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Abstract
Concrete casting, a cornerstone of construction, relies on formwork to shape structures and has been used to create topology-
optimized lightweight designs. The interplay between cast structures and formwork necessitates balancing casting constraints, 
particularly filling efficiency in topological channels, to avoid defects that compromise performance. However, filling effi-
ciency is often empirically addressed, limiting optimization potential. Traditional methods require extensive post-processing 
to improve filling efficiency, increasing costs and design time. This work introduces a process simulation-informed reverse 
topology optimization framework, integrating casting constraints into the design process. The framework combines topology 
optimization, Discrete Element Method (DEM) simulation, and filling ratio identification. Its effectiveness is demonstrated 
through 2D numerical examples, experimental validation, and a preliminary 3D extension. Results show that the optimized 
structures improve filling efficiency and allow customizable casting positions. This approach offers a novel strategy for 
formwork optimization, enhancing efficiency and reducing costs in the building industry.
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1  Introduction

Concrete casting has been widely used in construction to 
fabricate complex building structures. Formwork is essen-
tial in the casting process to achieve the desired geometries. 
Formwork refers to the temporary or permanent molds or 
structures that shape and support concrete or similar mate-
rials. It helps create the structures using precast or cast-
in-place methods. As sustainable low-carbon buildings 
advance, lightweight cast structures with minimal material 
and maximum stiffness have attracted significant attention 
in the building industry (Aghaei-Meibodi et al. 2017; Gaga-
nelis and Mark 2019; Jipa et al. 2016; Søndergaard et al. 

2018). The formwork for lightweight structures typically 
incorporates intricate flow pathways. Due to the inherent 
variability in material compositions and properties, complex 
formwork frequently leads to regions where the cast fails to 
achieve proper self-compaction, resulting in voids or inad-
equate density in localized areas (Mechtcherine et al. 2014). 
The complexity of the formwork makes it challenging to 
resolve this issue using conventional engineering methods, 
such as vibration compaction. Therefore, a novel approach is 
needed to integrate casting constraints into structural design, 
enabling the structural formwork to achieve self-compacting 
casting.

Topology optimization is a promising approach to achiev-
ing optimal lightweight structures. This computational 
method allows for the precise distribution of material within 
a given design space to meet specific performance criteria, 
such as stiffness and strength, while minimizing material 
use (Sigmund and Maute 2013). In civil and building engi-
neering, some building examples include the Qatar National 
Convention Centre in Doha (Isozaki 2011), the Shanghai 
Himalayas Center in China (Isozaki 2010), “Xiong'an 
Wings” in China (under construction) (Li et al. 2023), etc. 
Furthermore, designers can create various functional struc-
tures by applying different topology optimization methods 
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(Stoiber and Kromoser 2021) and construction techniques, 
such as prestressed topological concrete structures (Ooms 
et al. 2022), cable-supported topological structures (Li et al. 
2024), etc. Topology optimization provides designers with 
the freedom to create aesthetically pleasing and functional 
forms.

There are two primary technologies for producing topol-
ogy-optimized concrete structures: 3D concrete printing 
(3DCP) and formwork casting. 3DCP is a technique that 
builds objects by successively depositing concrete material 
layer by layer (Zhuang et al. 2024a). Due to the intrinsic 
characteristics of the manufacturing process, complex opti-
mized structures often need to be printed and assembled 
in batches to avoid print failures (Vantyghem et al. 2020). 
Furthermore, the inter-layer bonding tends to weaken due 
to cold-joint effects (Ma et al. 2019). In contrast, formwork 
casting, as a traditional method, offers superior strength and 
consistency. The flexibility and stability of formwork cast-
ing make it the preferred method for producing topology-
optimized structures, especially in designs requiring large 
overhangs or high performance (Jipa et al. 2016, 2019).

Although formwork casting is widely favored, it still has 
some limitations. In the building industry, casting materi-
als exhibit different compositions and flowability (Jiao et al. 
2017; Revilla-Cuesta et al. 2023). In particular, concrete 
materials with high yield stress or the inclusion of coarse 
aggregates exhibit reduced flowability, which results in inad-
equate filling during the casting process (Roussel 2007). The 
limited fluidity impairs the ability to flow smoothly into all 
voids and cavities, potentially causing incomplete or une-
ven distribution. Moreover, this distribution is related to the 
location of the casting, as shown in Fig. 1. As the complexity 
of formwork increases, the improper filling issue becomes 
even more critical. Therefore, addressing the filling chal-
lenges of complex formwork is extremely important for pro-
moting application of topology-optimized structures in the 
building industry.

Regarding the filling issue, there is relevant research in 
materials science. Firstly, enhancing the flowability of the 

casting material is a potential solution for improving filling 
efficiency. However, high-flow materials are more expensive 
than traditional ones (Gaimster and Dixon 2003), and study 
shows that they still fail to effectively fill complex voids 
due to the presence of aggregates (Zhang et al. 2020). Sec-
ondly, numerical methods can be used to predict material 
filling behavior, among which the Discrete Element Method 
(DEM) is a feasible approach to simulating the flow of parti-
cle materials (Mechtcherine et al. 2014). Zhang et al. (2020) 
analyzed the filling capacity of self-compacting concrete 
(SCC) with DEM. Yan et al. (2022) and Li et al. (2021) sim-
ulated the flowability of fresh concrete using Hertz–Mindlin 
with the Johnson–Kendall–Roberts (JKR) model. However, 
this method is limited to forward prediction of formwork-fill-
ing behavior before casting and does not support automatic 
reverse adjustment of the formwork geometry.

In topology optimization, incorporating design con-
straints into computational design has become a signifi-
cant and increasingly active area of research. Stress con-
straints based on concrete yield criteria are incorporated 
into topology optimization (Bogomolny and Amir 2012; 
Jewett and Carstensen 2019; Luo et al. 2012). Amir and 
Sigmund (2013) developed a reinforcement layout opti-
mization method for concrete structures with a continuum 
damage model. Subsequently, Smarslik et al. (2019) pro-
posed a topology optimization method that biases con-
crete designs toward tension or compression, extending to 
truss and truss-continuum optimization. The optimization 
of concrete structures described above can be categorized 
into mechanics-based constraints and performance-driven 
optimization; however, they neglect the limitations of prac-
tical manufacturing. Manufacturing-driven topology opti-
mization has also been investigated in recent years. The 
length scale constraints have been extensively investigated 
to address size requirements across various manufacturing 
conditions (Fernández et al. 2020; Guest 2009; Zhou et al. 
2015). Langelaar (2016; 2017) incorporated the constraints 
of additive manufacturing into topology optimization. Wu 
et al. (2017a, b) introduced local volume constraints to 

Fig. 1   Illustration of improper 
filling of formwork with casting
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generate porous structures. Wang et al. (2020b) considered 
the manufacturing sequence constraint to optimize the struc-
tural layout. Additionally, casting constraints have also been 
considered in topology optimization to eliminate undercuts 
and internal cavities, facilitating demolding after hardening 
(Li et al. 2018; Wang et al. 2020a; Wang et al. 2023; Xia 
et al. 2011). However, unlike existing casting constraints, 
this work primarily focuses on the constraint of casting fill-
ing efficiency in the manufacturing process.

Incorporating the geometric characteristics of the casting 
process into computational design is a potential strategy for 
optimizing the effectiveness of material filling. This work 
aims to develop a novel automated optimization framework 
to address the casting issue in topology-optimized formwork. 
The whole framework consists of three main components: (i) 
a DEM particle filling simulation module developed upon 
an existing framework, (ii) a topology optimization mod-
ule with casting geometry constraints, and (iii) a filling rate 
identification module based on image processing techniques. 
The proposed framework optimizes the filling rate and struc-
tural compliance by iteratively adjusting geometrically con-
strained characteristics through a continuous topology opti-
mization strategy. It enhances structural manufacturability 
and integrity while maximizing stiffness, reducing the risks 
associated with improper filling.

The remainder of this article is organized as follows: 
Sect. 2 introduces the computational method of the proposed 
optimization framework. The numerical tests and discussion 
are provided in Sect. 3. An experimental test is presented 
in Sect. 4. Section 5 demonstrates a preliminary attempt to 
extend the framework from 2D to 3D. Finally, a conclusion 
is provided in Sect. 6.

2 � Computational method

2.1 � Geometric characteristics for casting

According to research (Banfill 2011; Felekoğlu et al. 2007; 
Hu and Wang 2011) on fresh concrete materials, flowability 
is influenced by several factors, including the water-cement 
ratio, admixtures, aggregate size and grading, etc. However, 
existing research on concrete casting into complex formwork 
has not been extensively studied.

Based on engineering experience and flow tests, two nota-
ble geometric characteristics of concrete flow can be sum-
marized. First, the L-box test indicates that concrete mate-
rials tend to form an inclined unfilled region during flow 
(Hosseinpoor et al. 2017; Nguyen et al. 2006; Onyelowe 
et al. 2022; Shan et al. 2015), which can be simplified as an 
angle of repose θ as shown in Fig. 2a. Secondly, when aggre-
gates flow through a narrower space, they are more likely to 
experience flow obstruction due to wall friction or particle 

clogging, as illustrated in Fig. 2b. This phenomenon is a 
primary cause of pipeline blockage during concrete pumping 
(Secrieru et al. 2020) and extrusion (El Cheikh et al. 2017).

In summary, incorporating a sloped design in the hori-
zontal channels (Fig. 2c) and ensuring the flow path width 
is significantly greater than the particle diameter (Fig. 2d) 
can effectively facilitate the casting process.

2.2 � Topology optimization formulation

This section aims to introduce the geometric constraints 
summarized in Sect. 2.1 into the topology optimization pro-
cess, ensuring that the final optimized structures possess the 
desired geometric characteristics for casting. The method 
presented in this section is for the optimization of 2D struc-
tures; however, its extension to 3D is straightforward and is 
briefly illustrated in Sect. 5.

2.2.1 � Casting filter formulation

In the casting process, the casting position would influence 
the flow dynamics of the material, leading to variations in 
the angle of repose (θ). As shown in Fig. 3, to facilitate 
the integration of angle θ into topology optimization, the 
design domain is discretized into uniform rectangular finite 
elements with dimensions lx × ly. The angle θ can be math-
ematically represented in terms of the element dimension:

Casting

material

L-box

Flow pathway

Aggregates

Particle

clogging

(a) (b)

>>

(c) (d)

Flow pathway

d

L (>>d)

Fig. 2   a Simplified concrete profile in L-box; b Illustration of parti-
cle clogging in flow pathway; c and d Proposed geometry designs for 
proper casting
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The value of θ is adjusted by altering the finite element's 
aspect ratio (ly/lx). In this work, lx is assigned as a constant 
value for each example, while variations in ly are used to 
achieve changes in θ. Therefore, the entire design domain 
is discretized into nx × ny rectangular elements along the xy-
coordinate axes.

where Lx and Ly are the total length and height of the design 
domain, and the “⌊ ⌋” represents the floor function (i.e., 
rounding a number down to the nearest integer).

During the casting process, the material enters the form-
work through an opening and progressively flows downward 
under gravity. As demonstrated in Fig. 4a, the material pref-
erentially flows through the upper layer (lupper) before reach-
ing the lower layer (llower). In other words, if no material 
passes within the upper neighboring threshold of a region, 
then its lower region cannot be filled. It demonstrated the 
process-dependent and hierarchical nature of the material 
flow process, where each region's filling relies on the proper 
migration of material in the area above it.

As mentioned earlier, the flow region is discretized using 
regular meshes, as depicted in Fig. 4b. Such a regular element 
facilitates the straightforward implementation of the filtering 
strategy. The density of each element is represented as a con-
tinuous variable within the range of [0,1]. Here, ρc(i,j) denotes 
the actual cast density, where the footnotes i and j represent 
the element's position in the y and x directions, respectively. A 

(1)� = arctan
(
ly∕lx

)

(2)nx = ⌊Lx∕lx⌋;ny =
�
Ly∕ly

�

dependency rule can describe the flow behavior within a finite 
element mesh, wherein the filling feasibility of a lower blue 
element (i,j) is governed by the maximum density of its three 
adjacent upper elements, which is:

The structural optimization presented in this work is con-
ducted under the assumption of regular discretization. There-
fore, it may be less effective in accurately representing com-
plex curved geometric boundaries. Although this limitation is 
acknowledged in topology optimization, the regular voxel grid 
facilitates the mathematical definition and implementation of 
the proposed filtering strategy.

Each element is initially assigned a density variable in 
topology optimization, defined as the blueprint density ρ(i,j). 
The blueprint density ρ(i,j) may violate the condition in Eq. (3), 
thus a method is required to process ρ(i,j) to satisfy the con-
straint. Here, a “casting filter” is proposed, and Fig. 5 illus-
trates the computation procedure of the filtering method. For 
element (i,j), the actual cast density ρc(i,j) can be formulated 
in terms of the blueprint density ρ(i,j) and the castable den-
sity ρb(i,j). The castable density ρb(i,j) is defined as the maxi-
mum value that satisfies the inequality condition described 
in Eq. (3). Mathematically, the casting filter is expressed as:

A differentiable Boltzmann operator (Asadi and Littman 
2017) is employed to get a smooth approximation of maximum 
and minimum functions:

(3)
�c(i,j) ≤ max

(
�c(i−1,j−1), �c(i−1,j), �c(i−1,j+1)

)
;

i ∈ {1, 2, ..., ny}, j ∈ {1, 2, ..., nx}

(4)�c(i,j) = min
(
�(i,j), �b(i,j)

)

(5)�b(i,j) = max
(
�c(i−1,j−1), �c(i−1,j), �c(i−1,j+1)

)

(6)min ∶ �c(i,j) ≈

∑
x∈{�,�b}

x exp
�
�minx

�

∑
x∈{�,�b}

exp
�
�minx

�

Fig. 3   A simplified illustration 
of θ with casting opening (left) 
and finite element representa-
tion (right)
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where αmin and αmax are tuning parameters governing the bal-
ance between smoothness and accuracy. As αmin approaches 
-∞ and αmax approaches + ∞, ρc and ρb converge to the mini-
mum and maximum value, respectively. However, a much 
greater absolute value would increase the nonlinearity and 
lead to instability. In this paper, the following values are 
used:

The proposed casting filter's effectiveness has been 
tested before topology optimization. Figure 6 depicts the 
density field after employing the proposed casting filter 
for different opening locations and angles of repose θ. It 
demonstrated that the regions identified as difficult to fill 
are suppressed, shown in blue.

(7)max ∶ �b(i,j) ≈

∑
x∈�c

x exp
�
�maxx

�

∑
x∈�c

exp
�
�maxx

�

(8)�min = −25;�max = 25

2.2.2 � Stiffness matrix with angle of repose (θ) control

Classical 2D topology optimization algorithms usually use 
square elements as fundamental elements, which does not 
allow for adaptive angle control. As expressed in Eq. (1), the 
angle of repose θ will be controlled by changing the element 
aspect ratio. In finite element analysis (FEA), the change in 
the shape of an element will lead to a change in the element 
stiffness matrix (k0), which can be determined as:

where B is the strain–displacement matrix, D is the elastic-
ity matrix, and Ω is the integration region of the element. 
Detailed information can be found in FEA textbooks (Bha-
vikatti 2005; Szabó and Babuška 2021), and the expressions 
of B and D are presented simply in Appendix A.

2.2.3 � Four‑field scheme

An optimization flowchart is provided in the orange block of 
Fig. 7. The first field x represents the design density variables 
of topology optimization. A smoothing filter is introduced to 
eliminate checkerboard patterns and guarantee well-posed and 
mesh-independent solutions (Andreassen et al. 2011; Sigmund 
2007). The smoothing density field xs is explicitly defined as:

where Hs is the weighted convolution matrix for the adaptive 
rectangular mesh, the entry in the u-th row and v-th column 
of Hs matrix is determined as:

(9)�0 =
∫

Ω

�⊤��dΩ

(10)�s = �s�

(11)
�
�s

�
u,v

=
Huv∑

v�∈Nu

Huv�

Fig. 5   Graphical explanation of 
casting filter
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Fig. 6   Effectiveness tests of the casting filter with different opening 
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where Nu is the set of elements v within a circle where its 
centroid-to-centroid distance to element u is less than the 
radius rmin (i.e., Δ(u,v) < rmin), as shown in the green block 
in Fig. 7. In the optimization process, the filter radius rmin 
remains constant when the mesh size changes to ensure con-
sistent filtering.

A threshold projection is applied to drive the smoothed 
density field xs toward a binary solution {0,1}, thereby 
reducing intermediate density regions (Sigmund 2007). The 
projected density field xp is obtained by using the differenti-
able Heaviside function:

where η and β are the threshold and sharpness control 
parameters. As β tends to + ∞, xp tends to the binomial 
distribution.

Finally, the casting filter proposed in Sect. 2.2.1 is applied 
to perform filtering operations on the projected density field 
xp to obtain the actual cast density field xc. Therefore, a 
four-evolutionary density process is created: x→xs→xp→xc. 
The optimization function φ is defined in terms of the final 
field xc.

2.2.4 � Optimization problem with robust formulation

As mentioned in Sect. 2.1, apart from the angle of repose θ, 
another geometric factor is the size of the channel. Narrow 
channels would obstruct flow and increase the complexity of 
formwork manufacturing. To prevent this, a robust formula-
tion (Sigmund 2009; Wang et al. 2011) is adapted to reduce 
the generation of small length scale components. The robust 
formulation is based on the eroded, intermediate, and dilated 

(12)Huv = max(0, rmin − Δ(u, v))

(13)�p =
tanh (��) + tanh

[
�

(
�s − �

)]
tanh (��) + tanh [�(1 − �)]

designs. The optimization focuses on the worst-performing 
structure of the objective function in each iteration.

The compliance minimization problem is considered in 
this paper, which is defined as follows:

where the superscripts Ero, Int, and Dil represent erosion, 
intermediate, and dilation, respectively. C is the compliance 
(C = FTU), F and U are the global node force vector and 
displacement vector, V(xc) and V0 denote the total material 
volume and design domain volume, and f is the user-defined 
volume fraction of the design domain. K is the global stiff-
ness matrix assembled from all the element stiffness matri-
ces k(i,j). The element stiffness matrix k(i,j) is computed as:

where k0 is the element stiffness matrix in terms of unit 
Young's modulus and Poisson's ratio v, E(i,j) is Young's mod-
ulus of element (i,j) interpolated by the solid (E0) and void 
(Emin) stiffness. For the (i,j)-th element in the actual cast 
density field xc(i,j), E(i,j) is expressed as:

where P is a penalization factor; a constant value of P = 3 is 
employed, as it can yield favorable outcomes and align effec-
tively with the stiffness properties of multiphase materials 
(Bendsoe and Sigmund 2003).

For a robust formulation, three finite element problems 
are required to solve. The eroded (xc

Ero), intermediate 

(14)

min
�

∶max
(
C
(
�Ero
c

(�)
)
,C

(
�Int
c
(�)

)
,C

(
�Dil
c
(�)

))

S.t. ∶V
(
�Int
c

)
≤ fV0

�(�Ero
c

)�Ero= �

�(�Int
c
)�Int= �

�(�Dil
c
)�Dil= �

� ≤ � ≤ �

(15)�(i,j) = E(i,j)�0(�)

(16)E(i,j) = Emin +
(
xc(i,j)

)P(
E0 − Emin

)
;
(
xc(i,j) ∈ �c

)

Fig. 7   Illustration of four-field 
scheme (left), smoothing filter 
for rectangular mesh (middle), 
and the final three designs by 
employing the robust formula-
tion (right)
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(xc
Int), and dilated (xc

Dil) designs are obtained by utilizing 
Heaviside projection in Eq. (13) with thresholds of 1-η, 
0.5, and η (0 ≤ η ≤ 0.5). The blue block in Fig. 7 shows 
the three results of the robust design of a beam. Unlike 
the work of Wang et al. (2011), this study applies the 
robust formulation to the actual cast density (xc) rather 
than the projected density (xp). It should be emphasized 
that the casting filter does not preserve the length scale, 
and therefore, it cannot strictly guarantee the minimum 
length scale for the intermediate design xc

Int. However, 
this approach allows for the elimination of small length 
scale components prior to performing the casting filter, 
resulting in a reasonable and lower-complexity final 
structure. Furthermore, the volume constraint is imposed 
on the intermediate design density (xc

Int), corresponding 
to the structure to be manufactured.

The sensitivities of the objective and constraint func-
tions are required for gradient-based optimization. The 
gradient information is elaborated on in Appendix B. The 
method of moving asymptotes (MMA) solver (Svanberg 
1987) is used to update the design density x based on 
sensitivities.

2.3 � Discrete element method (DEM)

This section presents the methodologies of a simplified 
DEM model for particle f low simulations, intending 
to perform a preliminary evaluation of the topology-
optimized structures. The particle contact constitutive 
model is custom-developed and built upon the MatDEM 
framework (Liu et al. 2021). The particle filling results 
obtained from the DEM simulations can be used as indi-
cators for updating the geometric constraint parameters 
in topology optimization.

2.3.1 � Particle Kinematics

The particle translation is determined by Newton's Second 
Law of Motion, which is given by:

where Fκ is the (non-gravitational) resultant force on particle 
κ, mκ is the particle's mass, s ̈κ is the translational accelera-
tion, and gκ is the gravitational acceleration. The transla-
tional acceleration at time t can be expressed in terms of the 
particle's velocity (ṡκ) by the central finite difference method:

Based on Eq. (17)&(18), the particle's velocity can be 
determined. Then, the displacement (sκ) at time t + Δt is 
updated as follows:

2.3.2 � Hertz–Mindlin with Johnson‑Kendall‑Roberts (JKR) 
model

The casting materials are typically cohesive wet materials. 
Therefore, the Hertz–Mindlin with JKR model is adopted to 
capture the effects of Van der Waals forces within the con-
tact zone and model adhesive systems. As shown in Fig. 8, 
this contact constitutive model includes normal force (FN), 
tangential force (FT), normal damping force (FND), tangen-
tial damping force (FTD), and friction force (Fμ).

The normal force is based on the JKR theory (Johnson 
et al. 1971). It depends on the normal overlap δn and the 
interaction parameter, which is given by:

(17)F
𝜅
= m

𝜅

(
s̈
𝜅
− g

𝜅

)

(18)s̈t
𝜅
=
(
ṡt+Δt∕2
𝜅

− ṡt−Δt∕2
𝜅

)
∕Δt

(19)st+Δt
𝜅

= st
𝜅
+ ṡt+Δt∕2

𝜅
Δt

Fig. 8   Schematic diagram of 
Hertz–Mindlin with JKR model

Particle I Particle II

Spring Dashpot Slider
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where γ is the surface energy, a is the contact patch radius, 
E* and R* are the equivalent Young's modulus and equiva-
lent radius, respectively. For particles I and II with Young's 
modulus EI, EII, Poisson's ratios vI, vII, and radius RI, RII, 
the equivalent Young's modulus and equivalent radius are 
defined as follows:

The contact patch radius (a) that is related to normal 
overlap δN, which is expressed implicitly as:

since solving the Eq. (23) for contact patch radius is not triv-
ial, an approximate explicit expression is employed in this 
work (Chen et al. 2023), which is provided in Appendix C.

The tangential force is based on the work of Mindlin 
and Deresiewicz (1953), which depends on the tangential 
overlap (δT) and the tangential stiffness (ST) between par-
ticles. It gives:

where

G* is the equivalent shear modulus. For particles I and 
II with shear modulus GI and GII, G* is computed as:

where GI and GII are determined by using the well-known 
relation between the elastic constants, GI = EI/2(1 + vI) and 
GII = EII/2(1 + vII).

The tangential force is constrained by Coulomb fric-
tion (Cundall and Strack 1979), while the friction force 
is defined as:

where μ is the friction coefficient. When FT ≤ μ·FN, the static 
friction force equals the applied tangential force, and the 
surfaces do not move relative to each other. When FT > μ·FN, 
the friction force reaches its maximum static value and then 

(20)FN = −4
√
��E∗a3∕2 +

4E∗

3R∗
a3

(21)1

E∗
=

(1 − �
2
I
)

EI

+
(1 − �

2
II
)

EII

(22)
1

R∗
=

1

RI

+
1

RII

(23)�N =
a2

R∗
−

√
4��a

E∗

(24)FT = −ST�T

(25)ST = 8G∗a

(26)
1

G∗
=

2 − �I

GI

+
2 − �II

GII

(27)F
�
= � ⋅ FN

transitions to a constant kinetic friction force μ·FN once slid-
ing begins.

The normal damping force and tangential damping force 
are defined as (Coetzee 2020):

where m* is the equivalent mass, ṡN(rel) and ṡT(rel) are nor-
mal and tangential components of the relative velocity, SN is 
the normal stiffness, ξN and ξT are normal and shear critical 
damping coefficients. Small damping coefficients are sug-
gested for the dynamic simulation of casting (Liu 2019), and 
values of 0.01% are employed in this study. m* and SN are 
defined as follows:

where mI and mII are the masses of the two contacting 
particles.

2.4 � DEM simulation

2.4.1 � Optimized geometry processing

In DEM simulation, smooth boundaries are more favorable 
for particle flow. However, due to the use of a density-based 
topology optimization method with rectangular elements, 
the resulting structures exhibit both grayscale values and 
jagged boundaries (Fig. 9b). To address this issue, a post-
processing method is applied to extract smooth and well-
defined boundaries of the actual cast density field (xc). 
For 2D boundary extraction, the built-in MATLAB func-
tion “contourf” is employed to generate contour lines at a 
specified density threshold value (0.5 in this work). This 
effectively delineates the interface between solid and void 
regions.

Figure 9a clearly illustrates an example of the bound-
ary before and after post-processing. The red boundaries 
in Fig.  9c represent the post-processed contours of the 
topology-optimized structure, which are subsequently used 
to define the interface between the castable region and the 
formwork in the DEM simulations.

2.4.2 � Casting opening configuration

The transition from the topology-optimized structure 
to the DEM casting simulation is straightforward. As 
shown in Fig. 10a, after the post-processing described in 

(28)FND = −2𝜉N
√
SNm

∗ṡN(rel)

(29)FTD = −2𝜉T
√
STm

∗ṡT(rel)

(30)
1

m∗
=

1

mI

+
1

mII

(31)SN = 2E∗a
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Sect. 2.4.1, the optimized solid and void domains can be 
obtained under the predefined boundary conditions. The 
casting formwork is treated as the complementary struc-
ture of the optimized design; that is, the solid and void 
domains are inverted relative to Fig. 10a, as illustrated in 
Fig. 10b.

It should be noted that the predefined opening represents 
the maximum admissible inlet for particle injection. How-
ever, due to the material redistribution during topology opti-
mization, some parts of the predefined opening may become 
blocked. As shown in Fig. 10c, although the particle opening 
was predefined along the entire upper boundary, only the 
left portion remains effective in the DEM simulation (indi-
cated by blue arrows). The right portion is considered non-
effective (indicated by gray arrows), through which particles 
are not allowed to enter the formwork. Figure 10d shows the 
final particle filling result from the DEM simulation.

2.5 � Filling ratio identification

The purpose of determining the particle fill ratio in a form-
work during DEM simulations is to evaluate how effectively 
the particles occupy the available space within the form-
work, which can be used to guide topology optimization.

In DEM simulation, small gaps inevitably arise due to 
the packing of particles. Additionally, both dense and loose 
packing configurations can occur between particles, as 
shown in Fig. 11a. Here, it is defined that as long as the 
particles do not form large voids, the space is considered 
fully filled. A morphological opening operation is applied 
to analyze the DEM simulation results, where minor inter-
particle voids are neglected, and only larger voids, which 
may significantly affect material flow and compaction, are 
preserved for further evaluation. Figure 11b demonstrates a 
processed result: the black area (Ablack) is identified as the 

Fig. 9   Boundary post-pro-
cessing of topology-optimized 
structure

(b) Original design

(c) Post-processed design

Contour

Extraction

(a) Post-processing

Fig. 10   Illustration of casting 
opening configuration in DEM
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fully filled area, while the blue area (Ablue) is the unfilled 
area. The filling ratio (FR) is defined as:

where Atotal is the total area of the formwork, 
Atotal = Ablack + Ablue.

2.6 � Numerical implementation

Figure  12 illustrates the proposed process simulation-
informed topology optimization framework. The entire pro-
cess is implemented in MATLAB R2024a to enable auto-
mated iterations. The algorithm of the proposed method is 
the following:

(1)	 Define the optimization problem and parameters. Note 
that the value of the filtering radius rmin (Eq. (12)) 
should not be small to avoid the generation of the small 
length scale components.

(2)	 Start topology optimization using the conventional 
method (i.e., without casting filter).

(3)	 Perform DEM simulations to determine the fill ratio of 
the structure obtained by the conventional method.

(4)	 Determine whether the fill ratio meets the desired cri-
teria.

(5)	 If the topology obtained by the conventional method 
fails to achieve the desired filling criteria, the proposed 
method is employed.

(6)	 Start topology optimization using the four-field scheme 
with the rectangular mesh.

(32)FR =
Ablack

Atotal

× 100%

(7)	 Perform DEM simulations and filling ratio analysis.
(8)	 If the desired filling criteria are met, stop. Otherwise, 

remesh (i.e., increase mesh θ) and iterate from step 6.

The entire optimization framework consists of three 
main modules: the topology optimization module, the 
DEM simulation module, and the filling ratio analysis 
module. There are two types of variables involved in the 
optimization: the design density variables x and the angle 
θ. It is important to note that sensitivity analysis is per-
formed only with respect to x within the topology opti-
mization module. The angle θ is a predefined input to the 
topology optimization module. Therefore, the sensitivity 
analysis does not include derivatives of θ.

In this work, the parameter θ is updated heuristically 
based on the results of the DEM simulation. A continu-
ation strategy is adopted, and the topology optimization 
is initiated with a mesh and an initial θ of 15°. If the con-
vergence criteria are not met, θ is incrementally increased 
by Δ =  + 5° at the next iteration until convergence is 
achieved.

This heuristic approach is based on an engineering 
intuition: a larger channel inclination angle θ generally 
facilitates particle flow and accumulation. This assump-
tion proved effective in our study. Nevertheless, for more 
complex flow behaviors, it is recommended that future 
studies derive an explicit sensitivity expression of the 
objective function with respect to θ for the entire optimi-
zation framework, serving as a mathematically rigorous 
alternative to the current heuristic strategy.

Fig. 11   a DEM simulation 
result for topology-optimized 
MBB beam; b Filling area iden-
tification using image process-
ing with morphological opening 
operation

Fully filled area

Unfilled area

(b)

(a)

Dense packing Loose packing

Opening
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3 � Numerical studies

This section illustrates the effectiveness of the proposed 
topology optimization framework through different exam-
ples. The following parameters are selected and remain 
consistent across all examples.

For the topology optimization module, the essential 
initialization parameters are listed in Table 1. To facili-
tate reference, the corresponding equation numbers are 
provided in the last column of the Table. A continuous 
scheme is employed for a better convergence: (i) The vol-
ume constraint fraction f in Eq. (14) is initially set to 99% 
and decreases by 2% every 10 iterations until the target 

volume fraction is reached; (ii) Upon reaching the target 
volume fraction, the sharpness parameter β in Eq. (13) 
starts from 5 and doubled every 25 iterations until it 
reaches 40. The iterative process is considered converged 
when the normalized Euclidean norm between two succes-
sive iterations of the design variable x falls below 10–6, or 
when the maximum number of 400 iterations is reached.

The parameters for the DEM simulation module are pro-
vided in Table 2. To facilitate the analysis and comparison of 
the filling ratio, the total DEM simulation time is set to 10 s 
for all examples, and the time step is defined as Δt = 0.001 s. 

Fig. 12   Illustration of the opti-
mization framework

Table 1   Parameters initialization in topology optimization (TO)

TO Parameters Value Equation No

Filtering radius rmin = 12 (12)
Projection threshold η = 0.2 (13)
Poisson's ratio of elements v = 0.3 (15)
Young's modulus of elements E0 = 1; Emin = 10–9 (16)

Table 2   Physical and contact parameters in DEM simulations

DEM Parameters Value Equation No

Time step Δt = 0.001 s (18),(19)
Surface energy γ = 5 (20),(23)
Young's modulus of particles EI,II = 2 × 107 Pa (21)
Poisson's ratio of particles vI,II = 0.3 (21),(26)
Particle radius RI,II = 5 mm (22)
Friction coefficient μ = 0.1 (27)
Density of particles mI,II = 2400 kg/m3 (30)
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All particles are modeled as spherical with uniform radius. 
In the casting process, the initial velocity of all particles is 
set to 0 m/s. They are subsequently subjected to gravitational 
acceleration (9.81 m/s2) and allowed to settle freely until 
the total DEM simulation time is reached. It is important to 
note that the parameters selected here serve as an example 
to validate the proposed optimization framework and can 
be adjusted according to specific engineering requirements.

The convergence criterion of the entire optimization 
framework is stipulated as the identified filling ratio being 
more than 99.5%, expressed as FR ≥ 99.5% in Eq. (32).

3.1 � Messerschmitt‑Bölkow‑Blohm beam

The first example is the Messerschmitt-Bölkow-Blohm 
(MBB) beams, where three different casting opening cases 
are predefined, as shown in Fig. 13. Due to symmetry, only 
half of the design domain is considered in the optimization, 
which is discretized using 4-node rectangular elements with 
300 elements in the horizontal direction. The number of ele-
ments in the vertical direction depends on the aspect ratio 
(ly/lx) of the rectangular elements, which is related to the 
angle of repose θ. A unit point load is applied at the top-left 
of the beam. The prescribed volume fraction is 55%.

Figure 14 demonstrates the results of topology optimi-
zation, DEM simulation, and filling ratio identification for 
three casting cases, along with a comparison of the results 
obtained using the conventional optimization method. When 
the entire top surface is designated as the casting position, 
the optimization converges at an angle of 30°, with a final 
filling ratio of 99.83% (Fig. 14a). In comparison, the bench-
mark structure achieved a filling ratio of 95.56% under the 
same casting condition, with 4.44% of the void regions pri-
marily located in the tensile zones (i.e., bottom region). This 
improper filling increases the risk of tensile failure in the 
beam.

The problem of improper filling becomes more serious 
when the casting opening is limited to only half of the des-
ignated region, as shown in Fig. 14b. The filling ratio of 
the benchmark design is only 67.23%, with the entire right 
side of the structure almost hollow. In contrast, the beam 

obtained using the proposed optimization framework yields 
a filling ratio of 99.88%, with an inclined angle of 35°.

Additionally, the configuration of multiple casting open-
ings is investigated. Figure 14c illustrates the case where 
three casting openings are predefined at the top during opti-
mization. The proposed optimization framework increased 
the filling ratio from 92.48% to 99.86% compared to the 
benchmark design. Moreover, the results indicate that 
although three casting openings were predefined, the right-
most one proved to be redundant. This is because the region 
at the top right corner is less sensitive to compliance and is 
preferentially eliminated in the optimization process.

The compliance of the entire structure (C) and the infilled 
structure ( C ) are presented at the bottom of each image in 
Fig. 14. A quantitative summarization is listed in Table 3. 
It reveals that the proposed optimization framework leads 
to a 10–20% increase in the normalized compliance C of 
the entire structure. This is a common outcome in multi-
constraint problems, and the optimized structure may devi-
ate from the initial compliance-optimal design when addi-
tional constraints are introduced, leading to an observable 
increase in compliance. Sometimes, it is not excluded that 
additional constraints could reduce compliance, since the 
benchmark structure obtained for the large-scale non-convex 
optimization problem is a locally optimal design (Rozvany 
2009). However, designs  exhibit the normalized compliance 
C superior to (i.e., lower than) the benchmark design for 
the infilled structure, especially for the case-b. A structure 
holds value only if it can be conveniently manufactured and 
utilized, and sacrificing a small degree of performance to 
enhance manufacturability is often encouraged. This trade-
off between performance and manufacturability is particu-
larly important in engineering applications.

The iterative results of the optimization process are sum-
marized in Appendix D. Notably, a larger θ does not neces-
sarily result in a higher filling ratio. For instance, the void 
ratio of case-a observed at θ = 20° is greater than that at 
θ = 15°. This phenomenon highlights the inherent complex-
ity of the material filling process, which is influenced by 
the intricate interactions between particles and the geometry 
of the formwork. These interactions, governed by particle 
flow dynamics and geometric constraints, result in nonlinear 

Fig. 13   Design domain, boundary conditions, and casting positions (indicated in red arrow) for MBB beam problems
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behaviors within the DEM simulation process (Mechtch-
erine et al. 2014; Zhang et al. 2020). Fortunately, the void 
ratio exhibits an overall decreasing trend, which validates the 
effectiveness of the proposed optimization framework and 
the geometric characteristics discussed in Sect. 2.1.

3.2 � Cantilever beam

The second numerical example is a cantilever beam with 
three casting cases. The boundary conditions and openings 
are illustrated in Fig. 15. The design domain is discretized 
into 4-node rectangular elements, with 300 elements distrib-
uted along the horizontal axis to ensure adequate resolution 
for the optimization process. A unit point load is applied at 
the bottom-right corner of the design domain, with a pre-
scribed volume fraction of 55%.

Fig. 14   Comparison of results 
for MBB beam with differ-
ent opening types at the top, 
obtained using (i) conventional 
method and (ii) proposed 
optimization framework: (left) 
optimized results, (middle) 
DEM simulation, and (right) 
filling ratio identification

(i)

(ii)

C=121.07 (Benchmark)

C=135.03; =30

=143.76; FR=95.56%

=135.71; FR=99.83%

(i)

(ii)

C=142.72; =35

=2.82 10 ; FR=67.23%

=142.94; FR=99.88%

C=121.07 (Benchmark)

(i)

(ii)

C=138.35; =20

=168.51; FR=92.48%

=139.08; FR=99.86%

C=121.07 (Benchmark)

(a) Results for MBB beam with a full opening at the top.

(b) Results for MBB beam with a half opening at the top left.

(c) Results for MBB beam with three openings at the top.

Table 3   A comparison analysis of MBB beam results

Opening Angle (θ) Filling ratio 
(FR)/Void 
ratio (1-FR)

Compliance

Normalized C Normalized C

Case-a Benchmark 95.56% 
(4.44%)

100% 100%

30° 99.83% 
(0.17%)

111.53% ↑ 94.40% ↓

Case-b Benchmark 67.23% 
(32.77%)

100% 100%

35° 99.88% 
(0.12%)

117.88% ↑ 0.05% ↓

Case-c Benchmark 92.48% 
(7.52%)

100% 100%

20° 99.86% 
(0.14%)

114.27% ↑ 82.54% ↓
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Figure 16 displays three topology-optimized results with 
different casting openings. Comparing the three benchmark 
designs, it is obvious that the bottom region remains the 
most challenging area to fill. Moreover, significant varia-
tions in filling efficiency are observed with the reduction of 
the casting opening size and changes in casting positions. 
Generally, the highest filling ratio of 96.86% is achieved 
when the top is fully open. However, the filling ratio declines 
as the casting opening decreases and its position shifts. For 
instance, the filling ratio drops to only 67.96% when the 
opening is positioned on the left side (Fig. 16b). Under the 
prescribed boundary conditions, the bottom of the beam 
experiences compressive stress, and improper filling in 
this region increases the risk of structural failure due to 
compression.

The proposed optimization framework accounts for the 
influence of casting positions, resulting in all three topology-
optimized designs achieving a filling ratio of over 99.5%. 
Similarly, the entire structure's compliance exceeds the 
benchmark design. As shown in Table 4, normalized compli-
ance C increases by 4.78% when the top is fully open. When 
the casting opening is located in the middle, compliance 
rises significantly by 28.92%. This substantial increase is 
attributed to the suppression of material generation near the 
fixed boundary in the upper-left region, which compromises 
the performance of the tensile zone. Therefore, it can be 
concluded that the position of the casting opening is recom-
mended to be reasonably initialized based on practical expe-
rience during optimization to minimize the loss of structural 
performance. It should be highlighted that the compliance 
of the infilled structures ( C ) is lower than that of the infilled 
benchmark structures, indicating that structural integrity 
could have a significant impact on performance.

3.3 � Walls

Figure 17 presents the third numerical example, featuring 
walls subjected to different boundaries and passive void 
domains (i.e., non-optimized void domains). A resolution of 
300 rectangular elements is adopted in the horizontal direc-
tion for the design domain. A uniformly distributed load 

of two units per meter is applied along the wall's top and 
bottom edges. The casting opening is defined as the entire 
top surface due to the load applied to the whole top surface. 
The problems are optimized using a total volume fraction 
of 45%.

Figure 18a demonstrates the results under the boundary 
condition of case-a. As summarized in Table 5, a void region 
accounting for 13.80% is observed in the central bottom 
area of the wall in the benchmark design. Employing the 
proposed optimization framework, the topology-optimized 
result converges at a 15° angle with a filling ratio of 99.72%. 
Comparing the two designs, it is evident that the bottom 
region undergoes a significant geometric transformation, 
exhibiting a distinct inclination. This inclined topology is 
advantageous for improving the casting and filling efficiency. 
Figure 18b shows the results under the boundary condition 
of case-b, where two passive void domains are prescribed 
in this case. Similar to case-a, the bottom region exhibits 
casting challenges, with a void ratio of 3.10%. However, the 
design obtained using the proposed optimization framework 
yields a design converging at 15°, significantly improving 
the geometry of the bottom region and reducing the void 
ratio to 0.28%.

The compliance of the entire solid designs of case-a and 
case-b is 105.39 and 43.03, respectively, representing an 
increase of 25.79% and 11.05% compared to their bench-
mark designs (Table 5). Notwithstanding, by comparing 
the compliance of the infilled structure ( C ), the mechanical 
properties of the structure with a high filling ratio are bet-
ter than those of the benchmark structure with a low filling 
ratio. The designs optimized by the proposed method effec-
tively balance manufacturing constraints and mechanical 
performance, making them favorable choices for practical 
implementation.

4 � Experimental tests

This section presents a simple casting experiment on an 
MBB beam (Fig. 14 case-a) to validate the effectiveness 
of the proposed method. A 1:8 scaled-down formwork 

Fig. 15   Design domain, boundary conditions, and casting positions (indicated in red arrow) for cantilever beam problems
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C=68.46 (Benchmark)

C=71.73; =15

=76.06; FR=96.86%

=71.77; FR=99.86%

(i)

(ii)

C=68.46 (Benchmark)

C=75.27; =25

=4.28 10 ; FR=67.96%

=75.44; FR=99.85%

(i)

(ii)

C=68.46 (Benchmark)

C=88.26; =15

=416.79; FR=91.64%

=88.49; FR=99.72%

(i)

(ii)

(a) Results for cantilever beam with a full opening at the top.

(b) Results for cantilever beam with a 1/3 opening at the top left.

(c) Results for cantilever beam with a 1/3 opening at the top middle.

Fig. 16   Comparison of results for cantilever beam with different opening types at the top, obtained using (i) conventional method and (ii) pro-
posed optimization framework: (left) optimized results, (middle) DEM simulation, and (right) filling ratio identification
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is fabricated using fused filament fabrication (FFF), as 
shown in Fig. 19. The formwork dimensions are defined as 
500 mm × 100 mm × 30 mm. One side of the formwork is 
made of a transparent plate, allowing for the observation 
of the concrete's filling state. The OPTIMIX BP138 (i.e., 
cement-fine aggregate modified mixture) is utilized with a 
water-to-mixture ratio of 0.26:1.

It should be noted that the parameter testing of the mixed 
concrete materials exceeds the scope of this study. The 
experiment conducted here is a simple comparative test 
of the effectiveness of casting in formwork with the same 
material. The concrete material is cast from the top through 
a funnel, flowing and filling under gravity. Figure 20 illus-
trates the filling state of both the benchmark formwork and 
the formwork optimized by the proposed method. It can be 
observed that unfilled zones appear at the bottom of the 
benchmark formwork, as illustrated in the detailed views 
in Fig. 20c. Since this is a scaled-down experiment and the 

parameters of the mixed materials have not been tested, the 
final filling state may differ from the DEM simulation. How-
ever, the optimized formwork achieves good filling, indicat-
ing the effectiveness of the proposed approach. The casting 
video can be found in the supplementary material.

5 � Extension to 3D

The extension of the optimization framework from 2D to 3D 
is straightforward. This section demonstrates the 3D topol-
ogy optimization to showcase the generalizability of the pro-
posed method. The 8-node hexahedral elements are used in 
3D, and the smoothing filter in Eq. (10) is applied within a 
spherical radius rmin (Fig. 21a). The casting filter depends 
on the maximum density among the five upper neighboring 
elements, highlighted in black in Fig. 21b. Therefore, Eqs. 
(4) and (5) can be extended to 3D as follows:

Figure 22 illustrates a 3D MBB beam problem featuring 
a fully open casting inlet at the top. The design domain is 
discretized as 120 × 24 elements in the xz-plane, with the 
y-direction resolution determined by the angle (θ). A uni-
formly distributed load of 1 unit per length L is applied at 
the beam's midspan. The problems are solved with a volume 
fraction of 30%, a filter radius of rmin = 4, and a threshold 
parameter of η = 0.4 for the robust formulation; other param-
eters follow the 2D settings. Two prescribed angles (θ = 30° 
and θ = 45°) are tested.

(33)�c(i,j,w) = min
(
�(i,j,w), �b(i,j,w)

)

(34)
�b(i,j,w) =

max
(
�c(i−1,j−1,w), �c(i,j−1,w), �c(i+1,j−1,w), �c(i,j−1,w−1), �c(i,j−1,w+1)

)

Table 4   A comparison analysis of cantilever beam results

Opening Angle (θ) Filling ratio 
(FR)/Void 
ratio (1-FR)

Compliance

Normalized C Normalized C

Case-a Benchmark 96.86% 
(3.14%)

100% 100%

15° 99.86% 
(0.14%)

104.78% ↑ 94.36% ↓

Case-b Benchmark 67.96% 
(32.04%)

100% 100%

25° 99.85% 
(0.15%)

109.95% ↑ 0.02% ↓

Case-c Benchmark 91.64% 
(8.36%)

100% 100%

15° 99.72% 
(0.28%)

128.92% ↑ 21.23% ↓

Fig. 17   Design domain, boundary conditions, and casting positions (indicated in red arrow) for wall problems
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The optimized results are shown in Fig. 24b, where differ-
ent prescribed angles yield varying surface inclination pat-
terns. However, it is worth noting that the results in Fig. 24b 
omit structural connectivity. For 3D structure casting, ensur-
ing connectivity is essential to prevent enclosed cavities and 
guarantee manufacturability (Tong et al. 2025). Incorporat-
ing connectivity constraints is a direct way to address this 
issue. This study also conducts a preliminary exploration 
to demonstrate the compatibility of the topology optimiza-
tion module with additional constraints. A “complementary 
approach” is employed after the projected density field in 
this work to guarantee structural connectivity, as illustrated 
in Fig. 23. Full details are available in the authors' previous 
work (Tong et al. 2025).

Figure 24c presents the optimized results with the con-
nectivity constraint, which effectively eliminates internal 

Fig. 18   Comparison of results 
for walls with a full opening at 
the top under different boundary 
conditions and passive domains, 
obtained using (i) conventional 
method and (ii) proposed 
optimization framework: (left) 
optimized results, (middle) 
DEM simulation, and (right) 
filling ratio identification C=83.78 (Benchmark) =319.58; FR=86.20%

C=105.39; =15 =105.76; FR=99.72%

(i)

(ii)

C=38.75 (Benchmark) =43.25; FR=96.90%

C=43.03; =15 =43.17; FR =99.72%

(i)

(ii)

(a) Results for wall with boundary condition-(a).

(b) Results for wall with boundary condition-(b).

Table 5   A comparison analysis of wall results

Problem Angle (θ) Filling ratio 
(FR)/Void 
ratio (1-FR)

Compliance

Normalized C Normalized C

Case-a Benchmark 86.20% 
(13.80%)

100% 100%

15° 99.72% 
(0.28%)

125.79% ↑ 33.09% ↓

Case-b Benchmark 96.90% 
(3.10%)

100% 100%

15° 99.72% 
(0.28%)

111.05% ↑ 99.82% ↓
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enclosed cavities in all structures. Quantitatively, some 
optimized structures achieve better (i.e., lower) compli-
ance than the benchmark, which indicates that the bench-
mark design is a local optimum for this non-convex opti-
mization problem. Furthermore, comparing the designs 
in Fig. 24b and c, it is found that the “complementary 

approach” has the potential to simplify geometric com-
plexity and alleviate manufacturing difficulties.

The 3D example demonstrates the flexibility and com-
patibility of the topology optimization module. Future 
work could continue to consider extending the DEM 
simulation part into 3D to refine the 3D optimization 

Fig. 19   Formwork design of 
MBB beam generated by (a) 
conventional method and (b) 
proposed optimization frame-
work

(a) (b)

500mm

30mm 30mm

500mm

100mm 100mm
Opening Opening

Fig. 20   3D printed formwork 
and filling state of MBB beam: 
a benchmark design, and b 
design with proposed method; 
(c) Detailed views of improp-
erly filled zones

(b)

Zone A

Zone B

Zone C
(c)

A B C
(a)

Fig. 21   a Smoothing filter for 
hexahedral elements; b Casting 
filter with process-dependent 
material migration process in 
3D
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framework. Moreover, additional manufacturing con-
straints can be incorporated into the 3D topology opti-
mization module as needed, such as introducing demold-
able constraints for formwork design  (Sato et al. 2017; 
Wang et al. 2020a) to facilitate fabrication and enable 

reusability. This represents a promising direction for future 
research; however, it is beyond the scope of this study.

6 � Conclusion

This study presents a process simulation-informed topol-
ogy optimization framework that incorporates geometric 
constraints imposed by the casting process, providing 
improved structure and formwork design solutions. A 
four-field scheme is employed to control the inclined angle 
and length scale of the geometrical shape. The proposed 
optimization framework ensures that topology-optimized 
structures are compatible with casting processes, mini-
mizing the risk of large unfilled voids and enhancing the 
overall structural integrity. Additionally, this method ena-
bles the flexible customization of casting positions of the 

Fig. 22   Design domain, boundary conditions, and casting positions 
(indicated in red region) for 3D MBB beam problems

Fig. 23   Illustration of opti-
mization scheme considering 
connectivity constraints

Projected density field Actual cast density field

Complementary
approach

Casting filter

Fig. 24   a Benchmark design; 
b and c Designs without and 
with connectivity constraint for 
30° and 45° angles. The casting 
positions are highlighted in red

(b) Results without connectivity constraint.

(a) Benchmark design.

Normalized compliance:

(c) Results with connectivity constraint.
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formwork, offering greater adaptability to specific design 
requirements.

The effectiveness of the proposed optimization frame-
work has been verified by three numerical examples. The 
results reveal that the filling ratios have improved, resulting 
in the compliance of the infilled structures being preferable 
to the benchmark designs. Furthermore, an experimental test 
is provided to verify that the proposed optimized formwork 
achieves improved filling efficiency compared to the bench-
mark designs. This trade-off between minor performance 
losses and significant improvements in manufacturability 
underscores the practical value of the framework. The exten-
sion of the optimization framework from 2D to 3D has also 
been initiated in this study and will be further developed in 
future work.

It should be noted that material flow is a complex research 
discipline; this work considers only two geometric character-
istics (i.e., angle and length scale), and other factors may also 
influence casting. Future work could explore incorporating 
coupled factors to enhance the generalizability of the opti-
mization framework, such as aggregate shape. Furthermore, 
the current implementation assumes a structured voxel-based 
discretization. While this enables efficient filtering, it may 
limit geometric fidelity in cases involving curved or complex 
boundaries. Future extensions of this framework could incor-
porate unstructured meshes (Wu 2018; Zhuang et al. 2024b) 
with manufacturing constraints, thereby enabling a more effec-
tive treatment of complex design domains. Overall, by ensur-
ing enhanced casting efficiency and addressing manufactur-
ability constraints, the proposed method facilitates the broader 
adoption of topology-optimized structures in real-world engi-
neering applications.

Appendix A

Element stiffness matrix

For 4-node rectangular elements, the strain–displacement 
matrix (B) and elasticity matrix (D) have:

(35)�0 =
∫

Ω

�⊤��dΩ

(36)� =
[
�1 �2 �3 �4

]

where Nς is the shape function (also known as nodal inter-
polation function) of elements, E is the elastic modulus, and 
v is the Poisson's ratio.

Appendix B

Sensitivity analysis and verification

•	 Sensitivity analysis

The sensitivity analysis of the four-field scheme can be 
determined by the chain rule as follows:

where φ represents the objective function C or volume con-
straint function V in Eq. (14). The detailed sensitivities are 
elaborated in the following paragraphs.

(1)	  ∂C/∂xc and ∂V/∂xc

The sensitivity of the compliance function C can be 
driven by the adjoint method:

where the footnote (i,j) represents the index of element (i,j) 
in the actual cast density matrix xc, uc(i,j) is the element dis-
placement vector. Similarly, the sensitivity of the volume 
constraint function is:

(2)	  ∂φ/∂xp
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In Eq. (39), it is obvious that the sensitivity of ∂xc/∂xp 
needs to be computed. However, as mentioned in Sect. 2.2.1, 
the actual cast density (xc) of layer i depends on the pro-
jected density (xp) of layer i-1. Direct calculation of ∂xc/∂xp 
is computationally expensive; therefore, the adjoint method 
is employed here to calculate ∂φ/∂xp rather than ∂xc/∂xp. A 
detailed derivation is provided below.

The actual cast density in layer i (xc,i) can be written as 
a function in terms of projected density in layer i (xp,i) and 
actual cast density in layer i-1 (xc,i-1), which is:

By employing the adjoint method, the function φ is 
expressed as:

Differentiation of Eq. (44) gives:

where ny is the total number of layers, i and k are the layer 
indexes, respectively. δik is the Kronecker delta (i = k, δik = 1; 
i ≠ k, δik = 0). Since xc,i only depends on the density in layer 
i and i-1, ∂xc,i/∂xp,k = 0 for k > i. Therefore, Eq. (45) can be 
simplified as:

Eq. (46) can be expanded as:

Re-adjust the summation indexes of the last term, it has:

Consequently, Eq. (47) can be rewritten as:
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Since xc = fc (Eq. (43)) and the Lagrange multipliers can 
be chosen arbitrarily, the following multipliers are defined:

Therefore, Eq. (49) can be written as:

The index k in Eq. (51) can be replaced by i, thus, the 
sensitivity ∂φ/∂xp can be finalized as:

To determine the Eq. (52), ∂xc,i/∂xp,i and ∂xc,i+1/∂xc,i are 
needed. According to Sect. 2.2.1, the xc,i+1 is a function 
of castable density xb,i+1, where xb,i+1 is a function of xc,i. 
Therefore, ∂xc,i+1/∂xc,i can be determined by the chain rule:

where ∂xc,i/∂xp,i, ∂xc,i+1/∂xb,i+1 and ∂xb,i+1/∂xc,i can be 
obtained by differentiating from the Boltzmann operator of 
Eq. (6)&(7). The general differential form of the Boltzmann 
function is expressed as follows:

where X represents an element from vector xc or xb (i.e., 
X ∈ xc or X ∈ xb), and �∈{αmin, αmax}.
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(3)	  ∂xp/∂xs

Differentiation of Eq. (13) gives the sensitivity of the 
projected density xp with respect to the smoothing density 
xs:

where “∘” represents Hadamard product (i.e., element-wise 
product).

(4)	  ∂xs/∂x

The sensitivity of the smoothing density xs to the design 
density x is derived as:

(55)��p

��s
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−�
{
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[
�

(
�s − �

)]
◦2
− 1

}

tanh (��) − tanh [�(� − 1)]

(56)
𝜕�s

𝜕�
= �⊤

s

•	 Verification

To validate the analytical sensitivity expressions, a 
numerical differentiation test is performed to demonstrate 
the correctness of analytical formulations. The central differ-
ence scheme is used to compare with the analytical results, 
which is expressed as:

where Δx is a small perturbation applied to the design varia-
ble x, with all entries set to 10–6 in this case. Meanwhile, the 
mean relative difference (MRD) is determined to quantify 
the discrepancy between analytical and numerical sensitivi-
ties, which is defined as:

To avoid excessive data and enable clearer visualization, 
a relatively coarse 10 × 8 element mesh with an aspect ratio 
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Fig. 25   a Mesh and boundary condition setup for sensitivity verification; b–d Analytical versus numerical sensitivity comparison for initial 
design density values of 0.25, 0.5, and 0.75, respectively
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of ly/lx = 0.5 is used for the verification (Fig. 25a), resulting 
in a total of 80 density variables. The boundary conditions 
are maintained consistent with Case-a of the MBB beam 
described in Sect. 3.1. Three sets of initial density field vec-
tors, corresponding to values of 0.25, 0.5, and 0.75, were 
selected for comparative testing. The results of the analytical 
and numerical sensitivities are visualized in Fig. 25b–d, with 
the MRD displayed in the lower-right corner. Evidently, the 
analytical sensitivities are highly consistent with the central 
difference results, confirming the correctness of the derived 
analytical expressions.

Appendix C

Explicit expression of contact patch radius 
(a)

The explicit expression of contact patch radius (a) is an 
approximate solution of Eq. (23). The detailed derivation 
can be found in the work of Chen et al. (2023). The contact 
patch radius is given by:

where
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Appendix D

Summarization of iterative optimization 
process

A summarization of the void ratio (1-FR), compliance of 
the fully solid structure (C), and compliance of the infilled 
structure ( C ) during the iterative optimization process is pro-
vided in this section. As mentioned in Sect. 2.6, the initial 
setting of θ is 15°. This section documents the cases where 
the intermediate designs are generated (i.e., the θ of the final 
design is larger than 15°). For the final design with θ = 15°, 
detailed information can be found in the main text and not 
presented here.

(1)	  Messerschmitt-Bölkow-Blohm (MBB)

See Figs. 26, 27, and 28

(61)� =
4��(R∗)2

E∗

(62)� =
(
4R∗

3

)3

Fig. 26   Iterative optimization 
process of MBB beam with 
boundary condition a 
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(2)	  Cantilever beam

 See 29

Fig. 27   Iterative optimization 
process of MBB beam with 
boundary condition b 

Fig. 28   Iterative optimization 
process of MBB beam with 
boundary condition c 

Fig. 29   Iterative optimization 
process of cantilever beam with 
boundary condition b 
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