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Abstract While non-resonant external forcing has
proven effective in suppressing self-excited thermoa-
coustic oscillations in single oscillators, its applica-
tion to systems consisting of multiple coupled oscilla-
tors remains poorly understood. This numerical study
investigates external dual forcing for oscillation sup-
pression in a system of two mutually coupled thermoa-
coustic oscillators, each modeled as a horizontal elec-
trically heated Rijke tube. We demonstrate that sym-
metric dual forcing (equal energy distribution) achieves
superior oscillation suppression, reducing global ther-
moacoustic amplitudes by up to 60% compared to sin-
gle forcing at equivalent total energy. Spectral power
analysis reveals that this enhancement arises from addi-
tional energy dissipation during inter-oscillator transfer
under single forcing conditions. Furthermore, the con-
trol effectiveness can be enhanced—achieving an addi-
tional amplitude reduction of up to 5%—by carefully
modulating the phase difference between the two forc-
ing inputs. In contrast, detuning the forcing frequen-
cies degrades suppression performance. These find-
ings establish a theoretical basis for developing effec-
tive dual-forcing control strategies in coupled thermoa-
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coustic systems and offer new insights into the under-
lying control mechanisms.
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1 Introduction

Thermoacoustic instability poses a critical concern in
many power and propulsion systems due to its poten-
tial to degrade performance and efficiency, and even
cause catastrophic structural damage [1–3]. In indus-
trial systems featuring multiple combustors or flames,
the nature of thermoacoustic instability becomes sig-
nificantly more complex [4]. In such setups, the overall
thermoacoustic behavior is shaped not solely by the
flame-acoustic interaction within a single combustor,
but by the collective dynamics of all combustors and
any potential inter-combustor interactions. For exam-
ple, can-annular combustors, which consist of mul-
tiple combustion-wise isolated chambers (cans) con-
nected downstream by an annulus, display more intri-
cate thermoacoustic behavior than a single-injector,
single-chamber system [5]. This complexity arises
because their thermoacoustic characteristics are gov-
erned by both flame-acoustic interactions within indi-
vidual cans and acoustic-acoustic interactions across
the cans. From the perspective of complex network and
synchronization theory, this intricate problem can be
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investigated as a study of coupling-induced dynamics
[6–8], such as mutual synchronization, within a ring-
coupled network.

The synchronization framework has been widely
adopted to study thermoacoustic instability in the past
decade [9]. Mutual synchronization has attracted sig-
nificant research interest, offering a valuable perspec-
tive for interpreting phenomena induced by interac-
tions between self-excited thermoacoustic oscillators
(TOs) and for modeling them using low-order canon-
ical oscillators. For example, Jegal et al. [10] inter-
preted the global quenching phenomenon, triggered
by coupling two self-excited lean-premixed combus-
tors via a tube downstream of the combustor exit, as
amplitude death, marking the first experimental evi-
dence of such coupling-induced dynamics in react-
ing flow systems. Ghosh and Sujith [11], Ghosh et
al. [12] studied the synchronization of coupled non-
identical oscillators, investigating the transition from
chaos to order in dynamic systems and highlighting
synchronization as a key mechanism for understand-
ing complex systems, such as thermoacoustic instabil-
ity in combustors. Subsequently, Guan et al. [13] and
Liao et al. [14] employed van der Pol oscillators to
numerically model various synchronization phenom-
ena, including desynchronization due to quasiperiod-
icity, phase-locking, complete and partial amplitude
death, and 2-can/pairwise/alternating anti-phase syn-
chronization. These dynamics had been experimen-
tally observed in prior studies of can-annular combus-
tors by Moon et al. [15,16]. The study by Sahay et
al. [17] indicates that when two thermoacoustic oscil-
lators are simultaneously subjected to external forc-
ing and coupling, the region of oscillation suppres-
sion is broader than when a single mechanism is used.
Mondal et al. [18] research reveals the mechanisms
of resonance amplification and asynchronous quench-
ing, demonstrating how external forcing can effec-
tively control the amplitude of thermoacoustic oscil-
lations. Meanwhile, variations in the system’s ther-
moacoustic amplitude have been investigated, moti-
vated by passive control, under different coupling con-
ditions and oscillator properties. For example, Coccolo
et al. [19] studied the impact of fractional damping on
the Duffing oscillator and found that fractional damp-
ing significantly alters the system’s oscillation ampli-
tude and asymptotic time, particularly under under-
damped and overdamped conditions. A particular focus
has been placed on triggering or amplifying the emer-

gence of amplitude death in systems comprising mul-
tiple coupled self-excited TOs. For example, Ghosh
et al. [20], Ghosh and Chakraborty [21] investigated
the enlargement of amplitude death regions using the
occasional coupling scheme. Their studies showed that
the occasional coupling scheme, particularly the on–off
coupling, expands the amplitude death regions when
applied to delay-coupled oscillators like the Stuart-
Landau and Rössler models, and thermoacoustic sys-
tems like theRijke tube. Thismethod proved to bemore
effective than continuous coupling, offering a practical
means to suppress oscillations in systems where ampli-
tude death is beneficial, such as in combustion or ther-
moacoustic oscillators. Thomas et al. [22,23] numer-
ically investigated the effects of dissipative coupling,
time-delay coupling, and external noise on the transi-
tion to amplitude death in a model system consisting of
two mutually coupled Rijke tubes. Biwa et al. [24] as
well as Hyodo and Biwa [25] experimentally examined
how coupling types (e.g., dissipative coupling, time-
delay coupling) and dimensions and numbers of cou-
pling tubes affect the emergence of amplitude death
using two connected electrically powered thermoa-
coustic engines. Zheng et al. [26] numerically demon-
strated that amplitude death emerges in a larger param-
eter space when oscillators are arranged in a locally
pairwise asymmetric pattern, and that increasing the
number of adjacently coupled self-excited oscillators
promotes its emergence. Extensive research on nonlin-
ear dynamical systems-including studies on bifurca-
tions [27–30], delayed feedback control [31,32], and
fractional damping [19,33] also provides a concep-
tual foundation that can inspire new approaches to
the analysis and control of thermoacoustic oscillations.
Although the foregoing studies have offered valuable
insights into stabilizing the overall system through
adjustments to oscillator parameters and coupling con-
ditions, the fixed geometry of the entire combustion
system often limits the practical implementation of
these modifications, rendering active control a more
feasible solution.

Active control uses actuators to disrupt the energy
feedback loop between flame and acoustic field and
thus drive the system away from unstable states by
adjusting key systemparameters,which has been inves-
tigated for decades [34–36]. Among active approaches,
open-loop control is particularly attractive for its sim-
plicity and independence from the system’s temporal
behavior, as it does not require real-time feedback from

123



Dynamics of two mutually coupled thermoacoustic oscillators 31041

sensors or the use of complex control algorithms. By
applying forcing at a non-resonant frequency, the ini-
tial energy feedback loop can be effectively disrupted,
resulting in a substantial reduction of thermoacous-
tic amplitude [37–41]. Furthermore, this method is
effective not only for suppressing limit-cycle oscilla-
tions but also formitigating highly nonlinear quasiperi-
odic and chaotic oscillations [42,43]. This versatil-
ity paves the way for a unified control configura-
tion capable of flexibly addressing various types of
thermoacoustic oscillations. While open-loop control
has been extensively studied in single combustor sys-
tems, its effectiveness-and its potential synergy with
acoustic coupling-remains poorly understood in multi-
combustor configurations such as can-annular com-
bustors. In these systems, the additional complexity
introduced by acoustic coupling between cans, which
enables acoustic wave propagation not only to neigh-
boring cans but also to remote ones via the annular
pathways, presents significant challenges for designing
effective forcing strategies. Sahay et al. [17] observed
that in a coupled thermoacoustic system with both
mutual coupling and asymmetric forcing (under sin-
gle forcing), oscillation quenching can occur over a
broader parametric range than in cases where either
coupling or forcing is applied alone. This finding moti-
vates further investigation into whether dual forcing—
involving multiple actuators—offers advantages over
single forcing in such configurations, particularlywhen
coupling conditions are insufficient to trigger ampli-
tude death.

Building on aforementioned findings and concerns,
three key research questions are addressed in this
study: (1) Will dual forcing outperform single forcing
when suppressing thermoacoustic oscillations in a sys-
tem consisting of two mutually coupled self-excited
TOs? (2) What are the optimal forcing conditions to
achieve maximum thermoacoustic oscillation suppres-
sion? (3) If dual forcing outperforms single forcing,
what is the underlying mechanism behind this superior
performance? We aim to answer these three research
questions for the following reasons. First, when deal-
ing with a complex system comprising multiple TOs
that are mutually coupled, the optimal deployment and
distribution of forcing energy remain open questions.
While open-loop control has proven effective in sup-
pressing self-excited oscillations in a single TO, it
remains uncertain whether simply replicating this strat-
egy in systems with multiple, mutually coupled TOs

will yield similar results. The inherent time delay asso-
ciated with the propagation of forcing-induced distur-
bances between TOs further complicates the simulta-
neous fulfillment of optimal forcing conditions across
the system—and may even degrade control perfor-
mance. In contrast, using independent forcing inputs
introduces greater flexibility, enabling the tuning of
amplitudes, frequencies, and phase delays between
the inputs. This enhanced controllability may prove
more effective in managing thermoacoustic oscilla-
tions in such complex, interconnected systems, thereby
improving the adaptability and robustness of the con-
trol strategy.

To answer these key research questions, we estab-
lish a model system consisting of two mutually cou-
pled Rijke tubes and investigate its response to external
dual forcing under various conditions. By systemati-
cally varying key forcing parameters—including forc-
ing amplitude ratio, total forcing amplitude, and phase
delay and frequency detuning between the two forcing
inputs—we aim to clarify their effects on the thermoa-
coustic amplitude of both individual oscillators and the
overall system. This analysis seeks to identify the opti-
mal forcing conditions for maximum oscillation sup-
pression and to elucidate the underlying suppression
mechanisms from the perspective of spectral power
variation. The paper is organized as follows. In Sect. 2,
we describe the model and define the non-dimensional
parameters. In Sect. 3, we investigate the control effects
of the forcing amplitude ratio, total forcing amplitude,
and phase delay and frequency detuning between the
two forcing inputs. This is achieved by comparing the
responses of both individual oscillators and the overall
system under dual forcing and single forcing. Finally,
we summarize our findings and present the conclusion
of this study in Sect. 4.

2 Mathematical model

We first develop a generic coupled thermoacoustic
model system by mutually coupling two horizontal
Rijke tubes, accounting for open boundary conditions,
negligible mean flow, spatial variations in average tem-
perature within the tubes, and natural convection in
the ducts. The Rijke tube model has been widely
employed in previous studies to investigate the non-
linear dynamics of thermoacoustic systems [44–47].
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Linearized momentum and energy equations can be
derived as follows:

ρ̃
∂ ũ′

∂ t̃
+ ∂ p̃′

∂ x̃
= 0, (1)

∂ p̃′

∂ t̃
+ γ p̄

∂ ũ′

∂ x̃
+ ζ p̃′ = (γ − 1) ˙̃Q′δ(x̃ − x̃ f ). (2)

In this study, symbolswith a superscript ˜( ) represent
dimensional variables, while those with a superscript
˜( )

′
denote fluctuating variables. Specifically, t̃ , ũ, and

p̃ represent time, acoustic velocity, and acoustic pres-
sure in the duct, respectively. The symbol x̃ refers to
the distance along the inlet of the duct, with x̃ f being
the position of the heat source. The chosen value for
x̃ f = 0.25L is optimal for producing self-excited ther-
moacoustic oscillations in the duct. The parameters ρ̃,

γ , ζ , and ˙̃Q′ represent the density, specific heat ratio,
damping coefficient, and heat release rate in the duct,
respectively. The function δ( ) is the Dirac delta func-
tion, used to define the compactness of the heat source.
The boundary condition at x̃ = L (where L is the duct
length) is p̃′∣∣

x̃=L = 0, which implies that the pressure
fluctuation p̃′ is negligible at both duct ends. To sim-
plify the analysis, the variables in Eqs. (1) and (2) are
considered in their non-dimensional form:

x = x̃

L
, t = t̃ c0

L
, u′ = ũ′

u0
,

p′ = p̃′

p
, Q̇′ =

˙̃Q′

c0 p̄
, M = u0

c0
,

(3)

where c0, u0, p̄, and M are the sound speed, mean
flowvelocity, pressure, andMach number, respectively.
Equations (1) and (2) can be transformed into their non-
dimensional forms using Eqs. (3):

γ M
∂u′

∂t
+ ∂p′

∂x
= 0, (4)

∂p′

∂t
+ γ M

∂u′

∂x
+ ζ p′ = (γ − 1)Q̇′δ(x − x f ). (5)

The heat release, Q̇′, is modeled using a modified
form of King’s law [48,49], which relates the quasi-
steady heat transfer from a heated cylinder to the sur-
rounding flow. The modified King’s law primarily cap-
tures the amplitude-limiting effect of nonlinearity on
acoustic growth. It is expressed as follows:

Q̇′(t) = 2Lh(Th − T )

S
√
3c0 p

√

πλcvu0ρrh

×
[√

∣
∣
∣
∣

1

3
+ u′

f (t − τt )

∣
∣
∣
∣
−

√

1

3

]

,

(6)

where Lh , Th , and rh are the length, temperature, and
radius of the heater wire, respectively. T is the aver-
age temperature of the surrounding air. S is the cross-
sectional area of the duct. λ and cv are the thermal
conductivity and constant-volume specificheat, respec-
tively. τt is the response time lag between the start of
the heat source’s response to the acoustic velocity per-
turbation, u′

f , due to the thermal inertia of the heater
wire.

To solve Eqs. (4) and (5), we apply the Galerkin
method to convert the partial differential equations into
a series of ordinary differential equations. To achieve
this, we represent the dimensionless velocity u′ and
the pressure fluctuation p′ as orthogonal functions that
satisfy the boundary conditions [50,51]:

u′ =
N

∑

j=1

η j cos( jπx), (7)

p′ = −
N

∑

j=1

η̇ j
γ M

jπ
sin( jπx), (8)

where η j and η̇ j refer to the time-dependent coeffi-
cients associated with the j th mode of the acoustic
velocity u′ and pressure fluctuation p′, respectively.
The symbol N denotes the total number of Galerkin
modes considered in the analysis. The convergence of
Galerkin truncation is validated in Appendix A. We
choose N = 5 to balance accuracy and computational
efficiency.

By solving the following set of ordinary differential
equations, we obtain the temporal evolution of a single
Rijke tube:

dη j

dt
= η̇ j , (9)

dη̇ j

dt
+ 2ζ jω j η̇ j + ω2

jη j

= − jπK

[√

1

3
+ u′

f (t − τt ) −
√

1

3

]

sin( jπx f ),

(10)
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where ω j = jπ denotes the angular frequency of the
j th Galerkin mode. The thermal inertia of heat transfer
in the medium is modeled using a time lag parameter,
τt . The acoustic damping coefficient, ζ j , developed by
Matveev [52] is defined:

ζ j = 1

2π

[

c1
ω j

ω1
+ c2

√
ω1

ω j

]

, (11)

where the damping coefficients c1 and c2 are specified.
In this study, we set c1 = 0.1, c2 = 0.06, τt = 0.25,
M = 0.005, and x f = 0.25 for the Rijke tube. As for
the non-dimensional heater power K , it is defined:

K = 4(γ − 1)
2Lh

(

Th − T
)

Mγ S
√
3c0 p

√

πλ cv u0 ρ rh, (12)

where K = 2 is selected to ensure that the two self-
excited TOs operate sufficiently far from the bifurca-
tion point (around K = 0.6). The numerical scheme of
solving this self-excited oscillator is validated as shown
in Appendix A.

In this study, the two self-excited TOs, referred to
as TO1 and TO2, are coupled via dissipative and time-
delay coupling terms, following the approach used in
previous studies on generic coupled thermoacoustic
systems [22,26,47]. The dissipative coupling repre-
sents interactions where the propagation time between
oscillators is negligible compared to the oscillation
period. While the time-delay coupling accounts for
interactions where finite propagation time plays a crit-
ical role in the feedback. Each oscillator is indepen-
dently subjected to a sinusoidal forcing. We use the
subscripts “1” and “2” to denote parameters or variables
of TO1 and TO2, respectively. This coupled thermoa-
coustic model system, under dual forcing, is modeled
as follows:

dη1, j
dt

= η̇1, j , (13)

dη̇1, j
dt

+ 2ξ jω j η̇1, j + ω2
jη1, j

= − jπK

[√
∣
∣
∣
∣

1

3
+ u′

f,1(t − τt )

∣
∣
∣
∣
−

√

1

3

]

sin
(

jπx f
) + kd

(

η̇2, j − η̇1, j
)

︸ ︷︷ ︸

dissipative coupling

+ kτ

(

η̇2, j (t − τtube) − η̇1, j (t)
)

︸ ︷︷ ︸

time-delay coupling

+ A1 sin(2π f f,1t),
︸ ︷︷ ︸

forcing term

(14)

and

dη2, j
dt

= η̇2, j , (15)

dη̇2, j
dt

+ 2ξ jω j η̇2, j + ω2
jη2, j

= − jπK

[√
∣
∣
∣
∣

1

3
+ u′

f,2(t − τt )

∣
∣
∣
∣
−

√

1

3

]

sin
(

jπx f
) + kd

(

η̇1, j − η̇2, j
)

︸ ︷︷ ︸

dissipative coupling

+ kτ

(

η̇1, j (t − τtube) − η̇2, j (t)
)

︸ ︷︷ ︸

time-delay coupling

+ A2 sin(2π f f,2t),
︸ ︷︷ ︸

forcing term

(16)

where the coupling parameters are set as kd = 1.0,
kτ = 0.2, and τtube = 0.4, underwhich the overall ther-
moacoustic amplitude of the coupled system (0.01) is
lower than that of the uncoupled oscillators (0.02), due
to the influence of time-delay coupling. We focus on
this scenario because (i) the TOs are nominally iden-
tical under ideal design conditions where amplitude
death hardly emerges (amplitude death requires a fre-
quency detuning between TOs), and (ii) our primary
objective is to examine the role of external forcing in
suppressing oscillations.

3 Results and discussions

Before evaluating the potential for enhanced perfor-
mance of oscillation suppression in the coupled ther-
moacoustic system using dual forcing, we first define
several non-dimensional parameters. The total forcing

amplitude is given by α =
√

A2
1 + A2

2, where A1 and
A2 are the forcing amplitudes applied to the two TOs.
The forcing amplitude ratio is defined as β = A2/A1,
where β = 1 corresponds to symmetric dual forcing,
andβ �= 1corresponds to asymmetric dual forcing.The
special case of β = 0 corresponds to single forcing
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Fig. 1 From left to right, forced responses (E) of TO1, TO2,
and the overall system are shown in the top row, and their differ-
ences in E between dual forcing and single forcing (the forcing
is only applied to TO1 and β = 0) are shown in the bottom row.
In all panels, purple, yellow, and red regions indicate oscillation
amplification due to forcing. In contrast, blue regions indicate

oscillation suppression due to forcing. The remaining regions
suggest that a–c the system hardly responds to forcing or that d–
f dual forcing offers no significant advantage over single forcing
in terms of oscillation suppression. α is fixed to 4 for all cases.
(Color figure online)

applied only to TO1. The non-dimensionalized forc-
ing frequencies are defined as fr,1 ≡ f f,1/ fn,1 and
fr,2 ≡ f f,2/ fn,2, respectively. fn,1 and fn,2 are the
natural frequencies of two TOs. Since the chosen val-
ues for the parameters of twoTOs are the same and they
are in-phase synchronized after coupling, fn,1 = fn,2 =
fn , and we use fr to denote the non-dimensionalized
forcing frequency. To quantify the effectiveness of dual
forcing, we introduce a non-dimensional parameter
E ≡ (p′

f,RMS − p′
0,RMS)/p

′
0,RMS, where p′

f,RMS and
p′
0,RMS are the root mean square (RMS) of the pres-

sure fluctuations under forced and unforced conditions,
respectively. A negative value of E indicates oscilla-
tion suppression (i.e., forcingworks to suppress oscilla-
tions),while a positive value indicates amplitude ampli-
fication (i.e., forcing does not work and deteriorates the
scenario).

3.1 Forcing amplitude ratio β

We first investigate how the coupled system’s response
to dual forcing varies within a parameter space defined

by β and fr . For each examined parameter space, α is
held constant. Since the influence of β and fr on the
coupled system’s response becomes sufficiently sig-
nificant when α is large, we show one map (α = 4)
here and put results of other α values (0.9, 1, 2, and
3) in Appendix B in order to keep the flow of this
paper concise. In each figure, the top row (from left
to right) shows the forced responses of TO1, TO2, and
the overall system. The bottom row (from left to right)
shows the difference in the non-dimensional parame-
ter E between dual forcing and single forcing. Purple,
yellow, and red regions indicate oscillation amplifica-
tion due to forcing. In contrast, blue regions indicate
oscillation suppression due to forcing. The remaining
regions suggest that the system hardly responds to forc-
ing or that dual forcing offers no significant advantage
over single forcing in terms of oscillation suppression.

Noticeable blue regions appear not only in the top
row of Fig. 1, demonstrating that dual forcing effec-
tively weakens thermoacoustic oscillations in the sys-
tem, but also in the bottom row, indicating that dual
forcing outperforms single forcing in suppressing ther-
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moacoustic oscillations. As α increases from 0.9 to 4,
the blue regions expand and deepen in color, consis-
tent with previous studies on forced synchronization
[18,53], which showed that higher forcing amplitudes
(α in this study)—approaching the critical threshold
for synchronization—can induce oscillation suppres-
sion via asynchronous quenching. We will later show
in Sect. 3.3 that the spectral power of fn mode is weak-
ened linearly as a function of the forcing amplitude
A2, which agrees with previous observations of asyn-
chronous quenching [54,55]. The increasingly pro-
nounced amplitude amplification near fr = 1 is also a
characteristic phenomenon in forced synchronization.
Additionally, we identify an interval of β values that
yield improved oscillation suppression. These β values
fall within the range 100–100.7, leading to especially
prominent oscillation suppression when fr is around
0.85 and 1.25 (see Fig. 1d–f). Meanwhile, it is worth
noting that this behavior differs from the oscillation
suppression observed near fr = 1, which primarily
results from the redistribution of forcing energy from
TO1 to TO2—i.e., a significantly larger A2 than A1

at higher β values. Consequently, oscillation suppres-
sion near fr = 1 is observed only in TO1 and not in
the forced response of the overall system. In contrast,
the reductions observed near fr = 0.85 and 1.25 are
evident in the overall system response, confirming that
dual forcing achieves superior suppression compared
to single forcing.

In a quick summary, we have demonstrated that by
approximately equally distributing the forcing energy,
there exist specific regions in the β– fr parameter space
where dual forcing outperforms single forcing in this
coupled thermoacoustic system. The values of β asso-
ciated with enhanced suppression are predominantly
within the range of 100 to 100.7, while the correspond-
ing normalized forcing frequencies fr are centered
around 0.85 and 1.25.

3.2 Total forcing amplitude α

In the previous section, we observed that dual forcing
outperforms single forcingwhenβ lieswithin the range
of 100 to 100.7. This initial observation was based on a
coarse sweep over the parameter α. Notably, α plays a
crucial role in oscillation suppression, as it determines
the total forcing energy applied in the control process.
To assess whether this trend persists over a broader

parameter space-and to more thoroughly examine the
role of α, we conducted a comprehensive search for the
global maximum oscillation suppression. The search
spans α from 0.5 to 8 (step size 0.1), β from 100 to
103 (exponent step size 0.01), and fr from 0.70 to
1.30 (step size 0.02). These ranges were selected based
on two main considerations: (1) ensuring α is suffi-
ciently large to achieve oscillation suppression even
when the non-resonant forcing frequency significantly
deviates from the natural frequency (i.e., fr � 1 or
� 1), and (2) extending β to values where dual forc-
ing begins to approximate single forcing (i.e., A2/A1

becomes very large). The optimal oscillation suppres-
sion, E = −0.47, occurs at β = 1 (100), α = 4.7, and
fr = 1.30, consistent with our preliminary findings in
Sect. 3.1, as β remains within the previously identified
effective range. This result suggests that dual forcing
is most effective when the forcing energy is evenly dis-
tributed between the two sources. Based on this insight,
we fix β = 1 in the subsequent analysis to isolate the
influence of varying α on the system’s response, as
shown in Fig. 2.

As shown in Fig. 2a, a central inverted triangular
region, where the system’s response is significantly
amplified, is flanked by two blue triangular bands
indicating a reduced overall response. This pattern
of E variation resembles the classical Arnold tongue
observed in forced synchronization of a single TO
under single forcing [56]. In such a classical scenario
of forced synchronization, two oscillation suppression
zones typically emerge on either side of the Arnold
tongue due to asynchronous quenching [56]. The loci
of maximum oscillation suppression, marked by circu-
lar symbols at each fr , delineate a ∨-shaped boundary
corresponding to the synchronization boundary beyond
which the system is forced to oscillate at the forcing
frequency [56]. These characteristic features of forced
synchronization are also evident in the coupled sys-
tem under single forcing (applied to TO1), as shown in
Fig. 2b. The difference in E between dual forcing and
single forcing, illustrated in Fig. 2c, displays a similar
pattern to that in Fig. 2a. The central region on the left
half of Fig. 2c is predominantly deep red, indicating that
dual forcing, in this regime, amplifies the response—
i.e., it is less effective at suppressing oscillations. In
contrast, two narrower blue bands appear where dual
forcing outperforms single forcing. When fr = 0.86
and α = 3.7, around 60%more amplitude reduction can
be achieved using dual forcing than using single forc-
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Fig. 2 Forced responses (E) of the system under a dual forcing
and b single forcing, with the loci of maximum oscillation sup-
pression, marked by circular symbols at each fr . c Difference

in E between dual forcing and single forcing, with the loci of
dual forcing outperforming single forcing the most, marked by
circular symbols at each fr

ing. Notably, the loci of maximum E difference align
closely with the loci of maximum oscillation suppres-
sion in Fig. 2a. However, the blue bands indicative of
improved performance of dual forcing are consider-
ably narrower than the oscillation suppression regions
in Fig. 2a. This is primarily because, for a given forc-
ing frequency fr , dual forcing achieves the maximum
oscillation suppression at a lower total forcing ampli-
tude compared to single forcing (i.e., α∗ < A∗

1, where
α∗ and A∗

1 denote the critical amplitudes for using dual
forcing and single forcing, respectively). This differ-
ence is reflected in the openness of the ∨-shaped blue
regions: the Arnold tongue of single forcing case is
narrower, while that of dual forcing case is broader.
Although similar levels of oscillation suppression can
be achieved by increasing A1 further in single forc-
ing as shown in Fig. 2b, the higher energy requirement
makes it less efficient. This energy inefficiency is a key
reason why dual forcing ultimately outperforms single
forcing—apoint thatwill be elaborated in the following
section.

3.3 Why does dual forcing outperform single forcing?

In this section, we aim to provide a mechanistic inter-
pretation of why dual forcing outperforms single forc-
ing by analyzing the spectral power variations of the
natural and forced modes. Figures 3 and 5 present the
spectral power variations of the natural mode (Pn), the
forced mode (Pf ), and the total spectral power of all
modes (Pt ) for TO1 and TO2 (denoted by subscripts
“1” and “2,” respectively), as well as for the entire sys-
tem (without specific subscript). Spectral power is com-
puted by integrating the power spectral density (PSD)

extracted from the p′ signal, using a bandpass filter cen-
tered around the relevant frequencywith a bandwidth of
0.05 Hz. For total spectral power, the PSD is integrated
up to the third super-harmonic of the natural frequency
(e.g., 3 fn). All spectral powers of the coupled TOs are
normalized by the total spectral power of one TOwhen
unforced but coupled (e.g., (Pn,1, Pf,1, Pt,1)/Pt,c, Pt,c
= Pt,1 = Pt,2 when unforced). For decoupled TOs,
spectral powers are normalized by the total spectral
power of one TO when unfoced and decoupled (e.g.,
(Pn,1, Pf,1, Pt,1)/Pt,d ). The total spectral power of the
system is always taken as the sum of contributions
from both TOs (e.g., Pt = Pt,1 + Pt,2). To under-
stand how dual forcing and single forcing function dif-
ferently in suppressing oscillations, two representative
forcing frequency ratios fr are selected: one above the
natural frequency ( fr = 1.30, Fig. 3) and one below
( fr = 0.84, Fig. 5). These cases correspond to the con-
ditions under which the maximum oscillation suppres-
sion is achieved on either side of the natural frequency.

As shown in Figs. 3a–f and 5a–f, three distinct
regions can be identified based on the variation trends
of the spectral power of the natural mode (Pn), regard-
less of the control strategy adopted. The pink region,
referred to as “power accumulation”, is characterized
by unsuppressed Pn,1 and Pn,2 despite the forcing
amplitudes (A1 and A2) increase. This results in a
net accumulation of spectral power, as indicated by
rising Pt,1 and Pt,2, which reach local maxima. The
yellow region, referred to as “power attenuation”, is
characterized by the suppression of Pn,1 and Pn,2 as
A1 and A2 further increase. In this region, the nat-
ural modes are strongly weakened, though with dif-
ferent rates at different forcing frequencies, eventually
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Fig. 3 Comparison of spectral power variations as a function of
squared forcing amplitudes between the coupled TOs under dual
forcing (top row), the coupled TOs under single forcing (middle

row), and the decoupled TOs under single forcing (bottom row).
The fr is fixed to 1.30 for all cases

approaching zero, and maximum oscillation suppres-
sion is achieved (i.e., the right boundary of this region
is where Pt,1 and Pt,2 are minimized). Finally, the mint
region, referred to as “lock-in”, is characterized by
domination of the forced mode. Here, Pt,1 and Pt,2
begin to rise again with increasing A1 and A2, while
Pn,1 and Pn,2 remain essentially constant, indicating
that the system has locked into the forcing frequency
(i.e. the occurrence of forced synchronization).

We now examine two representative cases ( fr = 1.30
and 0.84)with three different forcing and coupling con-
ditions (coupled TOs under dual forcing, coupled TOs
under single forcing, and decoupled TOs under single
forcing) in detail as follows:

1. First, we examine the spectral power variation in
the “power accumulation” region. For TO1, as A2

1
increases, Pt,1, Pn,1, and Pf,1 all rise approxi-
mately linearly regardless of which forcing strategy
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is adopted. Pt,1 increases at a noticeably steeper rate
than the others, as shown in Fig. 3a, d. This behav-
ior indicates the existence of a “minimum energy
threshold”: only after the forcing amplitude exceeds
a critical value does suppression of the natural oscil-
lation become effective. A similar effect appears in
TO1 under single forcing as shown in Fig. 3g, where
Pt,1 initially increases for small A2

1. To the best
of our knowledge, this is the first report to explic-
itly identify a threshold forcing amplitude required
for the suppression of natural oscillations—that is,
the minimum forcing amplitude necessary for asyn-
chronous quenching to take effect. However, some
indirect evidence of this phenomenon can be found
in previous studies (e.g., Fig. 9a in [57] and Fig.
8a in [18]), where a temporary increase in Pt,1 is
observed at very small forcing amplitudes, which
potentially explainswhy this threshold effect has not
been emphasized before. For TO2, a similar “power
accumulation” region is observed under both forc-
ing strategies, as shown in Fig. 3b, e. In contrast, this
feature is absent in the decoupled TO2 case, since
the forcing cannot be transmitted to TO2 without
coupling, as illustrated in Fig. 3h.

2. Next, we examine the spectral power variation in
the “power attenuation” region. For dual forcing
shown in Fig. 3a, Pt,1 reaches its minimum as A2

1
increases to a critical value 11.05, corresponding to
a 71% reduction in oscillation amplitude compared
to the unforced case. Due to the symmetric applica-
tion of forcing to TO1 and TO2, the same suppres-
sion level is observed in both oscillators, as shown
in Fig. 3b. When approaching the minimum of Pt,1,
Pn,1 decreases nearly linearly with A2

1, indicated by
the black dashed line in Fig. 3a, with a linear fit
yielding an adjusted R2 value of 0.98. This strongly
suggests that the suppression mechanism here is
indeed asynchronous quenching and is consistent
with previous observations of linear power attenua-
tion behavior [54,55]. This feature is also noticeable
for decoupled TO1 under single forcing as shown
in Fig. 3g that Pn,1 drops rapidly as A2

1 increases.
However, it is also worth noting that the slope of
this power attenuation of the decoupled TO1 under
single forcing is steeper than that of the coupled
TO1 under dual forcing (−0.269 < −0.169, indi-
cated by the two dashed lines in Fig. 3a and g).
This indicates that the efficiency of power attenua-
tion purely caused by forcing is likely to be deterio-

rated by the existence of the coupling. This is more
noticeable for the coupled TOs under single forc-
ing. This asymmetric application of forcing to TO1
further requires the forcing energy to be transferred
from TO1 (the one being directly forced) to TO2
(the other one being indirectly forced). The power
attenuation slope of the natural mode is flatter, and
the variation becomes clearly nonlinear, as indicated
by the behavior of Pn,1 and Pn,2 in Fig. 3d, e. These
observations suggest that coupling acts as an addi-
tional damping source, which partially offsets the
attenuation inducedby forcing.This nonlinearmode
transition induced by external forcing exhibits char-
acteristic similarities to the Bogdanov–Takens reso-
nance described by Coccolo et al. [27]. Their study
reveals a couplingmechanism between the system’s
sensitivity along the bifurcation path and nonlinear
dissipation. Such a resonance typically occurs when
the system operates near a bifurcation boundary,
exhibiting high sensitivity to weak external forc-
ing, which can trigger transitions between coexist-
ing attractors. To further examine this hypothesis,
we calculate the power dissipated through both dis-
sipative and time-delay coupling for TO1 and TO2
under dual forcing and single forcing. Based on the
formulations given in Eqs. 14 and 16, we perform
the following integrations:

Pd,1 =
∫

kd(η̇2, j − η̇1, j )η̇1, jdt,

Pd,2 =
∫

kd(η̇1, j − η̇2, j )η̇2, jdt,

Pd = Pd,1 + Pd,2 = −
∫

kd(η̇1, j − η̇2, j )
2dt.

(17)

Pτ,1 =
∫

kτ

[

η̇2, j (t − τtube)η̇1, j − η̇21, j (t)
]

dt,

Pτ,2 =
∫

kτ

[

η̇1, j (t − τtube)η̇2, j − η̇22, j (t)
]

dt,

Pτ = Pτ,1 + Pτ,2. (18)

As shown in Fig. 4a, b, under dual forcing, the
power dissipated via dissipative coupling remains
zero across all forcing amplitudes. In contrast, the
power dissipated by time-delay coupling initially
remains nearly constant at a large negative value
and then increases significantly, peaking aroundα ≈
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22—coinciding with the point of maximum ampli-
tude reduction. This trend aligns with the spec-
tral power behavior discussed earlier: (1) in the
“power accumulation” region, all spectral compo-
nents intensify while energy dissipation is negligi-
ble, likely because Pτ remains nearly unchanged up
to α2 ≈ 9; and (2) in the “power attenuation” region,
Pτ rises sharply (i.e., becomes less negative), indi-
cating that less spectral power of the natural mode
is being dissipated via time-delay coupling, as most
of it is now being attenuated by forcing. Under sin-
gle forcing, the impact of coupling becomes more
pronounced. In this case, the dissipative coupling
begins to significantly damp the forcing energy. As
shown in Fig. 4d, e, the dissipative power increases
notably with forcing amplitude, and Pd,2 is much
smaller than Pd,1—likely because the forcing is
applied solely to TO1. The variations in Pτ,1 and
Pτ,2 differ from one another and also deviate from
those observed under dual forcing scenario, which
can be attributed to the asymmetric application of
forcing to TO1 only, where energy is injected into
TO1 and subsequently transferred to TO2. Notably,
the total power dissipation via coupling (Pd + Pτ )
under single forcing (Fig. 4f) is much larger in mag-
nitude (i.e., more negative) than under dual forcing
(Fig. 4c). This elevated dissipation is likely a key
factor explaining why dual forcing is more effective
than single forcing in suppressing oscillations.

3. Last, we examine the spectral power variation in the
“lock-in” region. As shown in Fig. 3a, b and Fig. 3d,
e, Pn,1 and Pn,2 are significantly small values and
asymptotically approach 0 as the forcing amplitude
increases, indicating the significant suppression of
the natural mode. As shown in Figs. 3a, b, d, e, the
gap of the spectral power between Pf,1 and Pt,1, and
Pf,2 and Pt,2 are shrinking further to a negligible
magnitude, indicating the dominance of the forced
mode in the system.

All the aforementioned observations are also found
at fr = 0.84 as shown in Figs. 5 and 6, confirming
that the core mechanism behind the superior perfor-
mance of dual forcing lies in the reduced dissipation
induced by coupling as the forcing amplitude increases.
In contrast, under single forcing, the energy injected
by forcing is less efficiently utilized to suppress the
natural mode, as a portion of it is dissipated through
the coupling between the two TOs—undesirably off-

setting the intended suppression effect. It should be
noted that while this study reveals the trends of energy
dissipation through power spectral density analysis, the
current understanding of the underlying energy trans-
fer mechanisms is primarily derived from numerical
simulations. To gain a more comprehensive and funda-
mental insight into this phenomenon, futurework could
incorporate analytical approaches, such as perturbation
methods.

3.4 Phase modulation of two forcing inputs φ

The spectral power analysis presented in Sect. 3.3
reveals that the maximum oscillation suppression is
primarily constrained by the amount of energy accu-
mulated in the forced mode (Pf ), particularly when the
spectral power of the natural mode (Pn) is significantly
diminished, or even completely suppressed sometimes,
by the external forcing. Once the forcing amplitude
exceeds the critical value that yields this maximum
reduction, further increases in forcing amplitude lead
to a deteriorating reduction effect. This occurs because
the natural mode no longer contributes to the spectral
power reduction, while the spectral power associated
with the forced mode continues to rise, resulting in
an overall increase in total spectral power. This trend
has also been observed in experimental studies of both
laminar [39,40] and turbulent [37,41] thermoacoustic
systems subjected to the external forcing. Leveraging
the additional flexibility offered by using dual forcing,
the following two sections investigate whether tuning
the phase between the two forcing inputs can reduce
spectral power accumulation in the forced mode, and
whether frequency detuning between the two forcing
inputs can further enhance oscillation suppression.

In this section, we continue analyzing two repre-
sentative cases ( fr = 0.84 and fr = 1.30) under the
critical forcing conditions that yield maximum oscilla-
tion suppression—specifically, β = 1 with α = 4.1
for fr = 0.84 and α = 4.7 for fr = 1.30. We
systematically vary φ, defined as the initial phase
difference between the two forcing signals—namely,
A1 sin(2π f f,1t) and A2 sin(2π f f,2t + φ)—from 0◦ to
360◦. Figures 7 and 8 show the influence of φ on the
suppression performance of the system. The value of
E at each φ is normalized by E at φ = 0◦ (i.e., no
phase modulation case). A normalized value Eφ/Eφ=0◦
greater than 1 (shaded in light gray) indicates improved
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Fig. 4 Comparisons of energy dissipations by a dissipative cou-
pling, b time-delay coupling, and c the total of two coupling
methods, as a function of squared forcing amplitudes between

the coupled TOs under dual forcing (top row) and single forcing
(bottom row). The fr is fixed to 1.30 for all cases

suppression due to phase modulation, whereas a value
less than 1 suggests a deterioration in suppression.
Notably, a negative normalized value implies that phase
modulation even amplifies the oscillations rather than
suppressing them.

As shown in Fig. 7a, when φ increases from 0◦
to 35◦, suppression result deteriorates for TO1 but
improves for TO2. Since the relative improvement in
TO2 outweighs the deterioration in TO1, Fig. 7b shows
an overall enhanced suppression result, with optimal
suppression occurring at φ = 35◦, where Eφ = −0.48,
corresponding to a 2% improvement relative to the
baseline case at φ = 0◦. Similarly, Fig. 8a shows that
for the case (α, β, fr ) = (4.1, 1, 0.84), the suppression
result at φ = 0◦ is Eφ=0◦ = −0.43. As φ increases to
23◦, TO1 exhibits improved suppression while TO2
shows deterioration; however, the net effect is posi-
tive, with TO1’s improvement dominating. A similar
trend is observed as φ further increases. According to
Fig. 8b, the optimal suppression occurs at φ = 337◦,
withEφ = −0.45,marking an improvement of up to5%
(at φ = 23◦) compared to the baseline case at φ = 0◦.

Initially, we hypothesized that setting the phase dif-
ference between the two forcing inputs to 180◦ might

lead to their mutual cancellation, thereby enhancing
suppression by annihilating the remaining energy of
the forced mode. However, our results show that this
specific approach (φ = 180◦) does not yield improved
suppression performance in practice.We speculate that
this is because the spectral power of the forced mode
reflects the system’s response at the forcing frequency,
rather than the residual energy of the input forcing
itself. Although phase modulation can achieve an addi-
tional ≈5% reduction in oscillation amplitude under
optimal conditions (as shown in Figs. 7 and 8), the sys-
tem is already operating near the suppression limit in
this regime, where most of the suppression potential
has been exploited through open-loop forcing. There-
fore, phase modulation is better suited as a comple-
mentary strategy for fine-tuning parameters rather than
serving as a primary control mechanism. Furthermore,
we acknowledge that the promising numerical results
require experimental validation to confirm their prac-
tical feasibility. As a result, phase modulation between
the two forcing inputs does not lead to complete can-
cellation of the forced response in the system and, con-
sequently, does not produce a significant improvement
in suppression.
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Fig. 5 The same as for Fig. 3 but for fr = 0.84

3.5 Frequency detuning between two forcing inputs
fr,1 �= fr,2

In Sect. 3.4, we demonstrated that the additional
flexibility offered by introducing secondary forcing can
be leveraged to adjust the phase between the two forc-
ing inputs, thereby enhancing oscillation suppression.
In this section, we further investigate whether detuning
the secondary forcing frequency can achieve a similar
enhancement.We focus again on the two representative
cases that yielded themost effective suppression across

our entire parameter space. Instead of using two identi-
cal forcing frequencies, we now introduce two distinct
ones: fr,1 = f f,1/ fn and fr,2 = f f,2/ fn . We fix fr,1 at
1.30 or 0.84 and vary fr,2 within the range 0.70–1.30 in
steps of 0.01. Figures 9 showhow the system’s response
changes as fr,2 varies. The suppression performance
at each detuned fr,2 is normalized by the baseline
cases with fr,1 = fr,2 = 1.30 (Fig. 9a) and fr,1 =
fr,2 = 0.84 (Fig. 9b), respectively. Similar to Fig. 8,
a normalized amplitude ratio E f /E f f,1= f f,2 > 1 indi-
cates improved suppression compared to the identical-
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Fig. 6 The same as for Fig. 4 but for fr = 0.84

Fig. 7 Variations ofE normalizedbyEφ=0◦ (i.e., the casewithout
phase modulation), as a function of the modulated phase angle φ

for a two TOs and b the overall system. Phase modulation yields

enhanced oscillation suppression in the region beyond the red
dashed line. The fr is fixed to 1.30 for all cases

frequency case, while 0 < E f /E f f,1= f f,2 < 1 sug-
gests reduced but still effective suppression. A ratio
E f /E f f,1= f f,2 < 0 indicates amplitude amplification.
The results clearly show that frequency detuning does
not lead to improved suppression: no case with fr,1 �=
fr,2 outperforms the identical-frequency configuration.
Notably, even the combination of the two best individ-
ual frequencies (1.30 and 0.84) results in diminished
performance. This suggests that there is no synergistic

effect from using two different forcing frequencies, and
that identical dual forcing remains the optimal config-
uration.

4 Conclusions

In this study, the dynamics of two coupled thermoa-
coustic oscillators (TOs) under external dual forcing are
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Fig. 8 The same as for Fig. 7 but for fr = 0.84

Fig. 9 Variations of E , normalized by E f f,1= f f,2 (i.e., the case
without frequency detuning), as a function of the detuned forc-
ing frequency f f,2 for the overall system. Enhanced oscillation

suppression (if any) is observed in the gray region beyond the
red dashed line. The reference forcing frequency f f,1 is fixed at
a 1.30 and b 0.84 in all cases

numerically investigated. The system’s forced response
is systematically explored in a parameter space defined
by three key parameters: the forcing amplitude ratio
(β), the total forcing amplitude (α), and the forcing
frequency ( fr ). The answers to the three research ques-
tions posed in Sect. 3.1 are summarized as follows:

1. Dual forcing is shown to outperform single forcing
when the forcing energy is approximately equally
distributed between the two forcing inputs, resulting
in up to 60% greater amplitude reduction.

2. The optimal forcing condition occurs when the forc-
ing frequency fr deviates sufficiently away from
the system’s natural frequency, β = 1, and α is
sufficiently large to trigger asynchronous quench-
ing. At fr = 1.30, the most significant suppression

of oscillations is achieved, with amplitude reduc-
tions reaching E = −0.43. This corresponds to a
57% reduction in the RMS amplitude of pressure
oscillations relative to the unforced case. Further-
more, this suppression can be enhanced by phase
modulation between the two forcing inputs, yielding
an additional 5% reduction. However, introducing
frequency detuning between the two forcing inputs
does not improve suppression.Additionally, the sys-
tem’s response is sensitive to the fr , but the optimal
values for α, β, and φ exist within certain ranges.

3. Spectral power analysis reveals the underlying
mechanism behind the superior performance of dual
forcing. Unlike single forcing, dual forcing min-
imizes the energy dissipation through coupling.
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When adopting single forcing, a significant por-
tion of the forcing energy is likely lost during its
transfer between TOs via coupling, reducing its effi-
ciency in suppressing the natural mode. Therefore,
for a fixed amount of forcing energy, dual forcing
achieves more effective and efficient suppression of
thermoacoustic oscillations.

In summary, these findings highlight the strong
potential of employing a symmetric forcing strategy
to suppress oscillations in systems comprisingmultiple
mutually coupled thermoacoustic oscillators [58,59]—
particularly when modifying the coupling condition to
passively stabilize the system is challenging. While
introducing symmetry breaking has been shown in
recent numerical and experimental studies [26,60,61]
to enhance thermoacoustic stability in some multi-
injector/combustor systems, this principle does not
hold here when the external forcing is deployed to sup-
press oscillations. In such cases, coupling tends to dis-
sipate energy during the transfer of forcing between
oscillators, thereby reducing the effectiveness when
adopting asymmetric forcing configurations. Finally,
we realize the limitations of the current numerical
approach; a follow-up experimental study, guided by
these numerical results, is planned for future work.
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Appendix A Validation of our numerical scheme

We test the convergence of Galerkin truncation by
validating the bifurcation behavior of a single uncou-
pled TO with different modes. We numerically solve

Fig. 10 Characteristic of a
single uncoupled TO,
pressure amplitude E as a
function of the
nondimensional heater
power K
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the ODEs in Eqs. (10–12). According to Fig. 10, we
can clearly see that the difference between the bifurca-
tion diagram at N = 4 (red line with square markers)
and N = 5 (green starmarkers) is significant.However,
there is almost no difference between N = 5 (green star
markers) and N = 10 (blue line with circles). There-
fore, in order to balance accuracy and computational
efficiency, we chose N = 5.

We validate our numerical scheme by examining the
forced response of a single TO under single forcing.
Specifically, a forcing term of the form A f sin(2π f f t)

is added to the right-hand side of Eq. 10, with the heat-
ing power kept the same as in Sect. 2 (K = 2), and the
normalized forcing frequency defined as fr = f f / fn .
Wenumerically solveEqs. 10–12usingdde23, a built-
in delay differential equation solver in MATLAB®

[62]. In Fig. 11, the A f − f f two-parameter map
reveals regions of asynchronous quenching (blue) and
resonance amplification (red), consistent with previ-
ous experimental observations reported in the literature
[17].

Fig. 11 The forced
response of a single TO
under single forcing

Fig. 12 The same as for Fig. 1 but for a total forcing amplitude α = 0.9
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Appendix B Supplementary cases for β

The regions where dual forcing outperforms single
forcingvarywithα, as shown inFigs. 12, 13, 14, and15.
Notably, the size of these regions—where dual forcing
demonstrates superior control—expands significantly
as α increases. This trend supports our earlier observa-
tion that dual forcing becomes increasingly effective at
suppressing oscillations with a greater forcing ampli-
tude, making it a better approach overall.

Appendix C Sensitivity analysis of small
mismatches in K , τ , ζ

The influence of parametric noise in thermoacous-
tic systems has been investigated in prior studies, e.g.,
by Daw et al. [63], Bonciolini et al. [64], and Burnley
and Culick [65]. Drawing inspiration from these pre-
vious works, we introduce noise into three parameters
in our model, including K , τ , and ζ . The correspond-
ing parameters with the noise term can be expressed as
follows:

Xn = X0
[

1 + σpε(t)
]

,

(X = K/τ/ζ ) ,
(C1)

where Xn and X0 represent the parameters with and
without a small mismatch, respectively. To determine
the strength of parametric mismatch, we refer to [63–
65], where the strength is typically specified to be less
than 1%. Therefore, we set σp = 0.01. We generated
10 sets of random samples, with error bars added to the
results to assess the stability of the model under pertur-
bations. Specifically, two cases discussed in the paper
were analyzed, corresponding to α = 4.1 and 4.7 with
β = 1. We introduced mismatches to the parameters
K , τ , and ζ for TO1 and TO2, resulting in K1, K2, τ1,
τ2, ζ1, and ζ2. As shown in Fig. 16a–f, the horizontal
axis represents fr , and the vertical axis represents E .
The blue curve denotes data without parameter mis-
matches, while the red curve represents the average
of the 10 mismatched datasets. Error bars indicate the
fluctuation range at each data point. It can be observed
that the variation at each data point remains extremely
small, with a maximum deviation not exceeding 0.01.
Thus, the analysis suggests that the system is relatively

insensitive to smallmismatches in K , τ , and ζ , confirm-
ing that the model is robust even with small variations
in the parameters.

Appendix D Impact of additive noise on
suppression performance

In our study, we introduced additive noise to explore
its impact on the suppression outcome of the system.
We used Gaussian white noise and performed detailed
calculations and analyses on the system’s behavior. The
results indicate that, evenwith the introduction of noise,
the suppression effect of the system is not significantly
affected. We analyzed two cases discussed in Sect. 3.3,
namely α = 4.7 (Fig. 17a) and α = 4.1 (Fig. 17a),
with β = 1. Our Rijke tube model (Eqs. C2) becomes
Eqs. (C2) after introducing the noise source term, as
follows:

dη̇1, j
dt

+ 2ξ jω j η̇1, j + ω2
jη1, j

= − jπK

[√
∣
∣
∣
∣

1

3
+ u′

f,1(t − τt )

∣
∣
∣
∣
−

√

1

3

]

sin
(

jπx f
)

+ kd
(

η̇2, j − η̇1, j
)

︸ ︷︷ ︸

dissipative coupling

+ kτ

(

η̇2, j (t−τtube) − η̇1, j (t)
)

︸ ︷︷ ︸

time-delay coupling

+ A1 sin(2π f f,1t)
︸ ︷︷ ︸

forcing term

+ σε(t)
︸ ︷︷ ︸

noise

, (C2)

whereσ is the noise intensity, ε(t) is theGaussianwhite
noise term, and all other parameters are identical to
those in Eq. 14. We chose σ = 0.05 as the noise inten-
sity.Weused theMonteCarlomethod to randomly gen-
erate 100 sets of random samples. By calculating the
mean and standard deviation of the 100 random pertur-
bations, we obtained the system’s response. The error
bars indicate the range of fluctuation, with the max-
imum error not exceeding 0.016, suggesting that the
additive noise has a negligible effect on the suppres-
sion performance of the thermoacoustic oscillators.
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Fig. 13 The same as for Fig. 1, but for a total forcing amplitude α = 1

Fig. 14 The same as for Fig. 1 but for a total forcing amplitude α = 2
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Fig. 15 The same as for Fig. 1 but for a total forcing amplitude α = 3

Fig. 16 Comparison of system dynamics with and without a
small mismatch for different parameter perturbations. a α = 4.7,
K ; b α = 4.7, τ ; c α = 4.7, ζ ; d α = 4.1, K ; e α = 4.1, τ ;
f α = 4.1, ζ . The horizontal axis represents the frequency ratio
fr , and the vertical axis represents the system response E . The

blue circles correspond to the case without a small mismatch,
while the red squares represent the case with a small mismatch.
The error bars represent the mean and standard deviation of the
system response across 10 sets of random perturbations. (Color
figure online)
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Fig. 17 Comparison of system behavior with and without addi-
tive noise. a α = 4.7 (Fig. 17a); b α = 4.1 (Fig. 17b). The
horizontal axis represents the frequency ratio fr , and the vertical
axis represents the system response E . The blue circles corre-

spond to the system behaviorwithout noise, while the red squares
represent the system behavior with additive noise. The error bars
represent themean and standard deviation of the system response
across 100 sets of random perturbations. (Color figure online)
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38. Ćosić, B., Bobusch, B.,Moeck, J., Paschereit, C.: Open-loop
control of combustion instabilities and the role of the flame
response to two-frequency forcing. J. Eng. Gas Turbines
Power 134(6), 061502 (2012)

39. Guan, Y., He, W., Murugesan, M., Li, Q., Liu, P., Li, L.:
Control of self-excited thermoacoustic oscillations using
transient forcing, hysteresis and mode switching. Combust.
Flame 202, 262–275 (2019)

40. Wang, P., Tian, Y., Yang, L., Luo, S., Li, J., Liu, T.: Open-
loop control of thermoacoustic instabilities by the external
acoustic forcing at different frequencies. Proc. Combust.
Inst. 40(1–4), 105540 (2024)

41. Liao, Y., Choi, Y., Liu, P., Kim, K., Guan, Y.: Active control
of thermoacoustic instability in a lean-premixed hydrogen-

enriched combustor via open-loop acoustic forcing. Com-
bust. Flame 277, 114175 (2025)

42. Guan,Y., Gupta, V.,Wan,M., Li, L.: Forced synchronization
of quasiperiodic oscillations in a thermoacoustic system. J.
Fluid Mech. 879, 390–421 (2019)

43. Guan, Y., Yin, B., Yang, Z., Li, L.: Forced synchronization
of self-excited chaotic thermoacoustic oscillations. J. Fluid
Mech. 982, 9 (2024)

44. Juniper, M.: Triggering in the horizontal Rijke tube: non-
normality, transient growth and bypass transition. J. Fluid
Mech. 667, 272–308 (2011)

45. Magri, L., Juniper,M.: Sensitivity analysis of a time-delayed
thermo-acoustic system via an adjoint-based approach. J.
Fluid Mech. 719, 183–202 (2013)

46. Srikanth, S., Sahay,A., Pawar, S.,Manoj,K., Sujith, R.: Self-
coupling: an effective method to mitigate thermoacoustic
instability. Nonlinear Dyn. 110(3), 2247–2261 (2022)

47. Doranehgard, M., Gupta, V., Li, L.: Quenching and ampli-
fication of thermoacoustic oscillations in two nonidentical
Rijke tubes interacting via time-delay and dissipative cou-
pling. Phys. Rev. E 105(6), 064206 (2022)

48. King, L.:XII. On the convection of heat from small cylinders
in a stream of fluid: determination of the convection con-
stants of small platinum wires with applications to hot-wire
anemometry. Philos. Trans. R. Soc. Lond. A 214(509–522),
373–432 (1914)

49. Heckl, M.: Non-linear acoustic effects in the Rijke tube.
Acta Acust. United Acoust. 72(1), 63–71 (1990)

50. Zinn, B., Lores, M.: Application of the Galerkin method in
the solution of non-linear axial combustion instability prob-
lems in liquid rockets. Combust. Sci. Technol. 4(1), 269–278
(1971)

51. Balasubramanian, K., Sujith, R.: Thermoacoustic instability
in a Rijke tube: non-normality and nonlinearity. Phys. Fluids
20(4), 044103 (2008)

52. Matveev, K.: Thermoacoustic Instabilities in the Rijke Tube:
Experiments and Modeling. California Institute of Technol-
ogy, Pasadena (2003)

53. Guan, Y., Gupta, V., Kashinath, K., Li, L.: Open-loop con-
trol of periodic thermoacoustic oscillations: experiments and
low-order modelling in a synchronization framework. Proc.
Combust. Inst. 37(4), 5315–5323 (2019)

54. Keen, B., Fletcher, W.: Suppression of a plasma instability
by the method of “asynchronous quenching”. Phys. Rev.
Lett. 24(4), 130 (1970)

55. Ohe, K., Takeda, S.: Asynchronous quenching and reso-
nance excitation of ionization waves in positive columns.
Contrib. Plasma Phys. 14(2), 55–65 (1974)

56. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchroniza-
tion: A Universal Concept in Nonlinear Sciences. Cam-
bridge Nonlinear Science Series, Cambridge University
Press, Cambridge (2001)

57. Li, L., Juniper, M.: Lock-in and quasiperiodicity in a forced
hydrodynamically self-excited jet. J. Fluid Mech. 726, 624–
655 (2013)

58. Guan, Y., Li, L., Jegal, H., Kim, K.: Effect of flame response
asymmetries on the modal patterns and collective states of a
can-annular lean-premixed combustion system. Proc. Com-
bust. Inst. 39(4), 4731–4739 (2023)

59. Guan, Y., Choi, Y., Liu, P., Kim, K.: Mutual synchronization
and flame dynamics in an axially fuel-staged lean-premixed

123



Dynamics of two mutually coupled thermoacoustic oscillators 31061

combustion system. Proc. Combust. Inst. 40(1–4), 105197
(2024)

60. Latour, V., Durox, D., Renaud, A., Candel, S.: Experiments
on symmetry breaking of azimuthal combustion instabilities
and their analysis combining acoustic energy balance and
flame describing functions. J. Fluid Mech. 985, 31 (2024)

61. Qin, L., Wang, X., Zhang, G., Sun, X.: Suppression of
azimuthal combustion instability using perforated liner
under symmetry breaking. J. Propul. Power 41(1), 27–39
(2025)

62. Shampine, L., Thompson, S.: Solving DDEs in MATLAB.
Appl. Numer. Math. 37(4), 441–458 (2001)

63. Daw, C., Kennel, M., Finney, C., Connolly, F.: Observing
and modeling nonlinear dynamics in an internal combustion
engine. Phys. Rev. E 57(3), 2811 (1998)

64. Bonciolini, G., Faure-Beaulieu, A., Bourquard, C., Noiray,
N.: Low order modelling of thermoacoustic instabilities and
intermittency: flame response delay and nonlinearity. Com-
bust. Flame 226, 396–411 (2021)

65. Burnley, V., Culick, F.: Influence of random excitations
on acoustic instabilities in combustion chambers. AIAA J.
38(8), 1403–1410 (2000)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Dynamics of two mutually coupled thermoacoustic oscillators under external dual forcing
	Abstract
	1 Introduction
	2 Mathematical model
	3 Results and discussions
	3.1 Forcing amplitude ratio β
	3.2 Total forcing amplitude α
	3.3 Why does dual forcing outperform single forcing?
	3.4 Phase modulation of two forcing inputs φ
	3.5 Frequency detuning between two forcing inputs fr,1 neqfr,2

	4 Conclusions
	Appendix A Validation of our numerical scheme
	Appendix B Supplementary cases for β
	Appendix C Sensitivity analysis of small mismatches in K, τ, ζ
	Appendix D Impact of additive noise on suppression performance
	References





