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Abstract
Indicator functions of taking values of zero or one are essential to numerous appli-
cations in machine learning and statistics. The corresponding primal optimization
model has been researched in several recent works. However, its dual problem is a
more challenging topic that has not been well addressed. One possible reason is that
the Fenchel conjugate of any indicator function is finite only at the origin. This work
aims to explore the dual optimization for the sum of a strongly convex function and a
composite term with indicator functions on positive intervals. For the first time, a dual
problem is constructed by extending the classic conjugate subgradient property to the
indicator function. This extension further helps us establish the equivalence between
the primal and dual solutions. The dual problem turns out to be a sparse optimiza-
tion with a �0 regularizer and a nonnegative constraint. The proximal operator of the
sparse regularizer is used to identify a dual subspace to implement gradient and/or
semismooth Newton iteration with low computational complexity. This gives rise to
a dual Newton-type method with both global convergence and local superlinear (or
quadratic) convergence rate undermild conditions. Finally, when applied toAUCmax-
imization and sparse multi-label classification, our dual Newton method demonstrates
satisfactory performance on computational speed and accuracy.
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1 Introduction

In this work, we aim to solve the following nonconvex composite optimization

min
x∈Rn

f (x)+ I(Ax + b), (1)

where f : R
n → R is a σ f -strongly convex function (possibly nonsmooth), and

A ∈ R
m×n and b ∈ R

m are given data. For u = (u1, · · · , um)�, we define I(u) =
λ
∑m

i=1 1(0,∞)(ui ), where λ is a positive constant and 1(0,∞) is the indicator function1

on the positive interval (also called zero-one loss), defined as

1(0,∞)(t) =
{
1, if t > 0,

0, if t ≤ 0.

Problem (1) arises from extensive applications, including multi-label classification
[66], area under the receiver operating characteristic curve (AUC) [23, 28], maxi-
mum ranking correlation [26, 33], to mention a few. The strongly convex function
f often serves as a regularizer in these tasks, including squared �2 norm for mar-
gin maximization (e.g. [18, 59]) or (group) elastic net for feature selection (e.g. [48,
63, 71]). Problem (1), in particular, covers the composite �0-norm: ‖Bx + b‖0 =
I(Bx + b) + I(−Bx − b). The matrix A becomes [B;−B] (Matlab notation) and
this implies that the rows of A are dependent. Therefore, it is essential we do not
assume that A has a full-row rank property. And we do not assume that f is smooth.

When f is smooth, several progresses have beenmade in solving the primal noncon-
vex composition problem involving the indicator function or a lower semi-continuous
(l.s.c) function. These methods include, but are not limited to the Newton method
[70], augmented Lagrangian-based method [10, 11, 38, 61], lifted reformulation [19,
27], and complementarity reformulation [22, 32]. However, the composition of a non-
convex, discontinuous indicator function and a large-scale matrix brings significant
difficulty in both convergence and computation. For example, certain regularity condi-
tions (such as a full row-rankmatrix A) are often required for the convergence analysis
of the aforementioned algorithms. Moreover, it still remains a difficult task to glob-
alize a primal Newton method while retaining local quadratic convergence. Finally,
we should stress that the function f in (1) is not necessarily smooth. This together

1 This paper adopts the terminology “indicator function” from the statistical learning theory [60, Page 19],
differing from the usage in optimization where the function takes 0 on a given set and∞ elsewhere. It is
also called the characteristic function [64] in other fields.
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with the combinatorial nature of I poses significant barriers to designing a globally
convergent algorithm for (1).

This paper offers an alternative methodology, strongly motivated by the classical
duality theory of convex optimization.Wewill propose a dual reformulation of (1)with
a conducive structure for numerical computation. In the following, we first explain
the motivation that leads to a framework for constructing the dual problem. We then
briefly summarize the main contributions of the paper.

1.1 Motivation from convex optimization

Let us recall the Fenchel duality in convex optimization (see [56, Chap. 31] and [4,
14]):

inf
x∈Rn

{
f (x)+ ϕ(Ax + b)

}
= sup

z∈Rm

{
− f ∗(−A�z)+ 〈b, z〉 − ϕ∗(z)

}
. (2)

where both f and ϕ are closed, proper, and convex, and f ∗ and ϕ∗ are their respective
conjugate functions. For simplicity of discussion, we omit the relative interior condi-
tions for the duality to hold. The dual problem is often advantageous to solve due to
a few features. Firstly, the matrix A has been separated from the possibly nonsmooth
function ϕ while composited with f ∗. Secondly, f ∗ has Lipschitzian continuous gra-
dient when f is strongly convex. Thirdly, in many applications, ϕ∗ has a closed-form
proximal operator that would allow proximal gradient method to be developed, see
[4]. An impressive progress has been made on applying the dual approach to LASSO-
type problems and highly efficient semismooth Newton algorithms are developed,
see [39, 68] and the references therein. Recently, [24] proposed the semismoothness*
of a set-valued mapping, which is an improvement of classic semismoothness. For
minimization of a prox-regular function, [46] designed a generalized Newton method
based on the second-order subdifferential [42] and proved its local superlinear conver-
gence under semismoothness* and tilt stability assumptions. This method is further
developed for solving composite optimization [34–36] and difference programming
[1] under some assumptions. A more comprehensive introduction to this method can
be found in the monograph [45]. These works motivated us to investigate whether
a dual approach is viable for (1) and whether a generalized Newton method can be
constructed.

However, if we blindly apply the dual formulation (2) to (1) with ϕ = I , we would
not gain much. This is because the conjugate function I∗ only takes finite value at
{0}:

I∗(z) := sup
u∈Rm

{
〈z, u〉 − I(u)

}
=
{
0, if z = 0,

∞, otherwise.

This means that the dual problem would have only one feasible point z = 0 and
everything we care about in duality breaks down.

Now let us take a step back to recall one essential property for the conjugate function
pair (ϕ, ϕ∗) when ϕ is proper, closed, and convex:
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Fig. 1 Constructing a function g such that z ∈ ∂I(u) if and only if u ∈ ∂g(z) for any given z, u ∈ R

z ∈ ∂ϕ(u) ⇐⇒ u ∈ ∂ϕ∗(z),

where ∂ϕ(·) is the subdifferential of ϕ(·) in convex analysis [56]. We call this property
the stationary duality property. We would like to find a function g(·) that plays the role
of I∗(·) and satisfies the stationary duality property:

z ∈ ∂I(u) ⇐⇒ u ∈ ∂g(z), (3)

where ∂I(·) is the limiting subdifferential in variational analysis [44, 57]. In the
meantime, we require the function g(z) to inherit some useful information from the
primal Problem (1). For the one-dimensional case, the construction of such function
g(z) is demonstrated in Fig. 1.

1.2 Stationary duality andmain contributions

Extension of the one-dimensional case to the multi-dimensional case leads to the
following function:

g(z) := μ‖z‖0 + δ+(z), (4)

where μ > 0 is a parameter and δ+(·) is defined as follows:

δ+(z) =
{
0, if z ≥ 0,

+∞, otherwise.
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Using the characterizations in (6) and (7), it is easy to verify that the stationary dual
relationship (3) holds for g(·). This gives rise to the stationary dual problem:

max
z∈Rm

− h(z)− g(z) with h(z) := f ∗(−A�z)− 〈z, b〉. (5)

Although we cannot expect the perfect duality in convex optimization, we are able to
establish the following important results.

(i) There is one-to-one correspondence between local minimizers of the primal
problem (1) and that of the dual problem (5). See Thm. 1 for the detailed for-
mula for computing the corresponding solution from the other. This is achieved
through the study of proximal-type (“P-” for short) stationary point of (5) and
its correspondence to the KKT (Karush-Kuhn-Tucker) point of a local convex
reformulation of (1) at a local minimizer. This result is the basis for further
numerical development.

(ii) Since f is strongly convex, its conjugate f ∗ has Lipschitzian continuous gra-
dient and well-defined generalized Jacobian. More importantly, the nonsmooth
function g is a sparse regularizer with a closed-form proximal operator, which
helps us identify a dual subspace to perform low-complexity iteration. In this
reduced subspace, we can first implement a gradient step and then accelerate
it by a semismooth Newton step. In this process, easy-to-check conditions are
proposed to ensure the dual objective function in (5) ascent. These steps form the
basic framework of our subspace gradient semismooth Newton (SGSN)method,
see Alg. 1.

(iii) In addition to the lowper-iteration complexity, our SGSNhas global convergence
with local superliner (or quadratic) rate. If the generated sequence is bounded and
the dual objective function in (5) satisfies Polyak-Łojasiewicz-Kurdyka (PŁK)
property, then the sequence converges to a P-stationary point of (5) (Thm. 2).
Thereby, a local minimizer of the primal Problem (1) is found. This result does
not require the regularity condition that the matrix A has full-row rank. If we
further assume that the gradient function ∇ f ∗ is (strongly) semismooth and
a second-order sufficient condition holds, then the sequence converges to a P-
stationary point of (5) with local superlinear (or quadratic) rate. To the best of
our knowledge, SGSN is the first algorithm that enjoys both global convergence
and local superlinear rate for Problem (1) (Thm. 3). Finally, we demonstrate the
use of SGSN on two important applications: AUC maximization and the sparse
multi-label classification. The experiments show that SGSN has satisfactory
performance on computational speed and solution accuracy when benchmarking
against several competitive algorithms.

1.3 Organization

The paper is organized as follows. Some frequently used symbols and notations are
introduced in Section 2. The one-to-one correspondence between solutions of primal
and dual problems is established in Section 3. To find a dual solution, we describe
the framework of SGSN and prove its global convergence with a local superlinear (or
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quadratic) rate in Section 4. The numerical experiments on AUC maximization and
multi-label classification are conducted in Section 5.We conclude the paper in Section
6 with some discussion on possible future research.

2 Preliminaries

In this part, we first describe the notation used in the paper. We then recall the defi-
nition of the limiting subdifferential and apply it to the function g(·) in (4). We also
characterize its proximal operator. Finally, we introduce some function classes.

2.1 Notation

The boldfaced lowercase letter x ∈ R
n denotes a column vector of size n and x� is its

transpose. Let xi or [x]i denote the i th element of x.We letRn+ denote the non-negative
orthant in R

n . The norm ‖ · ‖ denotes the �2 norm of x or the Frobenius norm for a
matrix A, and thus we always have ‖Ax‖ ≤ ‖A‖‖x‖. A neighborhood of x∗ ∈ R

n is
often denoted asN (x∗), whileN (x∗, δ) := {x ∈ R

n | ‖x− x∗‖ < δ} when the radius
δ > 0 is given. We denote I as the identity matrix of appropriate dimension. Let e
represent a vector of all 1’s with dimension implied by the context. We denote ceiling
and floor functions as �·� and �·� respectively.

Let [m] denote the set of indices {1, . . . , m}. For a subset Γ ⊂ [m], Γ consists of
those indices of [m] not inΓ and |Γ | denotes the number of elements in Γ (cardinality
of Γ ). For vector z ∈ R

m (resp. matrix A ∈ R
m×n), zΓ (resp. AΓ :) denotes the

subvector of z indexed by Γ (resp. the submatrix of A with rows indexed by Γ ).
Particularly, for a differentiable function h, we denote ∇Γ h(z) := (∇h(z))Γ . For a
symmetric matrix H ∈ R

m×m , HΓ is the submatrix with both rows and columns
indexed by Γ . Meanwhile, the largest and smallest eigenvalue of H are denoted
by λmax and λmin respectively. Given vector z ∈ R

m , we denote its support set by
S(z) := {i ∈ [m] : zi �= 0}, where “:=” means “define”. For a set Ω ⊂ R

m , co{Ω} is
the convex hull of Ω .

2.2 Limiting subdifferential

The major reference for this part is [43, 44, 57]. Let us consider a proper, lower semi-
continuous (l.s.c.) and bounded-below function ϕ : R

m → (−∞,+∞]. The regular
subdifferential of ϕ at z ∈ domϕ := {x ∈ R

m : ϕ(x) <∞} is defined by

∂̂ϕ(z) :=
⎧
⎨

⎩
v ∈ R

m : lim inf
z→z
z �=z

ϕ(z)− ϕ(z)− 〈v, z− z〉
‖z− z‖ ≥ 0

⎫
⎬

⎭
.

For z /∈ domϕ, we set ∂ϕ(z) = ∅. The limiting or Mordukhovich subdifferential of
ϕ at z ∈ R

m is defined by
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∂ϕ(z) := {v ∈ R
m : ∃zk → z, ϕ(zk) → ϕ(z) and ∂̂ϕ(zk) � vk → v}.

It was initially proposed in [41] in an equivalent formulation. Particularly, the limiting
subdifferential of I(·) takes the following form [70]:

∂I(u) =
{

v ∈ R
m
∣
∣
∣
∣ vi

{≥ 0, if ui = 0
= 0, if ui �= 0,

, i ∈ [m]
}

. (6)

For given τ > 0, the proximal operator of ϕ is defined by

Proxτϕ(·)(u) := arg min
z∈Rn

{

ϕ(z)+ 1

2τ
‖z− u‖2

}

.

The following result reveals the relationship of ∂I , ∂g and Proxτg(·)(·), and they
will be utilized to establish the equivalence of solutions between the primal and dual
problems. Although it is straightforward, a proof is included for easy reference.

Lemma 1 Given points z ∈ R
m+ and u ∈ R

m, the following results hold.

(i) The limiting subdifferential of g at z can be computed by

∂g(z) =
{

v ∈ R
m : vi ∈

{
R, if zi = 0

{0}, if zi > 0

}

. (7)

(ii) The proximal operator of g with τ > 0 can be represented as

[
Proxτg(·)(u)

]

i
=

⎧
⎪⎪⎨

⎪⎪⎩

0, ui <
√
2τμ,

{0, ui }, ui =
√
2τμ,

ui , ui >
√
2τμ,

i = 1, . . . , m. (8)

(iii) z ∈ ∂I(u) if and only if u ∈ ∂g(z).
(iv) z ∈ Proxτg(·)(z + τu) holds with some τ > 0 if and only if u and z take the

following value
(ui , zi ) ∈ Ω1 ∪Ω2, ∀i ∈ [m], (9)

where Ω1 := {0} × [√2μτ,∞) and Ω2 := (−∞,
√
2μ/τ ] × {0}.

(v) If z ∈ Proxτg(·)(z + τu) with some τ > 0, then u ∈ ∂g(z). Conversely, if
u ∈ ∂g(z), then z ∈ Proxτg(·)(z + τu) holds with τ ∈ (0,min{τ 1(z), τ 2(u)}),
where

τ 1(z) =

⎧
⎪⎨

⎪⎩

+∞, z = 0,

min

{
z2i
2μ

: zi > 0

}

, otherwise,
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τ 2(u) :=

⎧
⎪⎨

⎪⎩

+∞, u ≤ 0,

min

{
2μ

u2
i

: ui > 0

}

, otherwise.

(vi) If z ∈ Proxτg(·)(z+τu) with some τ > 0, then for any τ ′ ∈ (0, τ ), Proxτ ′g(·)(z+
τ ′u) is single-valued and it holds that z = Proxτ ′g(·)(z+ τ ′u).

Proof (i) Let us consider the regular and limiting subdifferential of a l.s.c. function
g1 : R → R ∪ {∞}, defined by

g1(t) :=

⎧
⎪⎨

⎪⎩

μ, if t > 0,

0, if t = 0,

∞, otherwise.

Obviously, g(z) =∑m
i=1 g1(zi ) holds and it follows from [57, Prop. 10.5] that

∂̂g(z) = ∂̂g1(z1)× · · · × ∂̂g1(zm) and ∂g(z) = ∂g1(z1)× · · · × ∂g1(zm). (10)

Given t ≥ 0, we claim that

∂̂g1(t) =
{

v ∈ R : v ∈
{

R, if t = 0,

{0}, if t > 0

}

. (11)

Indeed, when t > 0, g1 is differentiable and then ∂̂g1(t) = g′1(t) = 0 from [57,
Exercise 8.8]. If t = 0, then for any sequence tk ↓ 0 and tk �= 0, we have g1(tk) −
g1(0) ≥ μ. Thus, given any v ∈ R, we have (g1(tk) − g1(0) − 〈v, tk〉)/|tk | → +∞.
Based on these facts, (11) can be derived by the definition of regular subdifferential.
We can further prove ∂g1(t) = ∂̂g1(t) by the definition of limiting subdifferential.
Combining this result with (10), we obtain (7).

(ii) By the definition of the proximal operator and the separable property of ‖ · ‖2
and ‖ · ‖0, we only need to solve the following optimization problem for each i ∈ [m]

[
Proxτg(·)(u)

]

i
= argmin

zi≥0
1

2
(zi − ui )

2 + τμ‖zi‖0. (12)

When zi = 0, the objective function value is obj1 = u2
i /2. Now we consider a

constrained quadratic optimization

min
zi≥0

1

2
(zi − ui )

2 + τμ.

Its optimal solution is zi = max{0, ui } and the objective function value is obj2 =
(min{ui , 0})2/2+ τμ. Finally, we just need to compare obj1 and obj2 to determine
the solution to (12).

Case I: if obj1 < obj2, this means ui <
√
2τμ and [Proxτg(·)(u)]i = 0.
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Case II: obj1 > obj2 is equivalent to ui >
√
2τμ and [Proxτg(·)(u)]i =

max{0, ui } = ui .
Case III: if obj1 = obj2, this leads to ui = √2τμ and [Proxτg(·)(u)]i = {0, ui }.
We arrive at the conclusion of (ii).
(iii) This result can be directly obtained from (6) and (7).
(iv) Suppose z ∈ Proxτg(·)(z + τu) holds, we can use (8) to derive the range of

(u, z). If zi + τui <
√
2τμ, then zi = 0 and ui <

√
2μ/τ . If zi + τui >

√
2τμ, then

zi = zi + τui , leading to ui = 0 and zi >
√
2μτ . For zi + τui = √2τμ, we have

zi ∈ {0, zi + τui }, yielding (ui , zi ) = (0,
√
2τμ) or (ui , zi ) = (

√
2μ/τ, 0).

Now let us prove the converse counterpart. If (ui , zi ) ∈ Ω1, then zi +τui ≥ √2τμ

and thus zi = zi+τui ∈ [Proxτg(·)(z+τu)]i . If (ui , zi ) ∈ Ω2, then zi+τui ≤ √2τμ

and thus zi = 0 ∈ [Proxτg(·)(z+ τu)]i . Overall, we complete the proof of (iii).
(v) The first part of this assertion directly follows from (i) and (iv). To prove

the converse part, it suffices to prove that u ∈ ∂g(z) implies (9) with τ ∈
(0,min{τ 1(z), τ 2(u)}). Indeed, for any i0 such that zi0 > 0, we have τ < τ 1(z) <

z2i0/(2μ), implying zi0 >
√
2τμ. Meanwhile, for any i0 such that ui0 > 0, we have

τ < τ 2(u) < (2μ)/u2
i0
, leading to ui0 <

√
2μ/τ . These results togetherwithu ∈ g(z)

yields (ui , zi ) ∈ Ω1 ∪Ω2 for i ∈ [m], and we obtain (9).
(vi) It suffices to prove z = Proxτ ′g(·)(z+τ ′u). By (iv), we have (ui , zi ) ∈ Ω1∪Ω2

for i ∈ [m]. Then let us consider the following two cases.
Case I: If (ui , zi ) ∈ Ω1, then ui = 0 and zi + τ ′ui ≥ √2μτ >

√
2μτ ′. Using (8),

we can derive [Proxτ ′g(·)(z+ τ ′u)]i = zi + τ ′ui = zi .
Case II: If (ui , zi ) ∈ Ω2, then zi = 0 and ui ≤ √

2μ/τ . Hence, zi + τ ′ui ≤
τ ′
√
2μ/τ <

√
2μτ . Using (8), we can derive [Proxτ ′g(·)(z+ τ ′u)]i = 0 = zi .

Therefore, we obtain the desired conclusion. ��

2.3 Function classes

This paper involves a few classes of functions. We briefly introduce them below.
(A) Strongly convex functions, L-smooth functions and conjugate functions.

We say a functionψ : Rn → (−∞,+∞] is σψ -strongly convex for σψ > 0, if domψ

is convex and the following inequality holds for any x, y ∈ dom and s ∈ [0, 1],

ψ(sx + (1− s)y) ≤ sψ(x)+ (1− s)ψ(y)− σψ

2
s(1− s)‖x − y‖2.

We say ψ is �ψ -smooth for �ψ > 0 if it is continuously differentiable and

‖∇ψ(x)−∇ψ(y)‖ ≤ �ψ‖x − y‖, ∀x, y ∈ R
n .

Lemma 2 (Descent Lemma in [3]) Let ψ : Rn → (−∞,∞] be a �ψ -smooth function.
Then we have

ψ(x) ≤ ψ(y)+ 〈∇ψ(y), x − y〉 + �ψ

2
‖x − y‖2, ∀ x, y ∈ R

n .
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For a function ϕ : R
m → (−∞,+∞], its conjugate function ϕ∗ : R

m →
(−∞,+∞] is defined by

ϕ∗(v) := sup
z∈Rm

〈v, z〉 − ϕ(z).

Some properties of conjugate function from [3] are summarized as follows.

Lemma 3 Let ϕ be a proper, l.s.c. and convex function, then we have

(i) ϕ∗ is proper, l.s.c. and convex.
(ii) u ∈ ∂ϕ(z) if and only if z ∈ ∂ϕ∗(u).

(iii) If ϕ is σϕ-strongly convex, then ϕ∗ is 1
σϕ

-smooth.

(iv) If ϕ is �ϕ-smooth, then ϕ∗ is 1
�ϕ

-strongly convex.

(B) PŁK functions. They are also widely known as Kurdyka-Łojasiewicz (KŁ)
functions defined byKŁ inequality and popularized in [2, 7]. During the reviewprocess
of this paper, we were brought to a recent paper [5], which attributes the origin of KŁ
inequality to Polyak [52] and suggested the term Polyak-Łojasiewicz-Kurdyka (PŁK)
inequality to reflect the order of the time the inequality and its variants were first
proposed. We refer to the introduction part of [5] for a short historical account of PŁK
inequality.

Let s ∈ (0,+∞], we denoteΨs as the class of all concave and continuous functions:
ψ : [0, s) → R+ which satisfies the following conditions

(i) ψ(0) = 0;
(ii) ψ is continuously differentiable on (0, s) and continuous at 0;
(iii) ψ ′(t) > 0 for all t ∈ (0, s).

Next let us define Polyak-Łojasiewicz-Kurdyka (PŁK) property. A proper and l.s.c.
function ϕ : R

m → (−∞,+∞] is said to have the PŁK property at z ∈ dom ∂ϕ :=
{z ∈ R

m : ∂ϕ(z) �= ∅} if there exists s ∈ (0,+∞], a neighborhood N (z) of z and a
function ψ ∈ Ψs , such that the following inequality holds

ψ ′(ϕ(z)− ϕ(z))dist(0, ∂ϕ(z)) ≥ 1, ∀z ∈ N (z) ∩ [ϕ(z) < ϕ(z) < ϕ(z)+ s] (13)

where for c1, c2 > 0, [c1 < ϕ(z) < c2] := {z ∈ R
m : c1 < ϕ(z) < c2}. If ϕ satisfies

the PŁK property at every point of dom ∂ϕ, then we call ϕ a PŁK function.
The PŁK property reveals that the values of ϕ can be reparameterized to sharpness

[53, 54] and this is crucial for global convergence analysis of algorithms in nonconvex
settings. One attractive aspect of PŁK functions is that they are ubiquitous in applica-
tions. The common classes of PŁK functions include real subanalytic, semi-algebraic,
convex functions with growth conditions and so on. For more illustrating examples
about PŁK properties, we recommend [2] and [8].

(C) Semismooth functions. Let Φ : Rm → R
n be a locally Lipschitzian function.

Suppose that DΦ is the set containing all the differentiable points of Φ and JΦ(z) is
the Jacobian at a differentiable point z. Then the generalized Jacobian of Φ is defined
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by

∂CΦ(z) := co
{

V | there exists a sequence zk ∈ DΦ such that V = lim
zk→z

JΦ(zk)
}
.

Furthermore, Φ is said to be semismooth [20, 21, 55] if for any z ∈ R
m , Φ is direc-

tionally differentiable and it holds

Φ(z+ d)−Φ(z)− Hd = o(‖d‖) ∀ H ∈ ∂CΦ(z+ d), d ∈ R
m . (14)

For a continuously differentiable function ψ : R
m �→ (−∞,+∞], we say it is SC1

function if the gradient function ∇ψ(·) is semismooth.

3 Optimality of primal and dual problems

In this section, we study the optimality conditions of the primal and dual problems.
The ultimate result is the equivalence of local minimizers between the two problems
in the sense that one can be obtained from the other. This one-to-one correspondence
can be seen as the duality theorem for the problem (1). For convenience, we consider
the following equivalent reformulation of (1)

min
x,u

f (x)+ I(u), s.t . (x, u) ∈ F := {(x, u) | Ax + b = u} . (15)

We interchangeably refer to them as the primal problem depending on whether the
variable u is needed or not.

3.1 Equivalence of local minimizers and KKT points of the primal problem

We note that the strong convexity of f ensures that the objective of (1) is l.s.c and
coercive, then there must exist an optimal solution for the primal problem (1) and
(15). The KKT point of (15) with a continuously differentiable f has been introduced
in [70]. By utilizing limiting subdifferential, we can extend this definition to the case
when f is nonsmooth.

Definition 1 A point w∗ := (x∗, u∗) ∈ R
n+m is a KKT point of (15) if there exists a

multiplier z∗ such that the following system holds:

⎧
⎨

⎩

∂ f (x∗)+ A�z∗ � 0,
−z∗ + ∂I(u∗) � 0,
Ax∗ + b− u∗ = 0.

(16)

We call (w∗, z∗) a KKT pair of (15).

The convexity of f and the piecewise linear structure of the composite termI(Ax+
b) allow us to characterize a local minimizer in terms of KKT point.
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Proposition 1 For problem (15), w∗ := (x∗, u∗) ∈ R
n+m is a local minimizer if and

only if it is a KKT point.

Proof First, for a given reference point w∗ = (x∗, u∗), define the following linearly
constrained convex programming:

min
x∈Rn

f (x) s.t. (x, u) ∈ F∗ :=
{
(x, u) | Ax + b− u = 0, uJ ∗− ≤ 0

}
, (17)

where J ∗− := {i ∈ [m] : u∗i ≤ 0}. A minimizer (x, u) of (17) must satisfy the
following system together with the multiplier (z, zJ ∗−)

⎧
⎪⎪⎨

⎪⎪⎩

∂ f (x)+ A�z � 0,

zJ ∗
−
= 0, zJ ∗− ≥ 0, uJ ∗− ≤ 0, 〈zJ ∗− , uJ ∗−〉 = 0,

Ax + b− u = 0.

(18)

Comparing (16) and (18), and utilizing representation (6), we see that a KKT point w∗
of (15) must be a global minimizer of the convex problem (17). With this equivalence
in hand, we prove the claim in the proposition.

Necessity: Let w∗ = (x∗, u∗) be a local minimizer of (15), then there exists δ > 0
such that

f (x)+ I(u) ≥ f (x∗)+ I(u∗), ∀w ∈ N (w∗, δ) ∩ F .

By the definition of J ∗−, we have I(u) ≤ I(u∗) for any u ∈ F∗, and then we can
obtain

f (x) ≥ f (x∗), ∀w ∈ N (w∗, δ) ∩ F∗.

This means w∗ is also a local minimizer of (17). Since Problem (17) is convex, w∗ is
also a global minimizer of (17), which in turn is equivalent to a KKT point of (15).

Sufficiency: Let w∗ = (x∗, u∗) be a KKT point of (15). We have proved at the
beginning that w∗ is also a global minimizer of (17). Thus we have

f (x) ≥ f (x∗), ∀ w = (x, u) ∈ F∗. (19)

Now let us consider a sufficiently small radius δ∗ such that for any w ∈ N (w∗, δ∗),
we have

{i ∈ [m] : ui > 0} ⊇ J ∗− and f (x)− f (x∗) > −λ/2, (20)

where the second inequality follows from the lower semicontinuity of f . Then for any
w ∈ N (w∗, δ∗) ∩ F∗, (20) leads to I(u) ≥ I(u∗). This together with (19) implies

f (x)+ I(u) ≥ f (x∗)+ I(u∗), ∀w ∈ N (w∗, δ∗) ∩ F∗.
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If w ∈ N (w∗, δ∗)∩ (F\F∗), then there exists i0 ∈ J ∗− such that ui0 > 0. Combining
this with (20) leads to I(u) ≥ I(u∗)+ λ. Taking the inequality in (20) into account,
we have

f (x)+ I(u) ≥ f (x∗)+ I(u∗)+ λ/2, ∀w ∈ N (w∗, δ∗) ∩ F∗.

Hence, we proved that w∗ is also a local minimizer of (15). ��

3.2 Equivalence of local minimizers and KKT points of the dual problem

We rewrite the dual problem (5) as a minimization problem:

min
z∈Rm

F(z) := h(z)+ g(z), (21)

Since f is σ f -strongly convex, it follows from Lem. 3 that h is convex and �h-smooth
with �h = ‖A‖2/σ f . Utilizing the definition of ∂g and Proxτg(·)(·), we introduce the
KKT and P-stationary points of (21). These two types of stationary points have also
been given in [30, 47] for minimizing the sum of two functions.

Definition 2 Let us consider a reference point z∗ ∈ R
m .

(i) z∗ is said to be a KKT point of (21) if

0 ∈ ∇h(z∗)+ ∂g(z∗). (22)

(ii) z∗ is called a P-stationary point of (21) if there is τ > 0 such that

z∗ ∈ Proxτg(·)(z∗ − τ∇h(z∗)). (23)

In comparison to the definition ofKKTpoint, a P-stationary point involves a positive
parameter τ > 0. For a given z∗, let u∗ = −∇h(z∗). The conditions (22) and (23) can
be rewritten respectively as

u∗ ∈ ∂g(z∗) and z∗ ∈ Proxτg(·)(z∗ + τu∗).

It then follows from Lem. 1(v) that a KKT point of (21) is also its P-stationary point
as stated in the result below.

Lemma 4 If z∗ is a P-stationary point of (21), then it is also a KKT point of (21).
Conversely, if z∗ is a KKT point of (21), then it is a P-stationary point with τ ∈
(0,min{τ 1(z∗), τ 2(−∇h(z∗))}), where τ 1 and τ 2 have been defined in Lem. 1.

Moreover, every P-stationary point (KKT point) of (21) is also its local minimizer,
as proved below.

Proposition 2 For problem (21), z∗ is a local minimizer if and only if it is a P-stationary
point.
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Proof If z∗ is a local minimizer of (21), then using [57, Thm. 10.1, Exercise 10.10],
we can derive (22), which means z∗ is a P-stationary point of (21) as we have claimed
in Lem. 4.

Now let us prove the sufficiency. Suppose z∗ is a P-stationary point of (21). We
must have z∗ ∈ R

m+ due to the function g(z). We choose δ̃∗ sufficiently small such that

S(z) ⊇ S(z∗) := S∗ and |h(z)− h(z∗)| < μ/2, ∀ z ∈ N (z∗, δ̃∗), (24)

where we used the inclusion property of the support-set function S(·) near z∗ and the
inequality used the continuity of h. LetΘ∗ := {z ∈ R

m : S(z) = S(z∗)}. We consider
two cases.

Case I: z ∈ N (z∗, δ̃∗) ∩ R
m+ ∩ Θ∗. For this case, g(z) = g(z∗). Denote u∗ =

−∇h(z∗), by the convexity of h, we obtain the following inequality:

h(z)− h(z∗) ≥ −〈u∗, z− z∗〉 = −〈u∗S∗ , (z− z∗)S∗〉 = 0,

where the last two equations follows from z ∈ Θ∗ and Lem. 1 (iv) respectively.
Case II: z ∈ N (z∗, δ̃∗)∩R

m+\Θ∗. Then (24) implies that S(z) contains at least one
more element than S(z∗). This in turn implies g(z) ≥ g(z∗)+μ. It follows from (24)
that h(z) ≥ h(z∗) − μ/2. The two inequalities just obtained means h(z) + g(z) ≥
h(z∗)+ g(z∗)+ μ/2.

In summary, we have proved the following:

⎧
⎨

⎩

g(z) = g(z∗), h(z) ≥ h(z∗), for z ∈ N (z∗, δ̃∗) ∩ R
m+ ∩Θ∗,

h(z)+ g(z) ≥ h(z∗)+ g(z∗)+ μ/2, for z ∈ N (z∗, δ̃∗) ∩ R
m+\Θ∗,

F(z) = +∞, for z /∈ R
m+.

(25)

Consequently, we have F(z) ≥ F(z∗) for z ∈ N (z∗, δ̃∗) and z∗ is a local minimizer
of (21). ��

Wefinish this subsectionwith a result on the relationship between globalminimizers
and P-stationary points of (21).

Proposition 3 For problem (21), the following assertions hold:

(i) If z∗ is a global minimizer, then it is a P-stationary point with τ ∈ (0, 1/�h).
(ii) If h is σh-strongly convex and z∗ is a P-stationary point with some τ > 1/σh, then

it is the unique global minimizer.

Proof (i) directly follows from [35, Prop. 4.4]. Now we prove (ii). By the definitions
of P-stationary point and proximal point, we have

1

2τ
‖z− (z∗ − τ∇h(z∗))‖2 + g(z) ≥ 1

2τ
‖τ∇h(z∗)‖2 + g(z∗).

After simplification, we obtain

g(z)− g(z∗) ≥ − 1

2τ
‖z− z∗‖2 − 〈∇h(z∗), z− z∗〉.
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The σh-strong convexity of h implies

h(z)− h(z∗) ≥ 〈∇h(z∗), z− z∗〉 + σh

2
‖z− z∗‖2.

Adding the two inequalities above leads to

F(z)− F(z∗) ≥
(σh

2
− 1

2τ

)
‖z− z∗‖2 > 0, whenever z �= z∗.

which means that z∗ is the unique global minimizer of (21). ��

3.3 Equivalence of local minimizers of primal and dual problems

The equivalence results in the two preceding subsections lead to the main result in this
section.

Theorem 1 (Equivalence Characterization of Local Minimizer) If w∗ = (x∗, u∗) is a
local minimizer of the primal problem (15) with associated multiplier z∗, then z∗ is a
local minimizer of the dual problem (21). Conversely, if z∗ is a local minimizer of the
dual problem (21), then w∗ := (∇ f ∗(−A�z∗),−∇h(z∗)) is a local minimizer of the
primal problem (15).

Proof In Prop. 1 for the primal problem (15), we established the equivalence of its
local minimizer and KKT point. Combining Lem. 4 and Prop. 2 for the dual problem
(21), we established the equivalence of its local minimizer and its KKT point. We only
need to prove the equivalence of the KKT point for both primal and the dual problems.

Suppose z∗ is a KKT point of the dual problem (21). Let x∗ := ∇ f ∗(−A�z∗) and
u∗ := −∇h(z∗). Then by using Lem. 3(ii) and h(z) = f ∗(−A�z)− 〈b, z〉, we know
that the KKT condition (22) for the dual problem is equivalent to

⎧
⎨

⎩

∂ f (x∗)+ A�z∗ � 0,
−u∗ + ∂g(z∗) � 0,
Ax∗ + b− u∗ = 0.

(26)

Comparing (26) with (16), we just need to prove their second lines are equivalent.
This directly follows from Lem. 1(iii). Consequently, w∗ = (x∗, u∗) is a KKT point
of the primal problem. This establishes the equivalence result. ��

At the end of this section, we introduce a second-order sufficient condition (SOSC)
for (21). Just like the case of classic smooth nonlinear programming (see e.g. [50]),
we will show that our SOSC is useful to derive a quadratic growth condition for a P-
stationary point and local superlinear convergence rate for a second-order algorithm.

Given a P-stationary point z∗, denote the support set S∗ := S(z∗). One can verify
that it is also a KKT point with multiplier (∇S∗h(z∗),∇S∗h(z∗)) of the following
convex programming

min
z∈Rm

h(z), s.t. zS∗ ≥ 0, zS∗ = 0. (27)
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The critical cone of the above problem at z∗ is C := {d ∈ R
m : dS∗ = 0} (it happens

to be a subspace). Since h is �h-smooth, for any z ∈ R
m , ∂2h(z) := ∂C (∇h(z)) �=

∅. Then we can give the following definition based on the second-order sufficient
condition for the convex problem (27) (see e.g. [21]).

Definition 3 Given a P-stationary point z∗ ∈ R
m of (21), we say the second-order

sufficient condition (SOSC) holds at z∗ if

d�H∗
S∗d > 0, ∀H∗ ∈ ∂2h(z∗) and d ∈ R

|S∗|\{0}. (28)

Similar to the results for SC1 functions (see [21, Prop. 7.4.12]), we can prove the
quadratic-growth condition for (21) at a P-stationary point z∗ satisfying SOSC.
Proposition 4 (Quadratic Growth Condition) If ∇h is semismooth and z∗ ∈ R

m is a
P-stationary point of (21) satisfying SOSC, then there exist δ

∗
, c∗ > 0 such that the

following quadratic growth at z∗ holds:

F(z) ≥ F(z∗)+ c∗‖z− z∗‖2, ∀ z ∈ N (z∗, δ∗) ∩ R
m+. (29)

Proof Aswe havementioned beforeDef. 3, z∗ is also aKKTpoint of (27). Considering
that (28) holds, it follows from [21, Prop. 7.4.12] that there exists δ

∗
1 and c∗ > 0 such

that

h(z) ≥ h(z∗)+ c∗‖z− z∗‖2, ∀z ∈ N (z∗, δ∗1) ∩ {z ∈ R
m : zS∗ ≥ 0, zS∗ = 0}.

(30)

Then we can take δ
∗ = min{̃δ∗, δ∗1,

√
μ/(2c∗)}, where δ̃∗ has been defined in the

proof of Prop. 2. Then (24) holds. Furthermore, for any z ∈ N (z∗, δ∗), we have
{z ∈ R

m : zS∗ ≥ 0, zS∗ = 0} = R
m+ ∩Θ∗, where Θ∗ = {z ∈ R

m : S(z) = S(z∗)}.
Combination of (30) and (25) leads to

F(z)− F(z∗) ≥ c∗‖z− z∗‖2, ∀z ∈ N (z∗, δ∗) ∩ R
m+ ∩Θ∗,

F(z)− F(z∗) ≥ μ/2 ≥ c∗‖z− z∗‖2, ∀z ∈ N (z∗, δ∗) ∩ R
m+\Θ∗.

We arrived at the claimed result. ��

4 A subspace gradient semismooth newtonmethod

Since we have established the equivalence of solutions between the primal problem
(15) and the dual problem(21), we now develop an efficient method for the dual
problem. It is essentially a subspace method, which first identifies a subspace and
then within this subspace applies a gradient step followed by a semismooth Newton
step if certain conditions are met. We call the resulting method a subspace gradient
semismooth Newton (SGSN) method. The key challenge is to establish its global
convergence as well as its local superlinear convergence rate under mild assumptions.
We now describe the framework for SGSN followed by its convergence analysis.
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4.1 Steps of SGSN

Suppose zk is the current iterate. First, we perform the classical proximal gradient step

vk ∈ Proxτg(·)(zk − τ∇h(zk)). (31)

The aim of this step is to ensure global convergence and to identify the subspace R
|Tk |

indexed by
Tk := {i ∈ [m] : [zk − τ∇h(zk)]i >

√
2τμ}.

From (8), once such vk is given by

vk
Tk
= [zk − τ∇h(zk)]Tk and vk

T k
= 0. (32)

In other words, vk takes a gradient descent on R
|Tk | while setting the complementary

part to zero.
The second step is to compute a Newton direction along the subspace identified

in the first step. Specifically, we minimize a second-order Taylor approximation of
h(vk + d) with dT k

= 0:

dk := arg min
d∈Rm

〈∇h(vk), d〉 + 1

2
d�(Hk + γk I )d, s.t. dT k

= 0.

where γk > 0 is a regularization parameter, Hk ∈ ∂̂2h(vk), and the set ∂̂2h(z) is
defined by

∂̂2h(z) := {AQ A� | Q ∈ ∂2 f ∗(−A�z)}. (33)

Since f ∗ is (1/σ f )-smooth, ∂̂2h(z) is always nonempty. The reason to use ∂̂2h instead
of ∂2h is because h includes the composition term f ∗ ◦ (−A) and it is usually difficult
to characterize the exact form of ∂2h. The relationship between the two sets is given
in [16, Thm. 2.6.6]:

∂2h(z)d ⊆ ∂̂2h(z)d, ∀ d ∈ R
m . (34)

Since Hk is positive semidefinite, (Hk + γk I ) is positive definite and hence dk is
well-defined.

The final step is to measure whether the Newton direction is “sufficiently” good.
Let

z̃k+1 := vk + αkdk,

where αk > 0 can be explicitly computed. We accept z̃k+1 as our next iterate if it
satisfies the following two conditions:

F(vk)− F (̃zk+1) ≥ c1‖̃zk+1 − vk‖2 (C1)

‖∇Tk h(̃zk+1)‖ ≤ c2‖̃zk+1 − vk‖, (C2)
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where c1, c2 > 0. Otherwise, we take vk as our next iterate. Those steps are summa-
rized in Alg. 1.

Algorithm 1 SGSN: Subspace Gradient Semismooth Newton Method

Initialization: Take τ ∈ (0, 1/�h), c1, c2, γ > 0, and then start with z0 ∈ R
m .

for k = 0, 1, · · · do
1. Proximal gradient: Compute Tk , and then update the gradient iterate vk by (32).
2. Semismooth Newton: Denote γk := γ ‖∇Tk h(vk )‖, and choose Hk ∈ ∂̂2h(vk ). Compute Newton

direction dk
Tk

by solving

(Hk
Tk
+ γk I )dk

Tk
= −∇Tk h(vk ). (35)

Update Newton iterate by

z̃k+1
Tk

= vk
Tk
+ αkdk

Tk
and z̃k+1

T k
= 0. (36)

where αk = min{1, βk } with

βk :=
⎧
⎨

⎩

1, if dk
Tk
≥ 0

min{−vk
i /dk

i : i ∈ Tk and dk
i < 0}, otherwise.

(37)

3. Update step: Update zk either by the semismooth Newton step or the proximal gradient step as
follows:

zk+1 =
{

z̃k+1, if (C1) and (C2) hold

vk , otherwise.
(38)

end for

Remark 1 (i) From (32), one can observe that Tk exactly includes all nonzero entries
of vk . Together with (36), we have

Tk = S(vk) ⊇ S (̃zk+1). (39)

(ii) Denote xk := ∇ f ∗(−A�zk), then −∇h(zk) = Axk + b and vk+1
Tk

= [zk +
τ(Axk + b)]Tk .

Following this setting, the computational cost of the proximal gradient step is
O(|Tk |n). Regarding the Newton step, let us consider a simple case when f is twice
continuously differentiable and so is f ∗. Then the Hessian is Hk = AQk A� with
Qk := ∇2 f ∗(−A�zk) and Newton equation (35) will be

(γk I + ATk :Qk A�Tk :)d
k
Tk
= −∇Tk h(vk).

In many applications, including the AUCmaximization and multi-label classification,
f is often a separable regularizer. Thereby, Qk is diagonal. Then the above equation
can be efficiently solved by linear conjugate gradient method and the computational
cost is O(n|Tk |2). In the case n < |Tk | and the inverse of Qk is cheap to compute,
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we can make use of the Sherman-Morrison-Woodbury formula so that the overall
computational cost is in the order of O(n2|Tk |).

(iii) At the k-th iteration, if it happens that vk = zk , then∇Tk h(vk) = 0 and vk
T k
= 0,

which further implies 0 ∈ ∇h(vk) + ∂g(vk) and z̃k+1 = vk . This means that zk is a
KKT point (see (22) in Def. 2). Consequently, after the k-th iteration, the iterate would
not change and is a P-stationary point of (21) by Lem. 4.

4.2 Global convergence

In this subsection, our main goal is to prove the sequence {zk}k∈N generated by SGSN
converges to a P-stationary point of (21). We first state some basic properties of the
generated sequence.

Proposition 5 Let {(zk, vk)}k∈N be the sequence generated by SGSN.
The following holds.

(i) The sequence of objective function value satisfies sufficient descent

F(zk)− F(vk) ≥ η0‖vk − zk‖2, F(vk)− F(zk+1) ≥ c1‖vk − zk+1‖2, (40)

where η0 = 1/(2τ)− �h/2 > 0.
(ii) There exist pk ∈ ∂ F(vk) such that ‖pk‖ ≤ (1/τ + �h)‖vk − zk‖. If Newton

iterate z̃k+1 is accepted, then there exists q̃k+1 ∈ ∂ F (̃zk+1) such that ‖̃qk+1‖ ≤
η1‖zk+1 − vk‖, where η1 := max{c2, 1/τ + �h}.

(iii) Suppose the function sequence {F(zk)}k∈N is bounded from below, then there
exists C ∈ R such that

lim
k→∞ F(zk) = lim

k→∞ F(vk) = C . (41)

Furthermore, it holds

lim
k→∞‖v

k − zk‖ = 0 and lim
k→∞‖v

k − zk+1‖ = 0. (42)

(iv) Let z∗ be an accumulation point of {zk}k∈N, then z∗ is a P-stationary point of
(21) and F(z∗) = C. The corresponding conclusions for sequence {vk}k∈N also
hold.

Proof (i) By (31) and the definition of the proximal operator, we have

‖vk − (zk − τ∇h(zk))‖2/2+ τg(vk) ≤ ‖zk − (zk − τ∇h(zk))‖2/2+ τg(zk),

which implies

‖vk − zk‖2/(2τ)+ 〈∇h(zk), vk − zk〉 + g(vk) ≤ g(zk).
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Since h is �h-smooth, using Lem. 2, we obtain

h(vk) ≤ h(zk)+ 〈∇h(zk), vk − zk〉 + (�h/2)‖vk − zk‖2.

Adding the above two inequalities leads to F(zk)− F(vk) ≥ η0‖vk − zk‖2. If zk+1 =
z̃k+1, then (40) follows from (C1), and (40) automatically holds otherwise.

(ii) From (31) and the definition of the proximal operator, we have

vk ∈ argmin
z
‖z− (zk − τ∇h(zk))‖2/2+ τg(z).

By [57, Exercise 8.8], we have

0 ∈ vk − (zk − τ∇h(zk))+ τ∂g(vk).

Denoting pk := −(vk − zk)/τ + ∇h(vk) − ∇h(zk), then pk ∈ ∇h(vk) + ∂g(vk) =
∂ F(vk). We can also estimate ‖pk‖ ≤ (1/τ + �h)‖vk − zk‖ by using �h-smoothness
of h.

If zk+1 = z̃k+1, let us take q̃k+1 = (∇Tk h(̃zk+1); 0T k
). Noticing that z̃k+1

T k
= 0 from

(36), we have (0Tk ;−∇T k
h(̃zk+1)) ∈ ∂g(̃zk+1). This means that q̃k+1 ∈ ∇h(̃zk+1)+

∂g(̃zk+1) = ∂ F (̃zk+1). In this case, the upper bounded of ‖̃qk+1‖ follows from (C2).
Overall, we finish the proof of (ii).

(iii) Since {F(zk)}k∈N is assumed to be bounded below, (40) implies F(zk+1) ≤
F(vk) ≤ F(zk), and thus {F(vk)}k∈N is also bounded below. Then it follows from the
monotone convergence theorem that (41) holds. Using (40) and (41), we can derive
(42).

(iv) Since z∗ is an accumulation point, there exists a subsequence {zk j } j∈N such
that lim j→∞ zk j = z∗. Then we have lim j→∞ zk j − τ∇h(zk j ) = z∗ − τ∇h(z∗), as
well as lim j→∞ vk j = z∗ from (42). It follows from the Proximal Behavior theorem
[57, Thm. 1.25] that z∗ is a P-stationary point of (21).

Now let us prove F(z∗) = C . From (31) and the definition of proximal operator,
we have

‖vk j − (zk j − τ∇h(zk j ))‖2/2+ τg(vk j ) ≤ ‖z∗ − (zk j − τ∇h(zk j ))‖2/2+ τg(z∗).

Meanwhile, the second inequality of (40) implies

h(zk j+1)+ g(zk j+1)+ c1‖vk j − zk j+1‖2 ≤ h(vk j )+ g(vk j ).

Considering that lim j→∞ zk j = lim j→∞ zk j+1 = lim j→∞ vk j = z∗ holds,
taking limit superior on above two inequalities implies lim sup j→∞ g(zk j ) ≤
lim sup j→∞ g(vk j ) ≤ g(z∗). This together with lower semi-continuity of g means
lim j→∞ g(zk j ) = g(z∗). Considering the continuity of h, we have F(z∗) =
lim j→∞ F(zk j ) = C . By a similar procedure, we can prove the counterpart con-
clusion for sequence {vk}k∈N. ��

123



Composite Optimization with Indicator Functions: Stationary…

Remark 2 The assumption of the boundedness of the function sequence {F(zk)}k∈N
and the existence of an accumulation point of the sequence {zk}k∈N can be ensured by
the following assumption:

Assumption 1 The sequence {zk}k∈N generated by SGSN is bounded.

This sequence boundedness assumption is commonly used for convergence analysis
of algorithms in nonconvex settings (see e.g. [8, 9, 15, 25]). Under Assumption 1, the
generated sequence {vk}k∈N is also bounded due to (42).

Prop. 5 presents some basic properties about the sequence {(zk, vk)}k∈N in separate
cases. When Condition (C1) or (C2) is not satisfied at the k-th iteration, we would
have zk+1 = vk (repeating points). We now remove those repeating points from
{(zk, vk)}k∈N and relabel the sequence by y j :

{y j } j∈N := {z0, v0, · · · , zk, vk, · · · }\{zk+1 : zk+1 = vk, k ∈ N}.

We can see that {zk}k∈N is a subsequence of {y j } j∈N, because if zk+1 = vk , then
vk ∈ {y j } j∈N, otherwise zk+1 ∈ {y j } j∈N. We will show that {y j } j∈N is convergent
and so is {zk}k∈N. The benefit of removing the repeated points and relabeling allow us
to restate the properties established in Prop. 5 in a unified fashion:

• Denote η2 := min{η0, c1}, then we have

F(y j )− F(y j+1) ≥ η2‖y j+1 − y j‖2. (43)

• There exists q j ∈ ∂ F(y j ) such that

‖q j‖ ≤ η1‖y j+1 − y j‖. (44)

• The Ostrowski’s condition holds

lim
j→∞‖y

j+1 − y j‖ = 0. (45)

These crucial properties enable us to utilize the PŁK property for convergence
analysis of {y j } j∈N.
Assumption 2 F(·) is a PŁK function.

Particularly, the semi-algebraic function, which remains stable under basic opera-
tions, is an important class of the PŁK function (see e.g. [8]).We can give the following
sufficient condition for Assumption 2.

Lemma 5 If f is semi-algebraic, then F is semi-algebraic, and thus it is a PŁK func-
tion.

Proof Since f is semi-algebraic, it follows from [8,Example 2] that f̃ (v, z) := 〈v, z〉−
f (z) is semi-algebraic, and thus f ∗(v) := supv∈Rm f̃ (v, z) is also semi-algebraic.
As h is the composition of f ∗ and a linear mapping, it is semi-algebraic. Finally,
taking semi-algebraicity of δ+ and ‖ · ‖0 (see [8, Example 4]) into account, F(·) =
h(·)+ δ+(·)+ μ‖ · ‖0 is semi-algebraic, which implies its PŁK property. ��
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Lemma 6 Suppose Assumption 1 holds and let Y be the set consisting of all the accu-
mulation points of {y j } j∈N. Then we have

(i) lim j→∞ dist(y j ,Y) = 0.
(ii) Y is a nonempty, compact and connected set.

(iii) Each element y∗ ∈ Y is a P-stationary point of (21) with F(y∗) =
lim j→∞ F(y j ) = C, where the constant C has been defined in Prop. 5 (ii).

(iv) If Assumption 2 holds, then there exist ε > 0, s > 0 and ψ ∈ Ψs such that for
any z ∈ B

∗ := {z ∈ R
m : dist(z,Y) < ε} ∩ [C < F(z) < C + s], the following

inequality holds

ψ ′(F(z)− C) dist(0, ∂ F(z)) ≥ 1. (46)

Proof Since Ostrowski’s condition (45) holds, (i) and (ii) follow from [8, Lem. 5]. (iii)
follows from Prop. 5. Under Assumption 2, F is a PŁK function with a constant value
on Y . Combining this with the compactness of Y , we can derive (iv) by [8, Lem. 6]. ��

Lem. 6(iv) is also known as uniformPŁKproperty. This is amore favorable property
than those introduced in Section 2, because the data ε, s and ψ is the same for all the
points in B

∗, making the formula (46) more applicable for convergence analysis.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Then the sequence {zk}k∈N gen-
erated by SGSN converges to a P-stationary point of (21).

Proof Since {zk}k∈N is a subsequence of {y j } j∈N, we can arrive at the desired con-
clusion by proving that {y j } j∈N converges to a P-stationary point of (21). First, let

us consider a trivial case that there exists j ∈ N satisfying F(y j ) = C . Taking
lim j→∞ F(y j ) = C and the sufficient descent (43) into account, we have y j = y j for

all j ≥ j . As we have discussed in Remark 1(iii), y j actually is a P-stationary point
of (21).

Now let us consider the case when F(y j ) > C for any j ∈ N. Since
lim j→∞ dist(y j ,Y) = 0 and lim j→∞ F(y j ) = C , it follows from Lem. 6(iv) that
when j is sufficiently large, we have

ψ ′(F(y j )− C) dist(0, ∂ F(y j )) ≥ 1.

This together with (44) leads to

ψ ′(F(y j )− C) ≥ 1/(η1‖y j − y j−1‖). (47)

Given l1, l2 ∈ N, denote Δl1,l2 := ψ(F(yl1) − C) − ψ(F(yl2) − C), then by the
concavity of ψ , (47) and (43), we can derive

Δ j, j+1 ≥ ψ ′(F(y j )− C)(F(y j )− F(y j+1)) ≥ η2

η1

‖y j+1 − y j‖2
‖y j − y j−1‖ ,
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which leads to ‖y j+1− y j‖ ≤
√

(η1/η2)Δ j, j+1‖y j − y j−1‖. Using the inequality of
arithmetic and geometric means, we have

2‖y j+1 − y j‖ ≤ ‖y j − y j−1‖ + (η1/η2)Δ j, j+1.

Now let us sum up the above inequality from sufficiently large l to l to get

2
l∑

j=l

‖y j+1 − y j‖ ≤
l∑

j=l

‖y j − y j−1‖ +
l∑

j=l

η1

η2
Δ j, j+1

=
l∑

j=l

‖y j+1 − y j‖ + ‖yl − yl−1‖ + η1

η2
Δl,l+1.

This further leads to

l∑

j=l

‖y j+1 − y j‖ ≤ ‖yl − yl−1‖ + (η1/η2)(ψ(F(yl)− C)− ψ(F(yl+1)− C)).

Taking l →∞, we can derive

∞∑

j=1
‖y j+1 − y j‖ <∞. (48)

This indicates that {y j } j∈N is a Cauchy sequence. It must converge to a P-stationary
point of (21), and so does {zk}k∈N. We have finished the proof. ��

4.3 Local superlinear convergence rate

In this Subsection, we will derive the local superlinear convergence rate of SGSN
under the following assumption.

Assumption 3 ∇ f ∗(·) is a semismooth function, and there exists an accumulation
point z∗ of the sequence {zk}k∈N satisfying

d�H∗
S∗d > 0, ∀H∗ ∈ ∂̂2h(z∗) and d ∈ R

|S∗|\{0}. (49)

By the relationship (34), we can derive that (49) is stronger than (28). Assumption 3 is
mainly used to ensure the nonsingularity for each element of the generalized Jacobian
in the neighborhood of the reference point z∗. We have the following result.
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Lemma 7 If Assumption 3 holds, there exist radius ε∗ > 0 and η3, η4 > 0 such that

η3 ≤ inf
H ∈̂∂2h(z),

z∈N (z∗,ε∗)

λmin(HS∗) ≤ sup
H ∈̂∂2h(z),

z∈N (z∗,ε∗)

λmax(HS∗) ≤ η4. (50)

Proof UnderAssumption 3, for any H∗ ∈ ∂̂2h(z∗), H∗
S∗ is positive definite. According

to [21, Prop. 7.1.4], ∂2 f ∗(−A�z∗) is a nonempty and compact set. Then the same
property is true for ∂̂h(z∗) by the definition (33). Therefore, there exist η3, η4 > 0
such that

inf
H∗∈̂∂2h(z∗)

λmin(H∗
S∗) ≥ 2η3, sup

H∗∈̂∂2h(z∗)
λmax(H∗

S∗) ≤
η4

2
. (51)

By the upper semi-continuity of ∂2 f ∗ (see [21, Prop. 7.1.4]), there exists ε∗ > 0 such
that

∂2 f ∗(−A�z) ⊆ ∂2 f ∗(−A�z∗)+N (0, δ∗1), ∀z ∈ N (z∗, ε∗),

where δ∗1 := min{η3, η4/2}/‖AS∗:‖2.Then for any z ∈ N (z∗, ε∗) and H = AQ A� ∈
∂̂h(z), we can find H∗ = AQ∗A� ∈ ∂̂h(z∗) with ‖Q − Q∗‖ ≤ δ∗1 . Using the Weyl’s
perturbation theorem (see [6, Corollary III.2.6]), we have

max{|λmin(HS∗)− λmin(H∗
S∗)|, |λmax(HS∗)− λmax(H∗

S∗)|} ≤ ‖HS∗ − H∗
S∗‖

≤ ‖AS∗:(Q − Q∗)(AS∗:)�‖ ≤ min{η3, η4/2}.

Combining this with (51), we can derive (50). ��
Remark 3 (i) (34) implies that for any d ∈ R

m , d
�
(∂2h(z))d ⊆ d

�
(̂∂2h(z))d. Then

by the Rayleigh-Ritz theorem (see [40, Chapter 5]), we can also obtain

0 < η3 ≤ inf
H∈∂2h(z),

z∈N (z∗,ε∗)

λmin(HS∗) ≤ sup
H∈∂2h(z),

z∈N (z∗,ε∗)

λmax(HS∗) ≤ η4. (52)

(ii) Semismoothness of ∇ f ∗ implies semismoothness of ∇h. This can be verified by
[21, Thm. 7.4.3]. Therefore, Assumption 3 ensures the SOSC in Prop. 4.

(iii) As we have shown in Prop. 5, if Assumption 1 holds, z∗ will be a P-stationary
point and F is constant on all the accumulation points of {zk}k∈N. If we further take
Assumption 3 into consideration, SOSC holds and Prop. 4 ensure that each accu-
mulation point of {zk}k∈N is isolated. Since limk→∞ ‖zk+1 − zk‖ = 0 (derived by
(42)), it follows from [31] that limk→∞ zk = z∗. Then from (42), we also have
limk→∞ vk = z∗.

To derive the local superlinear convergence of SGSN, we need to overcome several
obstacles. First, SGSN performs Newton iterate on changing subspace R

|Tk |. The
technique for the convergence rate of classic Newton method is unavailable unless

123



Composite Optimization with Indicator Functions: Stationary…

S∗ is exactly identified by Tk . Moreover, the full-Newton step is only implemented
when (C1), (C2) and αk = 1 are met. In the subsequent lemma, we show that these
conditions hold after finite iterations.

Lemma 8 Suppose that Assumptions 1 and 3 hold. Then there exists a sufficiently large
k∗ ∈ N such that for k ≥ k∗

(i) The support set of z∗ is identified by Tk, i.e.

Tk = S(vk) = S∗. (53)

(ii) The step length αk always equals to 1.
(iii) If c1 ≤ η3/4 and c2 ≥ �h + η4 + 1, then the Newton iterate z̃k+1 is always

accepted.

Proof (i) As we just discussed, limk→∞ vk = z∗ holds. Then when k is sufficiently
large, we have S(vk) ⊇ S∗. Moreover, according to Prop. 5, limk→∞ F(vk) = F(z∗)
holds, which further leads to limk→∞ ‖vk‖0 = ‖z∗‖0. Noticing that the values of ‖·‖0
are from the set {0, 1, . . . , m}, therefore ‖vk‖0 = ‖z∗‖0 must be true when k is large
enough. Combining this with S(vk) ⊇ S∗, we can derive assertion (i).

(ii) Now let us consider k is large enough such that Tk = S∗ holds. From Lem. 7,
Hk

Tk
is nonsingular and we can estimate

‖dk
Tk
‖ ≤ ‖(Hk

Tk
+ γk I )−1∇Tk h(vk)‖ ≤ ‖∇Tk h(vk)‖/η3.

Since ∇S∗h(z∗) = 0 holds from (22), we have limk→∞ ‖dk
Tk
‖ = 0. Meanwhile, since

for any i ∈ Tk = S∗, we have limk→∞ vk
i = z∗i > 0. Then according to (37), when k

is large enough βk ≥ 1, and thus αk = 1.
(iii) We need to show that (C1) and (C2) hold when k is large enough. Let us begin

with some preliminary estimations. Using ∇Tk h(z∗) = 0 and Lipschitz continuity of
h, we can estimate

γk = ‖∇Tk h(vk)‖ = ‖∇Tk h(vk)− ∇Tk h(z∗)‖ ≤ �h‖vk − z∗‖. (54)

Let us denote Φ := ∇ f ∗ and Hk = AQk A� with Qk ∈ ∂2 f ∗(−A�vk) =
∂CΦ(−A�vk). Since αk = 1 when k is sufficiently large, from (35) and (36), we
have

‖̃zk+1 − z∗‖
=‖(̃zk+1 − z∗)Tk‖ = ‖(vk − z∗)Tk − (Hk

Tk
+ γk I )−1∇Tk h(vk)‖

≤ 1

η3
‖(Hk

Tk
+ γk I )(vk − z∗)Tk − (∇h(vk)−∇h(z∗))Tk‖

= 1

η3
‖Hk

Tk
(vk − z∗)Tk − (∇h(vk)−∇h(z∗))Tk‖ + o(‖vk − z∗‖)

= 1

η3
‖ATk :Qk A�Tk :(v

k − z∗)Tk + ATk :(Φ(−A�vk)−Φ(−A�z∗))‖ + o(‖vk − z∗‖)
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≤(‖A‖/η3)‖Φ(−A�vk)−Φ(−A�z∗)− Qk(−A�(vk − z∗))‖ + o(‖vk − z∗‖)
=o(‖vk − z∗‖), (55)

where the second and last equations follow from (54) and the semismoothness property
(14) respectively. The above relationship also implies limk→∞ ‖̃zk+1−vk‖ = 0. From
(35) and (54), we can also estimate

‖∇Tk h(vk)‖ =‖(Hk+1/2
Tk

+ γk I )(̃zk+1 − vk)Tk‖
≤η4‖̃zk+1 − vk‖ + o(‖̃zk+1 − vk‖).

Nowwe are ready to prove (C2).When k is sufficiently large, it follows from o(‖̃zk+1−
vk‖) ≤ ‖̃zk+1 − vk‖ and Lipschitz continuity of h that

‖∇Tk h(̃zk+1)‖ ≤‖∇Tk h(vk)‖ + ‖∇Tk h(vk)−∇Tk h(̃zk+1)‖
≤(�h + η4 + 1)‖̃zk+1 − vk‖.

Finally, let us prove (C1). According to [21, Prop. 7.4.10] and (55), we have

h(̃zk+1) =h(z∗)+ 〈∇h(z∗), z̃k+1 − z∗〉 + 1

2
(̃zk+1 − z∗)� H̃ k+1(̃zk+1 − z∗)

+ o(‖̃zk+1 − z∗‖2)
=h(z∗)+ 〈∇h(z∗), z̃k+1 − z∗〉 + o(‖vk − z∗‖2) (56)

h(vk) =h(z∗)+ 〈∇h(z∗), vk − z∗〉 + 1

2
(vk − z∗)�Pk(vk − z∗)

+ o(‖vk − z∗‖2), (57)

for any H̃ k+1 ∈ ∂2h(̃zk+1) and Pk ∈ ∂2h(vk). Moreover, using T k = S∗ and
∇S∗h(z∗) = 0, we have 〈∇h(z∗), z̃k+1 − z∗〉 = 〈∇Tk h(z∗), (̃zk+1 − z∗)Tk 〉 = 0
and 〈∇h(z∗), vk−z∗〉 = 〈∇Tk h(z∗), (vk−z∗)Tk 〉 = 0. Then subtracting (56) and (57)
leads to

h(vk)− h(̃zk+1) ≥ η3

2
‖vk − z∗‖2 + o(‖vk − z∗‖2).

From ‖̃zk+1 − vk‖ ≤ ‖̃zk+1 − z∗‖ + ‖vk − z∗‖ and (55), we have ‖̃zk+1 − vk‖2 ≤
‖vk − z∗‖2 + o(‖vk − z∗‖2), and thus we can verify

h(vk)− h(̃zk+1) ≥η3

4
‖vk − z∗‖2 + η3

4
‖vk − z̃k+1‖2 + o(‖vk − z∗‖2)

≥η3

4
‖vk − z̃k+1‖2.
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Since z̃k+1
T k

= 0 and Tk = S(vk), we have g(̃zk+1) ≤ g(vk). Finally, we can prove

(C1) by

F(vk)− F (̃zk+1) ≥ h(vk)− h(̃zk+1) ≥ η3

4
‖vk − z̃k+1‖2.

Overall, we have completed the proof. ��
Lem. 8(iii) indicates that c1 and 1/c2 should be small enough to ensure the

acceptance of Newton iterate z̃k+1. In fact, we can give a more specific lower
bound for c2. By the (1/σ f )-smoothness of f ∗, the upper bound in (51) will be
supH∗∈̂∂2h(z∗) λmax(H∗

S∗) ≤ ‖A‖2/σ f = �h := η4/2. Then we can set c2 ≥ 3�h + 1.
Moreover, an upper bound for c1 can be computed in a special case that f is � f -smooth
and AS∗: has full row rank. In this case, f ∗ is (1/� f )-strongly convex, and thus the

lower bound in (51) will be infH∗∈̂∂2h(z∗) λmin(H∗
S∗) ≥

√
λmin(AS∗:A�S∗:)/� f := 2η3.

Then we can set c1 ≤
√

λmin(AS∗:A�S∗:)/(8� f ).
We are ready to state the local superlinear convergence of SGSN.

Theorem 3 Suppose that Assumptions 1 and 3 hold. If we set c1 ≤ η3/4 and c2 ≥
�h + η4+ 1, then the sequence {zk}k∈N converges to z∗ with local superliner rate, i.e.
when k is sufficiently large, we have

‖zk+1 − z∗‖ ≤ o(‖zk − z∗‖).

Proof Since we have proved (55) and zk+1 = z̃k+1 when k is sufficiently large, we
have

‖zk+1 − z∗‖ ≤ o(‖vk − z∗‖). (58)

It suffices to find the relationship between ‖zk − z∗‖ and ‖vk − z∗‖. Using (32),
∇Tk h(z∗) = 0, and Lipschitz continuity of h, we have

‖vk − z∗‖ =‖(vk − z∗)Tk‖ = ‖(zk − z∗)Tk − τ(∇h(zk)−∇h(z∗))Tk‖
≤(�hτ + 1)‖zk − z∗‖.

Combining this with (58), we can derive our desired conclusion. ��
Remark 4 If the semismoothness of ∇ f ∗ in Assumption 3 is strengthened to strong
semismoothness (see e.g. [21]), then similar to the classical result in [55], the conver-
gence rate in Thm. 3 can be improved to be quadratic.

As emphasized in Introduction, various types of semismooth Newtonmethods have
been recently developed for nonsmooth equations arising from optimization, see e.g.,
[30, 35, 36, 39, 67, 69]. We make detailed comments below on three such methods:
Classical semismooth Newton method [55], Coderivative-based Newton method [35],
andSubspaceNewtonmethod [69]. The comparisonswill highlight the unique features
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of our method and will be also useful when conducting numerical comparison in the
next section.

Remark 5 (Motivation from classical semismooth Newton method) In general, clas-
sical semismooth Newton method serves a guidance for constructing newmethods for
nonsmooth equations. Let us consider the proximal gradient equation:

0 = G(z) := z− Proxτg(·)(z− τ∇h(z)). (59)

This equation is well-defined at any P-stationary point when τ is sufficiently small,
see Lem. 1(vi). We assume that G(·) is locally Lipschitzian and semismooth. A semis-
mooth/generalized Newton method gives the following update at zk :

{
(Ak + γk I )dk = −G(zk), Ak ∈ ∂C G(zk)

zk+1 = zk + dk,
(60)

where ∂C G(·) is the generalized Jacobian in the sense of Clarke [16] and γk ≥ 0
is a regularization parameter. Various generalized Newton methods mainly differ in
three aspects: (i) using different generalized Jacobian instead of ∂C G(·), (ii) proposing
approximation property of G(·) in terms of the proposed Jacobian, and (iii) developing
globalization strategy. For (i), we used the generalized Jacobian ∂̂2h(z) defined in
(33). For (ii), we assumed the semismoothness of ∇ f ∗(·). We make more comments
on Point (iii).

It is often a nontrivial task to globalize the Newton method in (60). A common
strategy is to use Newton direction dk if certain conditions hold and to use a gradient
descent direction otherwise. Our method roughly follows this strategy. Firstly, we
work with the set-valued mapping Proxτg(·) and select an element vk from the set of
proximal gradients defined in (31). Secondly, according to [35, Prop. 2.3], Proxτg(·)
is Lipschitz continuous and single-valued around z∗ − τ∇h(z∗) when τ is sufficiently
small and z∗ is a P-stationary point. This result is useful because locally the Newton
equation (35) in SGSN can be derived from (60) using the index set Tk and the
associated properties established in Lem. 1. In our SGSN, τ can take any value in the
range (0, 1/�h). Thirdly, this is probably the most difficult part and it is to decide when
to use the gradient direction vk or Newton direction dk . Our selection is decided by
the two conditions (C1) and (C2), which are carefully designed for the Newton step
to be eventually accepted and for the convergence to hold for a large class of PŁK
functions F(z) = h(z)+ g(z).

In summary, our SGSN algorithm ismotivated by the classical SemismoothNewton
method. But its convergence does not follow from existing convergence theory due to
some innovative strategies proposed, especially on (C1) and (C2).

Remark 6 (Comparison with a coderivative-based Newton method) When h ∈
C2 (twice continuously differentiable) and g is prox-regular, the coderivative-based
Newton (CBN)method [35,Alg. 4] can be applied for Problem (21). It first implements
a proximal gradient step (32) to compute vk , and followed by aNewton step to compute
direction dk :
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−sk − Hkdk ∈ ∂2g(vk, rk)(dk), (61)

where Hk = ∇2h(vk), sk := ∇h(vk) − ∇h(zk) + (zk − vk)/τ , rk := sk − ∇h(vk)

and the second-order subdifferential (see e.g. [44, Def. 3.17]) of g at v relative to
r ∈ ∂g(v) is defined by

∂2g(v, r)(d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q ∈ R
m

∣
∣
∣
∣
∣
∣
∣
∣
∣

qi ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{t | tdi = 0}, if vi = ri = 0,

R, if vi = 0, ri �= 0, di = 0,

{0}, if vi > 0,

∅, otherwise.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(62)

using the notation Tk = S(vk) and vk
T k
= 0 from (39), we can compute a solution of

(61) by solving the following linear equation:

Hk
Tk

dk
Tk
= −sk

Tk
and dk

T k
= 0.

Ignoring the regularization term γk I in (35), CBN and SGSN appear similar. But they
are very different in a few aspects.

(A) Globalization strategies are different.Although both methods share the same
coefficient matrix Hk

Tk
, the right-hand side vectors are different, −sk

Tk
vs −∇Tk h(vk).

Moreover, CBN adopts a line search technique based on a sufficient descent on a
forward-back envelope [35, Def. 5.1] for globalization. In contrast, SGSN uses (37)
and Conditions (C1) or (C2).

(B) Assumptions on global convergence are different. CBN requires h ∈ C2

and g being prox-regular for its global convergence under the additional assumption
that an accumulation point is isolated. In contrast, SGSN assume PŁK property of the
objective function F , allowing the accumulation points to be non-isolated.

(C) Assumptions on superlinear convergence are different. Under the premise
of global convergence to a P-stationary point z∗, the local superlinear convergence of
CBN further requires

(i) g is continuously prox-regular (see e.g. [44, Def. 3.27]) at z∗ for −∇h(z∗).
(ii) ∇2h is strictly differentiable (see e.g. [57, Def. 9.17]) at z∗.
(iii) z∗ is a tilt-stable local minimizer (see e.g. [51, Def. 1.1]) of (21).

Similar to the proof of [35, Thm. 7.3], (i) holds if and only if [z∗ + ∇h(z∗)]i �= 0
for all i ∈ [m], and then through the use of representation (62), [43, Prop. 1.121]
and [51, Thm. 1.3(b)], one can derive that (iii) is equivalent to positive definiteness of
H∗
S∗ , where H∗ := ∇2h(z∗). Meanwhile, the local superlinear convergence of SGSN

is guaranteed by Assumption 3. Particularly, in the case that h is C2-smooth, this
assumption becomes positive definiteness of H∗

S∗ . Overall, convergence of SGSN is
established under weaker assumptions.

Remark 7 (Comparison with a subspace Newton method) [69] proposed a New-
ton method for �0-regularized optimization (NL0R). It also implements Newton step
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on a subspace determined by certain index sets. Moreover, it enjoys global conver-
gence with local quadratic rate under suitable conditions. However, both methods are
significantly different.

(i) Problem types: NL0R solves the minimization of a C2-smooth function with �0
regularization, while SGSN is designed for a more challenging problem (21),
where h is SC1 and g comprises a �0 regularizer and a nonnegative constraint.
NL0R cannot be directly applied to (21). The nonsmoothness of ∇h and the
constraint in g demand more sophisticated algorithmic design to ensure both
feasibility and convergence of the iterates.

(ii) Globalization strategy: NL0R adopts Armijo line search on Newton direction. In
comparison, SGSN combines proximal gradient and semismooth Newton steps
with the aid of conditions (C1) and (C2). This helps us utilize PŁK property to
globalize SGSN.

(iii) Convergence: The whole sequence convergent of NL0R requires existence of
an isolated accumulation point, whereas SGSN adopts the PŁK property. For
local quadratic convergence to a solution z∗, NL0R requires that the smooth part
in the objective function has positive definite and Lipschitz continuous Hessian
around z∗. In comparison, SGSN requires weaker assumptions that h is strongly
semismooth and its generalized Hessian at z∗ is positive definite on a subspace
indexed by the support set S∗.

5 Numerical experiments

In this section, we demonstrate the performance of SGSN on AUC maximization
and sparse multi-label classification. All the experiments are implemented on Matlab
2022a by a laptop with 32GB memory and Intel CORE i7 2.6 GHz CPU.

5.1 AUCmaximization

The area under the receiver operating characteristic curve (AUC) [28] is a widely
used evaluation metric in imbalanced classification and anomaly detection. Let X+ =
[x+1 , · · · , x+q+]� ∈ R

q+×n and X− = [x−1 , · · · , x−q−]� ∈ R
q−×n be the positive and

negative sample matrices respectively, then the AUC associated with parameter vector
x ∈ R

n can be represented as

AUC(x) := 1

q+q−

q+∑

i=1

q−∑

j=1
1(0,∞)

(
〈x+i , x〉 − 〈x−j , x〉

)
.

After an opportune scaling of x (a trick commonly used in support vector machines),
each term (〈x+i , x〉 − 〈x−j , x〉) is replaced by (〈x+i , x〉 − 〈x−j , x〉 − 1), see e.g. [23].
This scaling operation also removes the trivial solution x∗ = 0.

Therefore, AUC can be maximized by solving composite optimization (1) with the
following setting:
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f (x) = 1

2
‖x‖2, A = (eq+ ⊗ Iq−)X− − (Iq+ ⊗ eq−)X+ ∈ R

m×n, b = em, (63)

where ⊗ is the Kroneker product and m := q+q−. Then the conjugate function
f ∗(v) = ‖v‖2/2, and thereby the associated dual problem (21) can be written as

min
z∈Rm

F(z) = 1

2
‖A�z‖2 − 〈b, z〉 + g(z). (64)

In this case, f is semi-algebraic, f ∗ is strongly convex and ∇2 f ∗ is Lipschitz contin-
uous. When SGSN is applied to solving (64), provided that the generated sequence is
bounded, then it must converge to a P-stationary point z∗ of (64) according to Thm. 2.
Additionally, if AS∗: is a full row-rank matrix, then the sequence converges with local
quadratic rate by Remark 4.

In the experiment of AUC maximization, we select four other algorithms for com-
parison. NM01 [70] is a subspaceNewton-typemethod designed for solving the primal
Problem (1) with a twice continuously differentiable f . CBN [35, Alg. 4] was already
commented in Remark 7. PRSVM [13] is a semismooth Newton method which opti-
mizes AUC with a squared hinge surrogate loss function. OPAUC [23] is a one-pass
gradient descent method for maximizing AUC with a least square surrogate loss func-
tion.

In the setting of (63) and (64), we compute the Lipschitzian constant of ∇h by
�h = ‖A‖2 = q+‖X−‖2 + q−‖X+‖2 − 2〈e�q−X−, e�q+X+〉. Then for SGSN, we set

μ = τ = 1/(2�h), γ = 10−1, c1 = 1/(3�h) and c2 = 3�h . In our own implementation
of CBN [35, Alg. 4] with parameter fine-tuning, we particularly set the proximal
gradient step length τ = 1/(2�h), the descent quantity coefficient σ = 1/(20�h), and
the scaling factor of line search β = 0.1. The parameter setting of other algorithms
will be given in the comparison part.

5.1.1 Convergence test

In this subsection, our main goal is to examine the convergence performance of SGSN.
The following numerical example generates various types of simulated datasets for
convergence tests.

Example 1 We first generate vectors μ1,μ2 ∈ R
n with independent and identically

distributed (i.i.d.) elements being selected from standard normal distribution N (0, 1).
Each element of diagonal covariance matrices Λ1,Λ2 ∈ R

n×n is also i.i.d., following
a folded normal distribution. Then positive and negative samples are normally dis-
tributed with N (μ1,Λ1) and N (μ2,Λ2) respectively. Let q be the total number of
samples and p ∈ (0, 1) be the proportion of positive samples, then q+ = �pq� and
q− = q − q+. Given noise ratio r ∈ (0, 1), �rq+� positive and negative samples are
chosen to be marked with reverse labels respectively.

We use the following violation of dual optimality (VDO) to measure the closeness
between a dual variable z and a P-stationary point of (21)

VDO := dist(z, Proxτg(·)(z− τ∇h(z)))/τ.
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Fig. 2 Convergence test for SGSN with different initial points

We also record the value of objective function F(z) and computational time (TIME)
of the algorithm.
•Test 0: On change of z0. This test aims to observe the basic convergence property

of SGSN with different initial points z0. It is conducted on a simulated dataset with
q = 1000, n = 100, p = 0.05 and r = 0. To produce different initial points for SGSN,
we first generate a vector z0 ∈ R

n with entries being i.i.d. samples from the uniform
distributionU (0, 1). Thenwe compute z0 = ρz0/‖z0‖with ρ ∈ {0, 1, 10, 100, 1000}.
SGSN starts with different z0 and the corresponding VDO and F(z) are recorded in
Figure 2. The left panel in Figure 2 demonstrates the sufficient descent of {F(zk)}k∈N,
which has been proved in Prop. 5. The right panel shows the descent of VDO , with
a faster rate during the last few iterations. This phenomenon illustrates the global and
local quadratic convergence of {zk}k∈N given in Thms. 2 and 3.

Next, we test SGSNwith z0 = 0 on simulated datasets with various q (total number
of samples), n (number of features), p (proportion of positive samples), and r (noise
ratio). For comparison, we select NM01 and CBN to solve the primal problem (1) and
the dual problem (21) respectively. Their convergence performance can be measured
by VDO and violation of primal optimality (VPO) respectively, where VPO is defined
as follows:

VPO := max
{
‖∇ f (x)+ A�z‖, dist

(
Ax + b, ProxξI(·)(Ax + b+ ξz)

)
/ξ
}

,

where ξ is a proximal parameter adjusted as the defaulted setting of NM01.
• Test 1: On change of q. In this test, we generate datasets with q ∈

{5000, 10000, 20000}, n = 100, p = 0.2 and r = 0. In this setting, m (the num-
ber of rows in matrix A) is taken from {4 × 106, 1.6 × 107, 6.4 × 107}. SGSN and
CBN demonstrate better convergence performance when dealing with these large-
scale matrices. From Figure 3, we can also see that SGSN converges faster at the
initial stage compared with CBN. At the final few steps, when the iterate is close to a
P-stationary point of (21), VDO of SGSN rapidly drops below 10−4. In comparison,
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Fig. 3 Convergence comparison on the simulated data with change of q

the VPO of NM01 decreases relatively faster during the first several iterations and then
stagnates around 10−2. In this test, SGSN spends the shortest TIME to achieve the
smallest VDO.
• Test 2: On change of n. We take n ∈ {5000, 10000, 20000}, q = 1000, p = 0.2

and r = 0. Figure 4 shows that all the algorithms converge very fast in the cases of
n ≥ 10000. When n = 5000, NM01 requires more iterations for VPO to get below
10−4.
• Test 3: On change of p. We alter p ∈ {0.01, 0.05, 0.1}, and fix q = 1000,

n = 10000 and r = 0. In all the cases, SGSN and CBN demonstrate significant
decrease on VDO along with iteration. We also observe from Figure 5 that NM01
spends more TIME and requires more iterations when p = 0.05 and 0.1.
•Test 4: On change of r . Finally, we test cases of r ∈ {0.01, 0.05, 0.1}, q = 1000,

n = 10000 and p = 0.2. As shown in Figure 6 again, compared with the other two
algorithms, SGSN has the smallest VDO with the shortest TIME. The VPO of NM01
decreases faster over the first several iterations, and then fluctuates around 10−3.
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Fig. 4 Convergence comparison on the simulated data with change of n

5.1.2 Experiments on real dataset

In this part, we test SGSN and the three selected algorithms on the real datasets given
in Table 1. For each dataset, five-fold cross-validation is conducted and the average
value of AUC and TIME for each algorithm are recorded. As for the parameters of the
comparison algorithms, NM01 adopts the default setting. The weighted parameter for
the loss function in PRSVM and OPAUC is chosen from {10−3, 10−2, · · · , 103} with
the highest AUC. Moreover, we stop SGSN and CBN when VDOk/VDO1 ≤ 10−3 or
|VDOk−VDOk−1| < 10−3, where VDOk denotes the violation of dual optimality at the
k-th iterate. NM01 is terminated by a similar rule, replacing the above VDOwith VPO.

Example 2 The details of real datasets2345 for AUC maximization are summarized
in Table 1. All the datasets are preprocessed by feature-wise scaling to the interval
[−1, 1].
2 https://jundongl.github.io/scikit-feature/
3 https://www.openml.org/
4 https://www.refine.bio/
5 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 5 Convergence comparison on the simulated data with change of p

The comparison results are summarized in Table 2. We can observe that SGSN
has a similar AUC but shorter TIME than NM01 or CBN because it is more effective
in reducing the violation of optimality. Although the other two algorithms are also
competitive on AUC, their TIME are longer than that of SGSN on most of the datasets.
For example, on the dataset ovk, our SGSN only requires about 10% of the TIME of
PRSVM to achieve a higher AUC.

5.2 Sparsemulti-label classification

For a multi-label classification (MLC) problem with � labels, let ci ∈ R
d , i ∈ [q] be

the feature vector with its last entry [ci ]d = 1 and class label yi ∈ {−1, 1}� for i ∈ [q].
Then we denote matrices C := [c1, · · · , cq ]� ∈ R

q×d and Y := [y1, · · · , yq ]� ∈
R

q×�. Given arbitrary feature vector c, a linear binary relevance classifier H : Rd →
R

� returns a label vector by the following rule [12, 62]:

H(c) :=
(
sgn(c�x1), · · · , sgn(c�x�)

)
,
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Fig. 6 Convergence comparison on the simulated data with change of r

where x := (x1; · · · ; x�) ∈ R
d� is a weighted vector to be determined through opti-

mizing certain loss function, and sgn : R → R is the sign function, returning 1 when
the argument variable is positive and−1 otherwise. The Hamming loss (HL, see [66])
is an important evaluation metric in MLC. Let y(k) = (y(k)

1 , · · · , y(k)
q ) ∈ R

q be the
k-th column of the matrix Y, then Hamming loss for classifierH is defined as follows:

HL := 1

q�

q∑

i=1

�∑

k=1
1(0,∞)(−y(k)

i c�i xk).

When optimizing HL on the training data, a practical technique is to replace the above
−y(k)

i c�i xk with −y(k)
i c�i xk + 1, see e.g. [62]. This helps to avoid trivial solution and

improve generalization ability of the classifier. Meanwhile, when the dimension of the
parameter x ∈ R

d� is large, we can use sparse regularization to alleviate the risk of
overfitting and reduce the dimension. Overall, we consider minimizing the Hamming
loss with an elastic net regularizer. Denoting m := q� and n := d�, this model is a
special case of (1) with the following setting:
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Table 1 Real datasets for AUC maximization

Abbreviation Dataset Domain q− q+ m n

all Allaml Text 47 25 1175 7129

aou AP_Ovary_Uterus Biology 124 198 24552 10936

bas Basehock Text 999 994 993006 4862

col Colon_Cancer Biology 40 22 880 2000

duk Duke Biology 21 23 483 7129

gli Gli85 Biology 26 59 1534 22283

gs2 Gse2280 Biology 5 22 110 11868

gs7 Gse7670 Biology 27 27 729 11868

leu Leukemia Biology 47 25 1175 7070

mad Madelon Artificial 1000 1000 1000000 500

ove Ova_Endometrium Biology 61 1484 90524 10936

ovk Ova_Kidney Biology 260 1285 334100 10936

ovo Ova_Ovary Biology 198 1347 266706 10936

pcm Pcmac Text 961 982 943702 3289

pro Prostate_Ge Biology 50 52 2600 5966

rel Relathe Text 648 779 504792 4322

smk Smk_Can187 Biology 90 97 8730 19993

spl Splice Biology 483 517 249711 60

f (x) = 1

2
‖x‖2 + λ1‖x‖1, A :=

⎡

⎢
⎣

−(y(1)e�d )% C
. . .

−(y(�)e�d )% C

⎤

⎥
⎦ , b = em,

where ‖ · ‖1 is the �1 norm and % is the Hadamard product.
We can compute the conjugate function

f ∗(v) =
n∑

i=1
ϕ(vi ) with ϕ(t) :=

{
0, if |t | ≤ λ1,

(|t | − λ1)
2/2, if |t | > λ1,

and thus the corresponding gradient and generalized Jacobian are as follows:

∇ f ∗(v) =

⎧
⎪⎨

⎪⎩
r ∈ R

n : ri =

⎧
⎪⎨

⎪⎩

vi − λ1, if vi > λ1

0, if |vi | ≤ λ1

vi + λ1, if vi < −λ1

⎫
⎪⎬

⎪⎭

∂2 f ∗(v) =

⎧
⎪⎨

⎪⎩
Diag(r) : r ∈ R

n, ri ∈

⎧
⎪⎨

⎪⎩

1, if |vi | > λ1

[0, 1], if |vi | = λ1

0, if |vi | < λ1

⎫
⎪⎬

⎪⎭
.
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Let a(i) be the i-th column of A, our SGSN will solve the following dual problem:

min
z∈Rm

F(z) =
n∑

i=1
ϕ(−〈a(i), z〉)− 〈b, z〉 + g(z). (65)

Next, we discuss the convergence property when solving (65). One can verify that
the elastic net regularizer is semi-algebraic by [8, Def. 5]. Assuming the sequence
{zk}k∈N is bounded, the whole sequence converges to a P-stationary point z∗ of (65)
according to Prop. 5. ∇ f ∗ is semismooth. Denoting S∗ := S(z∗) and Γ ∗ := {i ∈
[n] : |〈a(i), z∗〉| > λ1}, if we further assume that AS∗Γ ∗ has full row rank, then for
any H ∈ ∂̂2h(z∗), we have d�HS∗d = ‖A�S∗Γ ∗d‖2 > 0 for any d ∈ R

|S∗|\{0}. This
means Assumption 3 holds and {zk}k∈N converges to z∗ with local superlinear rate by
Thm. 3.

In the following numerical experiments, we set z0 = 0,μ = 10−5, γ = 10−2, c1 =
10−4 and c2 = 108 for SGSN. The proximal parameter is adaptively chosen as τk =
0.1 j , where j is the smallest natural number such that F(vk)− F(zk) ≥ 10−4‖vk −
zk‖2. The regularization parameter λ1 is selected from {2−6, 2−5, · · · , 26}. Other
setting for SGSN is the same as that in the last subsection. We select three comparison
algorithms for the MLC problem with �1 norm or group sparse regularizer: LLFS
from [29], MDFS from [65] and RFS from [49]. We adjust the sparse regularization
parameters of the three algorithms to achieve better performance. They are selected
from {10−6, 10−5, · · · , 106} for RFS and MDFS, and {2−6, 2−5, · · · , 26} for LLFS.
Other parameters of the three algorithms are set the same as their default values.We use
the Hamming loss (HL), computational time (TIME) and number of nonzero elements
(NNE) of the solution to evaluate the performance of the algorithms.

5.2.1 Experiments on simulated dataset

To observe how the change of dimension influence the performance, we test all four
algorithms on simulated datasets with various q, d and � generated as follows.

Example 3 We first generate a matrix C ∈ R
q×(d−1) with i.i.d elements being chosen

from standard normal distribution N (0, 1), and then the feature matrix is computed
by C = [C, eq ]. Next, we generate a matrix W ∈ R

d×� with each element chosen
from the uniform distribution U (−1, 1), and then the label matrix is computed by
Y = Sgn(CW ), where Sgn(·) is the sign function for a matrix. Finally, 90% of
samples are randomly selected as training data and the rest is regarded as testing data.

•On change of q.Wefix d = 6000, � = 3, and selectq ∈ {1000, 2000, · · · , 6000}.
We can observe from Table 3 that SGSN takes the shortest TIME in all the cases. In
particular, SGSN is at least 6 times faster than the second fastest algorithm LLFS.
SGSN also finds the solution with the smallest NNE when q > 1000. TIME and NNE
increases when q rises, whereas HL shows the opposite trend.
•On change of d.Wefixq = 2500,� = 3, and selectd ∈ {2500, 4000, · · · , 10000}.

In this test, SGSN achieves the best performance in all the cases. When feature dimen-
sion d grows, SGSNhas a relatively small increase on TIME. This indicates that SGSN
may be more advantageous when applied to large-scale datasets.
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Table 4 Real multi-label classification datasets with higher dimension

Abbreviation Dataset Domain q d � q × d × �

bbc 3s-bbc1000 Text 352 1000 6 2.11e+06

int 3s-inter3000 Text 169 3000 6 3.04e+06

eug EukaryoteGO Biology 7766 12689 22 2.17e+09

gng GnegativeGO Biology 1392 1717 8 1.91e+07

gnp GnegativePseAAC Biology 1392 440 8 4.90e+06

gpg GpositiveGO Biology 519 912 4 1.89e+06

gpp GpositivePseAAC Biology 519 440 4 9.13e+05

hup HumanPseAAC Biology 3106 440 14 1.91e+07

ima Image Image 2000 294 5 2.94e+06

med Medical Text 978 1449 45 6.38e+07

plg PlantGO Biology 978 3091 12 3.63e+07

plp PlantPseAAC Biology 978 440 12 5.16e+06

sch Stackex_chess Text 1675 585 227 2.22e+08

sco Stackex_coffee Text 225 1763 123 4.88e+07

vig VirusGO Biology 207 749 6 9.30e+05

vip VirusPseAAC Biology 207 440 6 5.46e+05

yar Yahoo_Arts Text 7484 23146 26 4.50e+09

yed Yahoo_Education Text 12030 27534 33 1.09e+10

yrr Yahoo_Recreation Text 12830 30324 22 8.56e+09

yrf Yahoo_Reference Text 8027 39679 33 1.05e+10

• On change of �. We fix q = 1000, d = 2000, and select � ∈ {5, 7, · · · , 15}.
From Table 3, we can observe that SGSN has the best HL and NNE. Its TIME is also
the shortest when � ≤ 9, and slightly larger than that of RFS andMDFS when � ≥ 11.

5.2.2 Experiments on real data

In this part,
we test all the algorithms on real MLC problems listed in Table 4.

Example 4 The real datasets in Table 4 are available on the multi-label classification
dataset repository6. For each dataset, the partition in 67% train and 33% test is per-
formed by following the Iterative Stratification method proposed by [58].

We report the performance of all the algorithms in terms of HL, TIME and NNE.
Particularly, on the large-scale datasets yar, yed, yrr, yrf, we restrict the TIME
of LLFS within 3000 seconds, because this algorithm takes longer time to terminate.
• On HL: We can see from Table 5 that SGSN has the best HL on almost all the

datasets. LLFS also shows competitive HL, especially on datasets gpg and sco. RFS
and MDFS have relatively larger HL.

6 https://www.uco.es/kdis/mllresources/
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•On TIME: SGSN shows significant advantage on TIMEwhen solving large-scale
dataset, such as eug, yar, yed, yrr, yrf. Particularly, on these datasets, TIME
of SGSN is less than 1/10 of other algorithms. However, on the small dimensional
datasets with d < 600, LLFS has shorter TIME.
• On NNE: SGSN has the smallest NNE on most datasets in Table 5, especially on

the high-dimensional datasets. The smaller NNE is, the faster SGSN runs because the
subspace identified becomes smaller. This fact also accounts for the shortest TIME of
SGSN used on the datasets yar, yed, yrr, yrf. For some low-dimensional datasets,
such as gng and gpg, LLFS and MDFS find solutions with smaller NNE.

6 Conclusions

This paper proposes a new stationary duality approach for a class of composite opti-
mization with indicator functions. The dual problem is constructed as �0 regularized
and nonnegativity constrained sparse optimization. The fundamental one-to-one cor-
respondence between solutions of primal and dual problems is established. To find a
dual solution, a subspace gradient semismooth Newton (SGSN) method is developed.
It has low per-iteration complexity by exploiting the proximal operator of the sparse
regularizer in the dual objective function. Moreover, SGSN enjoys global convergence
with a local superlinear (or quadratic) rate under suitable conditions. Extensive exper-
iments on the AUCmaximization and multi-label classification problems demonstrate
its competitive performance against top solvers for the respective problems.

Although the developed algorithm SGSN explicitly requires the gradient informa-
tion of the conjugate function f ∗(·), the stationary duality result does not rely on the
availability of this piece of information. In theory, the stationary duality applies to
general convex function f as long as the dual problem admits an optimal solution.
Numerically, this calls for further investigation when the gradient function cannot be
cheaply computed. For instance, it would be interesting to see if derivative-free algo-
rithms [17, 37] is a viable choice for the dual problem in this situation. If successful, it
would significantly enlarge the applications of the stationary duality approach.We also
note that the dual problem provides valuable information for the Lagrangianmultiplier
of the primal problem. It would be interesting to investigate whether a primal-dual
method is possible. Those questions are not easy to answer and we leave them to our
future research.
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