sional mismatch (necessitating forced alignment that

compromises physical meaning) and numerical sensitivity

(where unit difference between pixel RGB values and

voltage measurements may induce spurious correlations).

While PCA is partially applicable for cross-modal corre-

lation analysis, it demands rigorous data preprocessing—

requiring transformation of multimodal data into feature

vectors with consistent dimensions. This process risks

losing critical modal characteristics (e.g., local image

topology or waveform phase information), and the results

become highly sensitive to subjective feature selection

decisions. Conversely, generative models are experts in

grasping the physical patterns behind real data, and gen-

erate new data based on the learned physical laws, which

implies potentials for correlation research. Generative

models can directly process raw heterogeneous inputs—

such as 2D/3D images, 1D waveforms, and 0D numerical

values—while preserving the complete information of each

modality. By leveraging the multilayer architecture of

neural networks to approximate arbitrarily complex func-

tions and activation functions to introduce nonlinearity,

these models enable deep mining of nonlinear relationships

across modalities. Therefore, how to use advanced gener-

ative AI tools to explore multi-source heterogeneous soil

properties has become the focus of researchers.

1.4 Objective of the study

In the present work, a generative-model-based analysis

framework for soil multi-source heterogeneous properties

was proposed. Excavated soils with significant differences

in engineering properties, environmental properties, and

resource potentials were regarded as the studied geomate-

rials. An excavated soil information collecting system

(ESICS) was developed to collect soil multi-source

heterogeneous data including soil images (2D information),

cone index curves (1D spatial-series data), and TDR

waveforms (1D time-series data). The advanced generative

model, denoising diffusion model, -aided investigation on

inherent correlations of soil multi-source heterogeneous

data was carried out, including three cases of data con-

version and generation (soil image-cone index, soil image-

TDR waveform, and cone index-TDR waveform). Some

inherent relationship between soil imaging information,

mechanical properties, and electrical properties was found.

This study provides a novel perspective with the support of

artificial intelligence methods for exploring the correlation

between geomaterial properties.

2 Principle and methodology

2.1 Soil properties and their correlations

Figure 1 shows soil three types of properties and their

triangle correlations. The engineering properties include

moisture content, grading, plasticity, permeability, con-

solidation, and shear strength, which are classical concepts

in geotechnics. The environmental properties include pH,

electrical conductivity, CEC, dissolved inorganic com-

pounds (e.g., sulfate, nitrate), and heavy metal content,

which are key indicators in environmental science. The

resource properties reflect the potential for utilization of the

geomaterials and typically include chemical elements,

mineralogy, SOM, and nutrients (e.g., nitrogen, phospho-

rus, potassium), which are of interest in soil science and

agronomy. These properties are intrinsically interrelated

and determine the sustainable utilizations of geomaterials.

For example, as for engineering attribute affecting envi-

ronmental attribute, geomaterials with more fine content

tend to adsorb more heavy metal-like pollutants; as for

environmental attribute affecting engineering attribute,

geomaterials with pollutants after biochemical degradation

will lose mass and have changes in grading, leading to

different constitutive behaviors. Regarding engineering

attribute affecting resource potential, low compressibility

geomaterials dominated by coarse sands are likely to serve

as aggregates for construction materials; regarding
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resource potential affecting engineering attribute, geoma-

terials with rich montmorillonite content are capable of

absorbing more water. For environmental attribute affect-

ing resource potential, acid soil or alkaline soil can serve as

planting materials for certain crops; for resource potential

affecting environmental attribute, peat soils with excessive

SOM tend to adsorb more heavy metals.

For instance, in image analysis applications, soil images

contain both engineering and resource-related property

information. Paul et al. [41] analyzed mortar slump varia-

tions under different rice husk powder ratios through

macroscopic mortar images while examining microstruc-

tural composition via SEM. Similarly, Kashyap et al. [29]

used SEM to observe hydration reactions in modified

concrete, explaining strength variations microscopically.

At macroscopic scales, deep learning has emerged as a

primary tool for geomaterial identification—Zhao et al.

[60] developed an enhanced YOLO model for automated

mucky soil classification in tunneling, while Yan et al. [54]

created a Bayesian-optimized image augmentation frame-

work with AlexNet/GoogLeNet for improved muck iden-

tification. Therefore, establishing bidirectional correlations

between soil images and mechanical/electrical properties

(either predicting properties from images or generating

visual characteristics from physical parameters) would

enhance understanding of fundamental physical mecha-

nisms while enabling interpretable prediction of difficult-

to-measure properties from easily obtainable indicators.

Soil properties are typically represented in different

forms of data. Classical correlation analysis methods, such

as Spearman correlation analysis, Pearson correlation

analysis, and principal component analysis, are applicable

to analyzing the relationships between values (0D). How-

ever, due to the diversity of detection methods, 1D, 2D, and

even 3D indicators are more common as raw data in test-

ing. In order to analyze these data with different dimen-

sions, conventional analysis methods often extract critical

information from high-dimension data. This dimensionality

reduction process frequently involves information loss,

making it difficult to fully characterize the true properties

of the target medium. Consequently, the identification of

inherent correlations between properties may be biased or

overlooked. This study aims to explore nondestructive

correlation analysis methods for multi-dimension data by

using soil images (2D data), cone index curves (1D spatial-

series data), and TDR waveforms (1D time-series data).

2.2 Typical generative models

In recent years, with the rapid development of deep

learning, deep generative models have been highly favored

as a novel data processing tool across various disciplines

[1, 35]. Among them, the most commonly used and effi-

cient approaches are variational autoencoders (VAEs),

generative adversarial networks (GANs), and lastly diffu-

sion models (DMs). Figure 2 illustrates their mechanisms.

VAEs, introduced by Kingma [30], are probabilistic

generative models combining autoencoders and variational

inference. VAEs encode data into a lower-dimensional

latent space with a probabilistic interpretation. These low-

dimensional latent variables (z) are latent representation of

the input data, meaning they are abstract symbols of useful

information and physical laws. Later, VAEs decode the

latent space and enable both data reconstruction and new

sample generation by sampling from the latent space.

Usually, the probability distribution of these latent vari-

ables is denoted by Gaussian distribution. VAEs have been

Inherent correlation

Engineering properties

Moisture content
Grading
Plasticity

Permeability
Consolidation
Shear strength

Environmental properties

pH
Electrical conductivity
CEC

Dissolved inorganic 
compounds
Heavy metal

Resource properties

Chemical element
Mineralogy

Organic matter
Nutrients

Fig. 1 Soil properties and their inherent correlations
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applied to tasks like image synthesis, anomaly detection,

and representation learning.

GANs, introduced by Goodfellow et al. [20], revolu-

tionized generative models with adversarial training

framework. GANs consist of two neural networks: a gen-

erator and a discriminator. The generator learns to produce

realistic data samples, while the discriminator distinguishes

between real and fake data. These networks engage in a

minimax game: the generator aims to ‘‘fool’’ the discrim-

inator by generating realistic data, while the discriminator

improves its ability to identify fake samples. Through this

adversarial process, both networks enhance each other

iteratively, enabling GANs to achieve cutting-edge per-

formance in tasks like image synthesis and data generation.

GANs were considered state-of-the-art generative models

until the recent rise of DMs.

DMs, i.e., denoising diffusion probabilistic models

(DDPMs) introduced by Ho et al. [25], are generative

models that create data by reversing a gradual noising

process. The framework involves two steps: a forward

process that adds random noise to input data step-by-step,

transforming it into pure Gaussian noise, and a reverse

process that learns to denoise this noise to reconstruct the

original data. By using neural networks, the model learns to

fine noise distribution added to training data, and the

realistic image can be reconstructed by gradually removing

the noise. This reverse process is modeled using deep

neural networks like U-Nets or transformers. By explicitly

modeling the denoising steps, DMs achieve high-quality

and diverse sample generation. Unlike GANs, DMs are

likelihood-based, providing a stable training process and

interpretable generation. While GANs and VAEs have

shown success in data generation, their limitations in

modeling soil’s multimodal nonlinearities motivated our

choice of DDPM. Specifically: (1) The adversarial loss of

GANs does not have the incentive to cover the entire data

distribution. When the discriminator has been over trained

or catastrophic forgetting happens, the generator might

tend to produce a small part of the data diversity leading to

mode collapse; (2) the latent space of VAEs is much

smaller than the image. This induces the model to predict

an average of pixels to find the optimal solution, resulting

in a blurry image. The low-quality generation might lead to

the information loss in the process of cross-modal

generation.

The evaluation of generative models spans three key

points: high-quality samples, mode coverage (diversity),

and fast sampling. While GANs excel in high-quality

samples and fast sampling, and VAEs achieve good mode

coverage with fast sampling, diffusion models (DMs)

uniquely ensure both high-quality samples and compre-

hensive mode coverage. In this study, given that the reso-

lution of augmented image samples is modified to only

84 9 84, the impact of sampling rate changes exceeding a

certain threshold on the quality of generated samples can

be negligible. Therefore, putting data diversity and sample

fidelity over sampling rate justifies the selection of DMs for

investigating inherent correlations between soil multi-

source heterogeneous data.

2.3 Correlation analysis framework

Based on the principles and characteristics of generative

models, combined with the need for correlation analysis of

multi-dimensional multi-source heterogeneous data, a

generative-model-based framework for soil property cor-

relation analysis is proposed (Fig. 3). Assuming that index

VAE

GAN

Diffusion 
models

x Encoder
q (z|x) z Decoder

p (x|z) 

Latent spaceInput space Output space

Random 
noise

Generator
G(z)

x
Discriminator

D(x) 0/1

Fake data

Real data

xT xt xt-1 x0

p (xt-1|xt) 

q(xt|xt-1) 

Fig. 2 Typical generative models
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x is RGB image and index y is one-dimensional waveform,

the framework’s workflow can be illustrated as follows:

(a) Determine the dimensions of the input variables x

and y: Identify whether the data is 3D (diorama), 2D

(image), 1D (waveform), or 0D (value).

(b) Select an appropriate deep generative model:

Choose a model such as VAEs, GANs, or DMs based

on the data requirements.

(c) Design the model structure based on data dimen-

sions: Adjust the convolutional neural network

(CNN) architecture in the generative model accord-

ing to the input data dimensions. Correlation analysis

of a pair of indices requires training two models. The

process of training the first model is called forward

test (FT), which aims to generate realistic index

y based on the input index x; the process of training

the second model is called reverse test (RT), which

aims to generate realistic index x based on the input

index y.

For example, in DMs, during FT, residual convolution

layers should be adjusted to Conv1d (as y is one-dimen-

sional), and the U-Net architecture should use Conv1d

accordingly. While in RT, residual convolution layers are

adjusted to Conv2d (as x is two-dimensional), and the

U-Net architecture should use Conv2d accordingly.

(d) Perform FT and RT sequentially: During model

training and validation, use appropriate performance

metrics to evaluate the model’s effectiveness in FT

and RT. For 2D data generation, metrics such as

Frechet inception distance (FID), learned perceptual

image patch similarity (LPIPS), inception score (IS),

and structural similarity index measure (SSIM) can

be used. For 1D data generation, metrics like root-

mean-square error (RMSE) or mean absolute error

(MAE) are commonly used.

(e) Compare the performance metrics of FT and RT:

Analyze the results to determine the relationship

between x and y.

(f) If performance metrics of one test (FT or RT)

consistently outperforms the other: It suggests that

Input: Index x

If significant differences in 
performance metrics of F&RT

Input: Index y

Comparative analysis of performance metrics in F&RT

DIM judgement

If performance metrics of 
F&RT good

N

Y

Choosing deep generative models

Case design: adjusting NN DIM based on index DIM

x y or y x

Info purification for the higher-DIM index

Y N

x y

(a)

(b)

(c)

(d)

(e)

(f)

(g)(h)

Fig. 3 Generative-model-based correlation analysis framework for soil properties
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there is an information dependency between x and

y. For example, if FT metrics are better than RT

metrics, this implies that x can be transformed into y,

but y cannot be reliably transformed back into x,

indicating that information of y is also contained

within x (y [ x).

In this case, x can be ‘‘purified’’ to reduce its informa-

tion content and explore the inherent correlation of the

purified x (x’) with y. Now, x is RGB image (H 9 W 9 C,

where C = 3 and values range from 0 to 255), so it can be

purified into grayscale image x’ (H 9 W 9 C, where C = 1

and values range from 0 to 255). Then, the process from

step (c) to step (e) could be implemented for the second

time. After the new training round, if FT metrics still

outperform RT metrics, grayscale image x’ could be puri-

fied into binary image x‘‘ (H 9 W 9 C, where C = 1 and

values are 0 or 1) to implement step (c) to step (e) for the

third time. This process is iterated until FT and RT metrics

both perform well.

The ‘‘purification,’’ i.e., dimensionality reduction pro-

cess, is aimed at uncovering the fundamental reasons

behind correlations between two variables. For instance,

when a high-dimensional index (e.g., a RGB image) can

serve as a hint to generate a certain low-dimensional index

(e.g., numerical values), it implies that the high-dimen-

sional index contains information capable of characterizing

that low-dimensional index. While, if the low-dimensional

index cannot generate the original high-dimensional data

(e.g., the RGB image) conversely, it suggests that the low-

dimensional index carries less information than its high-

dimensional counterpart. In such cases, applying dimen-

sionality reduction (e.g., converting a RGB image to

grayscale or binary image) helps reduce information

redundancy in high-dimensional variables. Subsequently, a

new round of mutual conversion experiments between the

information-reduced high-dimensional indicators and low-

dimensional indicators after redundancy elimination. This

simplification facilitates a deeper analysis, enabling

researchers to systematically dissect the underlying physi-

cal relationships between variables across different

dimensions, leading to isolating the high-dimensional fea-

ture subsets that exhibit strong correlations with low-di-

mensional index.

(g) If both FT and RT metrics perform poorly: This

indicates that the two indices cannot be reliably

transformed into one another, implying weak inher-

ent correlation between x and y (x ) y).

(h) If both FT and RT metrics perform well: This

indicates that the two indices can be reliably

transformed into one another, suggesting strong

inherent correlation between x and y (x * y), i.e.,

information of x and y has significant intersections

(x \ y) or effective information density of x and

y are equivalent (x & y).

The following takes DMs as the chosen generative

models to explore the inherent correlation of soil properties

based on soil image, cone index curve, and TDR waveform

to demonstrate the experimental results of the above

method.

3 Excavated soil multi-source
heterogeneous database

3.1 Excavated soil information collecting system
(ESICS)

In Xiecun Wharf, the largest platform for transferring

excavated soils in China, an excavated soil information

collecting system (ESICS) was developed to sample soil

multi-source heterogeneous data [21, 56]. The Wharf

serves as Hangzhou’s centralized trading hub for excavated

soils, receiving materials transported by vehicles from

nearly 20 foundation and subway projects within a

500-square-kilometer radius. Here, soils are unloaded from

trucks and transferred onto vessels for further transporta-

tion. By consolidating multi-source soil data at Xiecun

Wharf—rather than collecting information separately from

scattered construction sites—data can be more diverse and

be collected more efficiently. This centralized approach

enables a comprehensive analysis of soil types and char-

acteristics across Hangzhou, leading to a representative

dataset. Figure 4 shows the configuration and core ele-

ments of the ESICS. Installed at the entrance of the Xiecun

Wharf, ESICS employed a multi-sensor approach to effi-

ciently gather multi-source heterogeneous data about the

excavated soils carried by vehicles. All sensors were

assembled into the rapid detection and classification sta-

tion. Digital cameras were used to capture soil images

inside vehicle cars from the overhead views. Time domain

reflectometry (TDR) cone penetrometer was used to mea-

sure mechanical properties through the cone index curve

from the soil surface to 40 cm depth subsoil [55]. Addi-

tionally, the TDR cone penetrometer recorded TDR

waveforms at 40 cm depth subsoil, which provided insights

into moisture content, fine particle content, and even ion

compound presence, factors that characterize both engi-

neering and environmental properties of soils. All collected

data, including imaging data, mechanical data, and elec-

trical data were displayed on a soil info interactive panel

and stored for further analysis. This advanced in situ-tool-

based approach allows for accurate identification of soil

types and assessment of their quality, which is vital for

determining their sustainability for various utilizations.
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The used TDR cone penetrometer consists of four

semicircularly shaped stainless-steel conductors which

were placed around a 30-mm-diameter poly-ether-ether-

ketone (PEEK) shaft through steel nails. The conductors

had a diameter of 8 mm and a length of 150 mm. One pair

of two opposite conductors was connected to the inner

conductor of a 50 X-impedance coaxial cable through

soldering. The shield of the coaxial cable was connected to

the other pair of opposite conductors. Considering the

existence of PEEK shaft, the dielectric permittivity and

electrical conductivity measured by TDR penetrometer

need to be converted into that of soil around the probe

through calibration. Mixtures of ethanol (dielectric per-

mittivity is about 16)—deionized water (dielectric per-

mittivity is about 80) with different concentrations (from 0

to 100%, 20% by interval) were selected as target mediums

to calibrate the dielectric permittivity. The dielectric per-

mittivity of target medium measured by three-rod TDR

probe and the Dt measured by TDR penetrometer can be

fitted. The fitted linear relationship between Dt2 and

dielectric permittivity (e) are fitted as

e ¼ �2:878 þ 1:50 � Dt2. The value of R2 is about 0.99.

CuSO4 solution with different concentrations (from 0 to

0.030 mol/L, 0.005 mol/L by interval) was used as target

mediums to calibrate the electrical conductivity. The

electrical conductivity of target medium measured by

three-rod TDR probe and the V0/V! measured by TDR

penetrometer can be fitted. The fitted linear relationship

between V0/V! and electrical conductivity (EC) is fitted as

EC ¼ �125:1 þ 206:8 � V0=V1. The value of R2 is about

0.99. A calibration procedure was also developed to cor-

relate the TDR cone penetrometer’s force sensor outputs

with standard cone penetrometer measurements, deriving

an empirical transfer function for cone index estimation.

3.2 Database configuration

The data collection for this study began on October 1,

2021, and lasted for approximately two months. Sampling

is conducted daily from 8:00 AM to 4:00 PM. Each day,

one channel is randomly selected for sampling, and every

soil-transport truck passing through that channel undergoes

systematic sampling and data collection. This sampling

strategy ensures data diversity and randomness, enabling

an accurate representation of the distribution patterns of

excavated soil types. A total of 3243 data groups were

collected, with each group consisting of one soil original

image (Fig. 5a), one cone index (CI) curve (Fig. 5b), and

one TDR waveform (Fig. 5c). The original soil image

(Fig. 5a) captures the entire soil inside a vehicle. To

enhance the dataset and better represent small-scale fea-

tures of soil surface morphology, a data augmentation

strategy was applied. In detail, the soil original image in

Fig. 5a was segmented into 93 sub-images of size

224 9 224 like Fig. 5a. Due to the fact that all these 93 soil

sub-images are from the same vehicle, they also share the

same cone index curve, TDR waveform, and soil infor-

mation record. In this way, one piece of data can be

Soil info interactive panel

TDR cone penetrometer

Camera for capturing soil image

Cone index

TDR waveform (Dielectric 
constant, Electrical conductivity)

Rapid detection & classification station

Fig. 4 Excavated soil information collecting system (ESICS)
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expanded into 93 pieces of data, helping the model to learn

the morphological features of soil accurately. This data

augmentation strategy expands 3243 groups of original

data into 23,122 groups, enabling the model to better learn

soil morphological features.

The CI curve represents cone index values across depths

from 0 to 40 cm in the form of single-column array con-

taining 41 elements (Fig. 5b). This data exhibits strong

spatial-series characteristics, as adjacent values are physi-

cally related. Therefore, CI curves are suggested to be

analyzed holistically rather than as isolated data points.

Similarly, the TDR waveform is time-series data consisting

of 2048 data points over approximately 1000 ns (Fig. 5c).

This data is frequently used to estimate soil moisture

content and electrical conductivity, which are linked to soil

texture, fine particle content, and ion compound content.

Like the CI curve, the TDR waveform also requires holistic

analysis to preserve its temporal correlations.

The ESICS at Xiecun Wharf exemplifies a sophisticated

data collection system that enhances the efficiency of soil

information gathering. By developing the multi-source

heterogeneous database using advanced techniques, it not

only facilitates the processing of vast quantities of geo-

materials but also contributes to a deeper understanding of

soil characteristics.

The particle size distribution (PSD) of soil samples is

shown in the soil texture triangle of Fig. 6. Based on Ayers

et al. [5], the USCS classification can map onto the United

States Department of Agriculture (USDA) triangle and

divide soils into nine types as clean sands (SW and SP),

clean sands to sands with fines of silts (SW/SP-SM), clean

sands to sands with fines of clay (SW/SP-SC), sands with

fines of silts (SM), sands with fines of clay (SC), lean silt

(ML), elastic silt (MH), lean clay (CL), and fat clay (CH).

Obviously, the soil samples in this database were domi-

nated by fine-grained soils, thus the generalization ability

of the model in fine-grained soils can be guaranteed.

Fig. 5 Database configuration
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Fig. 6 Soil types in the USDA&USCS soil triangle
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4 Case studies

4.1 Case design

To study the inherent correlation between soil images

(visual information), cone index curves (mechanical indi-

cators) [31], and TDR waveforms (electrical indicators),

three cases were designed to investigate the modal trans-

formation of these multi-source heterogeneous data, as

shown in Fig. 7:

Case 1 aims to investigate the inherent correlations

between soil images and cone index curves. The soil

RGB color image was used as the input data to generate the

cone index curve (forward test); the cone index curve was

then used as the input data to generate the soil RGB color

image (first-round reverse test); next, the RGB images in

the dataset were purified into grayscale images. The cone

index curve was used as input data to generate the soil

grayscale images (second-round reverse test); finally, the

grayscale images were further purified into binary images.

The cone index curve was used as input data to generate the

soil binary images (third-round reverse test).

Case 2 aims to investigate the inherent correlations

between soil images and TDR waveforms. The soil RGB

color image was used as the input data to generate the TDR

waveform (forward test); the TDR waveform was then used

as the input data to generate the soil RGB color image

(first-round reverse test); next, the RGB images in the

dataset were purified into grayscale images. The TDR

Fig. 7 Case of multimodal transition
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waveform was used as input data to generate the soil

grayscale images (second-round reverse test); finally, the

grayscale images were further purified into binary images.

The TDR waveform was used as input data to generate the

soil binary images (third-round reverse test).

Case 3 aims to investigate the inherent correlations

between cone index curves and TDR waveforms. The

cone index curve was used as the input data to generate the

TDR waveform (forward test); the TDR waveform was

then used as the input data to generate the cone index curve

(reverse test).

The generative-model-based experiments involved the

transformation between 2D data (soil images) and 1D data

(cone index curves and TDR waveforms), as well as the

transformation between 1D datasets. These tests ultimately

revealed the inherent relationships among the three types of

soil indices in different modalities.

4.2 DDPM architecture

Figure 8 illustrates the framework of the denoising diffu-

sion probabilistic models (DDPMs) used in the experiment

[6, 40, 42]. In the forward process, noise is incrementally

added to the data until the original data becomes Gaussian

distribution. At each time step t, the data point was sampled

from the Gaussian distribution q(xt|xt-1) derived from the

previous time step xt-1.

q xtjxt�1ð Þ :¼ N xt;
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � bt
p

xt�1; btI
� �

ð1Þ

where bt [ (0,1) is the variance schedule; I is the identity

matrix.

In the reverse process, the goal is to denoise images

iteratively to get an image with less noise. A time-depen-

dent function approximator was employed to predict the

Gaussian distribution p(xt-1|xt) at each step.

p xt�1jxtð Þ :¼ N xt�1; elt xt; tð Þ; rtIð Þ ð2Þ

elt xt; tð Þ � 1
ffiffiffiffi

at
p xt �

1 � at
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � at
p et

� �

ð3Þ

at :¼ 1 � bt ð4Þ

where et is the noise introduced in step t. The model aims to

learn this distribution to denoise images by reverse con-

ditional probability. So, a neural network eh (xt, t) should be

trained to approximate the introduced noise distribution.

The model architecture for this process is typically a U-

Net. During the sampling phase, sinusoidal encoding was

used to encode the timestep t, and suitable embedders were

utilized to pass prompts into the model. For example, in the

task of generating soil images from cone index curves, the

cone index curve was encoded as a factor using an LSTM

for cone index curves representing spatial-series data.

Similarly, in the task of generating soil images from TDR

waveforms, LSTM was also used to encode the time-series

data of the TDR waveform. If the input data is an image,

the corresponding encoder should be CNN. The U-Net

structure consisted of down-sampling and up-sampling

streams, connected by skip connections to merge shallow

and deep features. In the encoding part (down-sampling),

blocks of max pooling are followed by convolutional

…
x0xT xt xt-1 …

q(xt |xt-1)

pθ (xt-1 |xt)

init.conv out

down1 up2

down2 up1

hdn
up0

xt xt-1~

embedding

time

factor

hidden
up0 up1

up2

ConvTranspose2d

Conv2dResBlock

xi

Skip connection

ResBlock

GeLU

BatchNorm

Fig. 8 DDPM architecture
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layers, group normalization, and GELU (Gaussian error

linear unit) activation functions. The decoding part (up-

sampling) mirrors this structure, using bilinear up-sampling

followed by convolutional layers, group normalization, and

GELU activation functions. To enhance training stability

and gradient flow, ResNet blocks are incorporated into the

sampling modules. Each layer in the framework includes

two residual blocks, with embeddings passed into each

block. Additionally, down-sampled, up-sampled, and pre-

residual values are returned and stored for use in residual

concatenated skip connections. This design ensures effi-

cient feature propagation, enabling the model to effectively

capture hierarchical information and represent complex

data distributions. Specific algorithm parameters are shown

in Tables 1 and 2, as well as some hyperparameters are

shown in Table 3.

5 Model training settings and performance
metrics

During the model training, the number of sampling time-

steps was set to 400. To reduce unnecessary computational

costs, the image resolution in the dataset was resized from

224 9 224 to 84 9 84. The number of epochs was set to

100, with an initial learning rate of 1e-3. A linearly

decaying learning rate was used to progressively adjust the

learning rate, and the Adam optimizer was employed. The

MSE loss was selected as the loss function.

To evaluate the effectiveness of the trained model, it is

essential to select appropriate performance metrics. For

image generation tasks, the metrics used were structural

similarity index measure (SSIM) and learned perceptual

image patch similarity (LPIPS).

SSIM measures the structural similarity between the

generated and ground truth images, reflecting the preser-

vation of spatial details and perceptual quality.

Table 1 Algorithm parameters in case generating images based on cone index

Component Layer type Parameters Input shape Output

shape

Activation

Residual

ConvBlock

Conv2d ? BN ? GELU in_chan, out_chan, kernel = 3 9 3, stride = 1,

padding = 1

B, in_c, H, W B, out_c, H,

W

GELU

Conv2d ? BN ? GELU out_chan, out_chan, kernel = 3 9 3, stride = 1,

padding = 1

B, out_c, H, W B, out_c, H,

W

GELU

UnetDown Residual ConvBlock 9 2 in_chan ? out_chan B, in_c, H, W B, out_c, H/

2, W/2

–

MaxPool2d kernel = 2, stride = 2 B, out_c, H, W B, out_c, H/

2, W/2

/

UnetUp Conv Transpose2d in_chan, out_chan, kernel = 2 9 2, stride = 2 B, in_c, H, W B, out_c,

2H, 2W

–

Residual ConvBlock 9 2 out_chan ? out_chan B, out_c, 2H,

2W

B, out_c,

2H, 2W

GELU

Embed

LSTM

LSTM input_size = 2, hidden_size = emb_dim,

num_layers = 2, batch_first = True

B,

seq_len = 40,

2

B, emb_dim GELU

EmbedFC Linear ? GELU ? Linear input_dim ? emb_dim ? emb_dim B, input_dim B, emb_dim GELU

CiUnet Initial Conv in_channels = 3 ? n_feat = 64 B, 3, 84, 84 B, 64, 84, 84 –

Down1 64 ? 64 B, 64, 84, 84 B, 64, 42, 42 –

Down2 64 ? 128 B, 64, 42, 42 B, 128, 21,

21

–

AvgPool2d kernel = 4 B, 128, 21, 21 B, 128, 5, 5 GELU

Up0 (Transpose) 128 ? 128, kernel = 5, stride = 4 B, 128, 5, 5 B, 128, 21,

21

RELU

Up1 256 ? 64 (with skip from Down2) B, 256, 21, 21 B, 64, 42, 42 –

Up2 128 ? 64 (with skip from Down1) B, 128, 42, 42 B, 64, 84, 84 –

Output Conv 128 ? 64 ? 3 B, 128, 84, 84 B, 3, 84, 84 –

Acta Geotechnica (2025) 20:4977–5005 4989

123



SSIM x; yð Þ ¼
2lxly þ C1

� �

2rxy þ C2

� �

l2
x þ l2

y þ C1

� �

r2
x þ r2

y þ C2

� � ð5Þ

where lx and ly are the mean values of image x and image

y; rx and ry are the variances of image x and image y; rxy

is the covariance between the images; C1 and C2 are con-

stants to prevent division by zero. The SSIM value ranges

between - 1 and 1. When SSIM = 1, it indicates that the

two images are identical in terms of structure, luminance,

and contrast. When SSIM\ 0, it suggests that the gener-

ated image has poor quality and a significant deviation

from the reference image. In general, higher SSIM values

indicate better structural similarity and perceptual quality

between the compared images.

LPIPS measures the perceptual similarity between two

images based on deep network features. Unlike SSIM,

LPIPS focuses on the similarity of images in the deep

feature space, which better aligns with human visual per-

ception. By using a pre-trained CNN (such as VGG or

AlexNet), the deep features of the images are extracted,

and the distance between these features is calculated:

LPIPS x; yð Þ ¼
X

l

1

HlWl

X

h;w

f xl h;wð Þ � f yl h;wð Þ
	

	

	

	

2

2
ð6Þ

where f xl and f yl are the features of the l-th layer in the

network for image x and image y; Hl and Wl are the height

and width of the feature map at the l-th layer; ka� bk2

denotes the Euclidean distance. The LPIPS typically falls

in the range of 0 to 1. When LPIPS = 0, it indicates that the

Table 2 Algorithm parameters in case generating cone index based on images

Component Layer type Parameters Input shape Output

shape

Activation

Residual

ConvBlock

Conv1d ? GELU in_chan, out_chan, kernel = 3, stride = 1,

padding = 1

B, in_c, L B, out_c, L GELU

Conv1d ? GELU out_chan, out_chan, kernel = 3, stride = 1,

padding = 1

B, out_c, L B, out_c, L GELU

UnetDown Residual ConvBlock 9 2 in_chan ? out_chan B, in_c, L B, out_c, L//

2

–

MaxPool1d kernel = 2, stride = 2 B, out_c, L B, out_c, L//

2

–

UnetUp Conv Transpose1d in_chan, out_chan, kernel = 2, stride = 2 B, in_c, L B, out_c, 2L –

Residual ConvBlock 9 2 out_chan ? out_chan B, out_c, 2L B, out_c, 2L GELU

EmbedCNN ResNet18 ? Linear Pretrained ResNet18 ? Linear

(512 ? emb_dim)

B, 3, 224,

224

B, emb_dim RELU

EmbedFC Linear ? GELU ? Linear input_dim ? emb_dim ? emb_dim B,

input_dim

B, emb_dim GELU

WaveUnet Initial Conv in_channels = 1 ? n_feat = 64 B, 1, 40 B, 64, 40 –

Down1 64 ? 64 B, 64, 40 B, 64, 20 –

Down2 64 ? 128 B, 64, 20 B, 128, 10 –

AvgPool1d kernel = 4 B, 128, 10 B, 128, 5 GELU

Up0Transpose 128 ? 128, kernel = 2, stride = 2 B, 128, 5 B, 128, 10 RELU

Up1 256 ? 64 (with skip from Down2) B, 256, 10 B, 64, 20 –

Up2 128 ? 64 (with skip from Down1) B, 128, 20 B, 64, 40 –

Output Conv 128 ? 64 ? 1 B, 128, 40 B, 1, 40 –

Table 3 Training hyperparameter settings

Parameter CI ? img img ? CI

Value Description Value Description

timesteps 600 Diffusion steps 400 Diffusion steps

n_feat 64 Base channel

dimension

64 Base channel

dimension

n_cifeat 10 CI feature

dimension

100 Image feature

dimension

height 84 Input image

height/width

40 Input waveform

length

batch_size 32 Training batch

size

32 Training batch

size

lrate 1e-3 Initial learning

rate

1e-3 Initial learning

rate

beta1/beta2 1e-4/

0.02

Noise schedule

bounds

1e-4/

0.02

Noise schedule

bounds
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two images are identical in terms of perceptual similarity

(minimum perceptual distance). When LPIPS & 1, it

indicates that the two images are very different perceptu-

ally (maximum perceptual distance). A lower LPIPS value

indicates that the two images are more similar and per-

ceptually closer.

For waveform generation tasks, the performance metrics

adopted were root-mean-square error (RMSE) and mean

absolute error (MAE).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

yi � byið Þ2

s

ð7Þ

MAE ¼ 1

n

X

n

i¼1

yi � byij j ð8Þ

where yi is the true value, byi is the predicted value, and n is

the sample amount.

The selection of SSIM, LPIPS, RMSE, and MAE as

evaluation metrics provides a comprehensive framework

for assessing generated data quality from multiple per-

spectives. For image data, SSIM is used to measure

structural similarity between generated and real data (lu-

minance, contrast, structure), while LPIPS quantifies per-

ceptual similarity using deep features (VGG/AlexNet) and

captures high-level semantic differences (e.g., texture pat-

terns, morphological features). SSIM and LPIPS work

synergistically to diagnose data errors in generated data

from the perspectives of local structural distortion, global

deviation, and semantic anomalies. Moreover, SSIM is

based on a physiological model of the human visual system

(HVS), and LPIPS encodes object recognition prior

knowledge acquired from ImageNet training, thus provid-

ing physical interpretability. For waveform data, RMSE

and MAE are used to provide quantitative rigor for deter-

ministic tasks and validate whether generated data meet

physical constraints, enabling error diagnosis from the

perspectives of global deviation and numerical drift. When

the generated index y is a two-dimensional, performance

metrics such as SSIM and LPIPS can be chosen to assess

the degree of correlation; when y is one-dimensional, the

RMSE and MAE can be chosen for correlation assessment.

6 Results and analysis

6.1 Image and cone index curve

This case was used to explore the inherent correlation

between soil images and cone index curves. Figure 9

shows the performance metrics (SSIM is black and LPIPS

is red) during the training of the FT and RT models. In the

experiment of generating RGB soil images based on cone

index curves (Fig. 9a), the training performance stabilized

after approximately 20 epochs. The final SSIM was around

0.34 and LPIPS was around 0.45, indicating that the pixel

similarity between the soil RGB images generated based on

cone index curves and the real images was low, and there

were significant perceptual differences. The overall image

quality was not good. In the experiment of generating

binary soil images based on cone index curves (Fig. 9b),

the training performance also stabilized after approxi-

mately 20 epochs. The final SSIM was around 0.41 and

LPIPS was around 0.32, suggesting that after removing

color-related information from the soil images, the model’s

training performance improved. The pixel similarity

between the binary soil images generated based on cone

index curves and the real binary images was high, and the

perceptual differences were significantly reduced. In the

experiment of generating cone index values based on soil

(a) Case of colorful soil image generation based on cone index curve 

(b) Case of binary soil image generation based on cone index curve 

(c) Case of cone index curve generation based on colorful soil image 
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Fig. 9 Performance metrics of model training (img $ CI)
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RGB images (Fig. 9c), the training performance stabilized

after approximately 20 epochs. The final RMSE and MAE

reached 30.6 and 24.1, respectively, indicating that the

average deviation between the predicted cone index values

and the actual cone index values was around 30.

Figure 10 shows the model testing results for generating

soil images based on cone index curves. From left to right,

there are based CI curves, the predicted colorful images,

the real colorful images, the predicted binary images, and

the real binary images. When predicting RGB images, the

model exhibited significant uncertainty. For coarse-grained

soils with CI values above 200 kPa, Fig. 10a1, Fig. 10c1,

and Fig. 10d1 were perceptually similar to their corre-

sponding real images Fig. 10a2, Fig. 10c2, and Fig. 10d2.

However, there was a significant color difference between

Fig. 10b1 and its corresponding ground truth Fig. 10b2.

For fine-grained soils with CI values below 200 kPa,

Fig. 10e1 and Fig. 10g1 were perceptually similar to their

corresponding real images Fig. 10e2 and Fig. 10g2, but

Fig. 10f1 and Fig. 10h1 show considerable color

Fig. 10 Generated colorful soil images based on cone index curve
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differences compared to the real images Fig. 10f2 and

Fig. 10h2. Obviously, it is uncertain to generate RGB

images based on cone index curves, indicating that the

information contained in cone index curves does not

include soil color characteristics. Therefore, when soil

color information was removed, the similarity of binary

images generated from cone index curves improved sig-

nificantly. Figure 10a3–h3 generally reflects the apparent

morphologies of their corresponding real soil images

Fig. 10a4–h4. There is a noticeable discrepancy between

the RGB images generated using the cone index curve as a

hint and the actual RGB images. This implies that the cone

index does not capture information about the soil’s mineral

composition, making it difficult to accurately represent the

soil’s color characteristics. Consequently, the predicted

colorful images exhibit disordered color information.

However, the cone index data can effectively reflect tex-

tural features such as particle size and moisture content. As

a result, the predicted binary images generated based on the

cone index show a high degree of similarity to the real

binary images. This is because binary images discard color

information, allowing the cone index’s inherent ability to

characterize soil properties to be more effectively excited.

Figure 11 illustrates the model testing results for gen-

erating cone index curves based on soil RGB images. On

the left are the based colorful images, and on the right are

the predicted CI curves (black) compared with the real CI

curves (red). To ensure the physical significance of the

generated cone index curves, normalization was applied in

the training code to guarantee all cone index values remain

positive. It can be observed that the real cone index curves

generally exhibited a trend of gradual increase with depth.

The predicted cone index curves roughly replicated this

trend and fluctuated within the range of the real curves.

However, the predicted curves showed significant data

volatility. For example, in Fig. 11a, the range of the pre-

dicted curve was 168.5 kPa, while the real curve’s range

was 100 kPa. In Fig. 11b, the ranges were 181.4 kPa and

80 kPa. In Fig. 11c, the ranges were 199 kPa and 78 kPa.

In Fig. 11d, the ranges were 161.3 kPa and 76 kPa. In

Fig. 11e, the ranges were 131.4 kPa and 66 kPa. In

Fig. 11f, the ranges were 87.1 kPa and 54 kPa. Moreover,

the predicted curve’s maximum and minimum values

appeared more randomly compared to the real curves,

where the maximum values typically occurred at the

deepest depth and the minimum values at the shallowest

depth. It can be inferred that soil colorful images contain

mechanical characteristics related to the cone index (as the

range and trends of the predicted curves were generally

consistent with the real curves). However, impurities and

random pixels in the images can affect the accuracy of the

generated cone index curves, leading to fluctuations and

discrepancies in the predicted values.

6.2 Image and TDR waveform

This case was used to explore the inherent correlation

between soil images and TDR waveforms. Figure 12 shows

the performance metrics during the training of the FT and

RT models. In the experiment of generating RGB soil

images based on TDR waveforms (Fig. 12a), the training

performance stabilized after approximately 40 epochs. The

final SSIM was around 0.31 and LPIPS was around 0.42,

indicating that the pixel similarity between the soil RGB

images generated based on TDR waveforms and the real

images was also low, and there were significant perceptual

differences. The overall image quality was not good. In the

experiment of generating binary soil images based on TDR

waveforms (Fig. 12b), the training performance stabilized

after approximately 40 epochs. The final SSIM was around

0.40 and LPIPS was around 0.35, suggesting that after

removing color-related information from the soil images,

the model’s training performance also improved. The pixel

similarity between the binary soil images generated based

on TDR waveforms and the real binary images was high,

and the perceptual differences were significantly reduced.

In the experiment of generating TDR waveforms based on

soil RGB images (Fig. 12c), the training performance sta-

bilized after approximately 20 epochs. The final RMSE and

MAE reached 0.21 and 0.17, respectively, indicating that

the average deviation between the predicted TDR wave-

forms and the actual TDR waveforms was around 0.20.

Figure 13 shows the model testing results for generating

soil images based on TDR waveforms. From left to right,

there are based TDR waveforms, the predicted colorful

images, the real colorful images, the predicted binary

images, and the real binary images. When predicting RGB

images, the model also exhibited significant uncertainty.

For samples with lower water content and higher coarse

particle content (Fig. 13a1–d1) (samples whose peak and

valley in the TDR waveform between 100 and 200 ns have

a shorter time interval), the predicted colorful images

might exhibit significant color distortion or even generate

anomalous samples with abnormal colors, such as

Fig. 13b1. In contrast, for samples with higher water con-

tent and higher fine particle content (Fig. 13e1–h1) (sam-

ples whose peak and valley in the TDR waveform between

100 and 200 ns have a larger time interval), there were

significant overexposures on smooth surfaces. Addition-

ally, when the soil’s electrical conductivity was excessively

high (the ultimate voltage of the TDR waveform was too

low), the generated colorful image almost lack visible

pixels, as shown in Fig. 13h1. Similar to the patterns

observed in images generated based on CI curves, once the

RGB images in the training dataset were cleared, the

similarity between the predicted binary images and the real
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Fig. 11 Generated cone index curve based on colorful soil images
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images generated based on TDR waveforms improved

significantly. The pixel distribution in the predicted binary

images had similarity to that in the real soil images.

Figure 14 illustrates the TDR waveforms generated

based on colorful images. On the left are the based colorful

images, and on the right are the predicted TDR waveforms

compared to the real waveforms. Generally, the predicted

waveforms appeared relatively smooth, while the real

waveforms exhibited slight fluctuations due to impedance

changes inside the cable of the detection equipment. For

the time interval between peak and valley in the 0–200 ns,

which reflects soil water content information (permittivity

of soil), the predictions demonstrated relatively good

accuracy. Across samples with water content ranging from

low (Fig. 14a) to high (Fig. 14e), there were cases where

the predictions were consistent with the real waveforms.

However, there were significant discrepancies in the pre-

diction of electrical conductivity, represented by the ulti-

mate voltage in the waveform. Some models overestimated

ultimate voltages, while some underestimated. For exam-

ple, in Fig. 14a, the ultimate voltage of the predicted

waveform was 0.64, while the ultimate voltage of the real

waveform was 0.52. In Fig. 14d, the ultimate voltage of the

predicted waveform was 0.12, while the ultimate voltage of

the real waveform was -0.12. It can be found that in cases

of overestimation, the differences between the estimation

and the real values were particularly significant. This is

because soil may contain contaminants or ionic com-

pounds, leading to excessively high electrical conductivity.

However, such contamination information cannot be

characterized in soil images, making it challenging for

TDR waveforms generated from images to accurately

predict real electrical conductivity.

6.3 Cone index curve and TDR waveform

This case was used to explore the inherent correlation

between cone index curves and TDR waveforms. Figure 15

shows the performance metrics during the training of the

FT and RT models. In the experiment of generating cone

index curves based on TDR waveforms (Fig. 15a), the

training performance stabilized after approximately 30

epochs. The final RMSE was around 27.7, and MAE was

around 20.9, indicating that the average deviation between

the predicted CI curves and the actual CI curves was

around 20–30. In the experiment of generating TDR

waveforms based on CI curves (Fig. 15b), the training

performance stabilized after approximately 30 epochs. The

final RMSE was around 0.32, and MAE was around 0.24,

suggesting that the average deviation between the predicted

TDR waveforms and the actual TDR waveforms was

around 0.30. The training performance of the models for

converting the above two types of 1D waveforms into each

other is roughly equivalent, indicating a clear inherent

correlation between them.

Figure 16 shows the model testing results for generating

CI curves based on TDR waveforms. On the left are the

based TDR waveforms, and on the right are the predicted

CI curves compared to the real curves. It can be found that

the fluctuation range of the predicted curves was roughly

equivalent to that of the real curves and showed the same

trend of gradual increase with depth. However, the pre-

dicted CI curves exhibited greater volatility and uncertainty

compared to the real ones. For example, in Fig. 16a, the

range of the predicted curve was 279.4 kPa, while the real

curve’s range was 72 kPa. In Fig. 16b, the ranges were

219.1 kPa and 78 kPa. In Fig. 16c, the ranges were

157.5 kPa and 108 kPa. In Fig. 16d, the ranges were

(a) Case of colorful soil image generation based on TDR waveform 

(b) Case of binary soil image generation based on TDR waveform

(c) Case of TDR waveform generation based on colorful soil image 
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Fig. 12 Performance metrics of model training (img $ TDR)

Acta Geotechnica (2025) 20:4977–5005 4995

123



Fig. 13 Generated colorful soil images based on TDR waveform
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Fig. 14 Generated TDR waveform based on colorful soil images
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146.5 kPa and 54 kPa. In Fig. 16e, the ranges were

122.1 kPa and 53 kPa. In Fig. 16f, the ranges were

89.6 kPa and 67 kPa. Moreover, the predicted curve’s

maximum and minimum values appeared more randomly

compared to the real curves, where the maximum values

typically occurred at the deepest depth and the minimum

values at the shallowest depth. It can be inferred that soil

TDR waveforms contain mechanical characteristics related

to the cone index (as the range and trends of the predicted

curves were generally consistent with the real curves).

However, noises in the TDR waveforms and the voltage

changes induced by environmental factors (e.g., ion com-

pounds) can affect the accuracy of the generated CI curves,

leading to fluctuations and discrepancies in the predicted

values.

Figure 17 illustrates the TDR waveforms generated

based on CI curves. On the left are the based CI curves, and

on the right are the predicted TDR waveforms compared to

the real waveforms. Generally, the predicted waveforms

appeared relatively smooth, while the real waveforms

exhibited slight fluctuations due to impedance changes

inside the cable of the detection equipment. For the time

interval between peak and valley in the 0–200 ns, which

reflects soil water content information (permittivity of soil),

the predictions demonstrated relatively good accuracy.

Across samples with water content ranging from low

(Fig. 17a) to high (Fig. 17d), there were cases where the

predictions were consistent with the real waveforms.

However, there were also significant discrepancies in the

prediction of electrical conductivity, represented by the

ultimate voltage in the waveform. Some models overesti-

mated ultimate voltages. For example, in Fig. 17d, the

ultimate voltage of the predicted waveform was 0.44, while

the ultimate voltage of the real waveform was 0.30. In

Fig. 17e, the ultimate voltage of the predicted waveform

was 0.13, while the ultimate voltage of the real waveform

was - 0.02. In Fig. 17f, the ultimate voltage of the pre-

dicted waveform was 0.28, while the ultimate voltage of

the real waveform was - 0.30. This is because soil may

contain contaminants or ionic compounds, leading to

excessively high electrical conductivity. However, such

contamination information cannot be characterized in CI

curves, making it challenging for TDR waveforms gener-

ated from CI curves to accurately predict real electrical

conductivity.

7 Discussions

7.1 Inherent correlations of soil multi-source
heterogeneous data

Based on the model testing results in Chapter 6, the

inherent correlations of the three types of soil multi-source

heterogeneous data are illustrated in Fig. 18. Since the CI

can be generated from RGB images, it indicates that cone

index information is embedded in soil images. However,

RGB images cannot be generated from CI, while binary

images, which retain only soil texture after removing color

information, can be generated from CI. It suggests that CI

contains texture information about the soil but does not

include color-related information, such as mineral content.

The permittivity-related information in TDR waveforms

can be inferred through RGB images, but electrical con-

ductivity-related information in TDR waveforms cannot be

accurately characterized by RGB images. It indicates that

soil images and TDR waveforms share overlapping infor-

mation related to soil water content, but soil images are

insufficient to directly represent the presence or concen-

tration of pollutants such as ionic compounds. RGB images

cannot be generated from TDR waveforms, but binary

images, which retain only texture information, can be

generated from TDR waveforms. It implies that TDR

waveforms contain texture information about the soil but

not color-related information, such as mineral content.

Since CI can be generated from TDR waveforms, it

indicates that TDR waveforms contain significant infor-

mation that of cone index. The permittivity-related infor-

mation in TDR waveforms can also be converted into CI,

while electrical conductivity-related information in TDR

(a) Case of cone index curve generation based on TDR waveform
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waveforms cannot be accurately represented by CI. It

indicates that cone index and TDR waveforms share

overlapping information regarding soil water content, but

the cone index cannot represent the presence or concen-

tration of pollutants such as ionic compounds.

In summary, the inherent correlations of the three multi-

source heterogeneous soil indices in different dimensions

can be illustrated as shown in Fig. 18.

7.2 Pros and cons of the correlation analysis
method

The generative-model-aided correlation analysis method

soil properties proposed in this work, aims to address the

challenges of dimensional matching and information loss

encountered during the correlation analysis of multi-di-

mensional raw data. This method introduces a novel

methodology to analyzing property correlations using

neural networks. By applying this method, indices con-

taining extensive raw data with coupling relationship no
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longer require feature extraction or information integration

for further analysis, thereby avoiding information loss. In

addition, leveraging the characteristics of generative

models, this method enables the correlation analysis of

indices across one-dimensional, two-dimensional, and

multi-dimensional spaces without the need for dimensional

normalization.

As for applicability, it can be observed that for coarse-

grained soils, the generated soil RGB images exhibit higher

similarity to real soil RGB images. In contrast, for fine-

grained soils, the generated RGB images often display
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overexposed white spots, leading to a loss of image

information and impairing the expressive quality of the

generated results. For example, in Fig. 10, the coarse-

grained samples (a–d) exhibit a stronger granular texture in

the generated soil RGB images, whereas the fine-grained

clay samples (g and h) show excessive overexposed high-

lights in the generated RGB images, compromising the

color representation of the soil. Similarly, in Fig. 13, the

coarse-grained samples (a–c) also demonstrate more sig-

nificant granularity in the generated soil RGB images. In

contrast, the fine-grained samples (d–h) all exhibit over-

exposure, with the overexposure becoming more noticeable

as the particle size decreases and the water content

increases, ultimately leading to color distortion in the

generated clay RGB images. Regarding the generated cone

index, particle size seems not appear to have a significant

impact on the experimental results. For the generated TDR

waveforms, fine-grained samples seem more challenging to

generate accurately. As shown in Fig. 17, the TDR wave-

form generation results for samples d–f deviate consider-

ably from the real measurements. However, fine-grained

soils, due to their large specific surface area and cation

exchange capacity, tend to adsorb more free ions, leading

to inaccuracies in the generated TDR waveforms. In

summary, the coarser the soil particles, the closer the

generated indices are to the real measurements, containing

more detailed information and resulting in better model

performance.

However, this method currently has several limitations.

First, while retaining a large amount of raw data avoids

data loss, it introduces a significant amount of noise and

irrelevant information without physical significance. This

increases the difficulty of correlation analysis and may

affect accuracy. Second, when comparing the performance

metrics of trained models across different dimensions, the

lack of consistent performance metrics makes it challeng-

ing to establish a unified evaluation standard. Third, the

inherent correlations between different indices are complex

and diverse, including containment, intersection, and

complementation. At present, this method is more effective

at handling containment correlations, but it struggles to

quantitatively address intersecting relationships. Further

research on this method will focus on improving the

evaluation framework and exploring quantitative methods

for analyzing complex relationships.

The dataset supporting this study primarily consists of fine-

grained soil samples. Therefore, the findings of this research

are more applicable to silts and clays. Given the substantial

sample size of 23,122, the extensive dataset ensures strong

generalizability of the results. However, due to varying nat-

ural environmental influences across different regions, soils

exhibit distinct mineralogical compositions—such as the

black soils in Northeast China, collapsible loess in Northwest

China, and red clays in Southwest China. Since the database

does not encompass all possible soil types, the research results

inevitably have some limitations.

Indices Case Results

Soil image & 
cone index

img  CI CI can be generated based on RGB images

CI  img RGB images cannot be generated based on CI, but binary images can 
be generated based on CI.

Soil image & 
TDR waveform

img  TDR Permittivity related info in the TDR waveform can be generated based 
on RGB images, but the EC related info cannot be generated.

TDR  img RGB images cannot be generated based on TDR waveforms, but binary 
images can be generated based on TDR waveforms.

Cone index & 
TDR waveform

CI  TDR CI can be generated based on TDR waveforms, but not stable.

TDR  CI Permittivity related info in the TDR waveform can be generated based 
on CI, but the EC related info cannot be generated.

Fig. 18 Inherent correlations of multi-source heterogeneous data
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To address above limitations, some measures can be

implemented: (1) Advanced Preprocessing Pipelines:

implementing wavelet transform-based denoising for TDR

waveforms to maintain signal integrity while eliminating

high-frequency noise, combined with attention-guided

masking algorithms for soil images to automatically sup-

press non-soil background interference; (2) Physics-

Informed Data Augmentation: generating physically real-

istic synthetic training data through discrete element

modeling of cone penetration tests across varied soil

compositions and stochastic process simulation of TDR

responses governed by Maxwell’s equations; (3) Hybrid

Model Architecture: replacing purely data-driven DDPM

with multimodal gating mechanisms that dynamically

adjust sensor contributions, while integrating uncertainty

quantification modules to identify and flag predictions

compromised by input noise. This integrated approach

synergistically enhances data quality, expands training

diversity with physical constraints, and improves model

robustness through principled architectural innovations.

8 Conclusions

Excavated soil, as a type of sustainable geomaterial charac-

terized by large production, low environment threat, and huge

resource potential, requires a comprehensive understanding of

engineering, environmental, and resource properties for its

utilization. In this work, an excavated soil information col-

lecting system (ESICS) was developed to gather 3243 groups

of multi-source heterogeneous data, including soil RGB

images, cone index curves, and TDR waveforms. After data

augmentation, a big database containing 23,122 sets of data

on soil surface morphology, mechanical properties, and

electrical properties was established. Then, a generative-

model-aided correlation analysis method of soil properties

was proposed. The inherent correlations of soil indices across

different dimensions in the database were investigated. The

key innovations are as follows:

1. Soil database of surface morphology, mechanical

properties, and electrical properties: A multi-source

heterogeneous database containing 23,122 sets of data

was created, including soil images (2D data), cone

index curves (1D spatial-series data), and TDR wave-

forms (1D time-series data). This database character-

izes the engineering, environmental, and resource

properties of excavated soils.

2. Generative-model-aided correlation analysis

method of soil properties: By using generative deep

learning models as research tools, data generation tests

(forward and reverse tests) are implemented between

pairs of indices with unknown relationships. The

performance metrics of the generative models are

compared and analyzed to determine the correlations

among the unknown indices. This method is suitable for

analyzing correlations across different dimensions involv-

ing large amounts of raw data, thereby avoiding data loss.

3. Inherent correlations of soil images, cone index, and

TDR waveforms: Using the database mentioned in (1)

as a case study, the cutting-edge generative model—

diffusion model—was employed to explore the inher-

ent correlations of the multi-source heterogeneous data

of excavated soils. The results revealed that there is

overlapping information between soil images and TDR

waveforms, and the cone index information is con-

tained within both soil images and TDR waveforms.

Future research directions are proposed to enhance the

applicability and robustness of the proposed method. First, the

framework’s application scope could be expanded to envi-

ronmental engineering and soil science domains through the

integration of soil environmental indicators and advanced

characterization data, enabling the development of compre-

hensive predictive models. Second, the multimodal data

system could be strengthened by incorporating 3D

microstructural datasets and designing adaptive fusion algo-

rithms for heterogeneous data types. Third, the deep learning

architecture could be optimized through domain-specific

neural network designs and targeted learning strategies to

improve handling of multi-source soil data. Finally, the crit-

ical transition from laboratory research to field applications

could be facilitated by validating the model under real-world

engineering conditions and developing noise-robust adaptive

algorithms for field data processing. These proposed exten-

sions would significantly advance both the scientific depth

and practical utility of the method while maintaining its rig-

orous theoretical foundation.
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