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Abstract—This paper proposes 3DGeoDet, a novel geometry-
aware 3D object detection approach that effectively handles
single- and multi-view RGB images in indoor and outdoor
environments, showcasing its general-purpose applicability. The
key challenge for image-based 3D object detection tasks is
the lack of 3D geometric cues, which leads to ambiguity in
establishing correspondences between images and 3D repre-
sentations. To tackle this problem, 3DGeoDet generates effi-
cient 3D geometric representations in both explicit and implicit
manners based on predicted depth information. Specifically,
we utilize the predicted depth to learn voxel occupancy and
optimize the voxelized 3D feature volume explicitly through
the proposed voxel occupancy attention. To further enhance 3D
awareness, the feature volume is integrated with an implicit 3D
representation, the truncated signed distance function (TSDF).
Without requiring supervision from 3D signals, we significantly
improve the model’s comprehension of 3D geometry by leveraging
intermediate 3D representations and achieve end-to-end training.
Our approach surpasses the performance of state-of-the-art
image-based methods on both single- and multi-view benchmark
datasets across diverse environments, achieving a 9.3 mAP@0.5
improvement on the SUN RGB-D dataset, a 3.3 mAP@0.5
improvement on the ScanNetV2 dataset, and a 0.19 AP;p@0.7
improvement on the KITTI dataset. The project page is available
at: https://cindy0725.github.io/3DGeoDet/.

Index Terms—Multi-view 3D object detection, monocular 3D
object detection, voxel occupancy, 3D geometry.

I. INTRODUCTION

While 2D visual perception tasks, such as 2D object detec-
tion [1]-[3] and salient object detection [4], [5], have been
extensively studied, 3D object detection has emerged as a
rapidly evolving and active research area in computer vision,
thanks to its crucial role in diverse applications including
robotics, autonomous driving, and virtual reality (VR). It
identifies and locates objects in a 3D space leveraging data
acquired from sensors such as LiDAR or RGB-D cameras. In
the past decades, there has been a proliferation of studies [6]-
[16] working on 3D object detection from the input of point
clouds. These investigations have demonstrated the efficacy
of utilizing point cloud data for accurate object recognition
and localization. Nevertheless, the availability of point cloud
data remains limited because of the scarcity of LiDAR and
RGB-D cameras, posing a significant challenge to acquiring a
sufficient and diverse dataset for training models. Furthermore,
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the intrinsic characteristics of point clouds, such as sparsity,
occlusions, and noise, hinder accurate and reliable predictions.
Compared with point clouds, RGB images serve as a cost-
effective and widely accessible data source. Hence, we confine
our study to the image-based 3D object detection field.
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(a) Comparison of 3D object detection performance using varying number
of views with ImVoxelNet [17], NeRF-Det [18], and CN-RMA [19] on the
ScanNetV2 [20] dataset.
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(b) Comparison of architecture and training strategy with the state-of-the-art
approach, CN-RMA [19]. CN-RMA first trains the Multi-View Stereo (MVS)
module supervised by ground truth truncated signed distance function (TSDF)
volumes in Stage 1, then trains the 3D object detection network supervised by
3D bounding boxes in Stage 2, and finally trains the entire module in Stage
3. Instead, our model with the proposed voxel occupancy attention and TSDF
shaping is trained end-to-end with supervision from 3D bounding boxes.
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Fig. 1. Comparison of detection performance and framework with existing
approaches.

In recent years, image-based 3D object detection approaches
have obtained promising results. Specifically, Rukhovich et al.
[17] propose an end-to-end 3D object detector from a single
or multiple posed images. It accumulates 2D image features to
create a voxel representation of the scene and adopts a point
cloud-based detector to the voxel representation to estimate
object classes and locations. However, it fails to take account
of the underlying geometric information when constructing
the 3D voxel representation. Consequently, the detector fails
to differentiate between empty space and space occupied by
3D objects, leading to suboptimal detection results. Several
studies [18], [19], [21] follow this pipeline and combine it with
3D representations to enhance performance. However, [19],
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[21] necessitate expensive ground truth 3D representations for
supervision and all of these methods rely on a substantial
number of input images for accurate detection.

To tackle the aforementioned problems, we propose
3DGeoDet, a geometry-aware 3D detector that aims to pre-
cisely identify and locate objects from single- or multi-
view RGB images. Our detector comprehensively leverages
predicted depth information to generate precise and efficient
geometric cues, thereby improving the voxel representation
that is critical for predicting object locations. In particular,
3DGeoDet employs a lightweight depth estimation network
to learn depth information from the RGB images. Although
this process is straightforward and produces coarse depth
estimates with moderate accuracy, it provides sufficient infor-
mation to generate explicit and implicit 3D geometric cues.
First, depth information is utilized to assign occupancy scores
to the voxel representation, with larger scores allocated to
voxels containing objects as opposed to empty voxels. This
procedure, referred to as Voxel Occupancy Attention, improves
the network’s ability to focus on regions of interest within the
3D space. Second, depth information is leveraged to generate
an implicit 3D representation, the truncated signed distance
function (TSDF), contributing to the refinement of the voxel
representation. The TSDF is a volumetric representation used
to encode the distance from any point in space to the nearest
surface, with its sign distinguishing whether the point lies
inside or outside the object. In our method, the distance
between the center of each voxel and the object surface is
measured and integrated into our voxel representation. This
procedure is denoted as TSDF Shaping. By shaping the voxel
representation based on proximity to object surfaces, TSDF
Shaping provides a more precise geometric context. Finally,
the refined voxel representation is forwarded to a 3D detection
head, finishing the detection process. The synergy between
these two modules lies in their shared use of depth information
to enhance the voxel representation from different perspec-
tives. Voxel Occupancy Attention focuses on identifying and
emphasizing occupied regions, while TSDF Shaping refines
the spatial accuracy of these regions by considering their geo-
metric proximity to object surfaces. Together, they implement
a comprehensive and robust geometry-aware framework that
improves the detector’s ability to generalize across diverse
scenes and object types, fulfilling the goal of a general-
purpose 3D detector. Figure I highlights the structural and
performance differences between 3DGeoDet and state-of-the-
art approaches.

Our approach is evaluated quantitatively and qualitatively
on three benchmarks: ScanNetV2 [20], SUN RGB-D [22],
and KITTI [23]. The experimental results demonstrate the
superior performance of 3DGeoDet in comparison with the
state-of-the-art image-based multi-view approach, CN-RMA
[19], exhibiting improvements of 16.9% in mAP@0.25 and
10.6% in mAP@0.5 on ScanNetV2. Our method also demon-
strates exceptional data efficiency by achieving comparable
results to CN-RMA which utilizes 70 views, while effectively
leveraging a reduced input of only 20 views. Furthermore,
our detector’s performance on the SUN RGB-D and KITTI
benchmarks highlights its versatility, excelling not only in

multi-view 3D detection but also in monocular 3D detection,
and demonstrating strong generalization across both indoor
(SUN RGB-D) and outdoor (KITTI) environments.

In summary, our contributions encompass four main facets:

« We propose a geometry-aware image-based 3D object
detector that is applicable to both single- and multi-view
scenarios and generalizes effectively across indoor and
outdoor environments.

« We propose an innovative geometry-aware module, Voxel
Occupancy Attention, which leverages predicted depth
information to assign occupancy scores to the voxel
representation to integrate explicit geometric cues.

« We also introduce a novel TSDF Shaping module, which
seamlessly integrates implicit 3D representations in the
form of truncated signed distance function volume to
further refine the voxel representation.

« We implement end-to-end training and obtain state-of-
the-art performance for both single- and multi-view 3D
object detection tasks, demonstrating strong results in
both indoor and outdoor environments.

The remaining sections are organized as follows: Section II
reviews the literature related to 3D object detection and 3D ge-
ometry learning, evaluates previous studies, and identifies the
research gaps. Section III introduces the detailed composition
of the proposed model. Section IV describes the experimental
settings and interprets the experimental results. Section V sum-
marizes our study and provides possible research directions in
the future.

II. RELATED WORK
A. 3D Object Detection

Point cloud-based 3D object detection. In the past decade,
point cloud-based 3D object detection approaches have at-
tracted widespread attention since they can directly process
and analyze 3D geometric data. These methods utilize point
clouds, especially spatial relationships and geometric features
of these points, to capture rich information for identifying and
locating objects. They can be categorized into two groups
according to the underlying representations and processing
techniques: point-based methods and voxel-based methods.
Point-based methods [6]-[8], [10], [11], [14], [15], [24], [25]
directly operate on a point cloud as an unstructured set of
points and leverage PointNet-like architectures [26], [27] to
extract point features. Alternatively, voxel-based methods [12],
[13], [16], [28]-[33] operate by converting the point cloud into
a voxel grid. This voxel grid representation enables utilizing
3D convolutional neural networks to learn features and classify
objects within the point cloud. To decrease the memory usage
of voxel-based methods, sparse convolutional neural networks
are employed in some methods, which can efficiently handle
sparse voxel grids by only processing occupied voxels. Several
approaches [34], [35] integrate point cloud input with RGB im-
ages, designing different fusion strategies to effectively merge
point features and image features for object identification and
localization. Despite the progress made in point cloud-based
detection methods, their practical applicability is constrained
by the reliance on expensive 3D sensors. Compared with such



methods, our approach eliminates the necessity of utilizing
point cloud data in both the training and inference stages.

Image-based 3D object detection. Compared to point
cloud data, the relative ease of acquiring single- or multi-view
images has contributed to the growing interest in image-based
3D object detection methods over the past few years. Some
methods [36], [37] utilize frameworks specifically designed for
2D object detection tasks, such as FCOS [38] and CenterNet
[37], [39], to predict 3D object poses and classes. However,
these methods lack consideration for the 3D scene structure
and require time-consuming post-processing steps. Alterna-
tively, certain approaches [40]-[42] construct a pipeline that
leverages the capabilities of point cloud-based detection meth-
ods. These approaches involve estimating depth maps from 2D
image features, followed by back-projecting these depth maps
into pseudo-LiDAR signals and then applying LiDAR-based
detection methods. However, these methods are constrained
by the accuracy of the depth prediction network and the
LiDAR-based detector. In 2022, Wang et al. [43] introduce a
transformer-based multi-view detector called DETR3D. This
pioneering approach adopts a top-down strategy by directly
manipulating predictions in 3D space. It starts by extracting 2D
image features, which are then utilized by a series of 3D object
queries to generate 3D features and predict bounding boxes
for each query. Several subsequent studies [44]—[49] have fol-
lowed this pipeline, building upon the ideas in DETR3D [43].
Nevertheless, most of these methods utilize the bird’s-eye-view
(BEV) representation, which is appropriate for autonomous
driving scenarios. However, this representation is less effective
for indoor environments, where many objects are positioned
above ground level and exhibit greater spatial complexity. In
contrast, our method is designed to operate seamlessly across
both outdoor and indoor environments. By leveraging domain-
specific detection heads and geometry-aware modules, our
approach effectively adapts to the unique challenges posed by
both settings, ensuring robust 3D object detection in diverse
scenarios.

Over the past few years, there has been a notable interest
in aggregating 2D image features into a voxel representation
in 3D space. One such approach is ImVoxelNet [17], which
follows a specific pipeline. Initially, it extracts 2D image
features and then projects these features into 3D space using
camera intrinsic and extrinsic matrices, thereby creating a
voxel representation. After refining the voxel representation
with an encoder-decoder network, ImVoxelNet [17] applies the
FCOS3D [36], a point cloud-based 3D detector, to estimate the
categories and positions of objects within the voxel represen-
tation. Nevertheless, this approach overlooks the incorporation
of underlying geometry during the construction of the voxel
representation. As a result, the detector struggles to distinguish
between empty space and space occupied by objects, resulting
in suboptimal detection outcomes. To mitigate this problem,
Tu et al. [21] propose a geometry shaping module that utilizes
an encoder-decoder network to compute weights specifically
designed to refine the voxel representation. However, supervi-
sion of this module requires the ground truth point cloud data
of the scene during the training stage, which may limit the
generalization ability of their approach. Shen et al. [19] borrow

the power of a 3D reconstruction network to establish the
connection between 2D and 3D representations. However, the
combination of the 3D detector and 3D reconstruction module
requires a super complex training strategy. Furthermore, these
approaches require a large number of input images for precise
and reliable detection, which leads to significant performance
degradation when only a single input image is available.
Compared with these approaches, our method achieves end-to-
end training and demonstrates accurate detection performance
using both single- and multi-view input images.

B. 3D Geometry Learning

Occupancy perception. Occupancy perception has attracted
considerable attention because of its crucial role in enabling
autonomous systems to navigate and operate in complex
environments. It involves the assessment of spatial occupancy
within a given scene, determining whether specific areas are
occupied by objects or obstacles. Many approaches [50],
[51] have been proposed to classify regions as occupied or
unoccupied based on different sensor data. In contrast to these
methods, our aim is to create coarse occupancy predictions
to manipulate and enhance the voxelized 3D feature volume,
rather than focusing on generating precise occupancy predic-
tions.

Neural implicit reconstruction. In the process of recon-
structing underlying geometry from multiple posed images,
neural implicit representations, such as truncated signed dis-
tance function (TSDF), are commonly employed. The concept
of truncated signed distance function is first proposed in [52].
Each voxel in a 3D grid is assigned a value representing
the signed distance to the nearest surface. A negative value
represents the voxel is inside the surface, while a positive
value represents it is outside. The “truncated” aspect refers
to limiting the distance to a specific range, typically be-
tween -1 and 1, to reduce the effects of noise and improve
computational efficiency. The Atlas [53] method utilizes a
3D convolutional neural network to predict the truncated
signed distance function volume of the scene and employs
the marching cube algorithm to extract the reconstructed mesh
from the volume. Several works [54]-[56] adopt the pipeline of
Atlas for reconstructing the truncated signed distance function
volume. However, compared to these methods, our method
aims to predict the location of 3D objects instead of recon-
structing their precise shapes. Our method only utilizes the
truncated signed distance function volume as a tool to enhance
the voxelized 3D feature volume.

III. METHODOLOGY
A. Overall Framework

As illustrated in Figure 2, given one or multiple RGB
images {I; € RIE>XW>31n  of a scene, along with the
corresponding camera intrinsic matrices { K; € R**4}2_| and
extrinsic matrices {R; € R**4}1 | the goal of 3DGeoDet
is to predict the labels {l/;}72; and 3D bounding boxes
{bj}72, of objects in the scene, where n is the total number
of views and m is the total number of bounding boxes.

3DGeoDet leverages depth information to generate voxel
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Fig. 2. Overall architecture of our 3DGeoDet method. Given either single or multiple posed RGB images, we begin by extracting 2D image features
using a transformer backbone. To estimate depth information, we reassemble and fuse multi-scale 2D image features and adopt a depth prediction head. The
fused 2D features are back-projected to obtain a 3D feature volume. Since the 3D feature volume lacks explicit geometric information, we propose the Voxel
Occupancy Attention module, which uses predicted depth maps to generate occupancy scores for each voxel, highlighting regions with a high likelihood of
containing objects. To directly incorporate 3D geometric cues, we introduce the TSDF Shaping module. The TSDF volume contains the signed distance of
each voxel to the nearest object surface. Negative values signify the voxel lies within objects, positive values signify it lies outside, and a value of zero
indicates it lies precisely on the surface. In the figure, negative TSDF values are shown in blue, positive TSDF values in gray, and zero values in red. TSDF
values are concatenated with the optimized 3D feature volume to encode more precise geometric information for regions likely to contain objects. Several
upsampling and downsampling blocks are utilized to generate multi-scale 3D feature volumes. Finally, a 3D detection head is employed to predict class labels

and 3D bounding boxes for each scene.

occupancy scores and truncated signed distance function vol-
ume, serving as effective 3D geometric cues that guide the
network. Specifically, we first extract the 2D image feature
F; € RHsxWixC for each RGB image I; using a transformer
backbone, then we aggregate these image features {F;}7 ,
into a 3D feature volume V € RNeXNyXNoXC yiilizing
corresponding camera parameters { K;, R;}" ; through back-
projection and summation (Section III-B). The aggregated 3D
feature volume obtained is not optimal, potentially resulting in
voxel contamination in the 3D space and affecting the accuracy
of the detector.

To improve the quality of the 3D feature volume, we
propose Voxel Occupancy Attention (Section I1I-C) and TSDF
Shaping (Section III-D). Specifically, we use a depth estima-
tion network to predict the depth map for each image. Then
each depth map will be converted to a sparse point cloud. We
aggregate the point clouds from different views and generate
scores for the voxels in the 3D feature volume. Besides, we
measure the truncated signed distance value of each voxel to
the surface of the scene and use it to further enhance the
3D feature volume. Finally, we adopt the 3D detection head
n [17] to predict object classes and locations from the 3D
feature volume (Section III-E).

B. 3D Feature Volume

For each image I;, we first extract features from cls tokens
and patch tokens using a transformer backbone DINOv2 [57].
Note that the backbone version we use has a similar number
of parameters as the ResNetl01 backbone.

ECZS, Fipamh = fbackbone (Iz) (1)

Then, we expand F¢* and concatenate with FP**". After
unflattening the concatenated feature, we feed it to a 2D con-
volutional layer Conv2D and a 2D transposed convolutional
layer Conv2DT to extract the 2D image feature F; for each
image.

F; = Conv2D™ (Conv2D (un flatten(
Concat(expand(FFY), FPM))),

where F; € RHsxWsxC Next, we back-project the 2D image
features {F;}7; to generate the 3D feature volume. We build
a 3D coordinate system, where the z-axis is orthogonal to
the ground, and the x and y axes represent two horizontal
dimensions. The origin of this coordinate system is set as (0,
0, 0), along with a random small offset. We create a 3D grid
in the 3D space with N, x N, x N, voxels and project every
voxel p centered at coordinate (z,y,z) to a 2D image plane

2

u; L v
vil=10 o ol KR ||, 3)
1 0 0 1 1

where [vl] is the image pixel coordinate of p in view-i, K;
K3

is the camera intrinsic matrix, and R; is the camera extrinsic
matrix.

For each view 4, we can generate a C-channel feature Vip
for voxel p by

‘/ip = fNearest(Fia (ui7 Ui))a €]

where fneqrest indicates the nearest interpolation operation.



Algorithm 1 Voxel Occupancy Learning

Input: Multi-view depth maps: {D;}"_,; 3D feature vol-
ume V' with m voxels vy, v9, ..., v, ; Camera parameters:
{Ki, Ri}iy:

Output: Occupancy scores S for 3D feature volume;

1: Initialization: Sy < O;
2: for:=1ton do
3:  Project D; to a point cloud P; consisting of N points;

4: if P; =0 then

5: continue;

6: else

7: for j =1 to m do

8: s < |{p € Pi|p lies in v;}|/N;
9: Sf — ngl + Sg;

10: end for

11:  end if

12: end for

13: Return S = S,,;

To aggregate features from multiple views, we generate a
mask M, to filter out voxels that lie outside the view frustum
of the image I;. Specifically, we assign 0 to MY if (u;,v;) is
outside the pixel coordinate. Then, we generate the 3D feature
volume V' by

V= iv;Mi/iMi, 5)
=1 =1

where n is the total number of views.

It is important to highlight that the generated 3D feature
volume lacks geometry awareness, and ambiguity arises due
to uniform sampling throughout the 3D space, which includes
both empty regions and object surfaces. The assignment of
feature values to these voxels is solely based on their corre-
sponding positions in the 2D feature map. Therefore, to make
our model geometry-aware, we propose the Voxel Occupancy
Attention module (Section III-C) and TSDF Shaping module
(Section III-D).

C. Voxel Occupancy Attention

As we mentioned in Section III-B, the 3D feature volume
generated is suboptimal due to the assignment of feature values
to empty areas in the 3D space. To tackle this problem, we
propose Voxel Occupancy Attention that predicts occupancy
scores for each voxel to differentiate between empty and occu-
pied regions in 3D space. We opt to utilize depth information
for voxel occupancy learning due to several reasons. First,
depth information serves as a valuable communication bridge
between 2D and 3D representations. Furthermore, acquiring
ground truth depth information is much simpler than obtaining
ground truth 3D representations like point clouds.

Voxel occupancy learning. For each image I;, we follow
[58] to predict its depth map D,;. Unlike our 2D feature
extraction process, which utilizes only the cls token and patch
token features from the last layer of the transformer back-
bone, we extract cls and patch token features from multiple
layers | = {2,4,7,11}. The features from the cls and patch

tokens are concatenated to form f!. Subsequently, the token
features f! are assembled into 2D feature maps with different
resolutions by

F! = Conv2DT (Conv2D(un flatten(f}))), (6)

where F! € RITXWixCi We fuse and upsample these 2D
feature maps and feed them into a linear depth head to generate
the depth map D;. After obtaining the depth map D,;, we
project it to a sparse point cloud P;. For each voxel v and each
view 4, the occupancy score .Sy is calculated by the percentage
of points in P; that are in the vicinity of the voxel. The scores
from different views are added to generate the final score S
for the voxel v. The process of voxel occupancy learning is
summarized in Algorithm 1.

Voxel attention. Finally, we multiply the scores of all
voxels S with the original 3D feature volume V to generate
the optimized 3D feature volume V.

V' i+ VoS, @)

where © represents element-wise multiply.

D. TSDF Shaping

Voxel Occupancy Attention enhances the 3D feature volume
by assigning occupancy scores to each voxel based on depth
information. However, the improved 3D feature volume still
lacks direct guidance from 3D geometric cues. To address
this issue, we propose TSDF Shaping which measures the
truncated signed distance of each voxel to the surface of the
scene and uses it to further enhance the 3D feature volume.
The algorithmic specifics of TSDF Shaping are outlined in
Algorithm 2.

First, we generate a TSDF volume 7' by fusing multiple
registered depth maps {D;}?” , predicted in Section III-C.
The TSDF volume T € RMN=*NyXN: j5 a 3D grid where
each voxel contains the truncated signed distance value to the
surface of the scene. The generation of this TSDF volume
follows the standard TSDF fusion algorithm [52]. The signed
distance between the voxel and the object surface is calculated,
truncated to a predefined range, and weighted based on the
angle between the projection ray and the surface normal.
The truncated signed distance and weight are then aggregated
across views to update the TSDF value and weight for each
voxel.

Then, we apply two 3D convolutional layers to the improved
3D feature volume V' and concatenate it with T to generate
the geometry-aware 3D feature volume V. Although the
shaped 3D feature volume is geometry-aware, it may lack the
ability to predict the location of objects with varying sizes. To
mitigate this issue, we apply a lightweight encoder-decoder
network f.s to generate multi-scale features for each voxel.
The encoder comprises three downsampling residual blocks,
each containing two 3D convolutional layers. The decoder
encompasses three upsampling residual blocks, wherein each
block consists of a transposed 3D convolutional layer and a 3D
convolutional layer. The decoder generates feature volumes of
varying scales, which are passed to the 3D detection head to
predict bounding boxes and labels.



Algorithm 2 TSDF Shaping
Input: Multi-view depth maps: {D;}?_,; Camera parameters:
{K;, R;}?_;; 3D feature volume V' with m voxels, with
coordinates Cy, C, ..., C)y,; Truncate distance d;
Output: Multi-scale 3D feature volumes V,,;
1: Initialize TSDF and weight value: Ty < 1; Wy < 0;
2: for 5 =1 to m do
33 fori=1tondo

4: Project the j-th voxel onto the i-th image plane: I;; =
K;R;Cy;

5: Compute the signed distance and weight value:
Sdfj:HC — Ril| = Di(1i); wzj':%(e

angle between projection ray and normal vector);

6 if sdf] > 0 then

j . sdff \ .
7: t] = min(1, =*);
8 else ;

j sdff \.
9: t] = max(—1, —*-);
10: end if P i

COWI T wlt? ; ;

. g _ Wi T twity  1rr5  vrrd J
11: T) = mlz?‘_liwﬂi s W =W/, +w);
12:  end for
13: end for

14: V' =
15: Return V,,

Concat(Conv3D(V'),T,)
= fres (VH)

E. 3D Detection Head

We follow [17] to predict the bounding boxes and class
labels from 3D feature volumes.

Indoor head. For the indoor head, center sampling is
adopted to choose candidate object locations. For each 3D
location, we utilize a detection head which is composed of
three 3D convolutional layers to predict its class probability,
centerness, and box coordinates.

Outdoor head. For the outdoor detection head, we simplify
the detection process by projecting the 3D feature volumes
generated in Section III-D onto 2D feature maps. This is mo-
tivated by the nature of the outdoor detection task, where there
is only a single category, car, and all objects are located on the
ground plane. A lightweight 2D detection head, consisting of
two 2D convolutional layers, is then employed to predict class
probabilities and bounding box coordinates for each location.

Loss. The loss function is a combination of depth loss and
detection loss. The depth loss Lgeptp is L1 loss. For the indoor
head, the detection loss includes focal loss L., for predicting
class labels, 3D IoU loss Li" for regressing bounding box
coordinates, and cross-entropy loss L%, for estimating the
centerness. For the outdoor head, the detection loss includes
focal loss L9 for predicting class labels, cross-entropy loss
LS4t for estimating directions, and smooth L1 loss L“! for
regressing box coordinates. The overall loss function is defined

as

1 in in
F( cls + bom Lctr) + )‘Ldepthv
1 ° ®)
Lowsdoor = 5 (LGl + aLiie + BLGT) + MLdepth,

Lindoor =

where A, o, 8 represent the corresponding loss weights and NV,
represents the number of samples occupied by objects.

IV. EXPERIMENTS
A. Experimental Setting

1) Datasets: The proposed 3DGeoDet is evaluated both
quantitatively and qualitatively on three datasets: ScanNetV2
[20], SUN RGB-D [22] and KITTI [23]. We assess the
3D detection performance using multi-view images on the
ScanNetV2 dataset and evaluate the 3D detection performance
using a single image on the SUN RGB-D and KITTI datasets.

ScanNetV2. ScanNetV2 is a popular multi-view dataset of
3D indoor environments focusing on 3D scene understanding
and reconstruction. It comprises 1513 scans representing more
than 700 distinct indoor scenes. Among these scans, 1201
scans are allocated for the training split, while the remaining
312 scans are for testing. This dataset encompasses more than
2.5 million posed RGB-D images and provides rich annota-
tions including reconstructed point clouds with 3D bounding
boxes and semantic labels. Since the 3D bounding boxes are
axis-aligned, the yaw target is always zero.

SUN RGB-D. SUN RGB-D is a commonly used single-
view dataset of indoor scenes. It comprises 10335 RGB-D
images with camera poses collected from different locations
such as homes, offices, and public spaces. 5,285 of them are
allocated for training purposes and the remaining 5,050 are
designated for testing. The SUN RGB-D dataset offers a rich
set of annotations for 58657 objects, including pixel-level 3D
semantic labels and 2D and 3D bounding boxes.

KITTI. KITTI is a well-known benchmark dataset for
autonomous driving research, containing various sensor data
such as images, point clouds, and GPS data collected from a
car driving in urban, rural, and highway environments. For the
monocular 3D object detection task, it provides 7481 training
images and 7518 test images with over 80000 annotated
objects. The detection task is categorized into three levels of
difficulty: easy, moderate, and hard, depending on the objects’
size, degree of truncation, and level of occlusion. We follow
the standard splits and evaluate our method on the validation
splits which contain 3711 training samples and 3768 validation
samples. Following [17], [59], our model is evaluated on the
car category, as it is the most represented and widely studied
category in KITTI. Cars dominate the dataset in both quantity
and importance for autonomous driving, making them the
standard benchmark for monocular 3D detection.

2) Evaluation metric and compared methods: For the Scan-
NetV2 and SUN RGB-D datasets, mean average precision
(mAP) is used for evaluation, with thresholds set at 0.25
and 0.5. For the KITTI dataset, we adhere to the evaluation
standards set by the KITTI benchmark, with AP;p@0.7 at
the moderate level serving as our primary evaluation met-
ric. Furthermore, we present the model’s performance on
AP3p@0.7 at easy and hard levels, alongside APggpy@0.7
across all levels. We utilize 40 recall positions. For the multi-
view 3D detection task, we compare our method with the latest
state-of-the-art indoor detection methods on the ScanNetV2
dataset: ImVoxelNet [17], NeRF-Det [18], NeRF-Det++ [60],



TABLE I
3D OBJECT DETECTION RESULTS ON SCANNETV2 DATASET. THE RED VALUE INDICATES THE EXTENT OF IMPROVEMENT OUR METHOD ACHIEVES
OVER THE SECOND-BEST APPROACH. OUR APPROACH OUTPERFORMS CURRENT METHODS ACROSS THE MAJORITY OF CATEGORIES IN TERMS OF BOTH
MAP@0.25 AND MAP@0.5.

(a) mAP@0.25 on ScanNetV2.

Method | Performance (mAP@0.25)

H cab bed chair sofa tabl door wind bkshf pict cntr desk curt fridg showr toil sink bath ofurn H mAP 1
ImVoxelNet [17] 28.0 81.1 69.5 719 486 27.1 11.7 339 313 619 11.6 520 20.0 92.6 515 748 287 434
NeRF-Det [18] 359 86.1 739 66.6 524 355 17.8 485 433 730 252 606 383 91.0 504 743 30.7 50.4
NeRF-Det++ [60] || 38.7 85.0 73.2 78.1 563 35.1 22.6 455 50.7 72.6 265 594 55.0 93.1 49.7 81.6 341 53.3
ImGeoNet [21] 38.7 86.5 76.6 757 593 42.0 28.1 59.2 428 715 369 518 441 952 58.0 79.6 36.8 54.8
CN-RMA [19] 38.0 80.6 688 746 52.8 37.8 239 392 583 66.5 36.8 442 165 92.1 63.7 795 36.1 51.0
3DGeoDet (Ours) | 48.7 88.4 79.0 87.3 63.4 425 283 523 579 81.5 399 624 500 958 65.6 82.6 44.4 | 59.6 (+4.8)

(b) mAP@0.5 on ScanNetV2.

Method H Performance (mAP@0.5)

H cab bed chair sofa tabl door wind bkshf pict cntr desk curt fridg showr toil sink bath ofurn H mAP 1
ImVoxelNet [17] 75 582 368 355 261 34 05 115 00 23 31.8 1.1 169 00 619 160 388 9.6 19.9
NeRF-Det [18] 99 725 43.0 399 310 48 1.8 129 05 41 421 09 220 57 692 233 574 121 252
ImGeoNet [21] 143 742 474 469 410 81 20 269 05 66 447 44 282 39 710 259 483 172 28.4
CN-RMA [19] 156 63.1 366 608 432 102 29 243 2.7 253 448 79 315 02 76.8 235 638 232 31.0
3DGeoDet (Ours) || 20.7 75.1 532 694 46.7 92 25 308 00 119 519 86 379 8.0 743 23.6 72.0 234 | 34.3(+3.3)

ImGeoNet [21], and CN-RMA [19]. For the monocular 3D
detection task, we compare our approach with the latest state-
of-the-art indoor detection method, ImVoxelNet [17], on the
SUN RGB-D dataset. Additionally, we evaluate against the
latest state-of-the-art autonomous driving detection methods
on the KITTI dataset: ImVoxelNet [17], MonoDTR [49], DID-
M3D [61], MonoNeRD [59], MonoUNI [62], and MonoLSS
[63].

3) Implementation details: Our method is implemented
utilizing the MMDetection3D [64] toolbox.

Training. For the SUN RGB-D dataset, the input image is
resized to 532 x 728 and a random horizontal flip is adopted
to the 3D scene. For the ScanNetV2 dataset, the input image
is resized to 560 x 364. To increase memory efficiency, for
both settings, the shape of the 3D feature volume is set to
40 x 40 x 16 and the voxel size is 0.16 meters. For the KITTI
dataset, the input image is resized to 980 x 280. The shape
of the 3D feature volume is set to 216 x 248 x 12 and the
voxel size is 0.32 meters. The weight losses A, «, and (3 are
set to 0.5, 2, and 0.2, respectively. For the optimizer, AdamW
is adopted and the learning rate is initialized to 0.0001. All
datasets are trained for 50 epochs and repeated two times for
each epoch. 4 Nvidia GeForce RTX 4090 GPUs are used to
train our model.

Inference. During inference, we adopt the non-maximum
suppression (NMS) algorithm to filter the predictions. The IOU
threshold is set to 0.25.

B. Comparison with State-of-the-art Methods

First, we discuss the outcomes of multi-view 3D object
detection on the ScanNetV2 dataset. Second, we present our
monocular 3D object detection results on the SUN RGB-D and
KITTI datasets. Finally, we analyze the visualization results on
these three datasets.

1) Results on ScanNetV2: The proposed 3DGeoDet is com-
pared with the existing state-of-the-art multi-view detection

approaches: ImVoxelNet [17], NeRF-Det [18], NeRF-Det++
[60], ImGeoNet [21], and CN-RMA [19]. As shown in Table
I, our method outperforms existing methods in most of the
categories in terms of both mAP@0.25 and mAP@0.5. In par-
ticular, compared with the latest state-of-the-art approach CN-
RMA, our method improves the mAP@0.25 and mAP@0.5
by 16.9% and 10.6%, respectively. It is important to highlight
that the latest state-of-the-art methods, ImGeoNet and CN-
RMA, leverage LIDAR ground truth data and TSDF ground
truth data, respectively, in their training stages. Notably, CN-
RMA demands 300 dense depth maps for producing TSDF
ground truth data, whereas our approach requires only 20.
Nevertheless, our model demonstrates an improvement of
10.6% over the second-best method, CN-RMA, in mAP@0.5,
and surpasses ImGeoNet by 8.8% in mAP@0.25. The results
for ImVoxelNet, NeRF-Det, and CN-RMA are reproduced
using the official repository. 20 views are used for training,
and 50 views are used for testing. As the codes of ImGeoNet
and NeRF-Det++ have not been publicly available, we refer to
the experimental performance presented in their papers, with
50 views used for both training and testing. Furthermore, we
evaluate the effectiveness of our detector by examining its
performance across different numbers of views (ranging from
2 to 70) during the inference stage. Table II demonstrates that
our approach surpasses existing methods across all view con-
figurations, particularly for scenarios involving fewer views.
Notably, our method exhibits outstanding data efficiency, de-
livering results on par with CN-RMA’s performance using just
20 views compared to their 70 views.

2) Results on SUN RGB-D: The proposed 3DGeoDet is
also compared with the existing state-of-the-art monocular ap-
proach in indoor environments, ImVoxelNet [17]. As shown in
Table IV, 3DGeoDet outperforms ImVoxelNet in all categories
in terms of both mAP@0.25 and mAP@0.5. More specifically,
it outperforms ImvoxelNet by 26.4% and 68.4% in mAP@0.25
and mAP@Q.5, respectively. These substantial improvements



TABLE 11
3D OBJECT DETECTION RESULTS WITH DIFFERENT NUMBER OF VIEWS ON SCANNETV2. THE RED VALUE INDICATES THE EXTENT OF
IMPROVEMENT OUR METHOD ACHIEVES OVER THE SECOND-BEST APPROACH. OUR METHOD DEMONSTRATES REMARKABLE DATA EFFICIENCY BY
ACHIEVING BETTER RESULTS THAN CN-RMA, WHICH USES 70 VIEWS, DESPITE USING ONLY 20 VIEWS.

Method ‘

Performance (mAP@0.25 / mAP@0.5) 1

| 2views | Sviews | 10views | 20views | 30views | 40views | 50 views | 60 views | 70 views
ImVoxelNet [17] 13.8 / 4.60 25.6 /9.70 34.0/13.3 40.7 /174 40.8 / 18.7 44.3 / 20.7 434/ 19.9 41.6 / 19.1 438 /21.5
NeRF-Det [18] 7.60 / 2.20 24.2/9.30 38.7/ 159 44.8 /1 21.7 49.1 /254 50.4 /24.9 504 /252 52.3/26.0 52.6 /1 26.8
CN-RMA [19] 11.1 /7 3.80 18.1 / 6.50 39.3/21.3 46.8 / 27.1 48.4 /1 28.7 50.4/29.7 51.0/31.0 52.2/31.3 52.8/32.6
3DGeoDet (Ours) 22.6 / 10.7 38.3/19.2 48.5/26.6 | 55.6/31.5 57.7 / 32.8 58.8 / 33.8 59.6 / 34.3 59.5/ 34.5 60.1 / 35.0
+8.8 / +6.1 +12.7 /7 +9.5 +9.2/+5.3 +8.8/+4.4 | +8.6/ +4.1 +8.4 / +4.1 +8.6 / +3.3 +7.2/+3.2 +7.3/+2.4
TABLE III

MONOCULAR 3D OBJECT DETECTION RESULTS ON THE CAR
CATEGORY OF KITTI VALIDATION SET. THE RED VALUE INDICATES THE
EXTENT OF IMPROVEMENT OUR METHOD ACHIEVES OVER THE
SECOND-BEST APPROACH. OUR METHOD OUTPERFORMS ALL
APPROACHES REGARDING AP3p @0.7 AND APggpy @0.7 AT ALL
DIFFICULTY LEVELS.

| AP3p/APppy @0.7 (Ra0) T

Method
| Easy | Mod. | Hard

ImVoxeINet [17] 17.85/27.99 | 1150/ 18.40 | 9.20/15.10
MonoDTR [49] 23.96 /3323 | 18.12/24.83 | 15.01/21.30
DID-M3D [61] 2298 /31.10 | 16.12/22.76 | 14.03 / 19.50
MonoNeRD [59] | 20.64 /29.03 | 15.44/22.03 | 13.99 / 19.41
MonoUNI [62] 24,51/ - 17.18 / - 14.01 / -
MonoLSS [63] 2478 13332 | 17.65/23.92 | 1453 /2021

24.91/3697 | 18.31/2633 | 15.03 /2236
3DGeoDet (Ours) | 13/ 365 | 40.19 / +1.50 | +0.02 / +1.06

demonstrate that our method effectively narrows the perfor-
mance gap between monocular detection methods and point
cloud-based detection methods in indoor environments.

3) Results on KITTI: The proposed 3DGeoDet is also
compared with existing state-of-the-art monocular approaches
in outdoor environments: ImVoxelNet [17], MonoDTR [49],
DID-M3D [61], MonoUNI [62], MonoNeRD [59], and
MonoLSS [63]. As demonstrated in Table III, 3DGeoDet sur-
passes all existing methods in both AP @0.7 and APggy @0.7
metrics across all difficulty levels. Notably, in terms of
APgpy @0.7, it achieves an improvement of 3.65, 1.50, and
1.06 for the easy, moderate, and hard difficulty levels, re-
spectively. The results for ImVoxelNet and MonoDTR are
reproduced using their official repositories, while the results
for the other compared methods are obtained from their
respective publications.

4) Visualization Results: We also evaluate the effectiveness
of our method qualitatively on the ScanNetV2, SUN RGB-D,
and KITTI datasets. For the ScanNetV2 dataset, as shown in
Figure 3, our method excels in accurately predicting small
objects in complex scenes and objects positioned in the
corners, such as the small chairs and thin doors in the red
circle. For the SUN RGB-D dataset, as shown in Figure 5,
our method performs best in predicting the rotation angles of
large objects such as beds, cabinets, and sofas. For the KITTI
dataset, as shown in Figure 4, our method excels at predicting
small, distant, and occluded objects. For instance, it accurately
identifies the car at the end of the road within the red circle
in the first and second scenes, as well as the occluded cars on

the sides of the road in the third scene.

C. Ablation Study

This subsection provides the experimental results obtained
from the SUN RGB-D and ScanNetV2 datasets, aiming to
demonstrate the effectiveness of the Voxel Occupancy At-
tention module and TSDF Shaping module, compare diverse
TSDF generation, TSDF integration methods, and different
hyperparameters employed in our approach.

1) Effectiveness of proposed modules: To assess the effec-
tiveness of the Voxel Occupancy Attention module and TSDF
Shaping module, we conduct a comparative analysis between
our method and a baseline model that lacks these two modules.
The baseline model shares the same backbone, 3D feature
extraction, detection head, and training settings as our method.
The only difference lies in the absence of occupancy scores
for the 3D feature volume and the omission of TSDF volume
generation to enhance the 3D feature volume. It is important
to mention that the baseline model is also trained using ground
truth depth maps as supervision. Table V clearly demonstrates
the impact of integrating the Voxel Occupancy Attention
module. By adding this module, we observe a notable increase
of 42 in mAP@0.25 and 5.5 in mAP@0.5. These results
serve as strong evidence of the effectiveness of our Voxel
Occupancy Attention module. By assigning higher scores to
voxels that contain objects, our model becomes more adaptable
to geometric information. Table V also shows the effectiveness
of our TSDF Shaping module. Without the supervision of
ground truth TSDF volume, our model achieves a 0.2 increase
in mAP@0.25 and a 0.3 increase in mAP@0.5 compared to
the baseline added with only the Voxel Occupancy Attention
module. If we employ the ground truth TSDF volume to
supervise our model, as done in CN-RMA, our model further
enhances the mAP@0.25 to 60.8 and the mAP@0.5 to 35.5.

2) Impact of generation and integration methods of TSDF
volume: In addition to assessing the effectiveness of the
proposed modules, we also explore the impact of the gen-
eration and integration of the TSDF volume within the TSDF
Shaping module on the performance of our detector. Table
VI presents a comparison between two methods of TSDF
generation and three methods of TSDF integration. The term
”TSDF Fusion” refers to fusing multi-view depth maps into
the TSDF volume, while "TSDF Head” indicates generat-
ing the TSDF volume using a head composed of multiple
3D convolutional layers and ReLU activation functions. The



TABLE IV

3D OBJECT DETECTION RESULTS ON SUN RGB-D DATASET. THE RED VALUE INDICATES THE EXTENT OF IMPROVEMENT OUR METHOD ACHIEVES
OVER THE SECOND-BEST APPROACH. OUR APPROACH OUTPERFORMS IMVOXELNET IN ALL CATEGORIES IN TERMS OF BOTH MAP@0.25 AND
MAP@Q.5.
Method | Performance (mAP@0.25 / mAP@0.5)
| bed | sofa | chair | desk | dresser | nightstand | bookshelf | table | toilet | bathtub | mAP 1
ImVoxelNet [17] 71.9/403 | 52.7/134 | 55.6/17.8 | 21.7/ 1.8 | 17.7/2.50 | 33.2/7.70 | 7.80/0.71 | 40.3/9.00 | 76.2/40.2 | 29.2/2.80 40.6 /13.6
3DGeoDet (Ours) | 81.6 /532 | 64.1/355 | 59.1/232 | 342/84 | 264/62 | 40.9/149 | 11.6/15 | 50.6/18.6 | 76.7 /422 | 67.7/23.3 | 51.3 (+10.7) / 22.9 (+9.3)
Ground truth ImVoxelNet CN-RMA

Ours
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Fig. 3. Qualitative results of multi-view 3D object detection on ScanNetV2. We randomly sample 50 input images for each scene during inference.
Compared to ImVoxelNet and CN-RMA, our method performs better in predicting objects with smaller sizes or objects in corners, such as the small table,
the chairs, and the bathroom door in the red circle.

TABLE V
EFFECTIVENESS OF VOXEL OCCUPANCY ATTENTION AND TSDF of precise TSDF supervision. The absence of accurate TSDF
SHAPING. WE CONDUCT THIS STUDY ON SCANNETV2, TSDF SHAPING®  gupervision makes it challenging for the latter method to
INDICATES THAT THE TSDF SHAPING MODULE IS SUPERVISED BY THE

GROUND TRUTH TSDE VOLUME. converge effectively. Regarding the integration methods, we

experiment with concatenation, multiplication, and addition of
Method | mAP@0.25  mAP@0.5 the generated TSDF volume with the optimized 3D feature
Baseline 55.2 28.5
Baseline + Voxel Occupancy Attention

volume. The table demonstrates that concatenation achieves
59.4 34.0 . .

Baseline + Voxel Occupancy Attention + TSDF Shaping 50.6 343 the best performance. This outcome can be attributed to the
Baseline + Voxel Occupancy Atention + TSDF Shaping” 608 355 fact that direct addition or multiplication may lead the network
toward an incorrect convergence direction, as these operations

significantly alter the optimized 3D feature volume.
results indicate that TSDF generation through fusion yields
better performance compared to TSDF generation using the
TSDF head. This difference could be attributed to the lack

3) Impact of hyperparameters: We also explore the influ-
ence of various hyperparameters on our model’s performance.
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Fig. 4. Qualitative results of monocular 3D object detection on KITTI. We input one image for each scene. Compared with ImVoxelNet, our method

performs better in predicting small, distant, and occluded objects.
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Fig. 5. Qualitative results of monocular 3D object detection on SUN
RGB-D. We input one image for each scene. Compared with ImVoxelNet,
our method performs better in predicting the rotation angles of large-sized
objects such as beds, cabinets, and sofas.
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TABLE VI
IMPACT OF GENERATION AND INTEGRATION OF TSDF VOLUME. WE
CONDUCT THIS STUDY ON SCANNETV?2.

TSDF generation | Integration | mAP@0.25 mAP@0.5
TSDF Fusion Concat 59.6 34.3
TSDF Fusion Add 59.4 34.0
TSDF Fusion Multiply 59.3 34.1
TSDF Head Concat 59.2 34.0
TSDF Head Add 59.4 34.0
TSDF Head Multiply 59.0 339

The experiments are conducted on the SUN RGB-D dataset
since we want to experiment with the constant added to the
occupancy scores of the 3D feature volume for the monocular
object detection task. Firstly, we examine the appropriate
weight A for the depth loss. Table VII illustrates that there is
minimal variation in mAP@0.25 and mAP@0.5 as the weight
of the depth loss is adjusted. The best results are obtained

TABLE VII
IMPACT OF DIFFERENT HYPERPARAMETERS. WE CONDUCT THIS STUDY
ON SUN RGB-D.

Loss weight A | Constant § | mAP@0.25 mAP@0.5
1 1 50.9 22.6
1 0.5 50.5 22.4
1 0 44.9 16.0
0.5 1 51.3 229
0.5 0.5 51.0 22.8
0.5 0 45.5 16.8

when the weight is set to 0.5. Secondly, we analyze how the
constant # added to the occupancy scores of the 3D feature
volume influences the performance of our monocular detector.
Table VII further demonstrates that without incorporating the
constant #, mAP@0.25 and mAP@0.5 drop significantly, even
approaching the performance of ImVoxelNet. However, by
setting the constant to 1, we observe an increase of 5.8 and
6.1 in mAP@0.25 and mAP@0.5, respectively. One possible
explanation for this phenomenon is that the generated point
clouds from single-view depth maps are sparsely distributed,
resulting in zero scores assigned to most voxels in the 3D
feature volume in the first few epochs. By introducing the
constant, we can facilitate faster convergence of the network
during the initial epochs of the training phase.

D. Failure Cases

Figure 6 showcases several instances of detection failures
observed in both the SUN RGB-D and ScanNetV?2 datasets. In
the case of the SUN RGB-D dataset, our method detects tables
and chairs that do not exist in the ground truth annotations.
However, upon inspecting the corresponding input image, it
becomes evident that the chairs and tables do exist in the
scene. This discrepancy may be attributed to the inaccurate
labeling of objects in the SUN RGB-D dataset, where certain
objects present in the scene remain unlabeled. Regarding
the ScanNetV2 dataset, our method encounters challenges
in detecting small objects located in corners. This could be
attributed to the limited visibility of these objects, as they
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Fig. 6. Failure cases in SUN RGB-D and ScanNetV2. For the SUN RGB-D
dataset, our method predicts tables and chairs that are absent from the ground
truth annotations. For the ScanNetV2 dataset, our method misses the small
cabinet located in the upper right corner and the curtain under strong light.

may only appear in a small number of input images or even
remain completely invisible in the selected subset of 50 input
images. Another factor contributing to the failure cases could
be extreme lighting conditions, which adversely affect the
performance of the detector.

V. CONCLUSION

In conclusion, we propose 3DGeoDet, a general-purpose
geometry-aware detector capable of accurately predicting ob-
ject categories and locations from both single- and multi-
view RGB images across indoor and outdoor environments.
Our approach introduces two novel geometry-aware mod-
ules that effectively integrate implicit and explicit geometric
information by leveraging the predicted depth information.
Extensive experiments on the ScanNetV2, SUN RGB-D, and
KITTI datasets validate the effectiveness of our framework,
demonstrating state-of-the-art performance in image-based 3D
object detection across indoor and outdoor benchmarks. For
future investigations, we recommend exploring and integrating
other implicit or explicit 3D representations, such as 3D
Gaussian Splatting, to further enhance the performance of our
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model. Incorporating diverse data sources such as text into our
model is also a feasible future direction.
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