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Abstract

The proportion of renewable energy has increased in the context of zero-carbon tar-
gets, highlighting the need to explore its role in carbon emission reduction. This
study first calculated Moran’s I to assess the existence of spatial autocorrelation in
carbon emissions. Next, the geographical detector method was employed to evalu-
ate the contributions of six factors to the temporal-spatial dynamics of carbon emis-
sions. Finally, the role of these factors in driving carbon emissions was assessed
using the Spatial Durbin Model (SDM). The results indicate that carbon emissions
exhibit significant spatial autocorrelation characteristics. The analysis revealed that
private car ownership (q=0.2993) emerged as the dominant driving force influenc-
ing the evolution of carbon emission patterns. Additionally, the interaction detector
identified interaction links between pairs of factors as either enhanced and bivariate
(EB) or enhanced and nonlinear (EN). The findings from the Spatial Durbin Model
revealed an inverse U-shaped relationship between the expansion of renewable
energy and carbon emission outcomes.
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Introduction

As the largest carbon-emitting nation, China continues to experience rising carbon
emissions (Wu et al., 2022). Consequently, carbon mitigation has become a pressing
issue that requires urgent attention from scholars both domestically and internation-
ally. In response to global warming and to engage in international climate govern-
ance, China has set forth its"3060"goal (Song et al., 2024). The country’s carbon-
intensive energy mix is the primary driver of its increasing carbon emission levels
(Yu et al., 2020). To achieve this goal, it is essential to enhance energy efficiency
and drive technological transformation while significantly expanding the use of
renewable energy and fundamentally reshaping the energy system (Gao et al., 2023;
Wu et al., 2024ab). From 2000 to 2022, China’s cumulative installed capacity and
renewable energy electricity generation surged from 82 million kWh and 0.24 tril-
lion kWh to 1.213 billion kWh and 2.7 trillion kWh, respectively (Ke et al., 2023).
The implementation of various regional and spatial development strategies has
strengthened the spatial autocorrelations and interactions among cities (Wu, 2023).
The spatial dynamics of carbon emissions are not confined by administrative or geo-
graphical boundaries; emissions can spread to neighboring cities due to atmospheric
conditions and the exchange of production factors, such as population shifts (Dong
et al., 2021). These spatial linkages have significantly influenced carbon emission
levels within urban areas, ultimately transforming the regional spatial pattern of car-
bon emissions (Radmehr et al., 2021).

Developing effective strategies to manage elevated carbon emissions necessitates
a thorough understanding of the factors contributing to these emissions and their
interactions (Wu et al., 2020). This paper focuses on renewable energy as a primary
factor of concern. However, carbon emissions are also influenced by other elements,
such as industrial production and motor vehicle usage. Few studies have examined
the interactions among these factors, making it essential to explore how one contrib-
uting element can modulate the impact of others on the evolution of carbon emis-
sions. Decomposition analysis is a well-established research method for investigat-
ing the driving forces behind changes in various indicators. Recently, the spatial
geographical detector approach has emerged as a valuable tool for addressing similar
issues, offering distinct advantages in evaluating the interactive effects between fac-
tors compared to traditional methods like Indicator Decomposition Analysis (IDA)
and Spatial Decomposition Analysis (SDA).

The spatial linkage of carbon emissions has often been overlooked in traditional
econometric approaches (Wu et al., 2021). To address this gap, spatial models have
been increasingly applied, offering greater accuracy compared to conventional meth-
ods (He et al., 2022). Various techniques, such as Moran’s I and Geary’s C, have
been utilized to measure spatial linkages. The geographical detector approach is a
spatial statistics-based method that reveals the driving mechanisms behind spatial
heterogeneity (Wu et al., 2020). Known for its mathematical rigor and clear physical
interpretation, this approach has been employed in numerous research domains. For
instance, Chen et al. (2020) used the geographical detector framework to investigate
the pattern properties and underlying drivers of certain phenomena. Similarly, Sun
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et al. (2021) applied the geographical detector approach to identify the driving fac-
tors influencing water-use efficiency (WUE) in China, subsequently proposing poli-
cies to enhance efficiency. Wang et al. (2017) also leveraged this method to identify
determinants of housing prices, providing a robust scientific basis for housing policy
formulation. Furthermore, the geographical detector approach has been employed
in public health research to measure the relationships between various factors and
the morbidity of hand, foot, and mouth disease (HFMD), uncovering the interac-
tion links among these variables. Its application in environmental research is well-
established, including studies that identify determinants of PM2.5 concentration. In
this paper, we use the geographical detector model to study the impact of per capita
GDP, urbanization rate, per capita consumption, industrial structure, and private car
density ownership per unit area and renewable energy development on the driving
forces of carbon emission changes and their interactions.

The paper is structured as follows: Sect."Literature review"provides an in-depth
review of previous investigations related to each driving element. Sect."Methodology
and data"outlines the theoretical foundations of Moran’s I, the geographical detec-
tor approach, and the spatial econometric model. Sect."Results"focuses on detailing
the outcomes derived from the data analysis. Finally, Sect."Conclusion and Policy
Implications"concludes with a summary of the key propositions and their regulatory
implications.

Literature Review

Existing literature on carbon-driving elements primarily focuses on single-factor
analyses. Research has examined how the deployment of renewable energy influ-
ences carbon emission patterns, utilizing panel data from various national contexts
(Chopra et al., 2024). Some scholars argue that expanding renewable energy will
reduce the consumption of coal, oil, and gas, ultimately leading to lower carbon
emissions. For instance, Beltrami et al. (2021) evaluated the financial value of the
carbon emissions reductions achieved through renewable energy generation in the
Italian electricity sector, finding that approximately 22 million tons of emissions
were curtailed, valued at 348 million euros. Sun et al. (2022) assessed the impact
of renewable energy expansion on carbon emissions in North African economies,
positing that renewable energy consumption is an effective strategy for offsetting
emissions. This view is supported by Acheampong et al. (2019), who also highlight
the benefits of renewable energy in reducing emissions. Conversely, some research-
ers contend that the expansion of renewable energy may have negligible effects or
even exacerbate carbon emissions. Saidi and Omri (2020) found no general correla-
tion between carbon emissions and renewable energy growth in their study of 15
leading renewable energy-utilizing nations. Nguyen and Kakinaka (2019) suggest
that in low-income economies, increased use of renewable energy sources can lead
to higher carbon emissions. Additionally, Abbasi et al. (2021) indicated that while
renewable energy had a statistically significant negative impact on carbon emissions
in Thailand, this effect was only temporary.
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Existing research has predominantly focused on understanding how financial per-
formance influences carbon emissions. Numerous studies highlight the strong correla-
tion between economic factors and carbon emissions. For instance, Sun et al. (2020)
conducted an empirical analysis that identified financial performance as the primary
driver of carbon emissions. The prevailing scholarly consensus is that the relationship
between financial performance dynamics and carbon emissions is nonlinear (Radmehr
et al., 2021). However, there remains a lack of consensus on the finer details of this rela-
tionship. The concept of an inverse U-shaped relationship, known as the Environmental
Kuznets Curve (EKC), has been proposed to describe the connection between financial
performance and carbon emissions (Rahman et al., 2021).

As the economy grows, carbon emissions initially rise before eventually declin-
ing, reflecting a nuanced relationship often described by the environmental Kuznets
curve (EKC). Subsequent research has identified a’U-shaped trend, where emissions
decrease initially and then rise with economic growth. Shan et al. (2021) proposed
an’N’-shaped relationship, delineating three distinct stages: carbon emissions first
decrease, then increase, and finally decrease again as economic activity progresses.
Additionally, discussions surrounding urbanization reveal two contrasting perspec-
tives (Liu et al., 2024). One view posits that urbanization leads to increased infra-
structure development, heightening demand for energy-intensive and polluting mate-
rials like cement, coal, and steel, thereby exacerbating carbon emissions (Zhao &
Wu, 2024). Conversely, another perspective argues that urbanization fosters techno-
logical advancement, improves energy structures, and creates agglomeration effects,
which can also lead to increased carbon emissions (Wang et al., 2021). Furthermore,
as socioeconomic levels rise, so do people’s material need and consumption levels,
which are linked to pollution due to increased energy use. Household consumption
alone accounts for nearly 30% of total pollution emissions. Wackernagel and Rees
(1997) emphasized that unsustainable consumption patterns must change to achieve
sustainable development. Recent studies have corroborated that rising consumption
levels contribute significantly to environmental pollution (Wu et al., 2024a).

The proliferation of private cars has become a significant driver of carbon emis-
sions, as car emissions include carbon monoxide and hydrocarbons, which are key
components of overall carbon output. Hurmekoski et al. (2020) report that nearly
80% of car emissions originate from private vehicles. If no control measures are
implemented, the number of private cars is expected to continue rising, thereby
increasing carbon emissions over time. Consequently, it is crucial to address this
issue. Current research indicates that the underlying industrial structure is another
critical factor influencing carbon emission trends (Ehigiamusoe and Dogan, 2022). It
is widely recognized that a larger share of the secondary sector contributes to higher
carbon emissions, as secondary industries typically generate greater amounts of soot
and gaseous pollutants. However, rational adjustments to the industrial structure can
effectively improve pollution conditions. In summary, considering industrial struc-
ture is of great significance. Moreover, the interaction effects of various factors are
important; for instance, Ehigiamusoe and Dogan’s (2022) study on impoverished
nations found that the use of renewable energy has a carbon-reducing effect and that
the adoption of renewable energy and increases in real income levels complement
each other in lowering carbon emissions.
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Previous literature on the topic has rarely accounted for the spatial linkages and
dependencies inherent in carbon emission patterns. The interplay between the driv-
ing factors has also been largely neglected in prior studies. The highlights of this
paper are: (1) Investigate and compare the explanatory power of factors such as
renewable energy expansion, financial performance, urbanization rate, industrial
structure, resident consumption level, and private car ownership on the evolution
of carbon emissions. (2) The analysis extends to explore interactions between two
factors, which reveals synergistic effects that are frequently missing from existing
studies. (3) Rigorously examine and articulate the influence of each variable on car-
bon emissions, which provides a comprehensive view of spatial dependencies and
interactions.

Methodology and Data
Date Description

Six driving elements are selected as the study subject regarding related literature:
renewable energy expansion (Zhu et al., 2024), financial performance (Hou et al.,
2024), urbanization rate (Tian et al., 2024), industrial structure (Feng et al., 2024), res-
ident consumption level (Lin & Li, 2024), and private car ownership (Cai et al., 2024).
The data selected starts from the year 2004 and ends in 2020. The study focuses on 30
provinces as examples, as the remaining areas like Taiwan, Xizang, and Macao have
incomplete data available. The data of explanatory variables, renewable energy devel-
opment, come from the China Electricity Statistical Yearbook and Electricity Data
Statistical Compilation. The energy data in the carbon emission calculation process
are derived from the China Energy Statistical Yearbook. Aligning with the recommen-
dations of the Intergovernmental Panel on Climate Change (IPCC), the carbon emis-
sion accounting method employed in this analysis includes all direct carbon emissions
from human socio-economic activities within the city administrative limits. It is note-
worthy that the access of fossil fuel emission factor is based on the investigation result
from more than 4000 state-owned coal mines. The data on per capita GDP, urbaniza-
tion rate, per capita consumption, industrial structure, and private car ownership den-
sity per unit area in this study are from the China Statistical Yearbook.

Table 1 displays the descriptive statistics for the examined sets. The highest
degree of volatility, as indicated by the standard deviation, minimum, and maximum
values, is observed in the carbon emission, gross domestic product per person, and
individual-oriented consumption data. This volatility can be attributed to notable
regional disparities among provinces. Building on the work of Yu et al. (2020), this
study employs renewable energy generation as an explanatory parameter to capture
the tangible link between renewable electric output on overall energy output. Per
capita GDP is the metric that captures the stage of financial performance. Mean-
while, real GDP measured at constant 2000 prices is the variable employed to reflect
economic growth, thereby excluding the impacts of inflation.
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Table 1 Exploratory statistics for the independent model variables

Notation Signification Unit Mean St. dev Minimum Maximum
CE Carbon emission 10,000 ton  37,656.269 28,168.488 1626.049 1.56e+05
RE Renewable energy expansion TWh 404.381 559.837 0.000 3654.630
PGDP Per capita GDP Yuan 27,714.220 17,802.799 3806.232 1.09e¢+05
UR Urbanization rate % 54.216 14.416 13.890 89.600

PC Per capita consume Yuan 12,620.720 7665.980 2674.000 45,605.000
IS Industrial structure % 0.428 0.083 0.160 0.620

PCP Private car density owner- 10,000/km? 39.604 72.545 0.068 551.730

ship per unit area

Using ArcGIS software, we created spatial distribution maps for two variables
in 2020. Each variable is categorized into five classes based on data size, with
darker colors representing higher index values. Figures 1-a through 1-b illus-
trate that each variable exhibits significant regional differences across provinces.
Regarding carbon emission, Inner Mongolia, Shandong, Shanxi, and Yunnan
provinces show notably higher emissions compared to other provinces. Addition-
ally, each variable demonstrates spatial dependence characteristics, highlighting
the necessity of considering spatial factors in the research.

Spatial Linkage Analysis

To investigate the spatial distribution of carbon emission, the Global Moran’s 1
value first worked. The relevant formulas are defined as follows: Formula (1) is

(a) Carbon emission

Fig. 1 Regional distribution of variables in 2020
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utilized to compute the Global Moran’s I solution, while Formula (2) defines the
method for determining the Local Moran’s I. A Local Moran’s I below 0 denotes
those areas with high carbon emissions are proximate to other areas with anal-
ogously high carbon emissions. The Moran’s I parameter is constrained to the
interval [—1, 1]. Conversely, a Local Moran’s I less than 0 signifies those areas
with high carbon emission are abutting areas with low carbon emission.

Zz 121_ tj( )(xj—x)

I = 1
> (o 3) .

X—X

Za) x—x 2)

where w;; indicates the spatial weight array, x; represents the carbon emission in the i
th provmce and x = Zl — represents the average value of the data. s? = M
i=1 "

denoting data’s numerical measure of volatility.

Geographical detector approach

Geographical-based statistical analysis through the geographical detector approach
is derived from spatial interdependence theory. It suggests that a stronger link exists
between driving elements and carbon emission when their spatial distributions are
more similar. This model’s capability to accommodate heterogeneous data sources
without restrictions is a praiseworthy advantage. Other data types, like the sequence
or ratio quantity, can also be studied by discretizing. Another highlight is embodied
in the interaction detector. Adding a cross term in the regression Formula is the most
typical approach to explore the interaction link among factors. However, not always
a multiplication link among factors. The geographical detector approach overcomes
the defect that the existing model cannot describe the superimposed influence of the
two factors. Moreover, the model can explore not only linear links but also nonlinear
links. The geodetector framework is built upon four distinct detectors: factor, interac-
tion, ecological, and risk detectors, but the current paper only makes use of the results
from the first two detectors. This paper has employed factor detectors and interaction
detection to find solutions to the problems at hand. The geographic raster data used
in the ODIAC (Open-Data Inventory for Anthropogenic Carbon Dioxide) geography
model facilitates the delivery of global fossil fuel CO2 emission values at a 1 km by
1 km spatial scale. Since this data is continuous monthly, we first process it into annual
data using ArcGIS tools.

The focus of this study is the spatial correlation of carbon emissions. First, geo-
graphical proximity is the main reason for the spatial correlation of carbon emis-
sions, therefore we used the inverse distance spatial matrix (W). The matrix is based
on the fundamental principle of the first law of geography, which states that every-
thing is connected to everything around it and that closer things are more connected
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than things that are far away. The inverse distance spatial matrix values are organ-
ized and defined in an array format, as shown in Eq. (3):

1.,

— i F#]

%={%.. 3)
0,i=j

where d; represents the geographical separation of provinces i and j, obtained based

on their latitudes and longitudes.

Factor detector

Through the application of the factor detector, the contribution of factor X to the
spatial arrangement of the explanatory parameter ¥ can be assessed, with the
strength of this link denoted by the g value. The equation representing the g value is:

L
2N k"/% SSwW
g=1- =1- “)
No? SST
L
SSW =) N,o? Q)
h=1
SST = No* (6)

where ¢ indicates the impact of factor x; on explained variable Y; & represents the dif-
ferent layers or categories that make up the element Y or element X; N, indicates the
value or scale of the explained parameter ¥ or X within the specific slice or section #,
while N signifies the overall value or scale across the entire area. SSW expresses the
cumulative squared differences between the records and their group-specific means,
while SST captures the cumulative squared differences between the records and the
global average. Gi refers to the average squared distance between each explained
parameter Y value and its group mean within the subset or partition 4, while 62 indi-
cates the average squared distance between each explained parameter Y value and the
grand mean across the whole sample. The index g, confined to the range [0, 1], sug-
gests the level to which the explanatory parameter X is successful in capturing or rep-
resenting the systematic variations observed in the explained parameter. The closer g
is to 1, the closer the link or the greater the contribution of the explanatory parameter
X in describing the changes in the explained parameter Y. If the value is 0, show no
link between variable X and explained parameter Y.

Interaction detector
Utilizing the interaction evaluation procedure, researchers can establish if the joint
impact of the explanatory parameters X; and X, enhances or weakens the model’s

capacity to elucidate variations in the explained parameter. To begin with, the g values
corresponding to the explanatory parameters X, and X, must be obtained separately.
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Secondly, to calculate the interaction value g(X; N X,). Finally, compare the value of
q(X,), g(X,) and g(X; N X,). Following the comparison results shown in Table 2, the
data can be subdivided and allocated across five categories.

Spatial quantitative model

The geographic detector model can only compare the driving degree of each influenc-
ing factor but cannot judge whether this effect promotes or inhibits carbon emission. To
investigate the impact of these factors more comprehensively, the spatial Durbin model
is employed to figure it out. This model assumes that the explained variable in the
province i depends on the explanatory parameters of adjacent provinces. In this paper,
establish the formula can be established as follows:

n
CE, =p Y w;Cy+a+ B\RE, + f,(RE,) + fsPGDP,, + p,UR, + psPC,, + oIS, + p,PCP,
j=1
n n n n n
+0, ) WRE, +0, ) wy(RE; +0; Y w;PGDP, +0, ) w;UR, +05 ) w;PC,
Jj=1 Jj=1 j=1 j=1 Jj=1

+ 06 D\ WilS, + 05 D wiPCP, + i +7, + &&= 4 ) wi&, +é;
=1 j=1 j=1

@)
where notation i is applied to designate the province, w;; indicates the spatial weight-
ing array, CE denotes the carbon emission, RE indicates renewable energy expan-
sion, PGDP is GDP per capita, UR represents urban rate, PC refers to residential
consumption level, IS denotes industrial structure, PCP indicates private car owner-
ship. f is the parameter to be estimated, p refers to the spatial autoregression param-
eter, 0 represents the spatial hysteresis parameter of the explanatory parameter. y; is
the individual fixed effect, y, is the time-fixed effect, ¢ represents the year, and the
quantity A is used to quantify the degree of spatial linkage.

Table 2 Interaction categories

Criterion Interpretation
‘Weaken and nonlinear (WN)

q(X; N X,)<Min(q(X,), q(X>))
] ‘Weaken and univariate (WU)
Min(q(X,),q(X2) < q(X; N Xp)<Max(q(X,), q(X2))
Enhance and bivariate (EB)
q(X1 N X5) > Max(q(Xy),q(X2))
Independent (ID)
q(X1 N X3)= q(X)+ q(X3)
Enhance and nonlinear (EN)
(X1 N X5) > q(X)+q(Xp)
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Results
Spatial covariance of carbon discharge

In this section, local and global spatial autocorrelation tests are conducted to inves-
tigate the spatial autocorrelation character of carbon emission. Applying the Global
Moran’s I technique allows for an exploration of the spatial organization and interde-
pendence exhibited by carbon emission values. Global Moran’s I fluctuate between 0
and 1, and a value surpassing 0 denotes the presence of positive spatial dependence.
A Moran’s I measure less than O signifies negative spatial interdependence, whereas a
value near 0 reflects a random spatial arrangement, lacking any spatial linkage. Table 3
showcased Moran’s I index values over the years from 2004 to 2020. The analysis of
Moran’s I over the 2004 to 2020 period showed statistical significance at the 1% level,
suggesting a positive spatial autocorrelation for carbon emission across the provincial
areas. In conclusion, carbon emissions present spatial autocorrelation, and spatial fac-
tors are necessary to be considered.

The local spatial autocorrelation of variables can be reflected by the Local Moran’s
I scatter chart. Therefore, the Local Moran’s I scatter chart is drawn for 2004, 2011,
2015, and 2019 with inverse distance spatial matrix W. The 2020 COVID-19 crisis is
anticipated to bring about changes and deviations in the underlying laws that dictate
carbon emission dynamics. Therefore, the spatial autocorrelation for 2020 is not dis-
cussed. The scatter plots in Fig. 2 show the standardized carbon emission values on
the x-axis and the corresponding spatial lag on the y-axis. The grouping of data points
in the top-right and bottom-left quadrants implies a positive spatial linkage. Where
provinces with high carbon emissions are associated with other high-emission areas,
and low-emission provinces are grouped.

Figure 3 presents the clustering map of carbon emissions across provinces from
2004 to 2020. It reveals that provinces such as Shanxi, Liaoning, Inner Mongolia, and
Jiangsu exhibit high-high clustering, indicating that these provinces have relatively
high levels of carbon emissions, and the surrounding provinces also exhibit elevated
emissions. In contrast, Guangdong and Yunnan demonstrate high-low clustering,
suggesting that these provinces have high carbon emissions levels while being sur-
rounded by areas with lower emissions.

Table 3 The Moran’s I index

over the 2004 to 2020 period Year ! z i
2004 0.059 2.604 0.005
2007 0.055 2.507 0.006
2010 0.051 2.419 0.008
2013 0.050 2.364 0.009
2016 0.045 2.306 0011
2019 0.045 2.255 0.012
2020 0.007 1171 0.121
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Fig.2 Scatter charts of Local Moran’s I from 2004 to 2020

Factor detector

This paper thoroughly examined the explanatory power of seven distinct factors in the
evolution of carbon emissions from 2004 to 2020. The key insights from the analysis
are captured in Table 4, which showcases the outcomes of the factor detector func-
tionality within the Geodetector model. According to these results, private car owner-
ship stands out with the highest average g-value among the driving elements consid-
ered. This demonstrates that the prevalence of private vehicle ownership was a key
explanatory factor behind the changes in carbon emission observed across the studied
timeframe. Other important factors identified include industrial structure, renewable
energy expansion, urbanization, per capita GDP, and resident consumption.

The findings of this analysis reveal several key insights into the factors influencing
carbon emissions, particularly the dominant role of private car ownership. The high
average g-value associated with private vehicles indicates that as ownership increases,
so too do carbon emissions. This trend can be attributed to increased vehicle miles
traveled; as more individuals own private cars, the total distance driven tends to rise,
leading to higher emissions from fuel combustion. Economic growth also plays a sig-
nificant role, as rising per capita GDP often correlates with increased living levels,
enabling more people to afford electrical appliances. This relationship highlights the
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Fig.3 Lisa aggregation map

interplay between economic development and environmental impact. Furthermore,
the presence of other significant factors, such as industrial structure, renewable energy
expansion, and urbanization, suggests that a multifaceted approach is necessary for
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Table 4 Factor detector results Year RE PGDP UR PC IS PCP

2004 0.0428 0.1214 0.0237 0.0752 0.1722 0.3030
2007 0.0830 0.0976 0.1018 0.0451 0.1342 0.2799
2010 0.0912 0.0992 0.1022 0.0367 0.1581 0.2861
2013 0.0802 0.0409 0.1064 0.0377 0.1255 0.2956
2015 0.1962 0.0451 0.1064 0.1033 0.1175 0.3168
2017 0.1030 0.0970 0.1124 0.1028 0.0860 0.3068
2019 0.0912 0.0816 0.1338 0.0828 0.1149 0.3066
Average 0.0982 0.0833 0.0981 0.0691 0.1298 0.2993

effective carbon management. The industrial sector’s emissions indicate that tran-
sitioning to cleaner technologies and practices is crucial. While renewable energy
expansion is a positive trend, its effectiveness in reducing emissions may be limited
by concurrent increases in other factors, such as urbanization, which can lead to higher
energy demands. To mitigate the impact of private car ownership on carbon emissions,
there is a need to promote public transportation and incentivize the development of
efficient transit systems. Sustainable urban planning is essential, with a focus on inte-
grating mixed-use developments that reduce travel distances and promote walking or
cycling. Encouraging the adoption of electric vehicles through subsidies and expand-
ing charging infrastructure can also help decrease emissions from the transportation
sector. Additionally, regulating emissions from industries that contribute significantly
to carbon outputs is crucial, alongside continued investment in renewable energy
sources to ensure they can effectively offset emissions from other sectors.

Figure 4 presents radar charts depicting the g-values of six different factors influenc-
ing carbon emission. These charts illustrate how the driving forces of these factors have
evolved. As depicted in Fig. 4-a, the contribution of renewable energy expansion to car-
bon emission displayed a continuous upward trajectory from 2004 to 2015, followed by
a gradual decrease after 2015. Conversely, Fig. 4-b demonstrates that the driving force
of GDP per capita follows an inverted"N"pattern over the study period. In Fig. 4-c, the
driving force of urbanization level shows a consistent upward trend, indicating a steady
increase in its influence on carbon emission. Figure 4-d reveals that the trend of house-
hold consumption level mirrors the pattern observed for per capita GDP, showing similar
fluctuations. Figure 4-e highlights that the driving force of the industrial structure exhib-
its a fluctuating pattern, indicating variable impact over time. Lastly, Fig. 4-f shows that
the influence of private car ownership on carbon emission changes most smoothly, sug-
gesting a relatively stable impact throughout the study period.

Interactor detector results

The interaction between driving elements from 2004 to 2020 is detailed in Table 5 —1
through 5-7. Due to spatial constraints, Tables A.1 through A.6 are included in Appen-
dix A. The analysis has determined that the interaction effect between any two explan-
atory variables is limited to either the Enhanced and Bivariate (EB) or the Enhanced
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Fig. 4 Evolution trend of driving elements’ explanatory power from 2014 to 2020
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Table 5 —1 Interaction in 2019

RE PGDP UR PC IS PCP
RE 0.0912
PGDP 0.2757 0.0816
EN
UR 0.2477  0.1904  0.1338
EN EB
PC 0.2491 0.1185 0.1882  0.0828
EN EB EB
IN 0.3354 0.2214 0.2479 0.2306  0.1149
EN EN EB
PCP 0.3638 0.3475 0.3315 0.3373 0.3488 0.3066
EB EB EB EB EB

and Nonlinear (EN) category. The results underscore the complex interactions among
various driving factors influencing carbon emissions from 2004 to 2020. The classifica-
tion of these interactions into Enhanced and Bivariate (EB) or Enhanced and Nonlin-
ear (EN) categories indicates that the combined effect of two explanatory variables sig-
nificantly enhances the understanding of carbon emission trends, suggesting that these
relationships are not merely additive but interact in ways that amplify their impact on
emissions. Many examined variables, such as economic growth, urbanization, and pri-
vate car ownership, are intrinsically interconnected; for example, economic expansion
often leads to increased urbanization, resulting in heightened demand for transportation
and more private vehicles. This interconnectedness means that changes in one factor can
trigger cascading effects on others, creating a complex web of influences that collec-
tively shape carbon emissions. Additionally, traditional analyses that treat these factors
in isolation may overlook critical dynamics emerging from their interactions, such as the
relationship between renewable energy adoption and industrial structure, which reveals
how shifts in energy sources affect emissions based on industrial activity levels. From a
policy perspective, these insights highlight the need for integrated approaches to carbon
management; policymakers should consider the interactions among various driving fac-
tors when formulating strategies to reduce emissions. For instance, promoting renew-
able energy should not only emphasize production but also address its implications for
industrial practices and urban planning. Similarly, policies aimed at reducing private car
ownership, such as enhancing public transportation and encouraging carpooling, should
be coupled with initiatives that address economic growth and urbanization patterns. A
holistic framework that acknowledges the interdependencies among these factors will be
more effective in achieving significant reductions in carbon emissions, fostering sustain-
able urban environments, and ultimately contributing to climate goals.

Empirical Results and Discussions

Within the context of a spatial econometric framework, spatial autocorrelation may
arise from the dependent factor, independent factor, or disturbance term. This study
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Table 6 The result of the LM

test, LR test, and Wald test Variable Statistic P-value
LM_lag 96.257 0.000
LM_err 120.994 0.000
Robust_LM_lag 8.511 0.004
Robust_LM_err 33.248 0.000
LR _lag 81.55 0.000
LR _err 77.51 0.000
Wald_lag 86.61 0.000
Wald_err 79.27 0.000

begins with a Lagrange multiplier (LM) test to guide the model selection process.
Underlying the LM test is a null proposition that rules out the existence of spatial
lag effects and spatial error effects. Table 6 provides sufficient evidence to dismiss
the null assumption at a 1% significance standard, indicating that the model incor-
porates spatial lag effects and spatial error effects. Combined with the analysis of
Moran’s I value, this result further confirms the existence of spatial autocorrelation
in carbon emission. Therefore, incorporating spatial factors into the model analy-
sis is both necessary and appropriate. The Likelihood Ratio (LR) test and the Wald
test results also show that the Spatial Durbin Model (SDM) cannot be simplified
to either the Spatial Lag Model (SLM) or the Spatial Error Model (SEM). Conse-
quently, the Spatial Durbin Model is considered the most appropriate choice for this
research, as it effectively reflects the complexity of spatial dependencies in the data.

Table 7 presents the regression analysis, the regression results are structured as fol-
lows: models (1) and (2) contain the OLS regression outputs, and models (3) and (4)
contain the regression outputs using the spatial weight array W. The data indicates that
the link between renewable energy growth and carbon emission follows an inverted
U-shaped dynamic. The foundational phases of renewable energy advancement reveal
a correspondence with amplified carbon emission, yet as renewable energy systems
become more established, they will work to offset carbon emissions. When renewable
energy was first introduced, the renewable energy fraction was relatively insignificant,
and fossil-based energy sources continued to be the predominant energy source. Moreo-
ver, some renewable energy equipment manufacturing will also involve certain carbon
emissions, such as wind power generation equipment.

It is the transformation of the prevailing energy structure that acts as a primary
driver for the development of renewable energy to curb carbon emissions in the later
stage. Renewable energy alternatives are preferable due to their capacity to reduce
carbon emissions considerably. On the other hand, the burning of conventional fos-
sil-based energy resources including coal, oil, and natural gas produces significant
amounts of carbon dioxide and other greenhouse gases. The preference for energy
sources with high carbon intensity can be addressed by transitioning to renewable
energy sources, ultimately leading to a decline in carbon emissions. (2) Increasing
energy efficiency. Renewable energy expansion is habitually accompanied by con-
current energy efficiency gains. An illustration of technology that is continuously
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Table 7 Spatial quantitative model results

Variable ) 2 3) “
OLS OLS SDM SDM
RE 49.57#** 23.37%#%* 25.19%%* 16.92% %%
(2.945) (4.326) (3.857) (3.972)
RE2 —0.0112%%%* —0.00569%%** —0.00577%*** —0.00401%#%**
(0.000902) (0.00108) (0.000970) (0.000967)
PGDP 0.581%#%* 0.201%%%*
(0.163) (0.145)
UR 382.7#%* 302.6%+*
(91.52) (91.71)
PC —0.545%%%* —2.079%*%*
(0.330) (0.409)
1S —7901.3%%* —4464.2%%*
(12,005.4) (13,843.6)
PCP 35.39%* 30.70%*%*
(18.13) (20.09)
WRE —129.1%%%* —92.98%*
(27.59) (33.78)
WRE2 0.0217%%* 0.00595%**
(0.00754) (0.00835)
WPGDP —5.765%%*%*
(1.064)
WUR 1903.5%%*
(587.1)
WPC 6.166%
(2.774)
WIS 3156.3
(79,373.7)
WPCP 463.1%*
(145.4)
Province FE Yes Yes Yes Yes
Year FE Ye Yes Yes Yes
Log-L —5289.8153 —5252.5529
R? 0.406 0.490 0.132 0.143
N 510 510 510 510

The symbols *, **, and *** correspond to p-values below the 0.1, 0.05, and 0.01. The figures in param-
eter brackets are the standard errors of the reported values

advancing can be found in solar and wind power generation systems, increasing
energy conversion efficiency. Correspondingly, the growth of renewable energy
technology facilitates the enhancement and automation of the energy system, curb-
ing energy waste and dissipation, and eventually leading to a reduction in carbon
emission; (3) Clean transportation and electrification transition. The expansion of
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renewable energy is driving the transformation towards clean transportation and
electrification. The advancement of renewable energy is catalyzing the heightened
adoption of electric and hybrid vehicles. The substitution of traditional fuel-based
vehicles for new energy vehicles has contributed to reduced carbon emissions in
the transportation segment. (4) Energy diversification and decentralization. Renew-
able energy expansions foster energy diversification and decentralization, lessening
the dependence on conventional energy sources. By decentralizing energy produc-
tion and supply, such as distributed solar power generation systems and personal
wind generators, energy loss and carbon emissions are reduced during energy
transmission and distribution. (5) Technological progress and innovation. Continu-
ing technological advancements and innovations in renewable energy have driven
improvements in energy efficiency. With the maturity and large-scale application of
technology, renewable energy has gradually become an economically viable option,
and more countries and enterprises choose to invest in and adopt renewable energy,
thereby reducing overall carbon emissions.

Given the linkage between per capita GDP and carbon emissions, the former’s
ascent will probably significantly drive the latter. Because economic growth brings
more demand for fossil fuel consumption, resulting in more carbon emissions. The
increasing urbanization of the population is a major impetus for the augmentation
of carbon emissions. Many buildings and infrastructure construction require energy
supply, such as heating, air conditioning, and electricity, in the process of urbaniza-
tion. Energy demands are typically greater in urban buildings than in rural areas,
and energy-intensive activities involve escalated electricity and fuel consumption,
ultimately driving up carbon emissions. The regression results reveal a significantly
negative link between the resident consumption level and the explained parameter. As
residents’consumption levels rise, their environmental consciousness tends to increase,
and they are more likely to acquire and utilize living equipment with superior energy
efficiency. The regression outputs reveal that the industrial structure has a markedly
adverse impact, driven by the shift away from energy-intensive industries towards
more sustainable and low-emission operations. The strategic management of industrial
transitions—from high-carbon to low-carbon activities—has resulted in a decline in
the aggregate level of carbon emission. A significant boost in carbon emission levels

Table 8 Direct, indirect, and total effects

RE RE2 PGDP UR PC IS PCP

Direct effect 18.32""  —0.00416""  0.288" 279.4™  —2.185™"  —4046.1" 24.82
(4.116)  (0.00100) (0.142) (89.93) (0.393) (13,082.6)  (19.69)

Indirect effect  —79.70"  0.00609 —4.640""  1449.0" 5491 1133.3" 358.2"
(26.26)  (0.00629) (1.008) (532.4)  (2.291) (67,080.7) (132.2)
Total effect —-61.38"  0.00193 —4352"" 17283 3.307" -2912.8"  383.0™

(2633)  (0.00623) (1.030)  (5463)  (2291)  (73,649.8) (134.8)

The symbols *, **, and *** correspond to p-values below the 0.1, 0.05, and 0.01. The figures in param-
eter brackets are the standard errors of the reported values
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is anticipated to accompany the increase in private car ownership. Vehicular exhaust is
a widely accepted and critical component in the overall landscape of carbon emission.

It is apparent from Table 8 that the regression parameter for the proximate link-
age of SDM is divergent from the regression parameter of the corresponding vari-
able in Table 7, owing to the presence of response effects. The concept of response
effects describes the process whereby alterations in the explanatory variables of
an area elicit responses in neighboring areas, which subsequently propagate back
to the initial area via spatial spillover. Data from the direct impact study indicates
the linear regression parameter tied to renewable energy expansion is optimistic
and satisfies the demanding 1% significance threshold, and the quadratic regres-
sion parameter is negative and statistically significant at the 1% level, suggesting
the existence of a contribution of renewable energy expansion on carbon emission.
The data suggests an inverted U-shaped function, where renewable energy expan-
sion initially contributes to increased carbon emission, but then shifts towards
decreasing carbon emission. Furthermore, we observed that the proliferation of
renewable energy in adjacent areas can help reduce carbon emissions within the
focal area. The cumulative impact embodies the totality of the direct and indirect
consequences. The parameter for renewable energy expansion is notably negative,
the increasing adoption of renewable energy has a pronounced dampening impact
on carbon outputs.

Discussions

The findings of this study align closely with those of Zhu et al. (2024), who believe
that renewable energy systems can reduce carbon emissions by 10% to 50%. This
range highlights the variability in effectiveness based on specific implementation
strategies and local contexts. Furthermore, Wu et al., (2024a, 2024b) explored the
role of carbon pricing in shaping renewable energy development in China, reveal-
ing that higher carbon prices significantly decrease coal consumption, which in
turn promotes an increase in the share of renewable energy. This relationship
underscores the critical role of economic incentives in facilitating the transition to
cleaner energy sources, suggesting that policy frameworks incorporating carbon
pricing are essential for achieving emission reduction targets. Wu et al. also iden-
tified significant regional disparities in renewable energy development, advocat-
ing for targeted emission reduction initiatives in East China to ensure that climate
action is both effective and equitable. Reinforcing these themes, Qing et al. (2024)
demonstrated the importance of renewable energy investment in achieving carbon
neutrality goals through an empirical study approach in Asia, emphasizing that
financial commitment to renewable technologies is crucial for long-term sustain-
ability. In summary, these studies illustrate a result: renewable energy systems,
supported by appropriate economic policies and localized strategies, can play a
pivotal role in reducing carbon emissions and advancing global climate objectives.
Future research should continue to investigate the interplay between economic
incentives, regional policies, and renewable energy adoption to further elucidate
pathways toward a sustainable energy future.
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Conclusion and Policy Implications

The purpose of this paper is to check the link between the implementation of renewable
energy and carbon emission via a detailed multi-step process. The spatial autocorrela-
tion of carbon emission is initially confirmed by computing Moran’s I statistic, which
checks out spatial reliance. Subsequently, by applying the geographic detector model, the
driving forces of two key predictor variables on changes in carbon emissions were stud-
ied, and insights into their relative importance were provided. Lastly, the Spatial Durbin
Model (SDM) is employed to employ a comprehensive analysis and characterization of
the impact of each variable on carbon emission, facilitating a detailed understanding of
both spatial and non-spatial influences. The research indicates several key findings: From
2004 to 2020, carbon emissions data for China’s 30 provinces reveal significant spatial
interdependence and clustering patterns, with notable high-high and low-low aggrega-
tion, indicating regional disparities in carbon output. The geographic detector model
highlights private car ownership as the primary driver of carbon emission variations,
followed by industrial structure, renewable energy expansion, urbanization, per capita
GDP, and resident consumption levels. Additionally, the spatial Durbin model shows an
inverse U-shaped relationship between renewable energy growth and carbon emissions,
suggesting that while initial growth can reduce emissions, further development may lead
to increases. Furthermore, per capita GDP, urbanization, and private car ownership are
positively linked to higher carbon emissions, whereas changes in industrial composi-
tion and improved consumption patterns can contribute to reductions, underscoring the
importance of transitioning to cleaner and more sustainable industrial practices. Drawing
from the findings, the following policy recommendation is proposed:

(1) Provinces such as Shanxi, Inner Mongolia, and Liaoning exhibit significantly higher
carbon emissions compared to their neighboring regions; therefore, more targeted,
and region-specific mitigation strategies are needed. In these coal-dependent regions,
efforts should focus on accelerating the transition from fossil fuels to renewable
energy sources—such as wind, solar, and biomass—by providing financial incen-
tives, including subsidies for renewable energy projects and tax reductions for green
investments. In parallel, introducing retraining programs for workers in traditional
coal industries can help facilitate a just transition.

(2) The transportation sector is a major contributor to carbon emissions, making it essen-
tial to accelerate the shift toward low-carbon mobility. While expanding charging
infrastructure is a critical step toward promoting electric vehicle (EV) adoption, its
effectiveness depends on accompanying policy support. For instance, offering pur-
chase subsidies for EVs, implementing carbon pricing or fuel taxes, and providing tax
incentives for clean vehicle manufacturers can directly influence consumer behavior
and industry development.

(3) Renewable energy holds great potential in reducing carbon emissions, especially
in developing countries that are still undergoing industrialization. To maximize its
impact, a multi-pronged policy approach is needed. This includes promoting R\&D
investment to drive technological breakthroughs and reduce production costs, as well
as implementing feed-in tariffs, green certificates, or carbon trading schemes to ensure
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that renewable energy sources receive fair market treatment. Furthermore, establishing
regional power trading platforms and inter-regional grid integration can help balance
energy supply and demand more efficiently.

This study mainly focuses on 30 provinces in China, and the results may not apply
to carbon emission patterns and renewable energy implementation in other countries
or regions. Although multiple driving factors were explored, some important variables
affecting carbon emissions, such as policy changes and technological progress, may still
have been omitted. Moreover, while the geographical detector method performs well in
identifying spatial heterogeneity and capturing interaction effects among variables, it is
relatively weak in inferring causal relationships.

Appendix A
Table 9 Interaction in 2004 RE PGDP UR PC IS PCP
RE 0.0428
PGDP 0.1981 0.1214
EN
UR 0.1698 0.2644  0.0237
EN EN
PC 02137 0.1751 0.1188 0.0752
EN EB EN
IS 0.2193 02951 02370 0.2376  0.1722
EN EN EN EB
PCP 0.3713 03181 0.3393 0.3296 0.3583 0.3030
EN EB EN EB EB
Table 10 Interaction in 2007 RE PGDP UR PC IS PCP
RE 0.0830
PGDP 0.2113 0.0976
EN
UR 0.2702  0.1858 0.1018
EN EB
PC 0.1991 0.1991 0.2154 0.0451
EN EN EN
IS 0.2729 02335 02733 0.2252  0.1342

EN EN EN EN
PCP 0.3685 0.3582 0.3550 03119 0.3749 0.2799
EN EB EB EB EB
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Table 11 Interaction in 2010 RE PGDP UR PC IS PCP
RE 0.0912
EN
PGDP 03102 0.0992
EN
UR 0.3034 02764 0.1022
EN EN
PC 0.3055 0.1857 0.1499 0.0367
EN EN EN
IS 0.2490 0.3502 0.3379 0.3151 0.1581
EB EN EN EN
PCP 0.3851 0.3061 0.3430 0.3009 0.4204 0.2861
EN EB EB EB EB
Table 12 Interaction in 2013 RE PGDP UR PC IS PCP
RE 0.0802
PGDP 0.2175 0.0409
EN
UR 0.2038 0.1241  0.1064
EN EB
PC 0.2178 0.0741 0.1387 0.0377
EN EB EB
IS 0.2816 0.1737 0.2511 0.2459 0.1255
EN EN EN EN
PCP 0.3608 0.3322 0.3238 0.3389 0.3618 0.2956
EB EB EB EN EB
Table 13 Interaction in 2015 RE PGDP UR PC IS PCP
RE 0.1962
PGDP 0.3333  0.0451
EN
UR 0.2754 0.1297  0.1064
EN EB
PC 0.3258 0.1667 0.1994 0.1033
EN EN EB
IS 0.2983  0.2033  0.2629 0.2497
EB EN EN EN
PCP 0.3597 0.3481 0.3603 0.3422 0.3653 0.3168
EB EB EB EB EB
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Table 14 Interaction in 2017

RE PGDP UR PC IS PCP
RE 0.1030
PGDP 0.2802 0.0970
EN
UR 0.2314 0.1669 0.1124
EN EB
PC 02614 0.1539 0.2015 0.1028
EN EB EB
IN 0.1368 0.2321 0.2440 0.2567 0.0860
EB EN EN EN
PCP 0.3617 0.3339 0.3427 0.3337 0.3533  0.3068
EB EB EB EB EB
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