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Abstract

Concrete casting, a cornerstone of construction, relies on formwork to shape structures and has been used to create topology-
optimized lightweight designs. The interplay between cast structures and formwork necessitates balancing casting constraints,
particularly filling efficiency in topological channels, to avoid defects that compromise performance. However, filling effi-
ciency is often empirically addressed, limiting optimization potential. Traditional methods require extensive post-processing
to improve filling efficiency, increasing costs and design time. This work introduces a process simulation-informed reverse
topology optimization framework, integrating casting constraints into the design process. The framework combines topology
optimization, Discrete Element Method (DEM) simulation, and filling ratio identification. Its effectiveness is demonstrated
through 2D numerical examples, experimental validation, and a preliminary 3D extension. Results show that the optimized
structures improve filling efficiency and allow customizable casting positions. This approach offers a novel strategy for

formwork optimization, enhancing efficiency and reducing costs in the building industry.

Keywords Formwork - Topology optimization - Manufacturing constraints - DEM - Casting design

1 Introduction

Concrete casting has been widely used in construction to
fabricate complex building structures. Formwork is essen-
tial in the casting process to achieve the desired geometries.
Formwork refers to the temporary or permanent molds or
structures that shape and support concrete or similar mate-
rials. It helps create the structures using precast or cast-
in-place methods. As sustainable low-carbon buildings
advance, lightweight cast structures with minimal material
and maximum stiffness have attracted significant attention
in the building industry (Aghaei-Meibodi et al. 2017; Gaga-
nelis and Mark 2019; Jipa et al. 2016; S¢ndergaard et al.
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2018). The formwork for lightweight structures typically
incorporates intricate flow pathways. Due to the inherent
variability in material compositions and properties, complex
formwork frequently leads to regions where the cast fails to
achieve proper self-compaction, resulting in voids or inad-
equate density in localized areas (Mechtcherine et al. 2014).
The complexity of the formwork makes it challenging to
resolve this issue using conventional engineering methods,
such as vibration compaction. Therefore, a novel approach is
needed to integrate casting constraints into structural design,
enabling the structural formwork to achieve self-compacting
casting.

Topology optimization is a promising approach to achiev-
ing optimal lightweight structures. This computational
method allows for the precise distribution of material within
a given design space to meet specific performance criteria,
such as stiffness and strength, while minimizing material
use (Sigmund and Maute 2013). In civil and building engi-
neering, some building examples include the Qatar National
Convention Centre in Doha (Isozaki 2011), the Shanghai
Himalayas Center in China (Isozaki 2010), “Xiong'an
Wings” in China (under construction) (Li et al. 2023), etc.
Furthermore, designers can create various functional struc-
tures by applying different topology optimization methods
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(Stoiber and Kromoser 2021) and construction techniques,
such as prestressed topological concrete structures (Ooms
et al. 2022), cable-supported topological structures (Li et al.
2024), etc. Topology optimization provides designers with
the freedom to create aesthetically pleasing and functional
forms.

There are two primary technologies for producing topol-
ogy-optimized concrete structures: 3D concrete printing
(3DCP) and formwork casting. 3DCP is a technique that
builds objects by successively depositing concrete material
layer by layer (Zhuang et al. 2024a). Due to the intrinsic
characteristics of the manufacturing process, complex opti-
mized structures often need to be printed and assembled
in batches to avoid print failures (Vantyghem et al. 2020).
Furthermore, the inter-layer bonding tends to weaken due
to cold-joint effects (Ma et al. 2019). In contrast, formwork
casting, as a traditional method, offers superior strength and
consistency. The flexibility and stability of formwork cast-
ing make it the preferred method for producing topology-
optimized structures, especially in designs requiring large
overhangs or high performance (Jipa et al. 2016, 2019).

Although formwork casting is widely favored, it still has
some limitations. In the building industry, casting materi-
als exhibit different compositions and flowability (Jiao et al.
2017; Revilla-Cuesta et al. 2023). In particular, concrete
materials with high yield stress or the inclusion of coarse
aggregates exhibit reduced flowability, which results in inad-
equate filling during the casting process (Roussel 2007). The
limited fluidity impairs the ability to flow smoothly into all
voids and cavities, potentially causing incomplete or une-
ven distribution. Moreover, this distribution is related to the
location of the casting, as shown in Fig. 1. As the complexity
of formwork increases, the improper filling issue becomes
even more critical. Therefore, addressing the filling chal-
lenges of complex formwork is extremely important for pro-
moting application of topology-optimized structures in the
building industry.

Regarding the filling issue, there is relevant research in
materials science. Firstly, enhancing the flowability of the

Fig. 1 Illustration of improper
filling of formwork with casting

Formwork

casting material is a potential solution for improving filling
efficiency. However, high-flow materials are more expensive
than traditional ones (Gaimster and Dixon 2003), and study
shows that they still fail to effectively fill complex voids
due to the presence of aggregates (Zhang et al. 2020). Sec-
ondly, numerical methods can be used to predict material
filling behavior, among which the Discrete Element Method
(DEM) is a feasible approach to simulating the flow of parti-
cle materials (Mechtcherine et al. 2014). Zhang et al. (2020)
analyzed the filling capacity of self-compacting concrete
(SCC) with DEM. Yan et al. (2022) and Li et al. (2021) sim-
ulated the flowability of fresh concrete using Hertz—Mindlin
with the Johnson—-Kendall-Roberts (JKR) model. However,
this method is limited to forward prediction of formwork-fill-
ing behavior before casting and does not support automatic
reverse adjustment of the formwork geometry.

In topology optimization, incorporating design con-
straints into computational design has become a signifi-
cant and increasingly active area of research. Stress con-
straints based on concrete yield criteria are incorporated
into topology optimization (Bogomolny and Amir 2012;
Jewett and Carstensen 2019; Luo et al. 2012). Amir and
Sigmund (2013) developed a reinforcement layout opti-
mization method for concrete structures with a continuum
damage model. Subsequently, Smarslik et al. (2019) pro-
posed a topology optimization method that biases con-
crete designs toward tension or compression, extending to
truss and truss-continuum optimization. The optimization
of concrete structures described above can be categorized
into mechanics-based constraints and performance-driven
optimization; however, they neglect the limitations of prac-
tical manufacturing. Manufacturing-driven topology opti-
mization has also been investigated in recent years. The
length scale constraints have been extensively investigated
to address size requirements across various manufacturing
conditions (Fernindez et al. 2020; Guest 2009; Zhou et al.
2015). Langelaar (2016; 2017) incorporated the constraints
of additive manufacturing into topology optimization. Wu
et al. (2017a, b) introduced local volume constraints to
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generate porous structures. Wang et al. (2020b) considered
the manufacturing sequence constraint to optimize the struc-
tural layout. Additionally, casting constraints have also been
considered in topology optimization to eliminate undercuts
and internal cavities, facilitating demolding after hardening
(Li et al. 2018; Wang et al. 2020a; Wang et al. 2023; Xia
et al. 2011). However, unlike existing casting constraints,
this work primarily focuses on the constraint of casting fill-
ing efficiency in the manufacturing process.

Incorporating the geometric characteristics of the casting
process into computational design is a potential strategy for
optimizing the effectiveness of material filling. This work
aims to develop a novel automated optimization framework
to address the casting issue in topology-optimized formwork.
The whole framework consists of three main components: (i)
a DEM particle filling simulation module developed upon
an existing framework, (ii) a topology optimization mod-
ule with casting geometry constraints, and (iii) a filling rate
identification module based on image processing techniques.
The proposed framework optimizes the filling rate and struc-
tural compliance by iteratively adjusting geometrically con-
strained characteristics through a continuous topology opti-
mization strategy. It enhances structural manufacturability
and integrity while maximizing stiffness, reducing the risks
associated with improper filling.

The remainder of this article is organized as follows:
Sect. 2 introduces the computational method of the proposed
optimization framework. The numerical tests and discussion
are provided in Sect. 3. An experimental test is presented
in Sect. 4. Section 5 demonstrates a preliminary attempt to
extend the framework from 2D to 3D. Finally, a conclusion
is provided in Sect. 6.

2 Computational method
2.1 Geometric characteristics for casting

According to research (Banfill 2011; Felekoglu et al. 2007,
Hu and Wang 2011) on fresh concrete materials, flowability
is influenced by several factors, including the water-cement
ratio, admixtures, aggregate size and grading, etc. However,
existing research on concrete casting into complex formwork
has not been extensively studied.

Based on engineering experience and flow tests, two nota-
ble geometric characteristics of concrete flow can be sum-
marized. First, the L-box test indicates that concrete mate-
rials tend to form an inclined unfilled region during flow
(Hosseinpoor et al. 2017; Nguyen et al. 2006; Onyelowe
et al. 2022; Shan et al. 2015), which can be simplified as an
angle of repose 6 as shown in Fig. 2a. Secondly, when aggre-
gates flow through a narrower space, they are more likely to
experience flow obstruction due to wall friction or particle

“n L-box
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Fig.2 a Simplified concrete profile in L-box; b Illustration of parti-
cle clogging in flow pathway; ¢ and d Proposed geometry designs for
proper casting

clogging, as illustrated in Fig. 2b. This phenomenon is a
primary cause of pipeline blockage during concrete pumping
(Secrieru et al. 2020) and extrusion (El Cheikh et al. 2017).

In summary, incorporating a sloped design in the hori-
zontal channels (Fig. 2¢) and ensuring the flow path width
is significantly greater than the particle diameter (Fig. 2d)
can effectively facilitate the casting process.

2.2 Topology optimization formulation

This section aims to introduce the geometric constraints
summarized in Sect. 2.1 into the topology optimization pro-
cess, ensuring that the final optimized structures possess the
desired geometric characteristics for casting. The method
presented in this section is for the optimization of 2D struc-
tures; however, its extension to 3D is straightforward and is
briefly illustrated in Sect. 5.

2.2.1 Casting filter formulation

In the casting process, the casting position would influence
the flow dynamics of the material, leading to variations in
the angle of repose (8). As shown in Fig. 3, to facilitate
the integration of angle 0 into topology optimization, the
design domain is discretized into uniform rectangular finite
elements with dimensions /, X /,. The angle ¢ can be math-
ematically represented in terms of the element dimension:
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Fig.3 A simplified illustration
of 6 with casting opening (left) Unfilled Angle of
and finite element representa- ' areas T ngle of repose
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Fig.4 a Material migration process versus time; b Illustration of pro-
cess-dependent material migration process in finite element mesh

0= arctan(ly/lx) €))

The value of 6 is adjusted by altering the finite element's
aspect ratio (/,/1,). In this work, [, is assigned as a constant
value for each example, while variations in ly are used to
achieve changes in 6. Therefore, the entire design domain
is discretized into n, X n, rectangular elements along the xy-
coordinate axes. »

n,=|L/L)n, = [Ly /lyJ Q)

where L, and L, are the total length and height of the design
domain, and the “| |” represents the floor function (i.e.,
rounding a number down to the nearest integer).

During the casting process, the material enters the form-
work through an opening and progressively flows downward
under gravity. As demonstrated in Fig. 4a, the material pref-
erentially flows through the upper layer (/,,,,,) before reach-
ing the lower layer (/;,,,,,)- In other words, if no material
passes within the upper neighboring threshold of a region,
then its lower region cannot be filled. It demonstrated the
process-dependent and hierarchical nature of the material
flow process, where each region's filling relies on the proper
migration of material in the area above it.

As mentioned earlier, the flow region is discretized using
regular meshes, as depicted in Fig. 4b. Such a regular element
facilitates the straightforward implementation of the filtering
strategy. The density of each element is represented as a con-
tinuous variable within the range of [0,1]. Here, Petij) denotes
the actual cast density, where the footnotes i and j represent
the element's position in the y and x directions, respectively. A
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dependency rule can describe the flow behavior within a finite
element mesh, wherein the filling feasibility of a lower blue
element (i,j) is governed by the maximum density of its three
adjacent upper elements, which is:

Peti) < MBX (et jo1ys Pe(im1 jp Pei-1j41))

i€ (1,2, uny)j € {1,2,00n,) )

The structural optimization presented in this work is con-
ducted under the assumption of regular discretization. There-
fore, it may be less effective in accurately representing com-
plex curved geometric boundaries. Although this limitation is
acknowledged in topology optimization, the regular voxel grid
facilitates the mathematical definition and implementation of
the proposed filtering strategy.

Each element is initially assigned a density variable in
topology optimization, defined as the blueprint density p; .
The blueprint density p; ;, may violate the condition in Eq. (3),
thus a method is required to process p; ; to satisfy the con-
straint. Here, a “casting filter” is proposed, and Fig. 5 illus-
trates the computation procedure of the filtering method. For
element (i,j), the actual cast density p,, ; can be formulated
in terms of the blueprint density p; ;, and the castable den-
sity pyj)- The castable density p, ; is defined as the maxi-
mum value that satisfies the inequality condition described
in Eq. (3). Mathematically, the casting filter is expressed as:

Pe(ijy = Min (/’(i,;‘)’ /’hu,i)) “4)
Pp(ij = Max (pC(i—lJ—l)’ Pe(i-1,) Pc(i—l,/+1>) )

A differentiable Boltzmann operator (Asadi and Littman
2017) is employed to get a smooth approximation of maximum
and minimum functions:

> xexp (aminx)
x€{p.pp}

Z eXp (aminx )

x€{p.p,}

(6)

min @ p.; &
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Fig.5 Graphical explanation of
casting filter
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Fig. 6 Effectiveness tests of the casting filter with different opening
configurations; the opening locations are highlighted in red. a Origi-
nal density pattern; b and d Filtered density with §=10°; ¢ and e Fil-
tered density with 6=45°
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where a,,;, and a,,,, are tuning parameters governing the bal-

ance between smoothness and accuracy. As a,,;, approaches
max Approaches + oo, p.. and p,, converge to the mini-
mum and maximum value, respectively. However, a much
greater absolute value would increase the nonlinearity and
lead to instability. In this paper, the following values are
used:

-00 and «,

Apnin = =250 = 25 (8)

The proposed casting filter's effectiveness has been
tested before topology optimization. Figure 6 depicts the
density field after employing the proposed casting filter
for different opening locations and angles of repose 6. It
demonstrated that the regions identified as difficult to fill
are suppressed, shown in blue.

Opening

Min

Opening

Actual cast design (p.)
Layer 1 to i

Max

Castable design (pp, )

2.2.2 Stiffness matrix with angle of repose (8) control

Classical 2D topology optimization algorithms usually use
square elements as fundamental elements, which does not
allow for adaptive angle control. As expressed in Eq. (1), the
angle of repose 0 will be controlled by changing the element
aspect ratio. In finite element analysis (FEA), the change in
the shape of an element will lead to a change in the element
stiffness matrix (k;), which can be determined as:

_ T
k, = / B"DBAQ ©)
Q

where B is the strain—displacement matrix, D is the elastic-
ity matrix, and € is the integration region of the element.
Detailed information can be found in FEA textbooks (Bha-
vikatti 2005; Szab6 and Babuska 2021), and the expressions
of B and D are presented simply in Appendix A.

2.2.3 Four-field scheme

An optimization flowchart is provided in the orange block of
Fig. 7. The first field x represents the design density variables
of topology optimization. A smoothing filter is introduced to
eliminate checkerboard patterns and guarantee well-posed and
mesh-independent solutions (Andreassen et al. 2011; Sigmund

2007). The smoothing density field x; is explicitly defined as:
x, = Hx (10)

where H is the weighted convolution matrix for the adaptive
rectangular mesh, the entry in the u-th row and v-th column
of H, matrix is determined as:

an
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Fig.7 Illustration of four-field =
scheme (left), smoothing filter X
for rectangular mesh (middle),
and the final three designs by
employing the robust formula-
tion (right)

Design
density field

1Smoothing filter

Smoothing

=g density field

lHeaviside projection

X Projected
p density field
lCasting filter
Actual cast
Xc density field
Objective
¢ (XC ) function
H,, = max(0, ry;, — Au,v)) (12)

where N, is the set of elements v within a circle where its
centroid-to-centroid distance to element u is less than the
radius rp, (i.e., A(u,v) <ry,), as shown in the green block
in Fig. 7. In the optimization process, the filter radius r,;,
remains constant when the mesh size changes to ensure con-
sistent filtering.

A threshold projection is applied to drive the smoothed
density field x, toward a binary solution {0,1}, thereby
reducing intermediate density regions (Sigmund 2007). The
projected density field x,, is obtained by using the differenti-
able Heaviside function:

B tanh (fn) + tanh [ﬂ(xs - ’7)]

Xp = ~anh () + tanh [F(1 — 1)] (13

where # and S are the threshold and sharpness control
parameters. As f tends to + oo, X, tends to the binomial
distribution.

Finally, the casting filter proposed in Sect. 2.2.1 is applied
to perform filtering operations on the projected density field
X, to obtain the actual cast density field x.. Therefore, a
four-evolutionary density process is created: X—X,—X,—X.
The optimization function ¢ is defined in terms of the final

field x..

2.2.4 Optimization problem with robust formulation

As mentioned in Sect. 2.1, apart from the angle of repose 6,
another geometric factor is the size of the channel. Narrow
channels would obstruct flow and increase the complexity of
formwork manufacturing. To prevent this, a robust formula-
tion (Sigmund 2009; Wang et al. 2011) is adapted to reduce
the generation of small length scale components. The robust
formulation is based on the eroded, intermediate, and dilated

@ Springer
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designs. The optimization focuses on the worst-performing
structure of the objective function in each iteration.

The compliance minimization problem is considered in
this paper, which is defined as follows:

rnxin : max (C(XCE”’(X)), C(Xg’”(x)), C(xﬁ)il(x)))
StV (xI") <V,

K5 ut’=F

K(Xint)UInt= F

K(xhUP= F

0<x<1

4

where the superscripts Ero, Int, and Dil represent erosion,
intermediate, and dilation, respectively. C is the compliance
(C=FTU), F and U are the global node force vector and
displacement vector, V(x.) and V|, denote the total material
volume and design domain volume, and f'is the user-defined
volume fraction of the design domain. K is the global stiff-
ness matrix assembled from all the element stiffness matri-
ces k; ;. The element stiffness matrix k; ;, is computed as:

Kij = Eijko(v) (15)
where K, is the element stiffness matrix in terms of unit
Young's modulus and Poisson's ratio v, E; ; is Young's mod-
ulus of element (i,j) interpolated by the solid (E) and void
(E,;,) stiffness. For the (i,j)-th element in the actual cast

min
density field x E; ; is expressed as:

(i)

Ejy = Enin + (%) (Eo = Enin)s (%) €%, (16)
where P is a penalization factor; a constant value of P=3 is
employed, as it can yield favorable outcomes and align effec-
tively with the stiffness properties of multiphase materials
(Bendsoe and Sigmund 2003).

For a robust formulation, three finite element problems
are required to solve. The eroded (x ), intermediate
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(xcl'”), and dilated (XCD ity designs are obtained by utilizing
Heaviside projection in Eq. (13) with thresholds of 1-7,
0.5, and n (0 <7 <0.5). The blue block in Fig. 7 shows
the three results of the robust design of a beam. Unlike
the work of Wang et al. (2011), this study applies the
robust formulation to the actual cast density (x.) rather
than the projected density (x,). It should be emphasized
that the casting filter does not preserve the length scale,
and therefore, it cannot strictly guarantee the minimum
length scale for the intermediate design x,. However,
this approach allows for the elimination of small length
scale components prior to performing the casting filter,
resulting in a reasonable and lower-complexity final
structure. Furthermore, the volume constraint is imposed
on the intermediate design density (XL.IM), corresponding
to the structure to be manufactured.

The sensitivities of the objective and constraint func-
tions are required for gradient-based optimization. The
gradient information is elaborated on in Appendix B. The
method of moving asymptotes (MMA) solver (Svanberg
1987) is used to update the design density x based on
sensitivities.

2.3 Discrete element method (DEM)

This section presents the methodologies of a simplified
DEM model for particle flow simulations, intending
to perform a preliminary evaluation of the topology-
optimized structures. The particle contact constitutive
model is custom-developed and built upon the MatDEM
framework (Liu et al. 2021). The particle filling results
obtained from the DEM simulations can be used as indi-
cators for updating the geometric constraint parameters
in topology optimization.

Fig.8 Schematic diagram of
Hertz—Mindlin with JKR model

2.3.1 Particle Kinematics

The particle translation is determined by Newton's Second
Law of Motion, which is given by:

FK me(sK_gK) (17)
where F, is the (non-gravitational) resultant force on particle
Kk, m, is the particle's mass, s is the translational accelera-
tion, and g, is the gravitational acceleration. The transla-
tional acceleration at time ¢ can be expressed in terms of the
particle's velocity (s,) by the central finite difference method:

s; — (S::At/z _ SL‘A’/Z)/At (18)

Based on Eq. (17)&(18), the particle's velocity can be
determined. Then, the displacement (s,) at time ¢4 At is
updated as follows:

st+At = + S:"AtﬂAt (19)

K K

2.3.2 Hertz-Mindlin with Johnson-Kendall-Roberts (JKR)
model

The casting materials are typically cohesive wet materials.
Therefore, the Hertz—Mindlin with JKR model is adopted to
capture the effects of Van der Waals forces within the con-
tact zone and model adhesive systems. As shown in Fig. 8,
this contact constitutive model includes normal force (Fy),
tangential force (F;), normal damping force (Fy), tangen-
tial damping force (Fp), and friction force (F),).

The normal force is based on the JKR theory (Johnson
et al. 1971). It depends on the normal overlap &, and the
interaction parameter, which is given by:

Slider
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Fy = —4\/nyE*a®* + E(f (20)
3R*

where y is the surface energy, a is the contact patch radius,
E" and R" are the equivalent Young's modulus and equiva-
lent radius, respectively. For particles I and II with Young's
modulus Ej, Ey, Poisson's ratios vy, vy, and radius Ry, Ry,
the equivalent Young's modulus and equivalent radius are
defined as follows:

2 2
L_U-) -y

— 21
E* EI Eﬂ ( )
111

R* - RI RII (22)

The contact patch radius (a) that is related to normal
overlap 6y, which is expressed implicitly as:

2 4
5 a Tya

= 23
x Z (23)

since solving the Eq. (23) for contact patch radius is not triv-
ial, an approximate explicit expression is employed in this
work (Chen et al. 2023), which is provided in Appendix C.

The tangential force is based on the work of Mindlin
and Deresiewicz (1953), which depends on the tangential
overlap (6;) and the tangential stiffness (S;) between par-
ticles. It gives:

Fr=-=S;0r 24)
where
Sr =8G*a (25)

G" is the equivalent shear modulus. For particles I and
IT with shear modulus G; and Gy;, G” is computed as:

12—y 2-y
G- G G

(26)

where G; and Gy; are determined by using the well-known
relation between the elastic constants, Gy=E/2(1 + v;) and
Gp=Ey/2(1 +vy.

The tangential force is constrained by Coulomb fric-
tion (Cundall and Strack 1979), while the friction force
is defined as:

F,=u-Fy 27)

where p is the friction coefficient. When F'r < u-F, the static
friction force equals the applied tangential force, and the
surfaces do not move relative to each other. When F > p-F)y,
the friction force reaches its maximum static value and then

@ Springer

transitions to a constant kinetic friction force u-F, once slid-
ing begins.

The normal damping force and tangential damping force
are defined as (Coetzee 2020):

Fyp = =28y SNm*SN(reI) (28)
Frp = =2&r\/ Spm* Sy, (29)

where m* is the equivalent mass, Sy, and sz, are nor-
mal and tangential components of the relative velocity, Sy is
the normal stiffness, £y and &, are normal and shear critical
damping coefficients. Small damping coefficients are sug-
gested for the dynamic simulation of casting (Liu 2019), and
values of 0.01% are employed in this study. m* and S are
defined as follows:

— =t — (30)

Sy = 2E*a 31)

where m; and m; are the masses of the two contacting
particles.

2.4 DEM simulation
2.4.1 Optimized geometry processing

In DEM simulation, smooth boundaries are more favorable
for particle flow. However, due to the use of a density-based
topology optimization method with rectangular elements,
the resulting structures exhibit both grayscale values and
jagged boundaries (Fig. 9b). To address this issue, a post-
processing method is applied to extract smooth and well-
defined boundaries of the actual cast density field (x,).
For 2D boundary extraction, the built-in MATLAB func-
tion “contourf” is employed to generate contour lines at a
specified density threshold value (0.5 in this work). This
effectively delineates the interface between solid and void
regions.

Figure 9a clearly illustrates an example of the bound-
ary before and after post-processing. The red boundaries
in Fig. 9c represent the post-processed contours of the
topology-optimized structure, which are subsequently used
to define the interface between the castable region and the
formwork in the DEM simulations.

2.4.2 Casting opening configuration

The transition from the topology-optimized structure
to the DEM casting simulation is straightforward. As
shown in Fig. 10a, after the post-processing described in
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Fig.9 Boundary post-pro-
cessing of topology-optimized
structure

Contour
Extraction

(a) Post-processing

Fig. 10 TIllustration of casting
opening configuration in DEM

(c) Post-processed design

Predefined opening

Sect. 2.4.1, the optimized solid and void domains can be
obtained under the predefined boundary conditions. The
casting formwork is treated as the complementary struc-
ture of the optimized design; that is, the solid and void
domains are inverted relative to Fig. 10a, as illustrated in
Fig. 10b.

It should be noted that the predefined opening represents
the maximum admissible inlet for particle injection. How-
ever, due to the material redistribution during topology opti-
mization, some parts of the predefined opening may become
blocked. As shown in Fig. 10c, although the particle opening
was predefined along the entire upper boundary, only the
left portion remains effective in the DEM simulation (indi-
cated by blue arrows). The right portion is considered non-
effective (indicated by gray arrows), through which particles
are not allowed to enter the formwork. Figure 10d shows the
final particle filling result from the DEM simulation.

Predefined opening
¥ v ¥ [EEEXEXXE XX XA

Solid material .

(a) Optimized geometry

(d) DEM result

Casting space

(b) Formwork & opening

Effective Non-effective

(c) Opening effectiveness

2.5 Filling ratio identification

The purpose of determining the particle fill ratio in a form-
work during DEM simulations is to evaluate how effectively
the particles occupy the available space within the form-
work, which can be used to guide topology optimization.
In DEM simulation, small gaps inevitably arise due to
the packing of particles. Additionally, both dense and loose
packing configurations can occur between particles, as
shown in Fig. 11a. Here, it is defined that as long as the
particles do not form large voids, the space is considered
fully filled. A morphological opening operation is applied
to analyze the DEM simulation results, where minor inter-
particle voids are neglected, and only larger voids, which
may significantly affect material flow and compaction, are
preserved for further evaluation. Figure 11b demonstrates a
processed result: the black area (A4,,,) is identified as the
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Fig. 11 a DEM simulation

Opening

result for topology-optimized
MBB beam; b Filling area iden-
tification using image process-
ing with morphological opening
operation

fully filled area, while the blue area (4,,,,) is the unfilled
area. The filling ratio (FR) is defined as:

A
FR = —2ok  100% (32)

total

where A,,, is the total area of the formwork,
Atotal =Ablack +Ablue'

2.6 Numerical implementation

Figure 12 illustrates the proposed process simulation-
informed topology optimization framework. The entire pro-
cess is implemented in MATLAB R2024a to enable auto-
mated iterations. The algorithm of the proposed method is
the following:

(1) Define the optimization problem and parameters. Note
that the value of the filtering radius r;, (Eq. (12))
should not be small to avoid the generation of the small
length scale components.

(2) Start topology optimization using the conventional
method (i.e., without casting filter).

(3) Perform DEM simulations to determine the fill ratio of
the structure obtained by the conventional method.

(4) Determine whether the fill ratio meets the desired cri-
teria.

(5) If the topology obtained by the conventional method
fails to achieve the desired filling criteria, the proposed
method is employed.

(6) Start topology optimization using the four-field scheme
with the rectangular mesh.
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- Fully filled area

Unfilled area

(b)

(7) Perform DEM simulations and filling ratio analysis.
(8) If the desired filling criteria are met, stop. Otherwise,
remesh (i.e., increase mesh ) and iterate from step 6.

The entire optimization framework consists of three
main modules: the topology optimization module, the
DEM simulation module, and the filling ratio analysis
module. There are two types of variables involved in the
optimization: the design density variables x and the angle
0. It is important to note that sensitivity analysis is per-
formed only with respect to x within the topology opti-
mization module. The angle € is a predefined input to the
topology optimization module. Therefore, the sensitivity
analysis does not include derivatives of 6.

In this work, the parameter 0 is updated heuristically
based on the results of the DEM simulation. A continu-
ation strategy is adopted, and the topology optimization
is initiated with a mesh and an initial 8 of 15°. If the con-
vergence criteria are not met, 6 is incrementally increased
by A = 45° at the next iteration until convergence is
achieved.

This heuristic approach is based on an engineering
intuition: a larger channel inclination angle 6 generally
facilitates particle flow and accumulation. This assump-
tion proved effective in our study. Nevertheless, for more
complex flow behaviors, it is recommended that future
studies derive an explicit sensitivity expression of the
objective function with respect to 6 for the entire optimi-
zation framework, serving as a mathematically rigorous
alternative to the current heuristic strategy.
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Fig. 12 Tllustration of the opti-
mization framework

Optimization problem

*  Define design domain;

* Set boundary conditions;
e Parameter initialization.

N

Optimization loop

( . (
Topology optimization
Ly
\. J &
Bad filling
4 . . ) ( . . . )
DEM simulation Filling ratio analysis
\. J \\ — J
Good filling
Convergence
Output
DEM result Topology-optimized result
Table 1 Parameters initialization in topology optimization (TO) Table 2 Physical and contact parameters in DEM simulations
TO Parameters Value Equation No DEM Parameters Value Equation No
Filtering radius Foyin =12 (12) Time step Ar=0.001s (18),(19)
Projection threshold n=0.2 (13) Surface energy y=5 (20),(23)
Poisson's ratio of elements v=0.3 (15) Young's modulus of particles E ;=2x10"Pa 21)
Young's modulus of elements Ey=1; E,;,=107 (16) Poisson's ratio of particles vin=0.3 (21),(26)
Particle radius Ryjy=5 mm (22)
Friction coefficient u=0.1 27

3 Numerical studies

This section illustrates the effectiveness of the proposed
topology optimization framework through different exam-
ples. The following parameters are selected and remain
consistent across all examples.

For the topology optimization module, the essential
initialization parameters are listed in Table 1. To facili-
tate reference, the corresponding equation numbers are
provided in the last column of the Table. A continuous
scheme is employed for a better convergence: (i) The vol-
ume constraint fraction fin Eq. (14) is initially set to 99%
and decreases by 2% every 10 iterations until the target

Density of particles my=2400 kg/m® (30)

volume fraction is reached; (ii) Upon reaching the target
volume fraction, the sharpness parameter f in Eq. (13)
starts from 5 and doubled every 25 iterations until it
reaches 40. The iterative process is considered converged
when the normalized Euclidean norm between two succes-
sive iterations of the design variable x falls below 107, or
when the maximum number of 400 iterations is reached.
The parameters for the DEM simulation module are pro-
vided in Table 2. To facilitate the analysis and comparison of
the filling ratio, the total DEM simulation time is set to 10 s
for all examples, and the time step is defined as Ar=0.001 s.
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(b) ‘

Fig. 13 Design domain, boundary conditions, and casting positions (indicated in red arrow) for MBB beam problems

All particles are modeled as spherical with uniform radius.
In the casting process, the initial velocity of all particles is
set to 0 m/s. They are subsequently subjected to gravitational
acceleration (9.81 m/sZ) and allowed to settle freely until
the total DEM simulation time is reached. It is important to
note that the parameters selected here serve as an example
to validate the proposed optimization framework and can
be adjusted according to specific engineering requirements.
The convergence criterion of the entire optimization
framework is stipulated as the identified filling ratio being
more than 99.5%, expressed as FR >99.5% in Eq. (32).

3.1 Messerschmitt-Bolkow-Blohm beam

The first example is the Messerschmitt-Bolkow-Blohm
(MBB) beams, where three different casting opening cases
are predefined, as shown in Fig. 13. Due to symmetry, only
half of the design domain is considered in the optimization,
which is discretized using 4-node rectangular elements with
300 elements in the horizontal direction. The number of ele-
ments in the vertical direction depends on the aspect ratio
({,/1,) of the rectangular elements, which is related to the
angle of repose 8. A unit point load is applied at the top-left
of the beam. The prescribed volume fraction is 55%.

Figure 14 demonstrates the results of topology optimi-
zation, DEM simulation, and filling ratio identification for
three casting cases, along with a comparison of the results
obtained using the conventional optimization method. When
the entire top surface is designated as the casting position,
the optimization converges at an angle of 30°, with a final
filling ratio of 99.83% (Fig. 14a). In comparison, the bench-
mark structure achieved a filling ratio of 95.56% under the
same casting condition, with 4.44% of the void regions pri-
marily located in the tensile zones (i.e., bottom region). This
improper filling increases the risk of tensile failure in the
beam.

The problem of improper filling becomes more serious
when the casting opening is limited to only half of the des-
ignated region, as shown in Fig. 14b. The filling ratio of
the benchmark design is only 67.23%, with the entire right
side of the structure almost hollow. In contrast, the beam
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obtained using the proposed optimization framework yields
a filling ratio of 99.88%, with an inclined angle of 35°.

Additionally, the configuration of multiple casting open-
ings is investigated. Figure 14c illustrates the case where
three casting openings are predefined at the top during opti-
mization. The proposed optimization framework increased
the filling ratio from 92.48% to 99.86% compared to the
benchmark design. Moreover, the results indicate that
although three casting openings were predefined, the right-
most one proved to be redundant. This is because the region
at the top right corner is less sensitive to compliance and is
preferentially eliminated in the optimization process.

The compliance of the entire structure (C) and the infilled
structure (C) are presented at the bottom of each image in
Fig. 14. A quantitative summarization is listed in Table 3.
It reveals that the proposed optimization framework leads
to a 10-20% increase in the normalized compliance C of
the entire structure. This is a common outcome in multi-
constraint problems, and the optimized structure may devi-
ate from the initial compliance-optimal design when addi-
tional constraints are introduced, leading to an observable
increase in compliance. Sometimes, it is not excluded that
additional constraints could reduce compliance, since the
benchmark structure obtained for the large-scale non-convex
optimization problem is a locally optimal design (Rozvany
2009). However, designs exhibit the normalized compliance
C superior to (i.e., lower than) the benchmark design for
the infilled structure, especially for the case-b. A structure
holds value only if it can be conveniently manufactured and
utilized, and sacrificing a small degree of performance to
enhance manufacturability is often encouraged. This trade-
off between performance and manufacturability is particu-
larly important in engineering applications.

The iterative results of the optimization process are sum-
marized in Appendix D. Notably, a larger 6 does not neces-
sarily result in a higher filling ratio. For instance, the void
ratio of case-a observed at @=20° is greater than that at
0=15°. This phenomenon highlights the inherent complex-
ity of the material filling process, which is influenced by
the intricate interactions between particles and the geometry
of the formwork. These interactions, governed by particle
flow dynamics and geometric constraints, result in nonlinear
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Fig. 14 Comparison of results
for MBB beam with differ-

ent opening types at the top,
obtained using (i) conventional
method and (ii) proposed
optimization framework: (left)
optimized results, (middle)
DEM simulation, and (right)
filling ratio identification

Table 3 A comparison analysis of MBB beam results

(@)

C=121.07 (Benchmark)

(i)

C=135.03; 8=30°

C=121.07 (Benchmark)

(i)

C=142.72; 6=35°

(i)

C=138.35; 6=20°
(c) Results for MBB beam with three openings at the top.

C=143.76; FR=95.56%

C=135.71; FR=99.83%

(a) Results for MBB beam with a full opening at the top.

C=2.82X10°; FR=67.23%

C=142.94; FR=99.88%

(b) Results for MBB beam with a half opening at the top left.

Opening Angle (9)  Filling ratio
(FR)/Void
ratio (1-FR)

Compliance

Normalized C Normalized C

Case-a  Benchmark 95.56%

(4.44%)

30° 99.83%
0.17%)

Case-b  Benchmark 67.23%
(32.77%)

35° 99.88%
0.12%)

Case-c ~ Benchmark 92.48%
(7.52%)

20° 99.86%
(0.14%)

100%
111.53% 1
100%
117.88% 1
100%

114.27% 1

100%
94.40% |
100%
0.05% |
100%

82.54% |

C=168.51; FR=92.48%

C=139.08; FR=99.86%

behaviors within the DEM simulation process (Mechtch-
erine et al. 2014; Zhang et al. 2020). Fortunately, the void
ratio exhibits an overall decreasing trend, which validates the
effectiveness of the proposed optimization framework and
the geometric characteristics discussed in Sect. 2.1.

3.2 Cantilever beam

The second numerical example is a cantilever beam with
three casting cases. The boundary conditions and openings
are illustrated in Fig. 15. The design domain is discretized
into 4-node rectangular elements, with 300 elements distrib-
uted along the horizontal axis to ensure adequate resolution
for the optimization process. A unit point load is applied at
the bottom-right corner of the design domain, with a pre-
scribed volume fraction of 55%.
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Figure 16 displays three topology-optimized results with
different casting openings. Comparing the three benchmark
designs, it is obvious that the bottom region remains the
most challenging area to fill. Moreover, significant varia-
tions in filling efficiency are observed with the reduction of
the casting opening size and changes in casting positions.
Generally, the highest filling ratio of 96.86% is achieved
when the top is fully open. However, the filling ratio declines
as the casting opening decreases and its position shifts. For
instance, the filling ratio drops to only 67.96% when the
opening is positioned on the left side (Fig. 16b). Under the
prescribed boundary conditions, the bottom of the beam
experiences compressive stress, and improper filling in
this region increases the risk of structural failure due to
compression.

The proposed optimization framework accounts for the
influence of casting positions, resulting in all three topology-
optimized designs achieving a filling ratio of over 99.5%.
Similarly, the entire structure's compliance exceeds the
benchmark design. As shown in Table 4, normalized compli-
ance C increases by 4.78% when the top is fully open. When
the casting opening is located in the middle, compliance
rises significantly by 28.92%. This substantial increase is
attributed to the suppression of material generation near the
fixed boundary in the upper-left region, which compromises
the performance of the tensile zone. Therefore, it can be
concluded that the position of the casting opening is recom-
mended to be reasonably initialized based on practical expe-
rience during optimization to minimize the loss of structural
performance. It should be highlighted that the compliance
of the infilled structures (E) is lower than that of the infilled
benchmark structures, indicating that structural integrity
could have a significant impact on performance.

3.3 Walls

Figure 17 presents the third numerical example, featuring
walls subjected to different boundaries and passive void
domains (i.e., non-optimized void domains). A resolution of
300 rectangular elements is adopted in the horizontal direc-
tion for the design domain. A uniformly distributed load
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(b)

Fig. 15 Design domain, boundary conditions, and casting positions (indicated in red arrow) for cantilever beam problems

of two units per meter is applied along the wall's top and
bottom edges. The casting opening is defined as the entire
top surface due to the load applied to the whole top surface.
The problems are optimized using a total volume fraction
of 45%.

Figure 18a demonstrates the results under the boundary
condition of case-a. As summarized in Table 5, a void region
accounting for 13.80% is observed in the central bottom
area of the wall in the benchmark design. Employing the
proposed optimization framework, the topology-optimized
result converges at a 15° angle with a filling ratio of 99.72%.
Comparing the two designs, it is evident that the bottom
region undergoes a significant geometric transformation,
exhibiting a distinct inclination. This inclined topology is
advantageous for improving the casting and filling efficiency.
Figure 18b shows the results under the boundary condition
of case-b, where two passive void domains are prescribed
in this case. Similar to case-a, the bottom region exhibits
casting challenges, with a void ratio of 3.10%. However, the
design obtained using the proposed optimization framework
yields a design converging at 15°, significantly improving
the geometry of the bottom region and reducing the void
ratio to 0.28%.

The compliance of the entire solid designs of case-a and
case-b is 105.39 and 43.03, respectively, representing an
increase of 25.79% and 11.05% compared to their bench-
mark designs (Table 5). Notwithstanding, by comparing
the compliance of the infilled structure (E), the mechanical
properties of the structure with a high filling ratio are bet-
ter than those of the benchmark structure with a low filling
ratio. The designs optimized by the proposed method effec-
tively balance manufacturing constraints and mechanical
performance, making them favorable choices for practical
implementation.

4 Experimental tests

This section presents a simple casting experiment on an
MBB beam (Fig. 14 case-a) to validate the effectiveness
of the proposed method. A 1:8 scaled-down formwork
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(C=68.46 (Benchmark)

C=76.06; FR=96.86%

C=71.73; 6=15°
(a) Results for cantilever beam with a full opening at the top.

C=71.77; FR=99.86%

C=68.46 (Benchmark) o - C=4.28X10%; FR=67.96%

(ii)

C=75.27; 6=25° C=75.44; FR=99.85%
(b) Results for cantilever beam with a 1/3 opening at the top left.

C=416.79; FR=91.64%

(C=88.26; 6=15°

(c) Results for cantilever beam with a 1/3 opening at the top middle.

C=88.49; FR=99.72%

Fig. 16 Comparison of results for cantilever beam with different opening types at the top, obtained using (i) conventional method and (ii) pro-
posed optimization framework: (left) optimized results, (middle) DEM simulation, and (right) filling ratio identification
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Table 4 A comparison analysis of cantilever beam results

Opening Angle (9)  Filling ratio ~ Compliance
(FR)/Void - —
ratio (1-FR) Normalized C Normalized C
Case-a  Benchmark 96.86% 100% 100%
(3.14%)
15° 99.86% 104.78% 1 94.36% |
(0.14%)
Case-b  Benchmark 67.96% 100% 100%
(32.04%)
25° 99.85% 109.95% 1t 0.02% |
(0.15%)
Case-c~ Benchmark 91.64% 100% 100%
(8.36%)
15° 99.72% 128.92% 1t 21.23% |
(0.28%)

is fabricated using fused filament fabrication (FFF), as
shown in Fig. 19. The formwork dimensions are defined as
500 mm x 100 mm X 30 mm. One side of the formwork is
made of a transparent plate, allowing for the observation
of the concrete's filling state. The OPTIMIX BP138 (i.e.,
cement-fine aggregate modified mixture) is utilized with a
water-to-mixture ratio of 0.26:1.

It should be noted that the parameter testing of the mixed
concrete materials exceeds the scope of this study. The
experiment conducted here is a simple comparative test
of the effectiveness of casting in formwork with the same
material. The concrete material is cast from the top through
a funnel, flowing and filling under gravity. Figure 20 illus-
trates the filling state of both the benchmark formwork and
the formwork optimized by the proposed method. It can be
observed that unfilled zones appear at the bottom of the
benchmark formwork, as illustrated in the detailed views
in Fig. 20c. Since this is a scaled-down experiment and the

F

1.5m

parameters of the mixed materials have not been tested, the
final filling state may differ from the DEM simulation. How-
ever, the optimized formwork achieves good filling, indicat-
ing the effectiveness of the proposed approach. The casting
video can be found in the supplementary material.

5 Extension to 3D

The extension of the optimization framework from 2D to 3D
is straightforward. This section demonstrates the 3D topol-
ogy optimization to showcase the generalizability of the pro-
posed method. The 8-node hexahedral elements are used in
3D, and the smoothing filter in Eq. (10) is applied within a
spherical radius r;, (Fig. 21a). The casting filter depends
on the maximum density among the five upper neighboring
elements, highlighted in black in Fig. 21b. Therefore, Egs.
(4) and (5) can be extended to 3D as follows:

Petigosy = TN (D)5 Poijony) (33)

Ph(ijw) =

(34)

max (Pc(i—l,,'—l,w)s Pc(ij—1,w)> Pe(i+1,j—1,w)> Pe(ij—1,w—1)> pc(ij—l,w+1))

Figure 22 illustrates a 3D MBB beam problem featuring
a fully open casting inlet at the top. The design domain is
discretized as 120 X 24 elements in the xz-plane, with the
y-direction resolution determined by the angle (6). A uni-
formly distributed load of 1 unit per length L is applied at
the beam's midspan. The problems are solved with a volume
fraction of 30%, a filter radius of r,;, =4, and a threshold
parameter of #=0.4 for the robust formulation; other param-
eters follow the 2D settings. Two prescribed angles (6 =30°
and 0=45°) are tested.

1.5m

Im 4

(b)

Fig. 17 Design domain, boundary conditions, and casting positions (indicated in red arrow) for wall problems
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4 \.

Fig_ 18 Comparison Ofresults (EXXXEEXEXEXXEEEEEXEXEEEEXEXXEX)
for walls with a full opening at
the top under different boundary
conditions and passive domains,
obtained using (i) conventional
method and (ii) proposed
optimization framework: (left)
optimized results, (middle)
DEM simulation, and (right)
filling ratio identification

C=319.58; FR=86.20%

C=105.39; 6=15° C=105.76; FR=99.72%
(a) Results for wall with boundary condition-(a).

(C=38.75 (Benchmark)

C=43.25; FR=96.90%
[(RXEEXEXXXEXEEEEEXEEEEEEXEXXRA)

agagian

C=43.03; 6=15° C=43.17; FR =99.72%
(b) Results for wall with boundary condition-(b).

Table 5 A comparison analysis of wall results The optimized results are shown in Fig. 24b, where differ-
Problem Angle (9)  Filling ratio  Compliance ent prescribed aflg'les yield Va'rymg surface 1nchr.1at1(.)n pat-
(FR)/Void - —  terns. However, it is worth noting that the results in Fig. 24b
ratio (1-FR) ~ Normalized € Normalized C omit structural connectivity. For 3D structure casting, ensur-
ing connectivity is essential to prevent enclosed cavities and

Case-a  Benchmark 86.20% 100% 100%

(13.80%) guarantee manufacturability (Tong et al. 2025). Incorporat-
15° 99.72% 12579% 1 33.09% | ing connectivity constraints is a direct way to address this
(0.28%) issue. This study also conducts a preliminary exploration
Case-b  Benchmark 96.90% 100% 100% to demonstrate the compatibility of the topology optimiza-
(3.10%) tion module with additional constraints. A “complementary
15° 99(5%?7) 111.05% 1 99.82% | approach” is employed after the projected density field in
. (4

this work to guarantee structural connectivity, as illustrated
in Fig. 23. Full details are available in the authors' previous
work (Tong et al. 2025).

Figure 24c presents the optimized results with the con-
nectivity constraint, which effectively eliminates internal
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Fig. 19 Formwork design of
MBB beam generated by (a)
conventional method and (b)
proposed optimization frame-
work

Fig.20 3D printed formwork
and filling state of MBB beam:
a benchmark design, and b
design with proposed method;
(¢) Detailed views of improp-
erly filled zones

(b)

Fig.21 a Smoothing filter for
hexahedral elements; b Casting
filter with process-dependent
material migration process in
3D

enclosed cavities in all structures. Quantitatively, some
optimized structures achieve better (i.e., lower) compli-
ance than the benchmark, which indicates that the bench-
mark design is a local optimum for this non-convex opti-
mization problem. Furthermore, comparing the designs
in Fig. 24b and c, it is found that the “complementary

@ Springer

30mm

30mm

6 = arctan(l, /L,)

(b)

approach” has the potential to simplify geometric com-
plexity and alleviate manufacturing difficulties.

The 3D example demonstrates the flexibility and com-
patibility of the topology optimization module. Future
work could continue to consider extending the DEM
simulation part into 3D to refine the 3D optimization
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4L

Fig.22 Design domain, boundary conditions, and casting positions
(indicated in red region) for 3D MBB beam problems

framework. Moreover, additional manufacturing con-
straints can be incorporated into the 3D topology opti-
mization module as needed, such as introducing demold-
able constraints for formwork design (Sato et al. 2017;
Wang et al. 2020a) to facilitate fabrication and enable

Fig. 23 Illustration of opti-
mization scheme considering
connectivity constraints

—

p
Projected density field

Fig.24 a Benchmark design;
b and ¢ Designs without and
with connectivity constraint for
30° and 45° angles. The casting
positions are highlighted in red

Chorm =

Coorm = 100.25%
0 = 30°

Normalized compliance:

reusability. This represents a promising direction for future
research; however, it is beyond the scope of this study.

6 Conclusion

This study presents a process simulation-informed topol-
ogy optimization framework that incorporates geometric
constraints imposed by the casting process, providing
improved structure and formwork design solutions. A
four-field scheme is employed to control the inclined angle
and length scale of the geometrical shape. The proposed
optimization framework ensures that topology-optimized
structures are compatible with casting processes, mini-
mizing the risk of large unfilled voids and enhancing the
overall structural integrity. Additionally, this method ena-
bles the flexible customization of casting positions of the

Complementary
approach

—

Casting filter

Actual cast density field

100%
(a) Benchmark design.

Coorm = 90.80%
0 = 45°

(b) Results without connectivity constraint.

Coorm = 90.89%
0 =30°

(c)Re

Coorm = 113.30%
0 = 45°

sults with connectivity constraint.
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formwork, offering greater adaptability to specific design
requirements.

The effectiveness of the proposed optimization frame-
work has been verified by three numerical examples. The
results reveal that the filling ratios have improved, resulting
in the compliance of the infilled structures being preferable
to the benchmark designs. Furthermore, an experimental test
is provided to verify that the proposed optimized formwork
achieves improved filling efficiency compared to the bench-
mark designs. This trade-off between minor performance
losses and significant improvements in manufacturability
underscores the practical value of the framework. The exten-
sion of the optimization framework from 2D to 3D has also
been initiated in this study and will be further developed in
future work.

It should be noted that material flow is a complex research
discipline; this work considers only two geometric character-
istics (i.e., angle and length scale), and other factors may also
influence casting. Future work could explore incorporating
coupled factors to enhance the generalizability of the opti-
mization framework, such as aggregate shape. Furthermore,
the current implementation assumes a structured voxel-based
discretization. While this enables efficient filtering, it may
limit geometric fidelity in cases involving curved or complex
boundaries. Future extensions of this framework could incor-
porate unstructured meshes (Wu 2018; Zhuang et al. 2024b)
with manufacturing constraints, thereby enabling a more effec-
tive treatment of complex design domains. Overall, by ensur-
ing enhanced casting efficiency and addressing manufactur-
ability constraints, the proposed method facilitates the broader
adoption of topology-optimized structures in real-world engi-
neering applications.

Appendix A

Element stiffness matrix
Kk, = / B'DBdQ 35)
Q

For 4-node rectangular elements, the strain—displacement
matrix (B) and elasticity matrix (D) have:

B=[B, B, B; B, | (36)
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ON,
=0
aNg .
B.=| 0 = |(c=1234 (37)
ON, oN,
B_y ox
1v 0
D= 1 E 5| v 1 0 (38)
V0100 1-1v3))2

where N_ is the shape function (also known as nodal inter-
polation function) of elements, E is the elastic modulus, and
v is the Poisson's ratio.

Appendix B

Sensitivity analysis and verification
e Sensitivity analysis

The sensitivity analysis of the four-field scheme can be
determined by the chain rule as follows:

9 0x, 90X, 0x, 9
0x  0X 0X, 0X, 0X,

where ¢ represents the objective function C or volume con-
straint function V in Eq. (14). The detailed sensitivities are
elaborated in the following paragraphs.

(1) 0Clox, and OV/ox,

The sensitivity of the compliance function C can be
driven by the adjoint method:

oC oK

5. U="F (xca,j))P_l (Eo = Enin)
) (40)
.

/Kol (Yo € Xe)

=-U"

where the footnote (i,j) represents the index of element (i,j)
in the actual cast density matrix x,, u,, ; is the element dis-
placement vector. Similarly, the sensitivity of the volume
constraint function is:

J =1; (}C €EX ) 41
> \Pe(iy) c
0X,(i,) ! “h
(2) ()(p/dxp
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99 _ 9% 09
0x, B 0x,, X,

(42)

In Eq. (39), it is obvious that the sensitivity of 0x /0x,,
needs to be computed. However, as mentioned in Sect. 2.2.1,
the actual cast density (x,) of layer i depends on the pro-
Jected density (x,,) of layer i-1. Direct calculation of 0x /0x,
is computationally expensive; therefore, the adjoint method
is employed here to calculate dp/0x,, rather than 0x /ox,,. A
detailed derivation is provided below.

The actual cast density in layer i (x,.;) can be written as
a function in terms of projected density in layer i (x, ;) and
actual cast density in layer i-1 (x; ), which is:

Xei = F(X,0X0im1) = £ (43)
By employing the adjoint method, the function ¢ is
expressed as:

(44)

Yy

(S @ = (p(Xc) + Z ;\’;r (fc,i - Xc,i)

i=1

Differentiation of Eq. (44) gives:

P X . [/ of. X, [ 9
@ _ L,k< ¢ L,k+1kk+l>+ 2 ¢ 3
0X, 0 0%, \ 0% OXgy 0%, \ OXca, '

n,—1
\ aXc,i o0 afL',i+1
< -0+ ox., 7‘[+1>

6xp’k 0x,;

+
i=k+1
(49)

Since x,=f. (Eq. (43)) and the Lagrange multipliers can
be chosen arbitrarily, the following multipliers are defined:

0p  OX iy
A= +—A. (1 <i<n,
‘oox,;  0X,; will <i<ny)
5 (50)
b, = 5 =)
Therefore, Eq. (49) can be written as:
0 0X,. 0 of, 0X,.
? _ ,k< ® ,k+1xk+1> _ My -
0X,,  O0X,, \0X.,  OX 0X,, ¢

The index k in Eq. (51) can be replaced by i, thus, the
sensitivity dg/0x,, can be finalized as:

P 0p & [9%; 9 of,; ox._, of, ox,
9o _ 9 _ [;_¢+<5ik1 iy Peimt Kei ’)xi (45)
0X,,  OX, 0X,, ; 0X,; 0X,; OX,; 0X.; | O0X,;
where n, is the total number of layers, i and k are the layer o 0x,;
indexes, respectively. §,, is the Kronecker delta (i=k, §;,=1; X = X .}‘i (52)
'p,i D,

i#k, 8, =0). Since x_; only depends on the density in layer

i and i-1, 0xc7i/6xp’k=0 for k> i. Therefore, Eq. (45) can be

simplified as:

9 0X., 0 o [0x,, [ 9 ox,, , of,
o Do 3[Rt ) S,

dxp,k ax,,,k 0X,t — 0x,,,k 0X,; 6xp‘k 0X, ;|

(46)
Eq. (46) can be expanded as:
0p _ Xy dp <o OXe < 9% 7»)
0X,)  O0X,; 0X, 4= 0x,, \0X,; )
0x,, of, & ox.,; of;
K "k+17“k+1 Z i—1 i p,
()xpyk [7) o ) 6xp!k 0X,.;

Re-adjust the summation indexes of the last term, it has:

n

y n,—1
0X _ 0x.; of i

c,i—1

of,,
L,

A 48
0X,; 0X.; | i+l (“48)

P =

Lo OXpp 0%

i=k+2

Consequently, Eq. (47) can be rewritten as:

To determine the Eq. (52), 0x, /0x, ; and 0X,;,/0X, ; are
needed. According to Sect. 2.2.1, the x,;, is a function
of castable density x,,;, |, where X, ;,, is a function of x,_ ;.
Therefore, 0x,.;, /0%, ; can be determined by the chain rule:

aXc,i+l _
0x

0%y, 41 OXp i
ox

(53)

e i 0Xpip1

where 0x,/0x,;, 0X_;,,/0X,,,, and 0x,;, ,/0X ; can be
obtained by differentiating from the Boltzmann operator of
Eq. (6)&(7). The general differential form of the Boltzmann
function is expressed as follows:

0X(xy, ...
0x,,

_ exXp (axm) [1+5(xm_X>]’m€ {1,2,...,"}

exp (a@x,)

,X,)

M=

e=1

(54
where X represents an element from vector x, or x, (i.e.,
X€Ex, or X€x,), and a€{a

min> ¥max } .
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Fig.25 a Mesh and boundary condition setup for sensitivity verification; b—d Analytical versus numerical sensitivity comparison for initial

design density values of 0.25, 0.5, and 0.75, respectively

(3) 0x,/0x,

Differentiation of Eq. (13) gives the sensitivity of the
projected density x,, with respect to the smoothing density
X,

ox, —p{ anh [p(x, )| - 1}

7 (55)
ox,  tanh(Bn) — tanh [B(7 — D]

where “=” represents Hadamard product (i.e., element-wise
product).

4) ox/ox

The sensitivity of the smoothing density X, to the design
density x is derived as:

0X, —

X s (56)

@ Springer

e Verification

To validate the analytical sensitivity expressions, a
numerical differentiation test is performed to demonstrate
the correctness of analytical formulations. The central differ-
ence scheme is used to compare with the analytical results,
which is expressed as:

ENE_ C(x + Ax) — C(x — Ax)
ox  Ax 2AXx

(57)

where Ax is a small perturbation applied to the design varia-
ble x, with all entries set to 107 in this case. Meanwhile, the
mean relative difference (MRD) is determined to quantify
the discrepancy between analytical and numerical sensitivi-
ties, which is defined as:

> (58)

(%€ - Ac) yoC
ox Ax ox

To avoid excessive data and enable clearer visualization,
a relatively coarse 10 X 8 element mesh with an aspect ratio

MRD = mean(
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of [/1,=0.5 is used for the verification (Fig. 25a), resulting
in a total of 80 density variables. The boundary conditions
are maintained consistent with Case-a of the MBB beam
described in Sect. 3.1. Three sets of initial density field vec-
tors, corresponding to values of 0.25, 0.5, and 0.75, were
selected for comparative testing. The results of the analytical
and numerical sensitivities are visualized in Fig. 25b—d, with
the MRD displayed in the lower-right corner. Evidently, the
analytical sensitivities are highly consistent with the central
difference results, confirming the correctness of the derived
analytical expressions.

Appendix C

Explicit expression of contact patch radius

(a)

The explicit expression of contact patch radius (a) is an
approximate solution of Eq. (23). The detailed derivation
can be found in the work of Chen et al. (2023). The contact
patch radius is given by:

Page230f27 154
4zy(R*)*
4R*\*
v- ()
Appendix D

Summarization of iterative optimization
process

A summarization of the void ratio (1-FR), compliance of
the fully solid structure (C), and compliance of the infilled
structure (C) during the iterative optimization process is pro-
vided in this section. As mentioned in Sect. 2.6, the initial
setting of @ is 15°. This section documents the cases where
the intermediate designs are generated (i.e., the 6 of the final
design is larger than 15°). For the final design with §=15°,
detailed information can be found in the main text and not
presented here.

a(d) = %\/% + %\/2\/@1 _» (59) (1) Messerschmitt-Bslkow-Blohm (MBB)
See Figs. 26, 27, and 28
where
> 1/3 > 1/3
@ [ 3 w w 3
Aoy = =+\/—+v(s +| = -/ —+vw(s
(0n) <2 2 V/(N)> <2 4 W(N))
(60)
Fig.26 Iterative optimization Void ratio 1-FR (%) Compliance
process of MBB beam with 5.00 — 200.00
boundary condition a --Void ratio
4.44 —» —-C
400 [\ B -~ 1 160.00
e Hih’ 136.31 139.82 135.71
3.00 ' 1 120.00
2.00 1 80.00
1.00 1 40.00
000 L 1 s ' s . 0.00
0 15 20 25 30 (Deg)
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Fig.27 Iterative optimization Void ratio 1-FR (%) Compliance
process of MBB beam with 35.00
.. e 3065 o : 2.82¢5
boundary condition b g.82¢5 S Ei\\ ~-Void ratio l
3000 [\ *g T
-
147.05 146.08 143.86 144.29 142.94 ] 160.00
25.00
000 Toin 32.5 130.29 131.5 33.3 1 120.00
1280 | 1 80.00
1 40.00
500 / / / / m:
) 01 3.01 546 1.52 ]1:11 1
0.00 IIII 0 L “ L L 0.00
0 15 20 25 30 35 (Deg)
Fig. 28 Iterative optimization Void ratio 1-FR (%) Compliance
process of MBB beam with 8.00 200.00
boundary condition ¢ ~-Void ratio
~C
3 ~c 1 160.00
6.00 e 139.08
— o 120.00
4.00
1 80.00
200
r 1 40.00
[
0.00 1F 0.00
0 15 20 (Deg)
(2) Cantilever beam
See 29
Fig. 29 Iterative optimization Void ratio 1-FR (%) Compliance
process of cantilever beam with 35.00 42
.. 29 365 p ; .28e5
boundary condition b S [i'z i \ ~-Void ratio i
, o 4
2000 S - T 100.00
87.17 85.31
25.00
75.44 1 80.00
20.00
1 60.00
15.00
10.00 1 40.00
5.00 ] 2000
0.00 0.00
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