International Journal of Information Security (2025) 24:183
https://doi.org/10.1007/s10207-025-01102-3

REGULAR CONTRIBUTION l‘)

Check for
updates

A One-class variational autoencoder for smart contract vulnerability
detection

Shaowei Guan' . Ngai Fong Law’

Published online: 22 July 2025
© The Author(s) 2025

Abstract

Smart contracts and blockchain technology have revolutionized our transactions and interactions with digital systems, yet
their vulnerabilities can lead to devastating consequences such as financial losses, data breaches, and compromised system
integrity. Existing detection methods, including static analysis, dynamic analysis, and machine learning-based approaches,
have their limitations, such as requiring large amounts of labeled data or being computationally expensive. To address these
limitations, we propose a novel approach that leverages a One-Class Variational Autoencoder (VAE) with CodeBERT for data
pre-processing to detect vulnerabilities in smart contracts. Our approach achieved a higher F1 score (88.93%) compared to
the baselines evaluated, even when labeled data is limited. This paper contributes to the development of effective and efficient
vulnerability detection methods, ultimately enhancing the security and reliability of smart contracts and blockchain-based
systems. By demonstrating superior performance in imbalanced data scenarios, our method offers a practical solution for
real-world applications in blockchain security.

Keywords Smart Contracts - Blockchain - Vulnerability Detection - Variational Autoencoder - Transformer - Blockchain

Security

1 Introduction

Smart contracts, a fundamental component of blockchain
technology, have revolutionized how we conduct transac-
tions and interact with digital systems. A smart contract is a
self-executing program that automates the enforcement and
execution of a specific set of rules or agreements between par-
ties [1]. The significance of smart contracts lies in their ability
to provide a secure, transparent, and tamper-proof environ-
ment for various industries, such as finance, supply chain
management, and healthcare [2, 3]. With the rapid develop-
ment of Web 3.0, the adoption of smart contracts is expected
to continue growing, leading to a profound impact on how
we live and work.

However, despite their numerous benefits, smart contracts
are not immune to vulnerabilities. Common types of vul-

X Shaowei Guan
spiderman.guan @connect.polyu.hk

Ngai Fong Law
ngai.fong.law @polyu.edu.hk

Department of Electrical and Electronic Engineering, The
Hong Kong Polytechnic University, Kowloon, Hong Kong

nerabilities include reentrancy, unsecured direct calls, and
unchecked low-level calls, among others [4]. These vul-
nerabilities can lead to devastating consequences, such as
financial losses, data breaches, and compromised system
integrity. For instance, the DAO hack in 2016 resulted in
the theft of approximately $50 million worth of Ether due
to a reentrancy vulnerability [5]. In October 2023, Platypus
Finance, a stablecoin on the Avalanche blockchain, suffered
its third hack of the year. Attackers exploited a vulnerability
in the smart contracts, extracting approximately $2.2 mil-
lion and causing significant financial losses [6]. The severity
of these consequences is amplified by the fact that smart
contracts are often immutable, making it challenging to rec-
tify vulnerabilities once they are deployed. This highlights
the importance of pre-emptively detecting vulnerabilities in
smart contracts, which is the primary focus of this research.

Existing methods for detecting vulnerabilities in smart
contracts include static analysis, dynamic analysis, and
machine learning-based approaches [7-9]. While these meth-
ods have shown promise, they have their own limitations. For
instance, static analysis can be time-consuming and may not
detect all types of vulnerabilities, while dynamic analysis
can be computationally expensive and may not generalize

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-025-01102-3&domain=pdf

183 Page2of13

S. Guan, N. Fong Law

well to new contracts. On the other hand, machine learning-
based approaches often require large amounts of labelled
data, which can be challenging to obtain, especially in the
context of rapidly evolving smart contracts. This limitation
is particularly obvious in real-world scenarios, where smart
contracts are often updated rapidly, making it challenging
to label them in a timely manner manually. Another signifi-
cant limitation is the data imbalance issue; safe contracts are
typically more abundant and more accessible to find, while
contracts with vulnerabilities are comparatively rare, leading
to highly imbalanced datasets [10].

To address these challenges, we propose a novel approach
that utilizes a One-Class Variational Autoencoder (VAE)
structure to detect vulnerabilities in smart contracts. Our
method learns exclusively from safe smart contracts, leverag-
ing their abundance to construct a network that captures their
characteristics. We employ CodeBERT [11] to encode these
smart contracts and extract meaningful features for training
the VAE. By training solely on safe contracts, the model
learns to reconstruct them accurately. Consequently, when
it is faced with a vulnerable smart contract, the model is
unlikely to reconstruct it well, as it is given limited expo-
sure to the features of such contracts during training. This
approach effectively detects vulnerabilities in smart con-
tracts, even in scenarios with limited and imbalanced labeled
data. This study seeks to address the following two research
questions:

1. Under conditions of limited and unbalanced data, does
the One-Class VAE outperform traditional autoencoders
in detecting the vulnerability of smart contracts?

2. Under conditions of limited and unbalanced data, will
the One-Class VAE outperform current machine learning
methods?

Our approach aims to fill the existing gap in current detec-
tion methods by leveraging the strengths of VAE in learning
from limited data. Key contributions of our research include
introducing a novel deep learning framework with a VAE
as an alternative method to traditional detection methods. It
effectively handles limited labelled data and excels in imbal-
anced situations, making it a practical choice for real-world
applications.

This paper is organized as follows. Section 2 comprehen-
sively reviews existing works in smart contract vulnerability
detection. Section 3 details our data preparation and analy-
sis methods. Section 4 presents the proposed methodology,
including the One-Class VAE structure and classification via
reconstruction error. Section 5 evaluates our approach and
compares it with existing methods. Section 6 discusses our
principal findings, limitations and future direction, followed
by a conclusion in Section 7.

@ Springer

2 Related work

The smart contract vulnerability detection field has evolved
significantly, transitioning from traditional static analysis
methods to machine learning (ML) and deep learning (DL)
approaches. This shift has greatly enhanced the efficiency
and effectiveness of vulnerability detection processes in
smart contracts. Given the benefits of ML and DL, consid-
erable research efforts have been directed toward exploring
these methodologies. The subsequent sections will provide a
comprehensive overview of recent ML and DL approaches,
including supervised learning and semi-supervised learning,
as well as discuss the application of variational autoencoders
(VAESs) in other vulnerability detection domains.

2.1 Supervised learning approaches

Supervised learning techniques have been widely adopted in
smart contract vulnerability detection, with various models
demonstrating promising results. Liu et al. [12] proposed
a machine learning approach using Solidity bytecode for
smart contract honeypot detection in the Ethereum network.
This method demonstrated the potential of ML in identify-
ing deceptive smart contracts designed to lure unsuspecting
users. Subsequently, Hao et al. [13] developed SCScan,
a Support Vector Machine (SVM) based scanning system
for identifying vulnerabilities in blockchain smart contracts.
This approach leveraged machine learning to automate the
detection process, improving upon traditional static analysis
methods. ContractWard, an automated vulnerability detec-
tion model for Ethereum smart contracts, was introduced
by Wang et al. [14]. This model utilized a combination
of machine learning techniques to identify various types
of vulnerabilities, further advancing the field of automated
detection.

As the field progressed, more complex supervised deep
learning models were employed. These models leverage
different architectural strengths tailored to the unique charac-
teristics of smart contracts. For instance, Lou et al. [15] pro-
posed an improved convolutional neural network (CNN) for
detecting Ponzi schemes in smart contracts. This approach
utilizes CNNs’ ability to capture spatial and hierarchical
patterns, making them particularly effective for analyzing
bytecode or opcode sequences in smart contracts. By extract-
ing meaningful features from these representations, CNNs
enhance the model’s capability to identify vulnerabilities and
fraudulent patterns that may not be evident in raw data.

Qian et al. [16] developed an LSTM-based method for
automated reentrancy detection in smart contracts, show-
casing the effectiveness of recurrent neural networks in this
domain. Reentrancy vulnerabilities often involve recursive or
looping function calls, and the sequential nature of LSTMs
allows them to model these intricate dependencies in execu-

A One-class variational autoencoder for smart contract...

Page3of13 183

tion flow effectively. By learning the temporal relationships
between operations in the contract, the LSTM model signif-
icantly improves detection accuracy for such vulnerabilities.

Graph Neural Networks (GNNs) have also been applied
for smart contract vulnerability detection as demonstrated
by Zhuang et al. [17]. This approach leveraged the structural
information inherent in smart contracts to improve detec-
tion accuracy. Smart contracts can be represented as graphs,
with nodes representing functions or variables and edges rep-
resenting interactions or data flow. GNNs excel at capturing
relationships and dependencies within these graphs, enabling
the model to identify vulnerabilities that emerge from com-
plex structural interactions, such as circular dependencies or
misused variables.

More recently, transformer-based models have demon-
strated their ability to outperform traditional architectures
in code analysis tasks. Tang et al. [18] fine-tuned Code-
BERT, a pre-trained model designed for code-related tasks,
to enhance vulnerability detection. CodeBERT’s transformer
architecture allows it to process global context and long-
range dependencies in smart contract code, identifying subtle
vulnerabilities that may be missed by other methods. Tang
et al. also compared CodeBERT with Optimized-LSTM and
Optimized-CNN, illustrating the advantages of transformers
in understanding both the semantic and syntactic nuances
of code. Transformers’ ability to attend to the entire input
sequence simultaneously enables them to capture complex
patterns, such as nested function calls or intricate logic, mak-
ing them particularly effective for this task.

2.2 Analysis of strengths and limitations of existing
methods

Adopting ML and DL methods has significantly acceler-
ated the vulnerability detection process in smart contracts.
These approaches offer the ability to automatically learn
and identify complex patterns associated with vulnerabilities,
potentially uncovering issues that traditional static analysis
methods may miss. However, a significant limitation of the
supervised learning approaches is their reliance on large,
well-labelled datasets [16]. The dynamic nature of smart con-
tracts and the rapid evolution of vulnerability types make
it challenging to maintain up-to-date and comprehensive
labelled datasets [18]. This limitation highlights the need for
approaches to effectively utilize limited labelled data while
leveraging the availability of abundant unlabelled smart con-
tracts.

To address these challenges, semi-supervised learning
approaches have gained traction due to their ability to lever-
age both labelled and unlabelled data. Jiang et al. [19] intro-
duced VDDL, a deep learning-based vulnerability detection
model for smart contracts that utilizes semi-supervised learn-
ing techniques to address the constraints of limited labelled

data in the domain of smart contract vulnerability detec-
tion. Similarly, Sun et al. [20] proposed ASSBert, an active
and semi-supervised BERT model for smart contract vul-
nerability detection. This method combined the power of
transformer-based models with semi-supervised learning
techniques to improve detection accuracy while reducing the
reliance on large amounts of labelled data. These advance-
ments highlight the need for approaches that effectively
utilize limited labelled data, leveraging the abundance of
unlabelled smart contracts, thereby enhancing the overall
detection process.

2.3 The use of VAE in other vulnerability detection
domains

Variational Autoencoder (VAE) has shown promise in var-
ious anomaly detection domains. For instance, Dong et al.
[21] proposed a network abnormal traffic detection algorithm
based on VAE, achieving effective and accurate results in
identifying new attacks and outperforming other classifica-
tion schemes. Additionally, Khalid et al. [22] demonstrated
the effectiveness of a one-class VAE for detecting fake faces
in image datasets. This application showcases the potential
of VAE in identifying anomalies or vulnerabilities in high-
dimensional data. Dong and Kotenko [23] also proposed
to use convolutional VAEs for detecting intrusive activities
in Internet of Thing (IoT) settings, thereby strengthening
IoT security. While VAE has been predominantly applied
to image reconstruction tasks, their application to natural
language processing (NLP) tasks, such as smart contract
vulnerability detection, remains unexplored and presents
an interesting avenue for research. The ability of VAE to
learn compact representations of complex data structures
makes them valuable for capturing the nuanced patterns
and structures present in smart contract code. In light of
these considerations, our research aims to explore applying
semi-supervised learning techniques, specifically utilizing a
VAE-based approach, to address the challenges of limited
labelled data and the complex nature of smart contracts in
vulnerability detection.

3 Data preparation and analysis
3.1 Data collection

A comprehensive dataset with variability is essential for
training and evaluating network performance, comprising
both safe and vulnerable smart contracts. In our study,
we have incorporated four datasets sourced from existing
research and widely used in smart contract vulnerability stud-
ies. These datasets exhibit diverse types of vulnerabilities and
varying ratios of safe and vulnerable contracts. By integrating

@ Springer

183 Page4of13

S. Guan, N. Fong Law

Table 1 Collected Dataset Summary

Dataset Vulnerable Contracts Safe Contracts Total
Messi-Q 2,859 583 3,442
SaferSC 215 1,479 1,694
SolidiFI 343 0 343

Slither 0 2,244 2,244
Total 3,417 4,306 7,723

these datasets into our study, we aim to enhance our model’s
robustness and generalizability.
Specifically, our dataset comprises:

1. Messi-Q Smart Contract Dataset [24, 25]: This dataset
is composed of both vulnerable smart contracts and safe
ones. The vulnerable contracts are categorized into eight
types of vulnerabilities, namely: reentrancy, timestamp
dependency, block number dependency, dangerous del-
egatecall, Ether frozen, unchecked external call, integer
overflow/underflow, and dangerous Ether strict equality.
We successfully obtained 2,859 vulnerable smart con-
tracts and 583 safe smart contracts from this dataset.

2. SaferSC Smart Contract Dataset [26]: An additional
1,694 smart contracts are sourced from this dataset,
including 215 vulnerable and 1,479 safe smart contracts.
The vulnerable contracts contain three types of vulnera-
bilities: greedy, prodigal, and suicidal.

3. SolidiFI Benchmark Dataset [27]: This dataset con-
sists of buggy contracts injected by 9,369 bugs from
7 different bug types, including reentrancy, timestamp
dependency, unhandled exceptions, unchecked send,
Transaction Order Dependence (TOD), integer over-
flow/underflow, and use of tx.origin. We extracted
343 non-duplicated contracts from this dataset.

4. Slither Audited Smart Contracts Dataset [28]: This
dataset contains the Solidity smart contracts verified on
Etherscan.io, along with a classification of their
vulnerabilities according to the Slither static analysis
framework. Through this dataset, we have extracted
2,244 safe smart contracts.

Table 1 shows the distribution of the datasets, which
includes a total of 7,723 smart contracts. The source code
of these smart contracts serves as the primary unit of anal-
ysis. A subset of our dataset initially consisted of operation
code or contract addresses only. To address this limitation,
we employed Etherscan [29], an open platform that provides
a transparent and verifiable record of transaction histories
and smart contract deployments. By leveraging Etherscan’s
API, we were able to extract the corresponding source codes
for these contracts.

@ Springer

Frequency Distribution of Token Lengths
werage: 3106

Distribution of Token Lengths in different intervals

Fig.1 The analysis of the token length of smart contracts. (a) distribu-
tion of token lengths in different intervals and (b) frequency distribution
of token lengths

3.2 Data preprocessing

Data Cleaning During the data cleaning phase, we processed
the smart contract code to ensure consistency for the Code-
BERT model. Specifically, indentation was not preserved, as
CodeBERT’s tokenization process is primarily based on the
sequence of tokens rather than whitespace formatting. Any
instance of more than one consecutive space was merged into
a single space to standardize the input. Importantly, com-
ments within the smart contract code were preserved during
this stage, as they can sometimes provide valuable contextual
information about the contract’s logic and potential vulner-
abilities. However, combining data from different sources
can introduce noise into the dataset. To mitigate this issue,
we employed a series of data cleaning steps to reduce the
noise and ensure data consistency. In particular, we removed
unnecessary symbols and characters from the code, includ-
ing newline characters (\r \n, \n\n, \n), comment delimiters
(/ /), and some other common punctuation marks. This step
enabled us to focus on the essential tokens and words that
convey meaningful information. After removing all these
symbols, Figure 1 shows the distribution of the tokens’ length
of the smart contracts in the dataset. The average length is
3,106 tokens. 61.7% of smart contracts have a token length
between 0 and 2,500, 18.9% of contracts with token lengths
between 2,500 and 5,000, and those larger than 5,000 tokens
constitute 19.4%.
Data splitting The length of smart contracts varied signif-
icantly, ranging from hundreds to thousands of tokens (as
shown in Figure 1). However, the input for further analysis
necessitated uniform input length. For example, the Code-
BERT encoder [11], which we employed in our subsequent
analysis, has a maximum input length restriction of 512
tokens. To overcome this limitation, we developed a data
splitting strategy to divide each smart contract into chunks.
We began by tokenizing each contract using the Code-
BERT tokenizer [11]. Subsequently, we split the resulting
tokens into chunks, each containing 512 tokens, with a 50%
overlap between consecutive chunks. All chunks from one

A One-class variational autoencoder for smart contract...

Page50f13 183

PCA Visualization of Embeddings PCA Visualization of Embeddings

® ® Labell
o AvA,
- L

L e o 60 & L]
.
.

K ® Labelo
80 b . ® Lavell 80

Principal Component 2
Principal Component 2

-100 -50 o 50 100 150 -100 -50 [} 50 100 150
Principal Component 1 Principal Component 1
25% Overlap 50% Overlap

Fig. 2 The PCA Visualization of different overlap strategies. Label 0
and Label 1 represent respectively the safe and the vulnerable contracts

smart contract are assigned the same label. This overlap
strategy was designed to capture the contextual relationships
between adjacent chunks. To maintain uniformity, chunks
shorter than 512 tokens are padded with zeros. To miti-
gate the impact of extremely long contracts, we decided to
include only contacts whose token length is smaller than
5,000 (80.6% of the whole dataset), ensuring that our dataset
remained diverse and representative.

The key to our data splitting strategy lies in the overlap
mechanism, which allows us to capture the nuanced rela-
tionships between chunks. By doing so, we avoid treating
each chunk as a separate, independent contract, and instead,
characterize the intricate connections within a contract. To
determine the optimal overlap ratio, we compared two strate-
gies: 25% and 50% overlap. We applied Principal Component
Analysis (PCA) to examine the encoded chunks generated
by CodeBERT encoder, separately for each overlap ratio.
We randomly selected 300 chunks of safe smart contracts
and 300 chunks of vulnerable ones from the SaferSC Smart
Contract Dataset [26] for this comparison. Figure 2 illus-
trates the plot of the first two principal components for both
overlap strategies. The left panel represents the 25% overlap
strategy, while the right panel represents the 50% overlap
strategy. As evident from Figure 2, the 50% overlap strategy
exhibits a more distinct clustering pattern and outperforms
the 25% overlap strategy. Indeed, the 50% overlap strategy
is more effective at capturing the intrinsic characteristics and
latent structures of smart contracts than the 25% one due to
the higher degree of contextual continuity between adjacent
chunks.

To address the potential impact of excessively long con-
tracts on model training, we conducted an analysis of safe
contracts exceeding 5,000 tokens in length. These contracts
were encoded using CodeBERT with a 50% overlap, and
PCA was applied for visualization. As shown in Figure 3, the
resulting PCA plot revealed that these longer safe contracts
did not cluster effectively, instead exhibiting two distinct
clusters. Including these contracts could negatively influence
the training performance of our model. Therefore, we decided
to retain only contracts with a token length of less than 5,000.
Data encoding In our research, we leveraged the capabil-
ities of CodeBERT [11], a transformer-based pre-trained

PCA Visualization of Embeddings

2504 @ safe smart contract ®
[J
[]

200 A
~ []
£ 150
2 °
o
o
&
S 100 4
©
2 []
1)
£ 504
[+

d []
0 *“ .. [] ..
° ® %o © o
[] []
—50 4
-125 -100 -75 =50 =25 0 25 50

Principal Component 1

Fig.3 The PCA Visualization of the safe contracts with token length
larger than 5,000

language model, to encode the smart contracts and extract
meaningful features. CodeBERT is specifically designed to
handle various programming languages such as Python, Java,
JavaScript, PHP, Ruby, and Go. Its architecture is well-suited
to capture the syntactic and structural patterns inherent in
these languages. It receives an input sequence with a maxi-
mum length of 512 tokens and encodes it into an output with
a shape of 512x768 [11]. This transformer-based approach
not only enhances feature extraction but also aligns with find-
ings by Liew and Law [30], who emphasize the effectiveness
of such models in detecting complex patterns across different
contexts.

While smart contracts are written in Solidity, they share
similarities with other programming languages regarding
syntax and structure. By utilizing CodeBERT, we can tap
into its ability to focus on the unique features of Solidity
language and extract relevant information effectively. This
approach enables us to capture the nuanced characteristics
inherent in smart contracts, which may not be adequately
represented by other transformer-based models like BERT
[31] or DistilBERT [32].

To evaluate the efficacy of CodeBERT in encoding smart
contracts, we conducted a comparative analysis of its embed-
dings with those generated by DistilBERT. For this experi-
ment, we randomly selected a subset of 200 chunks of safe
smart contracts and 200 chunks of vulnerable smart contracts
from the SaferSC Smart Contract Dataset [26]. We applied
PCA to the embeddings generated by both CodeBERT and
DistilBERT to visualize and compare the resulting feature
spaces. Figure 4 shows the first two principal components
of the CodeBERT and DistilBERT embeddings. The Code-
BERT embeddings demonstrated a clear separation between
the safe and vulnerable smart contract clusters, indicating that
the model is capable of capturing the underlying patterns and

@ Springer

183 Page60f13

S. Guan, N. Fong Law

PCA of Embeddings PCA of

® Labelo 150 0ot ® Labelo

o 100 .

3

Principal Component 2
.
Principal Component 2

-100 -50 ©0 5 100 150 200 250 300
Principal Component

Principal Component
(a) DistilBERT (b) CodeBERT

Fig. 4 The PCA visualization of embeddings generated by (a) Distil-
BERT and (b) CodeBERT. Label 0 and Label 1 represent respectively
the safe and the vulnerable contracts

features that distinguish between these two classes. In con-
trast, the DistilBERT embeddings exhibited a more scattered
and overlapping distribution, suggesting that the model strug-
gles to disentangle the relevant features and patterns in the
smart contract data.

Data deduplication To mitigate the risk of data leakage due
to potential overlap between the different dataset sources,
after encoding the smart contract content using CodeBERT,
we implemented a deduplication check based on the gen-
erated embeddings. This process ensured that no identical
contract embeddings were present in both the training and
testing datasets, thus confirming the proper separation of our
evaluation sets.

4 Methodology

Our proposed methodology addresses two key challenges
inherent in smart contract vulnerability detection: the data
imbalance problem and the limited availability of labelled
data in the real world. We propose an approach utilizing a
One-Class Variational Autoencoder (VAE). As illustrated in
Figure 5, we used the well-processed safe smart contract to
train the VAE, allowing the model to learn the characteristics
of these safe contracts. We then evaluate the performance on
a group of test data with both safe and vulnerable contracts.
Since the trained model learns features of safe contracts,
it should reconstruct them accurately, resulting in a small
reconstruction error. In contrast, vulnerable contracts will
not be reconstructed effectively, leading to a large reconstruc-
tion error. By setting a threshold based on the reconstruction
error, we can effectively determine whether the test contractis
safe or vulnerable. The following subsections discuss details
regarding the structure of VAE, training process, and thresh-
old setting.

4.1 Proposed one-class VAE structure
A VAE is a type of generative model that learns to com-

press and reconstruct input data by optimizing a probabilistic
objective function [33]. Figure 6 shows the structure of

@ Springer

the proposed VAE. It consists of two main components: an
encoder and a decoder. The encoder network is built using a
long short term memory network (LSTM) to better capture
the sequential relationships of the tokens in the smart con-
tracts [34]. The decoder network attempts to reconstruct the
input data. By learning the underlying structure of the safe
smart contracts, VAEs can generate data that resembles the
safe contracts.

Specifically, the encoder transforms input data x into a
latent space z by outputting the parameters of a Gaussian
distribution, i.e., the mean u and log variance log(az):

q(zlx) = N(z p(x), 0% (x)) D

From the Gaussian distribution defined by the encoder, we
sample latent variables z:

z=pux)+ox)-€,e ~N(,1) ()

In this step, we introduce stochastic noise to the latent vari-
ables z. Subsequently, the decoder utilizes the latent variable
7 to reconstruct the original input data x. This process can be
mathematically expressed as:

p(xlz) = N(x; X(2), 02) 3)

Here, X(z) represents the reconstructed output, which
should closely resemble the original input if the model has
learned effectively. The training of the VAE is guided by max-
imizing the Evidence Lower Bound (ELBO). The ELBO is
expressed as follows:

L(x) = Eq(zlxlogp(x|z) — Dgr(q(z|x) || p(2)) “

where E,;|x)llog p(x|z)] is the expected log-likelihood
term, which encourages the decoder to accurately reconstruct
the input data from the latent variable z. Dk (q(z|x) || p(z))
is the Kullback-Leibler (KL) divergence that measures the
difference between the approximate posterior.

As shown in Figure 6, the encoder begins with an input
layer that accepts data in a specified shape of 512 x 768, which
corresponds to the output shape produced by CodeBERT. It
then processes the input through three LSTM layers: the first
with 512 units, the second with 256 units, and the third with
128 units. This layered approach allows the model to learn
complex patterns in the data. Following the LSTM layers,
a dense layer with 64 units and a ReLU activation func-
tion is added to further refine the representation. A dropout
layer with a rate of 0.2 is included to prevent overfitting. The
dimension of the latent space is 64 in our model.

The decoder begins with an input layer that receives sam-
ples from the latent space, with dimensions of 64. Initially,

A One-class variational autoencoder for smart contract...

Page70f13 183

Training

Encoded with

! I
' I
1 Data Cleaning 1
1 D & Splitting CodeBERT = Train s

PR Chunks Eemmmmeendl Embedding jommmmmmdll Variational Autoencoder 1
! 1
s I
L 1

Safe Smart
Contracts
R
P e e e S ST L Crr et st S
i Testing 1
1
' 1
1 D Data Cleaning Encoded with 1
& Splitting CodeBERT Reconstruction Yes

! _— g Embedding [l Trained VAE [0 S8 (000 " g V/uInerable Smart Contract 1
I Test Smart |
I Contracts \
1 No |
| | ey |
N W S N N N N N o N LI W SN R oo o oo s i ’

Fig.5 The workflow of our proposed method

/
Encoder Latent Space Decoder
input LSTM LSTM LSTM Dense @ p ks
rop - cE=He
Layer (512) (256) 128) | 69 M out E=pix) Tiece) e
(512x768) m[vmm]
\

AN

Fig.6 Our proposed Variational Autoencoder (VAE) Architecture with latent space

a dense layer with 64 units, using a ReLU activation func-
tion, processes the latent representation. This is followed by
a dropout layer with a rate of 0.2 to help prevent overfit-
ting. Before the LSTM layers, a RepeatVector layer is used
to reshape the latent input to match the sequence length of
the original input data. The model then employs three LSTM
layers, configured in an expanding structure with 128, 256,
and 512 units, respectively. This layered approach allows
the model to progressively reconstruct the compressed infor-
mation. The output of the decoder is produced through a
final TimeDistributed layer, which applies a dense layer to
each time step, reconstructing the input data’s original shape
(512x768).

Given the real-world scenario where safe smart contracts
outnumber vulnerable ones, we design a one-class model
that utilizes only safe contracts for training. During training,
we use 5,000 chunks of safe smart contracts (label 0) with a
batch size of 32 and 15 training epochs to optimize the VAE’s
parameters.

4.2 Classification via reconstruction error (MAE)

By training the VAE on safe smart contracts only, we expect
the model to reconstruct safe smart contracts accurately.
However, when presented with a vulnerable smart contract,
the VAE is unlikely to reconstruct it well, as it has not learned

its features during training. To quantify this reconstruction
error, we calculate the Mean Absolute Error (MAE) between
the input and output matrices. Each sample has an MAE
value, which is calculated by averaging the element-wise
differences between the input and output matrices. Mathe-
matically, the MAE is written as,

n

DT ®)

i=1,j=1

1
MAE = —
n

where 7 is the total number of elements (512 x 768) in the
matrices, x;; denotes the i-th row and j-th column element
of the input matrix, and X;; denotes the corresponding ele-
ment of the output matrix. This average value serves as the
reconstruction error for the smart contract.

As mentioned above, our approach is based on the prin-
ciple that smart contracts with higher reconstruction errors
are more likely to be vulnerable. By setting a threshold on
the reconstruction error, we can classify contracts as safe or
vulnerable. If the reconstruction error exceeds the thresh-
old, the contract is classified as vulnerable; otherwise, it is
classified as safe. This approach enables us to detect vul-
nerabilities in smart contracts by identifying deviations from
normal behaviours, as captured by the VAE’s reconstruction
error.

@ Springer

183 Page8o0f13

S. Guan, N. Fong Law

B Safe Smart Contracts
B Vulnerable Smart Contracts
___ Avg Safe: 0.250
800 SD Safe: 0.012
___ Avg Vulnerable: 0.302

SD Vulnerable: 0.020
—— Optimal Threshold: 0.270

a
8
S

Frequency

&
8
8

200

0250 0275 0300 0325 0350 0375 0.400
Mean Absolute Error (MAE)

Fig. 7 Distribution of Mean Absolute Error (MAE) between safe and
vulnerable smart contracts

4.3 Threshold setting

To determine the decision threshold for classifying con-
tracts as safe or vulnerable, we use a separate dataset of
6,136 chunks, comprising 2,000 safe and 4,136 vulnera-
ble smart contracts, mainly extracted from Messi-Q Smart
Contract Dataset [24, 25]. We calculate the MAE for each
contract. As shown in Figure 7, the distributions of MAE
values differ between safe and vulnerable smart contracts.
For safe contracts, the reconstruction errors fall within the
range of 0.222 to 0.304 (Mean:0.250, SD:0.012), whereas
vulnerable contracts exhibit errors ranging from 0.241 to
0.416 (Mean:0.302, SD:0.020). This discrepancy reflects the
model’s challenges in accurately capturing the features of
vulnerable contracts due to the lack of similar training data.
Such distinctions are crucial for effectively identifying and
classifying smart contracts based on their vulnerability sta-
tus.

To obtain the optimal decision threshold, we evaluated the
F1 score across various threshold values. The threshold that
yielded the highest F1 score was selected as the optimal deci-
sion threshold for our VAE. In our model, the best threshold
was determined to be 0.270 as shown in Figure 7, achieving
an F1 score of 96.28%. This high F1 score underscores the
model’s effectiveness in accurately classifying smart con-
tracts. Additionally, the threshold of 0.270 corresponds to
the mean MAE of safe contracts plus 1.7 standard devia-
tions. Therefore, when employing our method, the threshold
can be dynamically adjusted based on the MAE distribution
of a user’s own safe smart contracts.

5 Evaluation
5.1 Evaluation settings

We utilized three distinct subsets of our dataset throughout
the process. First, we trained the VAE using 5,000 chunks

@ Springer

of safe smart contracts from the SaferSC Smart Contract
Dataset, which were processed with CodeBERT. Next, we
determined the threshold for the VAE using another sub-
set of contracts from the Messi-Q Smart Contract Dataset.
Finally, our testing dataset comprised 660 chunks of safe
smart contracts and 4,200 chunks of vulnerable smart con-
tracts sourced from the SolidiFI Benchmark Dataset and
Slither Audited Smart Contracts Dataset. This comprehen-
sive approach allowed us to thoroughly evaluate the model’s
ability to distinguish between safe and potentially risky code.

To evaluate the performance of our proposed method, we
employ a range of metrics, including accuracy, F1 score,
recall, and precision. These metrics provide a comprehensive
assessment of our model’s ability to detect vulnerabilities in
smart contracts.

1. Accuracy measures the proportion of correctly classified
instances.

2. F1 score is the harmonic mean of precision and recall,
providing a balanced measure of both.

3. Recall represents the proportion of true positive instances
among all actual positive instances.

4. Precision measures the proportion of true positive
instances among all predicted positive instances.

5.2 Comparison with other autoencoders
(semi-supervised learning)

There are various ways to construct autoencoders. In our
exploration of research question 1, we compare the perfor-
mance of our VAE with two other autoencoder structures:
a dense layer-only autoencoder and an LSTM layer-only
autoencoder. The structures of these two autoencoders are
shown in Figure 8. The LSTM layer-only autoencoder has
the same structure as our VAE, except that the VAE imposes
a Gaussian distribution structure on the latent space. The
training data for these two autoencoders is the same as that
of the VAE. We employ the same method and the same data
to determine the optimal threshold for each autoencoder. The
resulting thresholds are 0.30 for the dense-only autoencoder
and 0.27 for the LSTM-only autoencoder.

Table 2 provides a summary of the performance results
of our VAE and the two autoencoders in terms of accuracy,
recall, precision, and F1 score. Under the same layer struc-
ture, the VAE demonstrated a distinct advantage in effectively
classifying safe and vulnerable smart contracts as its F1 score
is higher than the other two structures. This comparison
demonstrates that the mechanisms of the VAE, specifically
its ability to learn a probabilistic latent space, enhance its per-
formance over these traditional autoencoder architectures.

A One-class variational autoencoder for smart contract...

Page9of13 183

P e e e —————————————

\

~

—
~

Encoder

Input Layer

(512x768)

Py

P

P e - —— —

LSTM LSTM QDense ll Drop Ejﬂbeddi" s
(256) (128) f (64) @ out |

LSTM-layer Autoencoder

y

4

N e - e —

Decoder

\ -

\

N e - - - —

P I

=
Encoder

—
\\x

\ _/

oo - —— —

Input Layer Dense Dense [l Dense [Dense Embeddinzs
(512x768) (256) (128) (128) (64)

Dense-layer Autoencoder

~ '}
Decoder

\

\

N e e W e W e W W e W e W e e e e e e e e e e e e e e e -

Fig.8 The structure of the Dense-layer autoencoder and LSTM-layer autoencoder

Table 2 The comparison between the VAE and other autoencoders

Model Accuracy Recall Precision F1 score
Dense-autoencoder 0.8140 0.8071 0.9730 0.8824
LSTM-autoencoder 0.8064 0.8002 0.9705 0.8772
VAE 0.8193 0.8398 0.9451 0.8893

5.3 Comparison with other supervised models

In this study, we compare the performance of our pro-
posed VAE with five supervised learning models commonly
used in smart contract vulnerability detection: support vector
machine (SVM) [13], random forest (RF) [35], convolutional
neural network (CNN) [15], recurrent neural network (RNN)
[16], and fine-tuned DistilBERT [36]. These models were
selected because they represent a range of traditional and
state-of-the-art approaches to smart contract vulnerability
detection, each with distinct methodologies that have demon-
strated effectiveness in prior research.

The SVM and RF models were included as representa-
tive traditional machine learning approaches. SVM has been
extensively applied in smart contract vulnerability detection

due to its ability to classify vulnerabilities with high precision
in relatively small datasets [13]. RF, a widely used ensemble
learning algorithm, is known for its robustness and effective-
ness in handling class imbalance, which is a critical issue in
smart contract datasets [35].

Deep learning methods such as CNNs and RNNs have
gained traction for their ability to learn complex patterns
from smart contract data. CNNs have been shown to excel in
processing structured representations of bytecode, enabling
accurate vulnerability detection through hierarchical feature
extraction [15]. RNNs, on the other hand, are effective at ana-
lyzing sequential data such as execution traces or call graphs,
making them particularly suited for detecting temporal vul-
nerabilities like reentrancy attacks [16].

The fine-tuned DistilBERT model represents a more
recent development in the field, leveraging transformer archi-
tectures pre-trained on large-scale code datasets. DistilBERT
has been shown to achieve state-of-the-art results in vul-
nerability detection tasks by capturing both semantic and
syntactic nuances in smart contract code [36]. Its inclu-
sion ensures that our comparison addresses both traditional
machine learning and cutting-edge transformer-based meth-
ods.

@ Springer

183 Page100f13

S. Guan, N. Fong Law

Table 3 The comparison

between the proposed VAE and Model Accuracy Recall Precision F1 score

other supervised learning SVM 0.7811 0.7895 0.9485 0.8617

models RF 0.7163 0.6781 0.9906 0.8051
CNN 0.8014 0.8264 0.9363 0.8779
RNN 0.7848 0.7974 0.9450 0.8649
Fine-tuned DistiIBERT 0.6636 0.7650 0.8322 0.7972
VAE 0.8193 0.8398 0.9451 0.8893

To ensure a fair evaluation, all baseline models were
trained on the same labeled dataset used for the VAE, which
included 5,000 chunks of safe smart contracts and 50 chunks
of vulnerable smart contracts, with an additional 1% of vul-
nerable smart contracts added to simulate real-world class
imbalance. This setup allows us to benchmark the models
under identical conditions and assess their robustness in han-
dling imbalanced data.

The comparative results, presented in Table 3, demon-
strate that the proposed VAE outperforms all other models in
terms of accuracy (81.93%), recall (83.98%), and F1 score
(88.93%). This highlights its effectiveness in leveraging safe
smart contracts to detect anomalies without requiring explicit
vulnerability labels. In contrast, supervised methods such as
SVM and RF show reduced performance in handling the
imbalanced dataset, while CNN, RNN, and fine-tuned Dis-
tilIBERT, despite their strengths, rely heavily on the quality
and quantity of labeled data.

While our One-Class VAE with CodeBERT achieves a
superior F1 score compared to several baseline methods,
it exhibits lower precision in some instances as shown in
Table 2 and Table 3. This suggests that while our model effec-
tively identifies a large proportion of actual vulnerabilities
(high recall), it also flags some safe contracts as poten-
tially vulnerable (lower precision). This could be attributed to
the inherent nature of the one-class classification approach,
which learns a boundary around the normal (safe) contracts.
Contracts that lie outside this boundary are classified as
anomalies, and some safe contracts with unusual code pat-
terns might fall into this category. However, the higher F1
score indicates a better overall balance between precision
and recall, which is crucial in security applications where
missing vulnerabilities (low recall) can be more detrimental
than having false positives (low precision).

5.4 Model size, training efficiency, and deployment
considerations

Our One-Class VAE model consists of an encoder with
3,624,640 trainable parameters (approximately 13.83 MB)
and a decoder with 2,150,720 trainable parameters (approxi-
mately 8.20 MB). The model was trained on a single NVIDIA

@ Springer

A100 GPU for 30 epochs with a batch size of 32, with the total
training time being 1256.67 seconds. This relatively modest
size and training time suggest reasonable computational effi-
ciency. For deployment feasibility in large-scale blockchain
systems, the inference time for a single smart contract is sub-
stantially lower than the training time (approximately 29.34
ms), making real-time or near real-time vulnerability detec-
tion a possibility. Further optimization techniques, such as
model quantization and efficient inference pipelines, could
be explored to enhance deployment on resource-constrained
environments. The model’s reliance on CodeBERT embed-
dings, which can be pre-computed, also contributes to faster
analysis during deployment.

6 Discussion
6.1 Principal findings

Our primary contribution is the introduction of a novel one-
class VAE framework integrated with CodeBERT for smart
contract vulnerability detection. While both CodeBERT and
VAEs have been employed in software engineering and secu-
rity domains, our approach offers specific novelty in the
context of smart contract vulnerability detection through the
synergistic combination of these techniques in a one-class
learning framework [18]. Unlike prior CodeBERT-based
methods that primarily focus on supervised classification
with labeled vulnerable and safe contracts, our One-Class
VAE leverages CodeBERT’s semantic understanding of code
to learn a representation of normal (safe) smart contracts.
This allows us to detect unseen vulnerabilities without requir-
ing extensive labeled data for each specific vulnerability
type, addressing a key limitation of supervised methods.
Compared to existing semi-supervised anomaly detection
methods that might use simpler input features, our integration
with CodeBERT enables a more nuanced and semantically
informed representation of smart contract code, potentially
leading to a more accurate detection of subtle and complex
vulnerabilities [19, 20]. The novelty lies in the unique appli-
cation of a One-Class VAE with CodeBERT embeddings

A One-class variational autoencoder for smart contract...

Page110f13 183

to tackle the smart contract vulnerability detection problem,
particularly in scenarios with limited labeled data.

Furthermore, our study introduces a robust data splitting
strategy to address the challenge of varying smart contract
lengths, which is critical for ensuring uniform input length
for deep learning models like CodeBERT. By tokenizing con-
tracts and splitting them into chunks of 512 tokens with a 50%
overlap, we preserve contextual relationships between adja-
cent chunks, enhancing the model’s ability to capture the
semantic and syntactic intricacies of smart contracts. This
overlap strategy, validated through Principal Component
Analysis (PCA), demonstrates that a 50% overlap outper-
forms a 25% overlap in maintaining contextual continuity
and clustering patterns, thereby improving the representation
of contract complexities. This methodological innovation not
only ensures uniformity in input length but also strengthens
the model’s capacity to detect vulnerabilities by capturing
nuanced relationships within the contract code.

6.2 Limitations and future work

Despite the promising results achieved in this study, several
limitations should be acknowledged, each of which suggests
directions for future research.

First, the dataset used in this study—comprising 7,723
smart contracts for training and testing—presents a potential
limitation in terms of size and diversity. While the model
demonstrates strong performance on this dataset, expand-
ing it could enhance generalization and robustness. A larger,
more diverse dataset would expose the model to a wider range
of secure contract patterns and various types of vulnerabili-
ties, enabling it to learn a more comprehensive representation
of safe and unsafe behaviors. Future work should focus on
collecting additional smart contracts from diverse sources
and employing data augmentation techniques to improve
generalizability. For example, Guan et al. [37] proposed using
generative Al to generate text data, which addressed the prob-
lems of data scarcity and imbalance. Moreover, this study
focuses on binary classification (safe vs. vulnerable) with-
out distinguishing between specific vulnerability types (e.g.,
reentrancy, integer overflow) or contract categories (e.g.,
DeFi, NFTs, staking). Although a binary approach supports
rapid initial assessments, vulnerabilities are often domain-
specific. Future research should incorporate contract type
metadata, where available, to evaluate the model’s perfor-
mance across different categories and explore its ability to
detect specific types of vulnerabilities.

Second, our preprocessing pipeline was designed to align
with the input requirements of CodeBERT, involving choices
such as removing excessive whitespace and retaining com-
ments [11]. However, the effects of alternative preprocess-
ing strategies—such as excluding comments or modifying
indentation—were not systematically evaluated. In the future,

the impact of these preprocessing decisions on model perfor-
mance and robustness should be investigated.

Another potiential limitation of our current approach is
the chunking strategy. Given the increasing length of mod-
ern smart contracts, we adopted an overlapping chunking
approach to preserve contextual relationships between adja-
cent segments. However, this method may fall short in
capturing interdependencies between distant functions or
contract sections, especially for vulnerabilities that span
multiple components. Future research could explore more
sophisticated strategies, such as function-aware chunking, to
maintain semantic coherence within chunks. Additionally,
techniques for aggregating chunk-level outputs—potentially
through call graph analysis—could provide a more holistic
understanding of vulnerability patterns.

The black-box nature of deep learning models also poses
interpretability challenges, highlighting the importance of
developing techniques for greater transparency and explain-
ability. One potential direction for future research is to
explore ways to identify the specific areas of the recon-
struction error matrix that are most indicative of vulnerable
smart contracts. Currently, we calculate the average of the
MAE of the reconstruction error matrix, whose dimension
is 512x 768, but it would be beneficial to develop methods
that can pinpoint the exact regions of the matrix that are most
different between safe and vulnerable contracts. This could
involve developing techniques to visualize and interpret the
reconstruction error matrix, or to identify the most important
features that contribute to the model’s decisions.

Additionally, the approach to threshold selection presents
a deviation from a strict one-class learning paradigm. While
the VAE is trained solely on safe contracts, the optimal thresh-
old is determined using both safe and vulnerable contracts
to maximize the F1 score. Although this enhances practical
performance, it introduces a potential bias toward known vul-
nerability types. Notably, our final threshold selection relies
on the distribution of safe contracts. Nevertheless, future
research could explore stricter one-class thresholding meth-
ods, such as unsupervised clustering or domain-informed
heuristics based solely on safe contract characteristics.

By addressing these limitations, future research can fur-
ther enhance the accuracy, robustness, and interpretability of
one-class VAE-based methods for smart contract vulnerabil-
ity detection.

7 Conclusion

In conclusion, this study introduces a novel one-class VAE
approach for smart contract vulnerability detection, demon-
strating its effectiveness in identifying vulnerabilities with
high accuracy, recall, and F1 score. Addressing key research
questions, our findings reveal that the one-class VAE outper-

@ Springer

183 Page120f13

S. Guan, N. Fong Law

forms traditional autoencoders and other machine learning
methods, especially when data is limited and imbalanced.
This research holds significant implications for enhancing
the security and reliability of smart contracts, offering a
promising solution for developing more secure and trust-
worthy blockchain applications as smart contracts become
increasingly prevalent. We hope this work inspires further
exploration and contributes to the advancement of vulnera-
bility detection methods in the field.

Author Contributions S.G. conducted the experiments and wrote the
manuscript, with N.E.L. providing suggestions and guidance throughout
the research.

Funding Open access funding provided by The Hong Kong Polytechnic
University.

Data Availability All datasets used are publicly available.

Declarations
Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Nzuva, S.: Smart contracts implementation, applications, benefits,
and limitations. Journal of Information Engineering and Applica-
tions 9(5), 63-75 (2019). https://doi.org/10.7176/JIEA/9-5-07

2. Bartoletti, M., Pompianu, L.: An empirical analysis of smart con-
tracts: Platforms, applications, and design patterns. In: Financial
Cryptography and Data Security. FC 2017 International Work-
shops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema,
Malta (2017)

3. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts
for the Internet of Things. IEEE Access. 4, 2292-2303 (2016).
https://doi.org/10.1109/access.2016.2566339

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on
Ethereum smart contracts (SoK). In: Principles of Security and
Trust: 6th International Conference, POST 2017, Uppsala, Swe-
den (2017)

5. Siegel, D.: Understanding the DAO attack. CoinDesk. https:/
www.coindesk.com/learn/understanding-the-dao-attack/ (2016).
Accessed 21 Oct. 2024

6. Behnke, R.: Explained: The platypus finance hack (October
2023). Halborn. https://www.halborn.com/blog/post/explained-
the-platypus-finance-hack-october-2023 (2023). Accessed 21 Oct.
2024

@ Springer

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

. Chang, J., Gao, B., Xiao, H., Sun, J.,, Cai, Y., Yang, Z.:

. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Biinzli,

E., Vechev, M.: Securify: Practical security analysis of smart con-
tracts. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 67-82 (2018). https://
doi.org/10.1145/3243734.3243780

sCom-
pile: Critical path identification and analysis for smart contracts.
In: Formal Methods and Software Engineering: 21st International
Conference on Formal Engineering Methods, ICFEM 2019, Shen-
zhen, China (2019)

. Wang, S., Zhang, C., Su, Z.: Detecting nondeterministic payment

bugs in Ethereum smart contracts. Proceedings of ACM on Pro-
gramming Languages. 3(OOPSLA), 1-29 (2019). https://doi.org/
10.1145/3360615

Dattaprasad, P., Vijaya, B.: An overview of blockchain technol-
ogy: Architecture, consensus, and future trends. Int. J. Adv. Res.
Sci. Commun. Technol. 293-298 (2023). https://doi.org/10.48175/
IJARSCT-8158

Feng, Z.,Guo, D., Tang, D., et al.: CodeBERT: A pre-trained model
for programming and natural languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. 1536-1547
(2020). https://doi.org/10.18653/v1/2020.findings-emnlp.139
Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: ReGuard:
Finding reentrancy bugs in smart contracts. In: Proceedings of the
40th International Conference on Software Engineering: Compan-
ion Proceedings, 65-68 (2018)

Hao, X., Ren, W., Zheng, W., Zhu, T.: SCScan: A SVM-based
scanning system for vulnerabilities in blockchain smart contracts.
In: 2020 IEEE 19th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). IEEE,
1598-1605 (2020). https://doi.org/10.1109/TrustCom50675.2020.
00221

Wang, W., Song, J., Xu, G., Li, Y., Wang, H., Su, C.: ContractWard:
Automated Vulnerability Detection Models for Ethereum Smart
Contracts. IEEE Transactions on Network Science and Engineer-
ing. 8(2), 1133-1144 (2021). https://doi.org/10.1109/TNSE.2020.
2968505

. Lou, Y., Zhang, Y., Chen, S.: Ponzi Contracts Detection Based on

Improved Convolutional Neural Network. 2020 IEEE International
Conference on Services Computing (SCC), Beijing, China. 353-
360 (2020). https://doi.org/10.1109/SCC49832.2020.00053.
Qian, P, Liu,Z.,He, Q., Zimmermann, R., Wang, X.: Towards auto-
mated reentrancy detection for smart contracts based on sequential
models. IEEE Access. 8, 19685-19695 (2020). https://doi.org/10.
1109/ACCESS.2020.2969429

Zhuang, Y., Liu, Z., Qian, P, Liu, Q., Wang, X., He, Q.: Smart
contract vulnerability detection using graph neural networks. In
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence (IICAI’20). 454, 3283-3290 (2021). https://
doi.org/10.24963/ijcai.2020/454

Tang, X., Du, Y., Lai, A., Zhang, Z., Shi, L.: Deep learning-
based solution for smart contract vulnerabilities detection. Sci. Rep.
13(1), 20106 (2023). https://doi.org/10.1038/s41598-023-47219-
0

Jiang, F., Cao, Y., Xiao, J., Yi, H., Lei, G., Liu, M., Deng, S., Wang,
H.: VDDL: A deep learning-based vulnerability detection model
for smart contracts. In Proceedings of the International Conference
on Machine Learning for Cyber Security, Nadi, Fiji. 72-86. (2023)
Sun, X., Tu, L., Zhang, J., Cai, J., Li, B., Wang, Y.: ASSBert:
Active and semi-supervised bert for smart contract vulnerability
detection. Journal of Information Security and Applications. 73,
103423- (2023). https://doi.org/10.1016/].jisa.2023.103423
Dong, S.,Su, H., Liu, Y.: A-CAVE: Network abnormal traffic detec-
tion algorithm based on variational autoencoder. ICT Express. 9(5),
896-902 (2023). https://doi.org/10.1016/j.icte.2022.11.006

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7176/JIEA/9-5-07
https://doi.org/10.1109/access.2016.2566339
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.halborn.com/blog/post/explained-the-platypus-finance-hack-october-2023
https://www.halborn.com/blog/post/explained-the-platypus-finance-hack-october-2023
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3360615
https://doi.org/10.1145/3360615
https://doi.org/10.48175/IJARSCT-8158
https://doi.org/10.48175/IJARSCT-8158
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/TrustCom50675.2020.00221
https://doi.org/10.1109/TrustCom50675.2020.00221
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1109/SCC49832.2020.00053.
https://doi.org/10.1109/ACCESS.2020.2969429
https://doi.org/10.1109/ACCESS.2020.2969429
https://doi.org/10.24963/ijcai.2020/454
https://doi.org/10.24963/ijcai.2020/454
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1016/j.jisa.2023.103423
https://doi.org/10.1016/j.icte.2022.11.006

A One-class variational autoencoder for smart contract...

Page130f13 183

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Khalid, H., Woo, S.S.: Oc-fakedect: Classifying deepfakes
using one-class variational autoencoder. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops, 656-657 (2020)

Dong, H., Kotenko, I.V.: Convolutional variational autoen-
coders and resampling techniques with generative adversarial
network for enhancing Internet of Thing security. Pattern Recog-
nit Image Anal. 34(3), 562-569 (2024). https://doi.org/10.1134/
S1054661824700366

Qian, P, Liu, Z., Yin, Y., He, Q.: Cross-modality mutual learning
for enhancing smart contract vulnerability detection on bytecode.
In: Proceedings of the ACM Web Conference 2023, 2220-2229
(2023)

Liu, Z., Qian, P, Yang, J., Liu, L., Xu, X., He, Q., Zhang,
X.: Rethinking smart contract fuzzing: Fuzzing with invocation
ordering and important branch revisiting. IEEE Trans. Inf. Foren-
sics Secur. 18, 1-1 (2023). https://doi.org/10.1109/TIFS.2023.
3237370

Tann, W.J.-W., Han, X.J., Gupta, S.S., Ong, Y.-S.: Towards safer
smart contracts: A sequence learning approach to detecting secu-
rity threats. arXiv preprint (2018). https://doi.org/10.48550/arxiv.
1811.06632

Ghaleb, A., Pattabiraman, K.: How effective are smart contract
analysis tools? Evaluating smart contract static analysis tools using
bug injection. In: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 415427
(2020)

Rossini, M.: Slither Audited Smart Contracts Dataset. https:/
github.com/mwritescode/slither-audited-smart-contracts (2022).
Accessed 1 Oct. 2023

Ethereum (ETH) blockchain explorer. https://etherscan.io/ (2024).
Accessed 1 Oct. 2024

Liew, S.R.C., Law, N.F.: BEAM - An algorithm for detecting
phishing link. In: 2022 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA
ASC), IEEE, 598-604 (2022)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-
training of deep bidirectional transformers for language

32.

33.

34.

35.

36.

37.

understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, Minneapolis, Minnesota. Association
for Computational Linguistics. (2019). https://doi.org/10.18653/
v1/N19-1423

Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint
(2019). https://doi.org/10.48550/arxiv.1910.01108

Bond-Taylor, S., Leach, A., Long, Y., Willcocks, C.G.: Deep
Generative Modelling: A Comparative Review of VAEs, GANSs,
Normalizing Flows, Energy-Based and Autoregressive Models.
IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7327-7347 (2022).
https://doi.org/10.1109/TPAMI.2021.3116668

Liew, S., Law, N.E.: Use of subword tokenization for domain gener-
ation algorithm classification. Cybersecurity. 6, 49 (2023). https://
doi.org/10.1186/s42400-023-00183-8

Zhang, Y., Kang, S., Dai, W., Chen, S., Zhu, J.: Code will speak:
Early detection of Ponzi smart contracts on Ethereum. In: 2021
IEEE International Conference on Services Computing (SCC). 55,
301-308 (2021). https://doi.org/10.1109/scc53864.2021.00043
Lé, H.B., Lg, D.T.,boan, M.T., et al.: Contextual language model
and transfer learning for reentrancy vulnerability detection in smart
contracts. In: Proceedings of the 12th International Symposium
on Information and Communication Technology. 739-745 (2023).
https://doi.org/10.1145/3628797.3628945

Guan, S., Hui, V., Stiglic, G., Constantino, R.E., Lee, Y.J., Wong,
A.: Classifying the Information Needs of Survivors of Domestic
Violence in Online Health Communities Using Large Language
Models: Prediction Model Development and Evaluation Study.
J. Med. Internet Res. 27, €65397 (2025). https://doi.org/10.2196/
65397

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1134/S1054661824700366
https://doi.org/10.1134/S1054661824700366
https://doi.org/10.1109/TIFS.2023.3237370
https://doi.org/10.1109/TIFS.2023.3237370
https://doi.org/10.48550/arxiv.1811.06632
https://doi.org/10.48550/arxiv.1811.06632
https://github.com/mwritescode/slither-audited-smart-contracts
https://github.com/mwritescode/slither-audited-smart-contracts
https://etherscan.io/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arxiv.1910.01108
https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1186/s42400-023-00183-8
https://doi.org/10.1186/s42400-023-00183-8
https://doi.org/10.1109/scc53864.2021.00043
https://doi.org/10.1145/3628797.3628945
https://doi.org/10.2196/65397
https://doi.org/10.2196/65397

	A One-class variational autoencoder for smart contract vulnerability detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Supervised learning approaches
	2.2 Analysis of strengths and limitations of existing methods
	2.3 The use of VAE in other vulnerability detection domains

	3 Data preparation and analysis
	3.1 Data collection
	3.2 Data preprocessing

	4 Methodology
	4.1 Proposed one-class VAE structure
	4.2 Classification via reconstruction error (MAE)
	4.3 Threshold setting

	5 Evaluation
	5.1 Evaluation settings
	5.2 Comparison with other autoencoders (semi-supervised learning)
	5.3 Comparison with other supervised models
	5.4 Model size, training efficiency, and deployment considerations

	6 Discussion
	6.1 Principal findings
	6.2 Limitations and future work

	7 Conclusion
	References

