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Abstract
The proportion of renewable energy has increased in the context of zero-carbon tar-
gets, highlighting the need to explore its role in carbon emission reduction. This 
study first calculated Moran’s I to assess the existence of spatial autocorrelation in 
carbon emissions. Next, the geographical detector method was employed to evalu-
ate the contributions of six factors to the temporal-spatial dynamics of carbon emis-
sions. Finally, the role of these factors in driving carbon emissions was assessed 
using the Spatial Durbin Model (SDM). The results indicate that carbon emissions 
exhibit significant spatial autocorrelation characteristics. The analysis revealed that 
private car ownership (q = 0.2993) emerged as the dominant driving force influenc-
ing the evolution of carbon emission patterns. Additionally, the interaction detector 
identified interaction links between pairs of factors as either enhanced and bivariate 
(EB) or enhanced and nonlinear (EN). The findings from the Spatial Durbin Model 
revealed an inverse U-shaped relationship between the expansion of renewable 
energy and carbon emission outcomes.
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Introduction

As the largest carbon-emitting nation, China continues to experience rising carbon 
emissions (Wu et al., 2022). Consequently, carbon mitigation has become a pressing 
issue that requires urgent attention from scholars both domestically and internation-
ally. In response to global warming and to engage in international climate govern-
ance, China has set forth its"3060"goal (Song et al., 2024). The country’s carbon-
intensive energy mix is the primary driver of its increasing carbon emission levels 
(Yu et al., 2020). To achieve this goal, it is essential to enhance energy efficiency 
and drive technological transformation while significantly expanding the use of 
renewable energy and fundamentally reshaping the energy system (Gao et al., 2023; 
Wu et al., 2024ab). From 2000 to 2022, China’s cumulative installed capacity and 
renewable energy electricity generation surged from 82 million kWh and 0.24 tril-
lion kWh to 1.213 billion kWh and 2.7 trillion kWh, respectively (Ke et al., 2023). 
The implementation of various regional and spatial development strategies has 
strengthened the spatial autocorrelations and interactions among cities (Wu, 2023). 
The spatial dynamics of carbon emissions are not confined by administrative or geo-
graphical boundaries; emissions can spread to neighboring cities due to atmospheric 
conditions and the exchange of production factors, such as population shifts (Dong 
et  al., 2021). These spatial linkages have significantly influenced carbon emission 
levels within urban areas, ultimately transforming the regional spatial pattern of car-
bon emissions (Radmehr et al., 2021).

Developing effective strategies to manage elevated carbon emissions necessitates 
a thorough understanding of the factors contributing to these emissions and their 
interactions (Wu et al., 2020). This paper focuses on renewable energy as a primary 
factor of concern. However, carbon emissions are also influenced by other elements, 
such as industrial production and motor vehicle usage. Few studies have examined 
the interactions among these factors, making it essential to explore how one contrib-
uting element can modulate the impact of others on the evolution of carbon emis-
sions. Decomposition analysis is a well-established research method for investigat-
ing the driving forces behind changes in various indicators. Recently, the spatial 
geographical detector approach has emerged as a valuable tool for addressing similar 
issues, offering distinct advantages in evaluating the interactive effects between fac-
tors compared to traditional methods like Indicator Decomposition Analysis (IDA) 
and Spatial Decomposition Analysis (SDA).

The spatial linkage of carbon emissions has often been overlooked in traditional 
econometric approaches (Wu et al., 2021). To address this gap, spatial models have 
been increasingly applied, offering greater accuracy compared to conventional meth-
ods (He et  al., 2022). Various techniques, such as Moran’s I and Geary’s C, have 
been utilized to measure spatial linkages. The geographical detector approach is a 
spatial statistics-based method that reveals the driving mechanisms behind spatial 
heterogeneity (Wu et al., 2020). Known for its mathematical rigor and clear physical 
interpretation, this approach has been employed in numerous research domains. For 
instance, Chen et al. (2020) used the geographical detector framework to investigate 
the pattern properties and underlying drivers of certain phenomena. Similarly, Sun 
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et al. (2021) applied the geographical detector approach to identify the driving fac-
tors influencing water-use efficiency (WUE) in China, subsequently proposing poli-
cies to enhance efficiency. Wang et al. (2017) also leveraged this method to identify 
determinants of housing prices, providing a robust scientific basis for housing policy 
formulation. Furthermore, the geographical detector approach has been employed 
in public health research to measure the relationships between various factors and 
the morbidity of hand, foot, and mouth disease (HFMD), uncovering the interac-
tion links among these variables. Its application in environmental research is well-
established, including studies that identify determinants of PM2.5 concentration. In 
this paper, we use the geographical detector model to study the impact of per capita 
GDP, urbanization rate, per capita consumption, industrial structure, and private car 
density ownership per unit area and renewable energy development on the driving 
forces of carbon emission changes and their interactions.

The paper is structured as follows: Sect."Literature review"provides an in-depth 
review of previous investigations related to each driving element. Sect."Methodology 
and data"outlines the theoretical foundations of Moran’s I, the geographical detec-
tor approach, and the spatial econometric model. Sect."Results"focuses on detailing 
the outcomes derived from the data analysis. Finally, Sect."Conclusion and Policy 
Implications"concludes with a summary of the key propositions and their regulatory 
implications.

Literature Review

Existing literature on carbon-driving elements primarily focuses on single-factor 
analyses. Research has examined how the deployment of renewable energy influ-
ences carbon emission patterns, utilizing panel data from various national contexts 
(Chopra et  al., 2024). Some scholars argue that expanding renewable energy will 
reduce the consumption of coal, oil, and gas, ultimately leading to lower carbon 
emissions. For instance, Beltrami et al. (2021) evaluated the financial value of the 
carbon emissions reductions achieved through renewable energy generation in the 
Italian electricity sector, finding that approximately 22 million tons of emissions 
were curtailed, valued at 348 million euros. Sun et al. (2022) assessed the impact 
of renewable energy expansion on carbon emissions in North African economies, 
positing that renewable energy consumption is an effective strategy for offsetting 
emissions. This view is supported by Acheampong et al. (2019), who also highlight 
the benefits of renewable energy in reducing emissions. Conversely, some research-
ers contend that the expansion of renewable energy may have negligible effects or 
even exacerbate carbon emissions. Saidi and Omri (2020) found no general correla-
tion between carbon emissions and renewable energy growth in their study of 15 
leading renewable energy-utilizing nations. Nguyen and Kakinaka (2019) suggest 
that in low-income economies, increased use of renewable energy sources can lead 
to higher carbon emissions. Additionally, Abbasi et al. (2021) indicated that while 
renewable energy had a statistically significant negative impact on carbon emissions 
in Thailand, this effect was only temporary.
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Existing research has predominantly focused on understanding how financial per-
formance influences carbon emissions. Numerous studies highlight the strong correla-
tion between economic factors and carbon emissions. For instance, Sun et al. (2020) 
conducted an empirical analysis that identified financial performance as the primary 
driver of carbon emissions. The prevailing scholarly consensus is that the relationship 
between financial performance dynamics and carbon emissions is nonlinear (Radmehr 
et al., 2021). However, there remains a lack of consensus on the finer details of this rela-
tionship. The concept of an inverse U-shaped relationship, known as the Environmental 
Kuznets Curve (EKC), has been proposed to describe the connection between financial 
performance and carbon emissions (Rahman et al., 2021).

As the economy grows, carbon emissions initially rise before eventually declin-
ing, reflecting a nuanced relationship often described by the environmental Kuznets 
curve (EKC). Subsequent research has identified a’U-shaped trend, where emissions 
decrease initially and then rise with economic growth. Shan et al. (2021) proposed 
an’N’-shaped relationship, delineating three distinct stages: carbon emissions first 
decrease, then increase, and finally decrease again as economic activity progresses. 
Additionally, discussions surrounding urbanization reveal two contrasting perspec-
tives (Liu et  al., 2024). One view posits that urbanization leads to increased infra-
structure development, heightening demand for energy-intensive and polluting mate-
rials like cement, coal, and steel, thereby exacerbating carbon emissions (Zhao & 
Wu, 2024). Conversely, another perspective argues that urbanization fosters techno-
logical advancement, improves energy structures, and creates agglomeration effects, 
which can also lead to increased carbon emissions (Wang et al., 2021). Furthermore, 
as socioeconomic levels rise, so do people’s material need and consumption levels, 
which are linked to pollution due to increased energy use. Household consumption 
alone accounts for nearly 30% of total pollution emissions. Wackernagel and Rees 
(1997) emphasized that unsustainable consumption patterns must change to achieve 
sustainable development. Recent studies have corroborated that rising consumption 
levels contribute significantly to environmental pollution (Wu et al., 2024a).

The proliferation of private cars has become a significant driver of carbon emis-
sions, as car emissions include carbon monoxide and hydrocarbons, which are key 
components of overall carbon output. Hurmekoski et  al. (2020) report that nearly 
80% of car emissions originate from private vehicles. If no control measures are 
implemented, the number of private cars is expected to continue rising, thereby 
increasing carbon emissions over time. Consequently, it is crucial to address this 
issue. Current research indicates that the underlying industrial structure is another 
critical factor influencing carbon emission trends (Ehigiamusoe and Dogan, 2022). It 
is widely recognized that a larger share of the secondary sector contributes to higher 
carbon emissions, as secondary industries typically generate greater amounts of soot 
and gaseous pollutants. However, rational adjustments to the industrial structure can 
effectively improve pollution conditions. In summary, considering industrial struc-
ture is of great significance. Moreover, the interaction effects of various factors are 
important; for instance, Ehigiamusoe and Dogan’s (2022) study on impoverished 
nations found that the use of renewable energy has a carbon-reducing effect and that 
the adoption of renewable energy and increases in real income levels complement 
each other in lowering carbon emissions.
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Previous literature on the topic has rarely accounted for the spatial linkages and 
dependencies inherent in carbon emission patterns. The interplay between the driv-
ing factors has also been largely neglected in prior studies. The highlights of this 
paper are: (1) Investigate and compare the explanatory power of factors such as 
renewable energy expansion, financial performance, urbanization rate, industrial 
structure, resident consumption level, and private car ownership on the evolution 
of carbon emissions. (2) The analysis extends to explore interactions between two 
factors, which reveals synergistic effects that are frequently missing from existing 
studies. (3) Rigorously examine and articulate the influence of each variable on car-
bon emissions, which provides a comprehensive view of spatial dependencies and 
interactions.

Methodology and Data

Date Description

Six driving elements are selected as the study subject regarding related literature: 
renewable energy expansion (Zhu et  al., 2024), financial performance (Hou et  al., 
2024), urbanization rate (Tian et al., 2024), industrial structure (Feng et al., 2024), res-
ident consumption level (Lin & Li, 2024), and private car ownership (Cai et al., 2024). 
The data selected starts from the year 2004 and ends in 2020. The study focuses on 30 
provinces as examples, as the remaining areas like Taiwan, Xizang, and Macao have 
incomplete data available. The data of explanatory variables, renewable energy devel-
opment, come from the China Electricity Statistical Yearbook and Electricity Data 
Statistical Compilation. The energy data in the carbon emission calculation process 
are derived from the China Energy Statistical Yearbook. Aligning with the recommen-
dations of the Intergovernmental Panel on Climate Change (IPCC), the carbon emis-
sion accounting method employed in this analysis includes all direct carbon emissions 
from human socio-economic activities within the city administrative limits. It is note-
worthy that the access of fossil fuel emission factor is based on the investigation result 
from more than 4000 state-owned coal mines. The data on per capita GDP, urbaniza-
tion rate, per capita consumption, industrial structure, and private car ownership den-
sity per unit area in this study are from the China Statistical Yearbook.

Table  1 displays the descriptive statistics for the examined sets. The highest 
degree of volatility, as indicated by the standard deviation, minimum, and maximum 
values, is observed in the carbon emission, gross domestic product per person, and 
individual-oriented consumption data. This volatility can be attributed to notable 
regional disparities among provinces. Building on the work of Yu et al. (2020), this 
study employs renewable energy generation as an explanatory parameter to capture 
the tangible link between renewable electric output on overall energy output. Per 
capita GDP is the metric that captures the stage of financial performance. Mean-
while, real GDP measured at constant 2000 prices is the variable employed to reflect 
economic growth, thereby excluding the impacts of inflation.
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Using ArcGIS software, we created spatial distribution maps for two variables 
in 2020. Each variable is categorized into five classes based on data size, with 
darker colors representing higher index values. Figures  1-a through 1-b illus-
trate that each variable exhibits significant regional differences across provinces. 
Regarding carbon emission, Inner Mongolia, Shandong, Shanxi, and Yunnan 
provinces show notably higher emissions compared to other provinces. Addition-
ally, each variable demonstrates spatial dependence characteristics, highlighting 
the necessity of considering spatial factors in the research.

Spatial Linkage Analysis

To investigate the spatial distribution of carbon emission, the Global Moran’s I 
value first worked. The relevant formulas are defined as follows: Formula (1) is 

Table 1   Exploratory statistics for the independent model variables

Notation Signification Unit Mean St. dev Minimum Maximum

CE Carbon emission 10,000 ton 37,656.269 28,168.488 1626.049 1.56e + 05
RE Renewable energy expansion TWh 404.381 559.837 0.000 3654.630
PGDP Per capita GDP Yuan 27,714.220 17,802.799 3806.232 1.09e + 05
UR Urbanization rate % 54.216 14.416 13.890 89.600
PC Per capita consume Yuan 12,620.720 7665.980 2674.000 45,605.000
IS Industrial structure % 0.428 0.083 0.160 0.620
PCP Private car density owner-

ship per unit area
10,000/km2 39.604 72.545 0.068 551.730

(a) Carbon emission (b) Renewable energy

Fig. 1   Regional distribution of variables in 2020
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utilized to compute the Global Moran’s I solution, while Formula (2) defines the 
method for determining the Local Moran’s I. A Local Moran’s I below 0 denotes 
those areas with high carbon emissions are proximate to other areas with anal-
ogously high carbon emissions. The Moran’s I parameter is constrained to the 
interval [−1, 1]. Conversely, a Local Moran’s I less than 0 signifies those areas 
with high carbon emission are abutting areas with low carbon emission.

where �ij indicates the spatial weight array, xi represents the carbon emission in the i 
th province, and x =

1
∑n

i=1
xi

 represents the average value of the data. S2 =
∑n

i=1
(xi−x)

2

n
 , 

denoting data’s numerical measure of volatility.

Geographical detector approach

Geographical-based statistical analysis through the geographical detector approach 
is derived from spatial interdependence theory. It suggests that a stronger link exists 
between driving elements and carbon emission when their spatial distributions are 
more similar. This model’s capability to accommodate heterogeneous data sources 
without restrictions is a praiseworthy advantage. Other data types, like the sequence 
or ratio quantity, can also be studied by discretizing. Another highlight is embodied 
in the interaction detector. Adding a cross term in the regression Formula is the most 
typical approach to explore the interaction link among factors. However, not always 
a multiplication link among factors. The geographical detector approach overcomes 
the defect that the existing model cannot describe the superimposed influence of the 
two factors. Moreover, the model can explore not only linear links but also nonlinear 
links. The geodetector framework is built upon four distinct detectors: factor, interac-
tion, ecological, and risk detectors, but the current paper only makes use of the results 
from the first two detectors. This paper has employed factor detectors and interaction 
detection to find solutions to the problems at hand. The geographic raster data used 
in the ODIAC (Open-Data Inventory for Anthropogenic Carbon Dioxide) geography 
model facilitates the delivery of global fossil fuel CO2 emission values at a 1 km by 
1 km spatial scale. Since this data is continuous monthly, we first process it into annual 
data using ArcGIS tools.

The focus of this study is the spatial correlation of carbon emissions. First, geo-
graphical proximity is the main reason for the spatial correlation of carbon emis-
sions, therefore we used the inverse distance spatial matrix ( W ). The matrix is based 
on the fundamental principle of the first law of geography, which states that every-
thing is connected to everything around it and that closer things are more connected 

(1)I =
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than things that are far away. The inverse distance spatial matrix values are organ-
ized and defined in an array format, as shown in Eq. (3):

where dij represents the geographical separation of provinces i and j , obtained based 
on their latitudes and longitudes.

Factor detector

Through the application of the factor detector, the contribution of factor X to the 
spatial arrangement of the explanatory parameter Y  can be assessed, with the 
strength of this link denoted by the q value. The equation representing the q value is:

where q indicates the impact of factor xi on explained variable Y ; h represents the dif-
ferent layers or categories that make up the element Y or element X ; Nk indicates the 
value or scale of the explained parameter Y or X within the specific slice or section h , 
while N signifies the overall value or scale across the entire area. SSW expresses the 
cumulative squared differences between the records and their group-specific means, 
while SST captures the cumulative squared differences between the records and the 
global average. �2

k
 refers to the average squared distance between each explained 

parameter Y value and its group mean within the subset or partition h , while �2 indi-
cates the average squared distance between each explained parameter Y value and the 
grand mean across the whole sample. The index q , confined to the range [0, 1] , sug-
gests the level to which the explanatory parameter X is successful in capturing or rep-
resenting the systematic variations observed in the explained parameter. The closer q 
is to 1, the closer the link or the greater the contribution of the explanatory parameter 
X in describing the changes in the explained parameter Y . If the value is 0, show no 
link between variable X and explained parameter Y.

Interaction detector

Utilizing the interaction evaluation procedure, researchers can establish if the joint 
impact of the explanatory parameters X

1
 and X

2
 enhances or weakens the model’s 

capacity to elucidate variations in the explained parameter. To begin with, the q values 
corresponding to the explanatory parameters X

1
 and X

2
 must be obtained separately. 

(3)Wij =

{

1

dij
, i ≠ j

0, i = j

(4)q = 1 −

∑L

h=1
Nk�

2

k

N�2
= 1 −

SSW

SST

(5)SSW =

L
∑
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Nk�
2

k

(6)SST = N�2
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Secondly, to calculate the interaction value q(X
1
∩ X

2
) . Finally, compare the value of 

q(X
1
) , q(X

2
) and q(X

1
∩ X

2
) . Following the comparison results shown in Table 2, the 

data can be subdivided and allocated across five categories.

Spatial quantitative model

The geographic detector model can only compare the driving degree of each influenc-
ing factor but cannot judge whether this effect promotes or inhibits carbon emission. To 
investigate the impact of these factors more comprehensively, the spatial Durbin model 
is employed to figure it out. This model assumes that the explained variable in the 
province i depends on the explanatory parameters of adjacent provinces. In this paper, 
establish the formula can be established as follows:

where notation i is applied to designate the province, wij indicates the spatial weight-
ing array, CE denotes the carbon emission, RE indicates renewable energy expan-
sion, PGDP is GDP per capita, UR represents urban rate, PC refers to residential 
consumption level, IS denotes industrial structure, PCP indicates private car owner-
ship. � is the parameter to be estimated, � refers to the spatial autoregression param-
eter, � represents the spatial hysteresis parameter of the explanatory parameter. �i is 
the individual fixed effect, �t is the time-fixed effect, t represents the year, and the 
quantity � is used to quantify the degree of spatial linkage.

(7)

CEit = �

n
∑

j=1

wijCit + � + �
1
REit + �

2
(REit)

2
+ �

3
PGDPit + �

4
URit + �

5
PCit + �

6
ISit + �

7
PCPit

+ �
1

n
∑

j=1

wijREit + �
2

n
∑

j=1

wij(REit + �
3

n
∑

j=1

wijPGDPit + �
4

n
∑

j=1

wijURit + �
5

n
∑

j=1

wijPCit

+ �
6

n
∑

j=1

wijISit + �
6

n
∑

j=1

wijPCPit + �i + �t + �it�it = �

n
∑

j=1

wij�it + �it

Table 2   Interaction categories
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Results

Spatial covariance of carbon discharge

In this section, local and global spatial autocorrelation tests are conducted to inves-
tigate the spatial autocorrelation character of carbon emission. Applying the Global 
Moran’s I technique allows for an exploration of the spatial organization and interde-
pendence exhibited by carbon emission values. Global Moran’s I fluctuate between 0 
and 1, and a value surpassing 0 denotes the presence of positive spatial dependence. 
A Moran’s I measure less than 0 signifies negative spatial interdependence, whereas a 
value near 0 reflects a random spatial arrangement, lacking any spatial linkage. Table 3 
showcased Moran’s I index values over the years from 2004 to 2020. The analysis of 
Moran’s I over the 2004 to 2020 period showed statistical significance at the 1% level, 
suggesting a positive spatial autocorrelation for carbon emission across the provincial 
areas. In conclusion, carbon emissions present spatial autocorrelation, and spatial fac-
tors are necessary to be considered.

The local spatial autocorrelation of variables can be reflected by the Local Moran’s 
I scatter chart. Therefore, the Local Moran’s I scatter chart is drawn for 2004, 2011, 
2015, and 2019 with inverse distance spatial matrix W. The 2020 COVID-19 crisis is 
anticipated to bring about changes and deviations in the underlying laws that dictate 
carbon emission dynamics. Therefore, the spatial autocorrelation for 2020 is not dis-
cussed. The scatter plots in Fig. 2 show the standardized carbon emission values on 
the x-axis and the corresponding spatial lag on the y-axis. The grouping of data points 
in the top-right and bottom-left quadrants implies a positive spatial linkage. Where 
provinces with high carbon emissions are associated with other high-emission areas, 
and low-emission provinces are grouped.

Figure 3 presents the clustering map of carbon emissions across provinces from 
2004 to 2020. It reveals that provinces such as Shanxi, Liaoning, Inner Mongolia, and 
Jiangsu exhibit high-high clustering, indicating that these provinces have relatively 
high levels of carbon emissions, and the surrounding provinces also exhibit elevated 
emissions. In contrast, Guangdong and Yunnan demonstrate high-low clustering, 
suggesting that these provinces have high carbon emissions levels while being sur-
rounded by areas with lower emissions.

Table 3   The Moran’s I index 
over the 2004 to 2020 period

Year I Z P

2004 0.059 2.604 0.005
2007 0.055 2.507 0.006
2010 0.051 2.419 0.008
2013 0.050 2.364 0.009
2016 0.045 2.306 0.011
2019 0.045 2.255 0.012
2020 0.007 1.171 0.121
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Factor detector

This paper thoroughly examined the explanatory power of seven distinct factors in the 
evolution of carbon emissions from 2004 to 2020. The key insights from the analysis 
are captured in Table 4, which showcases the outcomes of the factor detector func-
tionality within the Geodetector model. According to these results, private car owner-
ship stands out with the highest average q-value among the driving elements consid-
ered. This demonstrates that the prevalence of private vehicle ownership was a key 
explanatory factor behind the changes in carbon emission observed across the studied 
timeframe. Other important factors identified include industrial structure, renewable 
energy expansion, urbanization, per capita GDP, and resident consumption.

The findings of this analysis reveal several key insights into the factors influencing 
carbon emissions, particularly the dominant role of private car ownership. The high 
average q-value associated with private vehicles indicates that as ownership increases, 
so too do carbon emissions. This trend can be attributed to increased vehicle miles 
traveled; as more individuals own private cars, the total distance driven tends to rise, 
leading to higher emissions from fuel combustion. Economic growth also plays a sig-
nificant role, as rising per capita GDP often correlates with increased living levels, 
enabling more people to afford electrical appliances. This relationship highlights the 

a 2004 b 2010

c 2015 d 2019

Fig. 2   Scatter charts of Local Moran’s I from 2004 to 2020
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interplay between economic development and environmental impact. Furthermore, 
the presence of other significant factors, such as industrial structure, renewable energy 
expansion, and urbanization, suggests that a multifaceted approach is necessary for 
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effective carbon management. The industrial sector’s emissions indicate that tran-
sitioning to cleaner technologies and practices is crucial. While renewable energy 
expansion is a positive trend, its effectiveness in reducing emissions may be limited 
by concurrent increases in other factors, such as urbanization, which can lead to higher 
energy demands. To mitigate the impact of private car ownership on carbon emissions, 
there is a need to promote public transportation and incentivize the development of 
efficient transit systems. Sustainable urban planning is essential, with a focus on inte-
grating mixed-use developments that reduce travel distances and promote walking or 
cycling. Encouraging the adoption of electric vehicles through subsidies and expand-
ing charging infrastructure can also help decrease emissions from the transportation 
sector. Additionally, regulating emissions from industries that contribute significantly 
to carbon outputs is crucial, alongside continued investment in renewable energy 
sources to ensure they can effectively offset emissions from other sectors.

Figure 4 presents radar charts depicting the q-values of six different factors influenc-
ing carbon emission. These charts illustrate how the driving forces of these factors have 
evolved. As depicted in Fig. 4-a, the contribution of renewable energy expansion to car-
bon emission displayed a continuous upward trajectory from 2004 to 2015, followed by 
a gradual decrease after 2015. Conversely, Fig. 4-b demonstrates that the driving force 
of GDP per capita follows an inverted"N"pattern over the study period. In Fig. 4-c, the 
driving force of urbanization level shows a consistent upward trend, indicating a steady 
increase in its influence on carbon emission. Figure 4-d reveals that the trend of house-
hold consumption level mirrors the pattern observed for per capita GDP, showing similar 
fluctuations. Figure 4-e highlights that the driving force of the industrial structure exhib-
its a fluctuating pattern, indicating variable impact over time. Lastly, Fig. 4-f shows that 
the influence of private car ownership on carbon emission changes most smoothly, sug-
gesting a relatively stable impact throughout the study period.

Interactor detector results

The interaction between driving elements from 2004 to 2020 is detailed in Table 5 −1 
through 5-7. Due to spatial constraints, Tables A.1 through A.6 are included in Appen-
dix A. The analysis has determined that the interaction effect between any two explan-
atory variables is limited to either the Enhanced and Bivariate (EB) or the Enhanced 

Table 4   Factor detector results Year RE PGDP UR PC IS PCP

2004 0.0428 0.1214 0.0237 0.0752 0.1722 0.3030
2007 0.0830 0.0976 0.1018 0.0451 0.1342 0.2799
2010 0.0912 0.0992 0.1022 0.0367 0.1581 0.2861
2013 0.0802 0.0409 0.1064 0.0377 0.1255 0.2956
2015 0.1962 0.0451 0.1064 0.1033 0.1175 0.3168
2017 0.1030 0.0970 0.1124 0.1028 0.0860 0.3068
2019 0.0912 0.0816 0.1338 0.0828 0.1149 0.3066
Average 0.0982 0.0833 0.0981 0.0691 0.1298 0.2993
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Fig. 4   Evolution trend of driving elements’ explanatory power from 2014 to 2020



How Renewable Energy Expansion Affects Carbon Emissions from… Page 15 of 26  89

and Nonlinear (EN) category. The results underscore the complex interactions among 
various driving factors influencing carbon emissions from 2004 to 2020. The classifica-
tion of these interactions into Enhanced and Bivariate (EB) or Enhanced and Nonlin-
ear (EN) categories indicates that the combined effect of two explanatory variables sig-
nificantly enhances the understanding of carbon emission trends, suggesting that these 
relationships are not merely additive but interact in ways that amplify their impact on 
emissions. Many examined variables, such as economic growth, urbanization, and pri-
vate car ownership, are intrinsically interconnected; for example, economic expansion 
often leads to increased urbanization, resulting in heightened demand for transportation 
and more private vehicles. This interconnectedness means that changes in one factor can 
trigger cascading effects on others, creating a complex web of influences that collec-
tively shape carbon emissions. Additionally, traditional analyses that treat these factors 
in isolation may overlook critical dynamics emerging from their interactions, such as the 
relationship between renewable energy adoption and industrial structure, which reveals 
how shifts in energy sources affect emissions based on industrial activity levels. From a 
policy perspective, these insights highlight the need for integrated approaches to carbon 
management; policymakers should consider the interactions among various driving fac-
tors when formulating strategies to reduce emissions. For instance, promoting renew-
able energy should not only emphasize production but also address its implications for 
industrial practices and urban planning. Similarly, policies aimed at reducing private car 
ownership, such as enhancing public transportation and encouraging carpooling, should 
be coupled with initiatives that address economic growth and urbanization patterns. A 
holistic framework that acknowledges the interdependencies among these factors will be 
more effective in achieving significant reductions in carbon emissions, fostering sustain-
able urban environments, and ultimately contributing to climate goals.

Empirical Results and Discussions

Within the context of a spatial econometric framework, spatial autocorrelation may 
arise from the dependent factor, independent factor, or disturbance term. This study 

Table 5   –1 Interaction in 2019 RE PGDP UR PC IS PCP

RE 0.0912
PGDP 0.2757 0.0816

EN
UR 0.2477 0.1904 0.1338

EN EB
PC 0.2491 0.1185 0.1882 0.0828

EN EB EB
IS 0.3354 0.2214 0.2479 0.2306 0.1149

EN EN EB
PCP 0.3638 0.3475 0.3315 0.3373 0.3488 0.3066

EB EB EB EB EB
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begins with a Lagrange multiplier (LM) test to guide the model selection process. 
Underlying the LM test is a null proposition that rules out the existence of spatial 
lag effects and spatial error effects. Table 6 provides sufficient evidence to dismiss 
the null assumption at a 1% significance standard, indicating that the model incor-
porates spatial lag effects and spatial error effects. Combined with the analysis of 
Moran’s I value, this result further confirms the existence of spatial autocorrelation 
in carbon emission. Therefore, incorporating spatial factors into the model analy-
sis is both necessary and appropriate. The Likelihood Ratio (LR) test and the Wald 
test results also show that the Spatial Durbin Model (SDM) cannot be simplified 
to either the Spatial Lag Model (SLM) or the Spatial Error Model (SEM). Conse-
quently, the Spatial Durbin Model is considered the most appropriate choice for this 
research, as it effectively reflects the complexity of spatial dependencies in the data.

Table 7 presents the regression analysis, the regression results are structured as fol-
lows: models (1) and (2) contain the OLS regression outputs, and models (3) and (4) 
contain the regression outputs using the spatial weight array W . The data indicates that 
the link between renewable energy growth and carbon emission follows an inverted 
U-shaped dynamic. The foundational phases of renewable energy advancement reveal 
a correspondence with amplified carbon emission, yet as renewable energy systems 
become more established, they will work to offset carbon emissions. When renewable 
energy was first introduced, the renewable energy fraction was relatively insignificant, 
and fossil-based energy sources continued to be the predominant energy source. Moreo-
ver, some renewable energy equipment manufacturing will also involve certain carbon 
emissions, such as wind power generation equipment.

It is the transformation of the prevailing energy structure that acts as a primary 
driver for the development of renewable energy to curb carbon emissions in the later 
stage. Renewable energy alternatives are preferable due to their capacity to reduce 
carbon emissions considerably. On the other hand, the burning of conventional fos-
sil-based energy resources including coal, oil, and natural gas produces significant 
amounts of carbon dioxide and other greenhouse gases. The preference for energy 
sources with high carbon intensity can be addressed by transitioning to renewable 
energy sources, ultimately leading to a decline in carbon emissions. (2) Increasing 
energy efficiency. Renewable energy expansion is habitually accompanied by con-
current energy efficiency gains. An illustration of technology that is continuously 

Table 6   The result of the LM 
test, LR test, and Wald test

Variable Statistic P-value

LM_lag 96.257 0.000
LM_err 120.994 0.000
Robust_LM_lag 8.511 0.004
Robust_LM_err 33.248 0.000
LR_lag 81.55 0.000
LR_err 77.51 0.000
Wald_lag 86.61 0.000
Wald_err 79.27 0.000
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advancing can be found in solar and wind power generation systems, increasing 
energy conversion efficiency. Correspondingly, the growth of renewable energy 
technology facilitates the enhancement and automation of the energy system, curb-
ing energy waste and dissipation, and eventually leading to a reduction in carbon 
emission; (3) Clean transportation and electrification transition. The expansion of 

Table 7   Spatial quantitative model results

The symbols *, **, and *** correspond to p-values below the 0.1, 0.05, and 0.01. The figures in param-
eter brackets are the standard errors of the reported values

Variable (1) (2) (3) (4)

OLS OLS SDM SDM
RE 49.57*** 23.37*** 25.19*** 16.92***

(2.945) (4.326) (3.857) (3.972)
RE2 −0.0112*** −0.00569*** −0.00577*** −0.00401***

(0.000902) (0.00108) (0.000970) (0.000967)
PGDP 0.581*** 0.201***

(0.163) (0.145)
UR 382.7*** 302.6***

(91.52) (91.71)
PC −0.545*** −2.079***

(0.330) (0.409)
IS −7901.3** −4464.2**

(12,005.4) (13,843.6)
PCP 35.39** 30.70***

(18.13) (20.09)
WRE −129.1*** −92.98**

(27.59) (33.78)
WRE2 0.0217** 0.00595***

(0.00754) (0.00835)
WPGDP −5.765***

(1.064)
WUR​ 1903.5**

(587.1)
WPC 6.166*

(2.774)
WIS 3156.3

(79,373.7)
WPCP 463.1**

(145.4)
Province FE Yes Yes Yes Yes
Year FE Ye Yes Yes Yes
Log-L −5289.8153 −5252.5529
R2 0.406 0.490 0.132 0.143
N 510 510 510 510
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renewable energy is driving the transformation towards clean transportation and 
electrification. The advancement of renewable energy is catalyzing the heightened 
adoption of electric and hybrid vehicles. The substitution of traditional fuel-based 
vehicles for new energy vehicles has contributed to reduced carbon emissions in 
the transportation segment. (4) Energy diversification and decentralization. Renew-
able energy expansions foster energy diversification and decentralization, lessening 
the dependence on conventional energy sources. By decentralizing energy produc-
tion and supply, such as distributed solar power generation systems and personal 
wind generators, energy loss and carbon emissions are reduced during energy 
transmission and distribution. (5) Technological progress and innovation. Continu-
ing technological advancements and innovations in renewable energy have driven 
improvements in energy efficiency. With the maturity and large-scale application of 
technology, renewable energy has gradually become an economically viable option, 
and more countries and enterprises choose to invest in and adopt renewable energy, 
thereby reducing overall carbon emissions.

Given the linkage between per capita GDP and carbon emissions, the former’s 
ascent will probably significantly drive the latter. Because economic growth brings 
more demand for fossil fuel consumption, resulting in more carbon emissions. The 
increasing urbanization of the population is a major impetus for the augmentation 
of carbon emissions. Many buildings and infrastructure construction require energy 
supply, such as heating, air conditioning, and electricity, in the process of urbaniza-
tion. Energy demands are typically greater in urban buildings than in rural areas, 
and energy-intensive activities involve escalated electricity and fuel consumption, 
ultimately driving up carbon emissions. The regression results reveal a significantly 
negative link between the resident consumption level and the explained parameter. As 
residents’consumption levels rise, their environmental consciousness tends to increase, 
and they are more likely to acquire and utilize living equipment with superior energy 
efficiency. The regression outputs reveal that the industrial structure has a markedly 
adverse impact, driven by the shift away from energy-intensive industries towards 
more sustainable and low-emission operations. The strategic management of industrial 
transitions—from high-carbon to low-carbon activities—has resulted in a decline in 
the aggregate level of carbon emission. A significant boost in carbon emission levels 

Table 8   Direct, indirect, and total effects

The symbols *, **, and *** correspond to p-values below the 0.1, 0.05, and 0.01. The figures in param-
eter brackets are the standard errors of the reported values

RE RE2 PGDP UR PC IS PCP

Direct effect 18.32*** −0.00416*** 0.288* 279.4** −2.185*** −4046.1** 24.82
(4.116) (0.00100) (0.142) (89.93) (0.393) (13,082.6) (19.69)

Indirect effect −79.70** 0.00609 −4.640*** 1449.0** 5.491* 1133.3* 358.2**

(26.26) (0.00629) (1.008) (532.4) (2.291) (67,080.7) (132.2)
Total effect −61.38* 0.00193 −4.352*** 1728.3** 3.307** −2912.8** 383.0**

(26.33) (0.00623) (1.030) (546.3) (2.291) (73,649.8) (134.8)
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is anticipated to accompany the increase in private car ownership. Vehicular exhaust is 
a widely accepted and critical component in the overall landscape of carbon emission.

It is apparent from Table 8 that the regression parameter for the proximate link-
age of SDM is divergent from the regression parameter of the corresponding vari-
able in Table 7, owing to the presence of response effects. The concept of response 
effects describes the process whereby alterations in the explanatory variables of 
an area elicit responses in neighboring areas, which subsequently propagate back 
to the initial area via spatial spillover. Data from the direct impact study indicates 
the linear regression parameter tied to renewable energy expansion is optimistic 
and satisfies the demanding 1% significance threshold, and the quadratic regres-
sion parameter is negative and statistically significant at the 1% level, suggesting 
the existence of a contribution of renewable energy expansion on carbon emission. 
The data suggests an inverted U-shaped function, where renewable energy expan-
sion initially contributes to increased carbon emission, but then shifts towards 
decreasing carbon emission. Furthermore, we observed that the proliferation of 
renewable energy in adjacent areas can help reduce carbon emissions within the 
focal area. The cumulative impact embodies the totality of the direct and indirect 
consequences. The parameter for renewable energy expansion is notably negative, 
the increasing adoption of renewable energy has a pronounced dampening impact 
on carbon outputs.

Discussions

The findings of this study align closely with those of Zhu et al. (2024), who believe 
that renewable energy systems can reduce carbon emissions by 10% to 50%. This 
range highlights the variability in effectiveness based on specific implementation 
strategies and local contexts. Furthermore, Wu et al., (2024a, 2024b) explored the 
role of carbon pricing in shaping renewable energy development in China, reveal-
ing that higher carbon prices significantly decrease coal consumption, which in 
turn promotes an increase in the share of renewable energy. This relationship 
underscores the critical role of economic incentives in facilitating the transition to 
cleaner energy sources, suggesting that policy frameworks incorporating carbon 
pricing are essential for achieving emission reduction targets. Wu et al. also iden-
tified significant regional disparities in renewable energy development, advocat-
ing for targeted emission reduction initiatives in East China to ensure that climate 
action is both effective and equitable. Reinforcing these themes, Qing et al. (2024) 
demonstrated the importance of renewable energy investment in achieving carbon 
neutrality goals through an empirical study approach in Asia, emphasizing that 
financial commitment to renewable technologies is crucial for long-term sustain-
ability. In summary, these studies illustrate a result: renewable energy systems, 
supported by appropriate economic policies and localized strategies, can play a 
pivotal role in reducing carbon emissions and advancing global climate objectives. 
Future research should continue to investigate the interplay between economic 
incentives, regional policies, and renewable energy adoption to further elucidate 
pathways toward a sustainable energy future.
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Conclusion and Policy Implications

The purpose of this paper is to check the link between the implementation of renewable 
energy and carbon emission via a detailed multi-step process. The spatial autocorrela-
tion of carbon emission is initially confirmed by computing Moran’s I statistic, which 
checks out spatial reliance. Subsequently, by applying the geographic detector model, the 
driving forces of two key predictor variables on changes in carbon emissions were stud-
ied, and insights into their relative importance were provided. Lastly, the Spatial Durbin 
Model (SDM) is employed to employ a comprehensive analysis and characterization of 
the impact of each variable on carbon emission, facilitating a detailed understanding of 
both spatial and non-spatial influences. The research indicates several key findings: From 
2004 to 2020, carbon emissions data for China’s 30 provinces reveal significant spatial 
interdependence and clustering patterns, with notable high-high and low-low aggrega-
tion, indicating regional disparities in carbon output. The geographic detector model 
highlights private car ownership as the primary driver of carbon emission variations, 
followed by industrial structure, renewable energy expansion, urbanization, per capita 
GDP, and resident consumption levels. Additionally, the spatial Durbin model shows an 
inverse U-shaped relationship between renewable energy growth and carbon emissions, 
suggesting that while initial growth can reduce emissions, further development may lead 
to increases. Furthermore, per capita GDP, urbanization, and private car ownership are 
positively linked to higher carbon emissions, whereas changes in industrial composi-
tion and improved consumption patterns can contribute to reductions, underscoring the 
importance of transitioning to cleaner and more sustainable industrial practices. Drawing 
from the findings, the following policy recommendation is proposed:

(1)	 Provinces such as Shanxi, Inner Mongolia, and Liaoning exhibit significantly higher 
carbon emissions compared to their neighboring regions; therefore, more targeted, 
and region-specific mitigation strategies are needed. In these coal-dependent regions, 
efforts should focus on accelerating the transition from fossil fuels to renewable 
energy sources—such as wind, solar, and biomass—by providing financial incen-
tives, including subsidies for renewable energy projects and tax reductions for green 
investments. In parallel, introducing retraining programs for workers in traditional 
coal industries can help facilitate a just transition.

(2)	 The transportation sector is a major contributor to carbon emissions, making it essen-
tial to accelerate the shift toward low-carbon mobility. While expanding charging 
infrastructure is a critical step toward promoting electric vehicle (EV) adoption, its 
effectiveness depends on accompanying policy support. For instance, offering pur-
chase subsidies for EVs, implementing carbon pricing or fuel taxes, and providing tax 
incentives for clean vehicle manufacturers can directly influence consumer behavior 
and industry development.

(3)	 Renewable energy holds great potential in reducing carbon emissions, especially 
in developing countries that are still undergoing industrialization. To maximize its 
impact, a multi-pronged policy approach is needed. This includes promoting R\&D 
investment to drive technological breakthroughs and reduce production costs, as well 
as implementing feed-in tariffs, green certificates, or carbon trading schemes to ensure 
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that renewable energy sources receive fair market treatment. Furthermore, establishing 
regional power trading platforms and inter-regional grid integration can help balance 
energy supply and demand more efficiently.

This study mainly focuses on 30 provinces in China, and the results may not apply 
to carbon emission patterns and renewable energy implementation in other countries 
or regions. Although multiple driving factors were explored, some important variables 
affecting carbon emissions, such as policy changes and technological progress, may still 
have been omitted. Moreover, while the geographical detector method performs well in 
identifying spatial heterogeneity and capturing interaction effects among variables, it is 
relatively weak in inferring causal relationships.

Appendix A

Table 9   Interaction in 2004 RE PGDP UR PC IS PCP

RE 0.0428
PGDP 0.1981 0.1214

EN
UR 0.1698 0.2644 0.0237

EN EN
PC 0.2137 0.1751 0.1188 0.0752

EN EB EN
IS 0.2193 0.2951 0.2370 0.2376 0.1722

EN EN EN EB
PCP 0.3713 0.3181 0.3393 0.3296 0.3583 0.3030

EN EB EN EB EB

Table 10   Interaction in 2007 RE PGDP UR PC IS PCP

RE 0.0830
PGDP 0.2113 0.0976

EN
UR 0.2702 0.1858 0.1018

EN EB
PC 0.1991 0.1991 0.2154 0.0451

EN EN EN
IS 0.2729 0.2335 0.2733 0.2252 0.1342

EN EN EN EN
PCP 0.3685 0.3582 0.3550 0.3119 0.3749 0.2799

EN EB EB EB EB
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Table 11   Interaction in 2010 RE PGDP UR PC IS PCP

RE 0.0912
EN

PGDP 0.3102 0.0992
EN

UR 0.3034 0.2764 0.1022
EN EN

PC 0.3055 0.1857 0.1499 0.0367
EN EN EN

IS 0.2490 0.3502 0.3379 0.3151 0.1581
EB EN EN EN

PCP 0.3851 0.3061 0.3430 0.3009 0.4204 0.2861
EN EB EB EB EB

Table 12   Interaction in 2013 RE PGDP UR PC IS PCP

RE 0.0802
PGDP 0.2175 0.0409

EN
UR 0.2038 0.1241 0.1064

EN EB
PC 0.2178 0.0741 0.1387 0.0377

EN EB EB
IS 0.2816 0.1737 0.2511 0.2459 0.1255

EN EN EN EN
PCP 0.3608 0.3322 0.3238 0.3389 0.3618 0.2956

EB EB EB EN EB

Table 13   Interaction in 2015 RE PGDP UR PC IS PCP

RE 0.1962
PGDP 0.3333 0.0451

EN
UR 0.2754 0.1297 0.1064

EN EB
PC 0.3258 0.1667 0.1994 0.1033

EN EN EB
IS 0.2983 0.2033 0.2629 0.2497

EB EN EN EN
PCP 0.3597 0.3481 0.3603 0.3422 0.3653 0.3168

EB EB EB EB EB
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Table 14   Interaction in 2017 RE PGDP UR PC IS PCP

RE 0.1030
PGDP 0.2802 0.0970

EN
UR 0.2314 0.1669 0.1124

EN EB
PC 0.2614 0.1539 0.2015 0.1028

EN EB EB
IS 0.1368 0.2321 0.2440 0.2567 0.0860

EB EN EN EN
PCP 0.3617 0.3339 0.3427 0.3337 0.3533 0.3068

EB EB EB EB EB
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