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Abstract. The parametric finite element methods of the Barrett–Garcke–Nürnberg
(BGN) type have been successful in preventing mesh distortion/degeneration in ap-
proximating the evolution of surfaces under various geometric flows, including mean
curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on. However, the
rigorous justification of convergence of the BGN-type methods and the characeterization
of the particle trajectories produced by these methods, still remain open since this class
of methods was proposed in 2007. The main difficulty lies in the stability of the artificial
tangential velocity implicitly determined by the BGN methods. In this paper, we give
the first proof of convergence of a stabilized BGN method for curve shortening flow,
with optimal-order convergence in L2 norm for finite elements of degree k ≥ 2 under
the stepsize condition τ ≤ chk+1 (for any fixed constant c). Moreover, we give the first
rigorous characterization of the particle trajectories produced by the BGN-type meth-
ods for one-dimensional curves, i.e., we prove that the particle trajectories produced
by the stabilized BGN methods converge to the particle trajectories determined by a
system of geometric partial differential equations which differs from the standard curve
shortening flow by a tangential motion. The characterization of the particle trajectories
also rigorously explains, for one-dimensional curves, why the BGN-type methods could
maintain the quality of the underlying evolving mesh.

1. Introduction

Parametric finite element methods for approximating surface evolution under geometric flows
were firstly proposed by Dziuk in his 1990 paper [19] for mean curvature flow. For a given
approximate surface Γm

h at time level t = tm, Dziuk proposed to determine the surface Γm+1
h at

time level t = tm+1 as the image of a finite element parametrization function Xm+1
h : Γm

h → R3,
satisfying the following weak formulation:∫

Γm
h

Xm+1
h − id

τ
· χh +

∫
Γm
h

∇Γm
h
Xm+1

h · ∇Γm
h
χh = 0 ∀χh ∈ Sh(Γ

m
h ), (1.1)

where τ is the size of the time step, and Sh(Γ
m
h ) denotes the space of vector-valued finite

element space on the surface Γm
h . At every time level, Dziuk’s semi-implicit parametric FEM

only requires solving a linear elliptic partial differential equation on a given surface. Since
Dziuk’s paper was published, parametric FEMs have become successful and widely used for
approximating the evolution of surfaces and interfaces in various different geometric flows and
related problems, including mean curvature flow, Willmore flow, Helfrich flow, surface diffusion,
and so on; see [11,13,16,19,21].

In practical computations, the accuracy of parametric FEMs in approximating an evolving
surface can be greatly influenced by the mesh quality of the triangulation which constitutes
the approximate surface. One of the main difficulties in approximating surface evolution under
geometric flows, which were not addressed by Dziuk’s parametric FEMs, is that the mesh
which forms the approximate surface often becomes distorted and degenerate as time grows.
One popular approach to overcome this difficulty is to artificially redistribute the mesh points
more equally when the mesh quality becomes bad (below some threshold), as proposed in [13].
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Another popular approach is to introduce an artificial tangential velocity, which could drive the
nodes moving tangentially as a surface evolves to maintain good mesh quality; see [5, 6, 8, 27].
For example, the method proposed by Barrett, Garcke & Nürnberg in [8, Eq. (2.25)] (i.e., the
BGN method) for mean curvature flow seeks a parametrization Xm+1

h : Γm
h → R2 satisfying the

following weak formulation:∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h ϕh · n̄m
h +

∫
Γm
h

∇Γm
h
Xm+1

h · ∇Γm
h
ϕh = 0 ∀ϕh ∈ Sh(Γ

m
h ), (1.2)

where n̄m
h is a weighted averaging normal vector at the nodes of the piecewise linear curve Γm

h
(see [8, Eq. (2.7) and Remark 2.1] and [4, Eq. (47)]), and the superscript h in the integral
indicates that the mass lumping technique for piecewise linear FEM is used. In this method,
only the normal component of the velocity is explicitly specified, while the tangential component
of the velocity is implicitly determined to make the map Xm+1

h : Γm
h → R2 approximately

harmonic. It turns out that the tangential velocity implicitly determined in this way could
maintain good mesh quality of the approximate evolving surfaces. The idea of the BGN methods
has become popular and widely used for approximating various geometric flows, including mean
curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on; see [3,7–9]. However,
the convergence of such BGN methods has not been proved for any geometric flow.

Convergence of some semidiscrete and fully discrete parametric FEMs for mean curvature flow
and Willmore flow of curves was proved by Dziuk [20], Deckelnick & Dziuk [14,15], Bartels [10],
Li [37], Ye & Cui [42], etc. For mean curvature flow and Willmore flow of closed surfaces,
convergence results are available in the literature only in the following several cases:

• Evolving surface FEMs with finite elements of degree k ≥ 2 based on reformulations of
mean curvature flow and Willmore flow in terms of the evolution equations of normal
vector and mean curvature; see [26,31,33,34].

• The semidiscrete version of Dziuk’s parametric FEM with finite elements of degree k ≥ 6
based on H1 parabolicity of the normal components in the framework of evolving surface
FEM [22,23] and matrix-vector techniques [35]; see [1, 38].

• Dziuk’s semi-implicit parametric FEM with finite elements of degree k ≥ 3 based on a
new approach which recovers the full H1 parabolicity of Dziuk’s method by measuring
the error in terms of the distance between the approximate surface and exact surface;
see [2].

The error and stability estimates in these articles all rely on corresponding continuous formu-
lations of the tangential velocity or evolution equations of normal vector and mean curvature,
which are not available for the BGN type of methods. Therefore, the convergence analyses in
these article cannot be applied/extended to the BGN type of methods.

Apart from the BGN methods, there are other approaches to constructing artificial tangen-
tial velocities for parametric finite element approximations of geometric flows. One popular
approach, originaly proposed by DeTurck in [18] in the context of Ricci flow and firstly brought
into the numerics world by Fritz in his dissertation [28] (see also [27]), is to introduce a tangen-
tial reparametrization of the geometric flow. It is also important to mention the work of Mikula
and Ševčovič [41] where the authors are able to construct a nontrivial tangential smoothing
velocity via solving a nonlocal equation. Error estimates of the evolving surface FEMs for curve
shortening flow and related problems based on this approach were established in [5,27,40] based
on available continuous formulations of the tangential velocity. Another approach, proposed by
Hu & Li in [31], is to construct an artificial tangential velocity in the reformations of mean
curvature flow and Willmore flow by Kovacs, Li & Lubich [33,34] to minimize the instantaneous
rate of deformation caused by the flow map. Error estimates for this type of methods are based
on the H1 parabolicity in the reformulations by Kovacs, Li & Lubich [33, 34] as well as the
stability estimates of tangential velocity which further rely on the stability estimates of normal
vector and mean curvature from their evolution equations. These works provide insights into
the numerical importance of working with coupled systems. However, since the continuous for-
mulations of the tangential velocity produced by the BGN type methods are not available yet,
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and the evolution equations of normal vector and mean curvature are not available in the BGN
type of methods, the convergence analyses in these two approaches cannot be applied/extended
to the BGN type of methods.

The main difficulty in the analysis of the BGN type of methods is the lack of stability
estimates for the artificial tangential velocity. This is partly reflected by the following aspect:
The formal limiting equation of (1.2) as τ, h → 0, i.e.,

(∂tX · n)n = (∆Γ[X]id) ◦X, (1.3)

does not have a unique solution (adding an arbitrary tangential motion to the solution does
not change the equation). Therefore, the convergence of the BGN type methods to the origi-
nal geometric flow, such as curve shortening flow, has not been proved rigorously. Moreover,
the question of why the BGN methods could maintain good mesh quality of the evolving sur-
faces/curves has not been addressed rigorously, though this has been demonstrated intuitively
in [4, 8]. These two open questions are both addressed in the current paper.

In this paper, we construct a high-order and stabilized version of the BGN method for curve
shortening flow, with high-order accuracy in space and as good performance as the original
BGN method in improving the distribution of mesh points, and provide rigorous analysis for
the convergence of the numerical solutions to the exact solution of curve shortening flow. The
continuous formulation of the artificial tangential velocity produced by the BGN method for
curve shortening flow is also derived rigorously. Correspondingly, the limit of the particle
trajectories produced by the BGN method is completely characterized.

Let Γm
h be a closed and continuous piecewise polynomial curve which approximates the smooth

curve Γm := Γ(tm) evolving under curve shortening flow. Each polynomial element K of Γm
h is

the image of an element K0 ⊂ Γ0
h under the discrete flow map. We denote by K0

f the unique flat
segment which has the same endpoints as K0, and denote by FK : K0

f → K the parametrization
of K, i.e., FK is the unique polynomial of degree k that maps K0

f onto K. The finite element
space on the approximate curve Γm

h is defined as

Sh(Γ
m
h ) = {vh ∈ C(Γm

h ) : vh ◦ FK ∈ Pk(K0
f )

2 for every element K ⊂ Γm
h },

where Pk(K0
f ) denotes the space of polynomials of degree k ≥ 1 on the flat segment K0

f .
Then we introduce the mass lumping integral for high-order finite elements denoted by the

superscript h:∫ h

Γm
h

u · nm
h v · nm

h :=
∑

K⊂Γm
h

∫
K0

f

IGL
h

[
(u ◦ FK · nm

h ◦ FK)(v ◦ FK · nm
h ◦ FK)|∇K0

f
FK |

]
, (1.4)

where the summation extends over all elements of the curve Γm
h , and IGL

h denotes the interpo-
lation operator at the Gauss–Lobatto points of the flat element K0

f (cf. [12, Eq. (10.2.3)]). In
the special case of piecewise linear FEM (i.e., k = 1), the definition in (1.4) coincides with the
definition in [8, Eq. (2.2)].

Let tm = mτ , m = 0, 1, . . . , ⌊T/τ⌋, be a sequence of grid points in time with stepsize τ > 0,
where ⌊T/τ⌋ denotes the maximal integer not exceeding T/τ . We propose the following high-
order and stabilized BGN method for curve shortening flow: For a given approximate curve Γm

h ,

find a parametrization Xm+1
h : Γm

h → Γm+1
h such that Xm+1

h ∈ Sh(Γ
m
h ) and∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h ϕh · n̄m
h +

∫
Γm
h

∇Γm
h
Xm+1

h · ∇Γm
h
ϕh

=

∫
Γm
h

∇Γm
h
id · ∇Γm

h
Ih[ϕh − (ϕh · n̄m

h )n̄m
h ] ∀ϕh ∈ Sh(Γ

m
h ), (1.5)

where the right-hand side of (1.5) is a (consistent) stabilization term which plays an important
role in proving the convergence of the numerical solutions as well as characterizing the tangential
motion produced by the method, and n̄m

h ∈ Sh(Γ
m
h ) is an averaged normal vector defined as

the discrete L2 projection of the piecewise unit normal vector nm
h onto the finite element space
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Sh(Γ
m
h ), i.e., ∫ h

Γm
h

n̄m
h · ϕh =

∫ h

Γm
h

nm
h · ϕh ∀ϕh ∈ Sh(Γ

m
h ). (1.6)

In the case k = 1 (using piecewise linear finite elements), the numerical scheme in (1.5) differs
from the BGN method in (1.2) by the stabilization term on the right-hand side of (1.5). The
motivation of adding this stabilization term is stated in the text between (1.8)–(1.10).

Using the definition in (1.6), expressing the mass lumping integrals in (1.6) as the summation
of the quadrature weights times the evaluations at the quadrature points, and comparing the
coefficients of each degree of freedom on the both sides of (1.6), the following relations between
n̄m
h and nm

h can be shown:

n̄m
h (p) = nm

h (p) if p is an interior node of an element,

n̄m
h (p) =

|wK1(p)||K0
1f |nm

h |K1(p)

|wK1(p)||K0
1f |+ |wK2(p)||K0

2f |
+

|wK2(p)||K0
2f |nm

h |K2(p)

|wK1(p)||K0
1f |+ |wK2(p)||K0

2f |
if p = K1 ∩K2 for two elements K1 and K2,

(1.7)

where wK(p) = ∇K0
f
FK ◦ F−1

K (p) for p ∈ K and nm
h |K denotes the normal vector on element

K. Note that both the mass lumping in (1.4) and the averaged normal vector in (1.7) are
intrinsically defined in the sense that they are independent of the choice of flat segment for
parametrization.

The proof of convergence of the proposed stabilized BGN method is based on the recently
developed new approach in [2] for the analysis of parametric finite element approximations to
geometric flows, where the error of concern is the distance projection from the numerically
computed curve to the exact smooth curve, rather than the error between particle trajectories
of the curves as in [31,33,35]. It has been shown in [2] that this approach (i.e., to estimate the
error of distance projection) can recover the full H1 parabolicity of mean curvature flow and
therefore leads to better stability estimates.

The novel contributions of this article to the construction and analysis of parametric approx-
imations to geometric flows include the following several aspects.

• Stabilization and averaged normal vector: We stabilize the BGN method in two ways,
including the use of an averaged normal vector n̄m

h defined in (1.6) and the introduction
of the stabilization term to the right-hand side of (1.5). Since the proposed stabilization
term vanishes in the continuous case, i.e.,∫

Γ
∇Γid · ∇Γ[ϕ− (ϕ · n)n] =

∫
Γ
−∆Γid · [ϕ− (ϕ · n)n] =

∫
Γ
Hn · [ϕ− (ϕ · n)n] = 0,

the stabilization term is expected to vanish approximately at the discrete level. The
advantage of adding this stabilization term is that, for test functions ϕh in the finite
element tangential subspace

Sh(Γ
m
h )⊤ = {vh ∈ Sh(Γ

m
h ) : vh · n̄m

h = 0 at the finite element nodes of Γm
h },

the weak formulation in (1.5) reduces to the following relation:∫
Γm
h

∇Γm
h

Xm+1
h − id

τ
· ∇Γm

h
ϕh = 0 ∀ϕh ∈ Sh(Γ

m
h )⊤, (1.8)

which will be used to establish estimates for the tangential velocity of the approximate
curve in the (stabilized) BGN method. Therefore, the stabilization term on the right-
hand side of (1.5) is to stabilize the tangential velocity in the form of (1.8), rather than
enforcing some energy stability.

• Characterization of the tangential motion and the particle trajectories: It was formally
shown in [31, Section 1] that the velocity of the approximate curve given by the BGN
method converges to the velocity governed by the following elliptic system on the exact
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curve Γ:
v · n = −H,

−∆Γv = κn,
(1.9)

which is the Euler-Lagrange equation of the following minimization problem:

min
v∈H1(Γ)

∫
Γ
|∇Γv|2 under the pointwise constraint v · n = −H.

In this paper, we present rigorous justification of this convergence for the stabilized
BGN method by utilizing (1.8) (the derivation of this relation requires us to add the
stabilization term to the BGN method). This completely characterizes the underlying
geometric PDEs to which the stabilized BGN method converges, i.e., the particle tra-
jectories of approximate curve converge to the particle trajectories determined by the
following geometric PDEs:

∂tX = v ◦X,

v · n = −H,

−∆Γv = κn,

H = −∆Γid · n.

(1.10)

As we shall see in the error estimation, the velocity v determined by the elliptic system
in (1.9) is compared with the velocity (Xm+1

h − Xm
h )/τ of the approximate curve to

establish stability estimates for the tangential velocity. This is one of the reasons that
we can prove the convergence of numerical solutions for the stabilized BGN method.

Since the velocity v determined by (1.9) minimizes the rate of the change of deforma-
tion at every time t ∈ [0, T ], as explained in [31, Section 1], and the tangential velocity
in the stabilized BGN method can be proved convergent to the tangential component
of v, this explains why the tangential velocity generated by the stabilized BGN method
could improve the mesh quality.

• Stability of the tangential velocity: The key stability structure in the tangential direction
follows from testing (1.9) by the tangential vector (I − nn⊤)v, i.e.,∫

Γ
∇Γv · ∇Γ[(I − nn⊤)v] = 0. (1.11)

If we denote by Djv the jth component of ∇Γv in the ambient geometry, using integra-
tion by parts and Young’s inequality, we can obtain the following relation:∫

Γ
|∇Γ[(I − nn⊤)v]|2

= −
∫
Γ
∇Γ(nn

⊤v) · ∇Γ[(I − nn⊤)v]

= −
∫
Γ
Dj(nn

⊤v) ·Dj [(I − nn⊤)(I − nn⊤)v]

= −
∫
Γ
Dj(nn

⊤v) · (I − nn⊤)Dj [(I − nn⊤)v]

−
∫
Γ
Dj(nn

⊤v) · [Dj(I − nn⊤)(I − nn⊤)v] (product rule)

= −
∫
Γ

(
Dj [(I − nn⊤)nn⊤v]− [Dj(I − nn⊤)]nn⊤v

)
·Dj [(I − nn⊤)v]

+

∫
Γ
(nn⊤v) ·

(
DjDj(I − nn⊤)(I − nn⊤)v +Dj(I − nn⊤)Dj [(I − nn⊤)v]

)
(integration by parts)

≤ ϵ

∫
Γ
|∇Γ[(I − nn⊤)v]|2 + Cϵ−1

∫
Γ
|v · n|2, (1.12)
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with an arbitrary small constant ϵ, where the last inequality uses the identity (I −
nn⊤)nn⊤v = 0 and the following Poincaré type of inequality for the tangential velocity
field (I − nn⊤)v: ∫

Γ
|(I − nn⊤)v|2 ≤ C

∫
Γ
|∇Γ[(I − nn⊤)v]|2. (1.13)

By choosing a sufficiently small constant ϵ and absorbing the first term on the right-hand
side of (1.12) by its left-hand side, we obtain∫

Γ
|∇Γ[(I − nn⊤)v]|2 ≤ C

∫
Γ
|v · n|2. (1.14)

Therefore, the H1 norm of the tangential velocity can be bounded by the L2 norm of
the normal velocity (one derivative is removed). With (1.13) replaced by (see Lemma
3.10) ∫

Γ̂m
h,∗

|vh|2 ≲
∫
Γ̂m
h,∗

Ih(|vh · n̄m
h,∗|2) +

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2,

we manage to extend (1.14) to the discrete level in estimating the tangential velocity
generated by the stabilized BGN method. This is another reason that we manage to
prove the convergence of numerical solutions for the stabilized BGN method.

• Optimal-order convergence of the numerical solution: By combining the following tech-
niques in the analysis, i.e.,
(i) the introduction of stabilization to the BGN method,
(ii) the underlying PDEs in (1.9) which characterizes the tangential motion,
(iii) the stability of the tangential velocity in light of (1.14),
(iv) the mass lumping techniques based on the Gauss–Lobatto quadrature nodes and

the averaged normal vector techniques,
(v) the super-approximation estimates in the consistency analysis,
(vi) the high-order a priori estimate for the shape regularity,
we manage to prove optimal-order convergence of the numerical solutions under the
stepsize condition τ ≤ chk+1 (for any fixed constant c) in the L2 norm which measures
the distance between the approximate curve and the exact curve, for the stabilized
BGN method. The stepsize condition is required in part (vi) mentioned above (also
see Remark 2.3). The use of the Gauss–Lobatto quadrature is the main obstacle that
prevents us to extend our current proof from the case of curves to surfaces with triangular
meshes. Nevertheless, such extension is still possible if we use tensorial parametric finite
elements (for example, for approximating two-dimensional surfaces of torus type), where
the construction of the tensorial Gauss–Lobatto quadrature is straightforward.

The underlying framework and techniques developed in this paper (with the above-mentioned
ingredients) may be applied/extended to other geometric flows and parametric finite element
approximations which contain artificial tangential motions of the BGN type.

The rest of this paper is organized as follows. The main theoretical results of this paper are
presented in Section 2. The notations and underlying framework for proving the main theorems
are presented in Section 3. The convergence of numerical solutions given by the stabilized BGN
method and the characterization of the particle trajecteries (continuous formulation of the
artificial tangential motion) are presented in Sections 4 and 5, respectively. Finally, numerical
examples and conclusions are presented in Sections 6 and 7, respectively.

2. Statement of the main theoretical results

Let δ > 0 be a sufficiently small constant such that every point x in the δ-neighborhood of
the exact curve Γm = Γ(tm), denoted by Dδ(Γ

m) = {x ∈ R2 : dist(x,Γm) ≤ δ}, has a unique
smooth projection of distance retraction onto Γm, denoted by am(x), satisfying the following
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relation:

x− am(x) = ±|x− am(x)|nm(am(x)),

where nm is the unit normal vector on Γm. It is known that such a constant δ exists and only
depends on the curvature of Γm (thus δ is independent of m, but possibly dependent on T );
see [29, Lemma 14.17] and [36, Theorem 6.40].

We assume that each element K0 ⊂ Γ0
h interpolates the smooth initial curve Γ0 at k+1 nodes

and that the parametrization FK0 : K0
f → K0 is a polynomial of degree≤ k with the following

property:

max
K0⊂Γ0

h

(
∥FK0∥Wk,∞(K0

f )
+ ∥∇K0F−1

K0∥L∞(K0)

)
≤ κ0, (2.1)

where κ0 is some constant that is independent of h. This property holds for standard parametric
finite elements which interpolate the smooth curve Γ0 and guarantees the following optimal-
order approximation to Γ0 by Γ0

h:

max
K0⊂Γ0

h

∥a0 ◦ FK0 − FK0∥L∞(K0
f )

≤ Chk+1. (2.2)

The projection a0(x) is well defined for points x in a neighborhood of Γ0 and therefore well
defined on Γ0

h for sufficiently small mesh size h.
Let xmj , j = 1, . . . , J , be the nodes of the approximate curve Γm

h at the time tm given by the

stabilized BGN method in (1.5). The interpolated piecewise polynomial curve Γ̂m
h,∗ is determined

by the nodes which are obtained by projecting the nodes of Γm
h onto Γm. We shall prove that

the approximate curve Γm
h is in a δ-neighborhood of the smooth curve Γm so that the projection

of the nodes of Γm
h onto Γm are well defined (thus the interpolated curve Γ̂m

h,∗ is well defined).

In view of the matrix-vector formulation which was firstly proposed in [35, Section 2.5] in the
context of numerical geometric flow and the notational conventions introduced in [2, Section
1], we will always identify a finite element function as a vector consisting of its nodal values.
Such representation is unique if we have specified the underlying domain. For example, the two
integrands of ∫

Γ̂m
h,∗

vh and

∫
Γm
h

vh

have the same vector of nodal values, denoted by v, but are defined on different domains Γ̂m
h,∗

and Γm
h . When the underlying domain is specified, v is automatically substantialized to a finite

element function vh on that domain. Since all of the quantitative computations in this paper
involve either integrals or norms, our notations for finite element functions will always have a
unique and clear meaning. For another example, ∥vh∥Γ̂m

h,∗
and ∥vh∥Γm

h
denote the norms of a

finite element function (a nodal vector) on the two different curves Γ̂m
h,∗ and Γm

h , respectively.
Correspondingly, the interpolation operator Ih should be interpreted as the determination of

the nodal vector which uniquely corresponds to a finite element function after specifying the
underlying curve. The lift of a finite element function vh onto the smooth curve Γm is defined
as

vlh = vh ◦ (am|Γ̂m
h,∗

)−1

by first identifying vh as a finite element function on the interpolated curve Γ̂m
h,∗; see [17, Section

2.4] and [33, Section 3.4]. The inverse lift of v ∈ L2(Γm) onto Γ̂m
h,∗ is defined as v−l = v ◦ am.

Let Xm
h be the finite element function with nodal vector xm. When Xm

h is considered as a

finite element function on Γ̂m
h,∗, it represents the piecewise polynomial of degree≤ k which maps

the nodes of Γ̂m
h,∗ to the nodes of Γm

h . In order to measure the error between the approximate
curve Γm

h and the smooth curve Γm, we define the lifted error

êm =
(
Xm

h − Ihid
−l
Γm

)l ∈ H1(Γm),

where Xm,l
h denotes the lift of Xm

h onto Γm through the interpolated curve Γ̂m
h,∗.
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The main theoretical result of this article is the following theorem.

Theorem 2.1 (Convergence of the stabilized BGNmethod). Suppose that the flow map X : Γ0×
[0, T ] → R2 of the curve shortening flow of a closed curve and its inverse map X(·, t)−1 : Γ(t) →
Γ0 are both sufficiently smooth, uniformly with respect to t ∈ [0, T ], and the initial approximation
of the curve is sufficiently good, i.e. Γ0

h is closed and satisfies (2.1) and ∥ê0∥Γ0 ≤ c0h
k+1 for

some constant c0 which is independent of h. Let Xm
h be the finite element solution given by

the stablized BGN method in (1.5) with initial condition X0
h = id on Γ0

h. Then, for any given

constant c (independent of τ and h), there exists a positive constant h0 such that for τ ≤ chk+1

and h ≤ h0 the following error estimate holds for finite elements of degree k ≥ 2:

max
1≤m≤[T/τ ]

∥êm∥2L2(Γm) +

[T/τ ]∑
m=1

τ∥∇Γm êm∥2L2(Γm) ≤ Ch2(k+1), (2.3)

where the constant C is independent of τ and h (but may depend on c and T ).

Theorem 2.2 (Characterization of the particle trajectories). Under the assumptions of The-
orem 2.1, the particle trajectories produced by the stabilized BGN method in (1.5) converge to
the particle trajectories determined by (1.10).

Remark 2.3. The stepsize condition τ ≤ chk+1 is required to prove the shape regularity of the
interpolated curve Γ̂m

h,∗ and the optimal-order approximation to Γm by the interpolated curve

Γ̂m
h,∗; see Section 4.9 and, more specifically, (4.119).

3. Notations and underlying framework

In this section, we present the notation and underlying framework for proving Theorems
2.1 and 2.2. This includes the approximation properties of the interpolated surface Γ̂m

h,∗ to
the smooth surface Γm, the mathematical induction assumptions under which we establish the
consistency and stability estimates, the super-approximation properties of surface finite elements
and Gauss–Lobatto quadrature, the approximation properties of the averaged normal vectors to
the original normal vector, the Poincaré inequalities for vector-valued functions on triangulated
surfaces, and the geometric relations among the several different definitions of errors.

The underlying framework in this section is a substantial refinement of the general setting
presented in [2] for geometric flow of curves with mass lumping parametric FEMs based on
Gauss–Lobatto points, and provides a foundation for us to establish optimal-order error esti-
mates of the stabilized BGN method for curve shortening flow.

3.1. Notations

The following notations will be frequently used in this article. They are similar to the
notations in [2, Section 3.1] and are listed below for the convenience of the readers.

Γm: The exact smooth curve at time level t = tm.
Γm
h : The numerically computed curve at time level t = tm.

xm: The nodal vector xm = (xm1 , . . . , xmJ )⊤ consisting of the positions of nodes on
Γm
h .

x̂m
∗ : The distance projection of xm onto the exact curve Γm, i.e., x̂m

∗ =
(x̂m1,∗, . . . , x̂

m
J,∗)

⊤ with x̂mj,∗ = am(xmj ).

xm+1
∗ : The new position of x̂m

∗ evolving under curve shortening flow (without addi-
tional tangential motion) from tm to tm+1.

Γ̂m
h,∗: The piecewise polynomial curve which interpolates Γm at the nodes in x̂m

∗ .

Γm+1
h,∗ : The piecewise polynomial curve which interpolates Γm+1 at the nodes in xm+1

∗ .

Xm
h : The finite element function with nodal vector xm. It coincides with the identity

map, i.e., id(x) = x, when it is considered as a function on Γm
h .
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Xm+1
h : The finite element function with nodal vector xm+1. When it is considered as

a function on Γm
h , it represents the local flow map from Γm

h to Γm+1
h .

X̂m
h,∗: The finite element function with nodal vector x̂m

∗ . It coincides with the identity

map, i.e., id(x) = x, when it is considered as a function on Γ̂m
h,∗. It coincides

with the discrete flow map from Γ̂0
h,∗ to Γ̂m

h,∗ when it is considered as a function

on Γ̂0
h,∗.

Xm+1
h,∗ : The finite element function with nodal vector xm+1

∗ . When it is considered as

a function on Γ̂m
h,∗, it represents the local flow map from Γ̂m

h,∗ to Γm+1
h,∗ .

Xm+1: The local flow map from Γm to Γm+1 under mean curvature flow.
êmh : The finite element error function with nodal vector êm = xm − x̂m

∗ .
em+1
h : The auxiliary error function with nodal vector em+1 = xm+1 − xm+1

∗ .
nm: The unit normal vector on Γm.
nm
∗ : The unit normal vector of Γm inversely lifted to a neighborhood of Γm (in-

cluding Γ̂m
h,∗), i.e., n

m
∗ = nm ◦ am.

n̂m
h,∗: The normal vector on Γ̂m

h,∗.

n̄m
h,∗: The averaged normal vector on Γ̂m

h,∗, which is not necessarily unit.

nm
h : The normal vector on Γm

h .
n̄m
h : The averaged normal vector on Γm

h , which is not necessarily unit.

µ̂m
h,∗: The co-normal vector (unit tangent vector) on Γ̂m

h,∗.

µm
h : The co-normal vector (unit tangent vector) on Γm

h .

Nm
∗ : The normal projection operator Nm

∗ = nm
∗ (nm

∗ )⊤ on Γ̂m
h,∗.

Nm: The normal projection operator Nm = nm(nm)⊤ on Γm. Thus Nm is the lift
of Nm

∗ onto Γm, and Nm
∗ is the extension of Nm to a neighborhood of Γm.

N̂m
h,∗: The normal projection operator N̂m

h,∗ = n̂m
h,∗(n̂

m
h,∗)

⊤ on Γ̂m
h,∗.

N̄m
h,∗: The averaged normal projection operator N̄m

h,∗ =
n̄m
h,∗

|n̄m
h,∗|

(
n̄m
h,∗

|n̄m
h,∗|

)⊤ on Γ̂m
h,∗.

Tm
∗ : The tangential projection operator Tm

∗ = I − nm
∗ (nm

∗ )⊤ on Γ̂m
h,∗.

Tm: The tangential projection operator Tm = I − nm(nm)⊤ on Γm. Thus Tm is
the lift of Tm

∗ onto Γm.

T̂m
h,∗: The tangential projection operator T̂m

h,∗ = I − n̂m
h,∗(n̂

m
h,∗)

⊤ on Γ̂m
h,∗.

T̄m
h,∗: The averaged tangential projection operator T̄m

h,∗ = I − n̄m
h,∗

|n̄m
h,∗|

(
n̄m
h,∗

|n̄m
h,∗|

)⊤ on Γ̂m
h,∗.

N (Γm
h ): The collection of nodes of Γm

h .
Nb(Γ

m
h ): The collection of endpoints (boundary points) of the elements of Γm

h .

For the simplicity of notation, we shall denote by IhN̄
m
h,∗ϕh and IhT̄

m
h,∗ϕh the abbreviations

of Ih(N̄
m
h,∗ϕh) and Ih(T̄

m
h,∗ϕh), respectively. Similar notations are also adopted for IhN̂

m
h,∗ϕh,

IhN
m
∗ ϕh, IhT̂

m
h,∗ϕh, IhT

m
∗ ϕh, and so on.

If K is an element of Γ̂m
h,∗ then we denote by K0 ⊂ Γ0

h the element which is mapped to K by

the discrete flow map X̂m
h,∗ : Γ0

h → Γ̂m
h,∗, and denote by FK0 : K0

f → K0 the parametrization of

the element K0 ⊂ Γ0
h, where K0

f is the flat line segment which has the same endpoints as K0.
The flat line segments K0

f form a piecewise linear curve

Γ0
h,f =

⋃
K0⊂Γ0

h

K0
f .

We still denote by X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ the unique piecewise polynomial of degree k (with nodal

vector x̂m
∗ as before) which maps the Gauss–Lobatto points of every flat segment K0

f ⊂ Γ0
h,f

to the corresponding nodes of element K ⊂ Γ̂m
h,∗. Therefore, X̂m

h,∗ : Γ0
h,f → Γ̂m

h,∗ is a piecewise

polynomial parametrization of Γ̂m
h,∗. We denote by ∥X̂m

h,∗∥W j,∞
h (Γ0

h,f)
the piecewise Sobolev norms
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on Γ0
h,f , i.e.,

∥X̂m
h,∗∥W j,∞

h (Γ0
h,f)

:= max
K0

f ⊂Γ0
h,f

∥X̂m
h,∗∥W j,∞(K0

f )
.

Since each piece K ∈ Γ̂m
h,∗ can be endowed with a canonical smooth structure, the piecewise

Sobolev norms can be also defined on Γ̂m
h,∗.

We denote by IK the interpolation operator on the flat segment K0
f . Since FK = am ◦FK at

the nodes of K0
f , it follows that IK [am ◦FK ] = FK . The interpolation of the distance projection

am|Γ̂m
h,∗

: Γ̂m
h,∗ → Γm onto the curved surface Γ̂m

h,∗ is defined as

Iha
m := IK [am ◦ FK ] ◦ F−1

K = id on an element K ⊂ Γ̂m
h,∗.

For a smooth function f on the smooth curve Γm, we denote by Ihf the interpolation of the
inversely lifted function f−l = f ◦ am onto Γ̂m

h,∗, i.e.,

Ihf := IK [f ◦ am ◦ FK ] ◦ F−1
K on an element K ⊂ Γ̂m

h,∗.

We denote by (Ihf)
l = (Ihf) ◦ (am|Γ̂m

h,∗
)−1 the lift of Ihf onto Γm. For a piecewise smooth

function f on Γ̂m
h,∗ (instead of Γm), we use the same notation Ihf to denote the following

interpolated function on Γ̂m
h,∗:

Ihf := IK [f ◦ FK ] ◦ F−1
K on an element K ⊂ Γ̂m

h,∗.

3.2. Approximation properties of the interpolated surface Γ̂m
h,∗

For the discrete flow map X̂m
h,∗ : Γ

0
h,f → Γ̂m

h,∗, we denote

κl := max
0≤m≤l

(
∥X̂m

h,∗∥Wk,∞
h (Γ0

h,f)
+ ∥(X̂m

h,∗)
−1∥W 1,∞(Γ̂m

h,∗)

)
= max

0≤m≤l
max

K⊂Γ̂m
h,∗

(
∥FK∥Wk,∞(K0

f )
+ ∥F−1

K ∥W 1,∞(K)

)
.

(3.1)

By pulling functions on Γ̂m
h,∗ back to Γ0

h,f via the map X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ (and vice visa), one

can see that the W 1,p, p ∈ [1,∞], norms of a finite element function (with a fixed nodal vector)

on Γ0
h,f and Γ̂m

h,∗ are equivalent up to constants which depend on κl, i.e.,

C−1
κl

∥vh∥W 1,p(Γ̂m
h,∗)

≤ ∥vh∥W 1,p(Γ0
h,f)

≤ Cκl
∥vh∥W 1,p(Γ̂m

h,∗)
,

for 0 ≤ m ≤ l. Since X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ is the Lagrange interpolation of am ◦ X̂m

h,∗ : Γ0
h,f → Γm

on the piecewise flat curve Γ0
h,f , it follows that

∥am ◦ X̂m
h,∗ − X̂m

h,∗∥L∞(Γ0
h,f)

+ h∥am ◦ X̂m
h,∗ − X̂m

h,∗∥W 1,∞(Γ0
h,f)

≤ Cκl
hk+1 (3.2)

Since Iha
m = id on Γ̂m

h,∗, inequality (3.2) can be equivalently written as follows by using the

norm equivalence on Γ0
h,f and Γ̂m

h,∗:

∥am − Iha
m∥L∞(Γ̂m

h,∗)
+ h∥am − Iha

m∥W 1,∞(Γ̂m
h,∗)

≤ Cκl
hk+1. (3.3)

Moreover, the following estimates hold for any smooth function f on Γm:

∥f−l − Ihf∥L2(Γ̂m
h,∗)

+ h∥f−l − Ihf∥H1(Γ̂m
h,∗)

≤ Cκl
∥f∥Hk+1(Γm)h

k+1, (3.4)

∥f − (Ihf)
l∥L2(Γm) + h∥f − (Ihf)

l∥H1(Γm) ≤ Cκl
∥f∥Hk+1(Γm)h

k+1. (3.5)

Similar estimates have been shown in [2, inequalities (3.3) and (3.4)]. The boundedness of κl
(independent of τ , h and l) will be proved in Section 4.9.

We denote by nm andHm the unit normal vector and the mean curvature on Γm, respectively,
and denote by nm

∗ = nm ◦ am and Hm
∗ = Hm ◦ am the smooth extensions of nm and Hm to a

neighborhood Dδ(Γ
m) of Γm. In particular, nm

∗ and Hm
∗ are well defined on Γ̂m

h,∗ as the inverse
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lift of nm and Hm via the distance projection am, respectively, with

∥nm
∗ ∥W j,∞(Dδ(Γm)) + ∥Hm

∗ ∥W j,∞(Dδ(Γm)) ≤ Cj for all j ≥ 0.

Moreover, the normal vectors on Γ̂m
h,∗ and Γm (inversely lifted to Γ̂m

h,∗) have the following expres-

sions (using the parametrizations X̂m
h,∗ : Γ

0
h,f → Γ̂m

h,∗ and am ◦ X̂m
h,∗ : Γ

0
h,f → Γm, respectively):

n̂m
h,∗ =

(∇Γ0
h,f
X̂m

h,∗)
⊥

|∇Γ0
h,f
X̂m

h,∗|
◦ (X̂m

h,∗)
−1 and nm

∗ =
[∇Γ0

h,f
(am ◦ X̂m

h,∗)]
⊥

|∇Γ0
h,f
(am ◦ X̂m

h,∗)|
◦ (X̂m

h,∗)
−1, (3.6)

where v⊥ := (−v2, v1) for any vector v = (v1, v2). These expressions lead to the following
estimates as a result of (3.2):

∥n̂m
h,∗ − nm

∗ ∥L∞(Γ̂m
h,∗)

≤ Cκl
hk. (3.7)

The expression of n̂m
h,∗ also implies that

∥n̂m
h,∗∥W j,∞

h (Γ̂m
h,∗)

≤ Cκl,j ∀ j ≥ 0, (3.8)

which is due to the fact that the (k + 1)th-order partial derivatives of X̂m
h,∗ are zero on Γ0

h,f .

The following lemma was proved in [35, Lemma 4.3]. It shows that norms of the finite element
functions with same nodal vectors on the family of surfaces

Γ̂m
h,θ = (1− θ)Γ̂m

h,∗ + θΓm
h , θ ∈ [0, 1],

are equivalent, provided that the distance between Γ̂m
h,∗ and Γm

h is small in the W 1,∞ norm.

Lemma 3.1. If ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

≤ 1
2 for θ ∈ [0, 1] then the following equivalence of norms

hold for 1 ≤ p ≤ ∞:

∥vh∥Lp(Γ̂m
h,∗)

≲ ∥vh∥Lp(Γ̂m
h,θ)

≲ ∥vh∥Lp(Γ̂m
h,∗)

,

∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗)

≲ ∥∇Γ̂m
h,θ

vh∥Lp(Γ̂m
h,θ)

≲ ∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗)

.

The following lemma concerns the difference between integrals on the smooth curve Γm and
the interpolated curve Γ̂m

h,∗.

Lemma 3.2 ([32, Lemma 5.6]). The following estimates hold for f1, f2 ∈ H1(Γ̂m
h,∗) and their

lifts f l
1, f

l
2 ∈ H1(Γm): ∣∣∣ ∫

Γ̂m
h,∗

f1f2 −
∫
Γm

f l
1f

l
2

∣∣∣ ≤ Cκl
hk+1∥f1∥L2(Γ̂m

h,∗)
∥f2∥L2(Γ̂m

h,∗)
,

∣∣∣ ∫
Γ̂m
h,∗

∇Γ̂m
h,∗

f1 · ∇Γ̂m
h,∗

f2 −
∫
Γm

∇Γmf l
1 · ∇Γmf l

2

∣∣∣ ≤ Cκl
hk+1∥∇Γ̂m

h,∗
f1∥L2(Γ̂m

h,∗)
∥∇Γ̂m

h,∗
f2∥L2(Γ̂m

h,∗)
.

In the rest of this article, we denote by C a generic positive constant which may be different
at different occurrences, possibly dependent on κl and T , but is independent of τ , h and m.
We denote by C0 generic positive constant which is independent of κl. For the simplicity of
notation, we denote by A ≲ B the statement “A ≤ CB for some constant C”. The statement
“for sufficiently small h ...” means that “there exists a constant C, possibly depending on κl,
such that for h ≤ C−1 ...”.

3.3. Mathematical induction assumptions

We assume that the following conditions hold for m = 0, . . . , l (and then prove that these
conditions could be recovered for m = l + 1):

(1) The numerically computed curve Γm
h is in a δ-neighborhood of the exact curve Γm.

Therefore, the distance projection of the nodes of Γm
h onto Γm are well defined (thus the

interpolated curve Γ̂m
h,∗ is well defined).
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(2) The error êmh = Xm
h − X̂m

h,∗ satisfies the following estimates:

∥êmh ∥L2(Γ̂m
h,∗)

+ h∥êmh ∥H1(Γ̂m
h,∗)

≤ h2.75, (3.9)

Remark 3.3. The exponent 2.75 is required in the derivation of the last inequality in (4.91),

which requires h−7/2∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
≲ 1.

Based on these induction assumptions, the following results can be obtained from (3.9) by
applying the inverse inequality of finite element functions:

∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ h1.75, ∥êmh ∥L∞(Γ̂m
h,∗)

≲ h2.25 and ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

≲ h1.25, (3.10)

which guarantee the equivalence of Lp and W 1,p norms, 1 ≤ p ≤ ∞, of finite element functions
vh with a common nodal vector on the family of curves

Γ̂m
h,θ = (1− θ)Γ̂m

h,∗ + θΓm
h , θ ∈ [0, 1].

They are intermediate curves between the interpolated curve Γ̂m
h,∗ and the approximate curve

Γm
h given by the numerical solution; see [35, Lemma 4.3]. In particular, the Lp and W 1,p norms

of a finite element function on Γ̂m
h,∗ and Γm

h (with a common nodal vector) are equivalent.

3.4. Super-approximation, Gauss–Lobatto quadrature and discrete norms

The following super-approximation estimates of products of finite element functions were
proved in [31, Lemma A] and [2, Lemma 4.4] for parametric finite elements on a surface in the
three-dimensional space. The same results and proofs also hold for parametric finite elements
on a curve in the two-dimensional plane.

Lemma 3.4 (Super-approximation estimates of type I). The following estimates hold for any

piecewise smooth function f and finite element functions ϕh, vh, wh ∈ Sh(Γ̂
m
h,∗):

∥(1− Ih)(fϕh)∥L2(Γ̂m
h,∗)

≲ ∥f∥
Wk+1,∞

h (Γ̂m
h,∗)

h∥ϕh∥L2(Γ̂m
h,∗)

,

∥∇Γ̂m
h,∗

(1− Ih)(fϕh)∥L2(Γ̂m
h,∗)

≲ ∥f∥
Wk+1,∞

h (Γ̂m
h,∗)

h∥ϕh∥H1(Γ̂m
h,∗)

,

∥(1− Ih)(vhwh)∥L2(Γ̂m
h,∗)

≲ h2∥vh∥W 1,∞(Γ̂m
h,∗)

∥wh∥H1(Γ̂m
h,∗)

,

∥∇Γ̂m
h,∗

(1− Ih)(vhwh)∥L2(Γ̂m
h,∗)

≲ h∥vh∥W 1,∞(Γ̂m
h,∗)

∥wh∥H1(Γ̂m
h,∗)

.

Another super-approximation type of results which has application in the analysis of mass
lumping FEMs is based on the Gauss–Lobatto quadrature on each element. The following
lemma is a direct generalization of [30, Lemma 3.6, Eq. (3.15)] to finite element functions on
a piecewise polynomial curve (which can be proved by transforming the integrals from curved
elements to flat elements).

Lemma 3.5 (Super-approximation estimates of type II). Let f be a function which is smooth

on every element K of Γ̂m
h,∗, and assume that the pull-back function f ◦ FK vanishes at all the

Gauss–Lobatto points of the flat segment K0
f for every element K of Γ̂m

h,∗. Then the following
two types of estimates hold: ∣∣∣ ∫

Γ̂m
h,∗

fdξ
∣∣∣ ≲ h2k∥f∥

W 2k,1
h (Γ̂m

h,∗)
, (3.11)

where ∥·∥
W 2k,1

h (Γ̂m
h,∗)

denotes the piecewise W 2k,1 norm . If (fϕh)◦FK vanishes at all the Gauss–

Lobatto points of K0
f , then the following result follows from Leibniz rule of differentiation and

the inverse inequality of finite element functions:∣∣∣ ∫
Γ̂m
h,∗

fϕhdξ
∣∣∣ ≲ ∥f∥H2k

h (Γ̂m
h,∗)

hk+1∥ϕh∥H1(Γ̂m
h,∗)

. (3.12)

The result below can be proved similarly as [30, Lemma 3.7] by using integration by parts
and the first result of Lemma 3.5.
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Lemma 3.6 (Super-approximation estimates of type III). For a smooth function f on Γm the
following estimate holds:∣∣∣ ∫

Γm

∇Γm(f − (Ihf)
l) · ∇Γmϕl

h

∣∣∣ ≲ hk+1∥f∥H2k(Γm)∥ϕh∥H1(Γ̂m
h,∗)

∀ϕh ∈ Sh(Γ̂
m
h,∗).

Since the weights of the Gauss–Lobatto quadrature are positive, the discrete Lp norm defined
by

∥v∥Lp
h(Γ̂

m
h,∗)

:=
(∫ h

Γ̂m
h,∗

|v|p
) 1

p
=

( ∑
K⊂Γ̂m

h,∗

∫
K0

f

IK
(
|v ◦ FK |p|∇K0

f
FK |

)) 1
p

is indeed a norm on the finite element space Sh(Γ̂
m
h,∗) because ∥v∥Lp

h(Γ̂
m
h,∗)

= 0 iff v = 0 at all

the nodes of Γ̂m
h,∗. In addition, this discrete Lp norm is also well defined for functions which are

piecewise continuous on Γ̂m
h,∗. Its basic properties are summarized below.

Lemma 3.7. The following relations hold for all finite element functions vh ∈ Sh(Γ̂
m
h,∗) and

piecewise continuous functions w1, w2, w3 on Γ̂m
h,∗:

∥vh∥Lp
h(Γ̂

m
h,∗)

∼ ∥vh∥Lp(Γ̂m
h,∗)

,

∥∇Γ̂m
h,∗

vh∥Lp
h(Γ̂

m
h,∗)

∼ ∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗)

,∣∣∣ ∫ h

Γ̂m
h,∗

w1w2w3

∣∣∣ ≲ ∥w1∥L∞(Γ̂m
h,∗)

∥w2∥L2
h(Γ̂

m
h,∗)

∥w3∥L2
h(Γ̂

m
h,∗)

.

The proof of Lemma 3.7 is omitted as these results follow directly from the definition of the
discrete Lp norm (analogous results on a bounded interval have been proved in [30]). The first
equivalence relation in Lemma 3.7 also holds for piecewise polynomials (not necessarily globally
continuous) of degree≤ k.

Since ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

≲ h1.25, as shown in (3.10), it follows from Lemma 3.1 that for

sufficiently small h the quantities |∇K0
f
FK | are equivalent for the elements on Γ̂m

h,∗ and Γm
h .

Therefore, for any piecewise continuous function v on Γm
h the following equivalence relation

holds:

∥v∥q
Lq
h(Γ

m
h )

∼ h
∑

K⊂Γm
h

∑
p∈N (Γm

h )∩K

|v(p)|q for 1 ≤ q < ∞. (3.13)

Moreover, the following result will be used for finite element functions vh, wh ∈ Sh(Γ̂
m
h,∗):

∥Ih(vhwh)∥Lp(Γ̂m
h,∗)

∼ ∥vhwh∥Lp
h(Γ̂

m
h,∗)

≲ ∥vh∥Lp1
h (Γ̂m

h,∗)
∥wh∥Lp2

h (Γ̂m
h,∗)

≲ ∥vh∥Lp1 (Γ̂m
h,∗)

∥wh∥Lp2 (Γ̂m
h,∗)

(3.14)

which holds for 1 ≤ p, p1, p2 ≤ ∞ such that
1

p
=

1

p1
+

1

p2
.

3.5. Estimates of the averaged normal vectors

On the interpolated curve Γ̂m
h,∗ we can define the averaged normal vector n̄m

h,∗ similarly as

n̄m
h on Γm

h , which is defined in (1.6). Namely, we define n̄m
h,∗ ∈ Sh(Γ̂

m
h,∗) to be the unique finite

element function satisfying the following relation:∫ h

Γ̂m
h,∗

n̄m
h,∗ · ϕh =

∫ h

Γ̂m
h,∗

n̂m
h,∗ · ϕh ∀ϕh ∈ Sh(Γ̂

m
h,∗). (3.15)
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Since (3.15) only involves nodal values, it follows that∫ h

Γ̂m
h,∗

n̄m
h,∗ · ϕ =

∫ h

Γ̂m
h,∗

n̂m
h,∗ · ϕ ∀ϕ ∈ C(Γ̂m

h,∗)
2. (3.16)

It is straightforward to verify the following relations:

n̄m
h,∗(p) = n̂m

h,∗(p) if p is an interior node of an element,

n̄m
h,∗(p) =

|wK1(p)||K0
1f | n̂m

h,∗(p−)

|wK1(p)||K0
1f |+ |wK2(p)||K0

2f |
+

|wK2(p)||K0
2f | n̂m

h,∗(p+)

|wK1(p)||K0
1f |+ |wK2(p)||K0

2f |
(3.17)

if p = K1 ∩K2 for two elements K1 and K2,

where wK(p) = ∇K0
f
FK ◦F−1

K (p) for p ∈ K, with n̂m
h,∗(p−) and n̂m

h,∗(p+) denoting the left (from

K1) and right (from K2) values of the piecewisely defined normal vector n̂m
h,∗ on Γ̂m

h,∗. Therefore,
the amplitude of n̄m

h,∗ at the nodes satisfies the following estimates:

|n̄m
h,∗(p)| = 1 if p is an interior node of an element,

|n̄m
h,∗(p)| ≤ 1,

∣∣|n̄m
h,∗(p)| − 1

∣∣ ≤ C|n̂m
h,∗(p+)− n̂m

h,∗(p−)|2 ≤ Cκl
h2k

if p = K1 ∩K2 for two elements K1 and K2.

(3.18)

The estimate of
∣∣|n̄m

h,∗(p)| − 1
∣∣ in (3.18) is obtained by using the expression

n̄m
h,∗(p) = n̂m

h,∗(p−) + λ(n̂m
h,∗(p+)− n̂m

h,∗(p−)),

with λ = |wK2(p)||K0
2f |/(|wK1(p)||K0

1f |+ |wK2(p)||K0
2f |), and then using the following identity:

|n̄m
h,∗(p)|2 =1 + 2λn̂m

h,∗(p−) · (n̂m
h,∗(p+)− n̂m

h,∗(p−)) + λ2|n̂m
h,∗(p+)− n̂m

h,∗(p−)|2

=1 + λ|n̂m
h,∗(p+)− n̂m

h,∗(p−)|2 + λ2|n̂m
h,∗(p+)− n̂m

h,∗(p−)|2

where we have used the orthogonality between n̂h,∗(p+) + n̂h,∗(p−) and n̂h,∗(p+)− n̂h,∗(p−).

From the expressions of nm
h (the normal vector on Γm

h ) and n̂m
h,∗ (the normal vector on Γ̂m

h,∗),

as shown in (3.6), one can estimate nm
h − n̂m

h,∗ in terms of the the derivative of êmh = Xm
h − X̂m

h,∗,
i.e.,

∥nm
h − n̂m

h,∗∥L2(Γ̂m
h,∗)

+ ∥nm
h − n̂m

h,∗∥L2
h(Γ̂

m
h,∗)

≲ ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

, (3.19)

where we have used the equivalence between continuous and discrete L2 norms in Lemma 3.7.
Since ∥n̄m

h − n̄m
h,∗∥L2(Γ̂m

h,∗)
can be converted to ∥nm

h − n̂m
h,∗∥L2

h(Γ̂
m
h,∗)

using the nodal expressions

of n̄m
h and n̂m

h,∗ in (1.7) and (3.17), it follows that

∥n̄m
h − n̄m

h,∗∥L2(Γ̂m
h,∗)

≲ ∥nm
h − n̂m

h,∗∥L2
h(Γ̂

m
h,∗)

≲ ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

. (3.20)

The following lemma shows that the averaged normal vectors approximate the normal vector
of Γm with the same order of accuracy as the piecewisely defined normal vectors.

Lemma 3.8. The following approximation properties of n̄m
h,∗ and n̄m

h hold:

∥n̄m
h,∗ − Ihn

m
∗ ∥L∞(Γ̂m

h,∗)
≲ hk,

∥n̄m
h − Ihn

m
∗ ∥L2(Γ̂m

h,∗)
≲ hk + ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
,

∥n̄m
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗)

≲ hk.

(3.21)

Proof. Since n̄m
h,∗ is defined as the weighted sum of n̂m

h,∗, the L∞ approximation property

∥n̂m
h,∗ − Ihn

m
∗ ∥L∞(Γ̂m

h,∗)
≲ hk (3.22)

implies the first and the third results.
The second result of Lemma 3.8 follows from the application of the triangle inequality, i.e.,

∥n̄m
h − Ihn

m
∗ ∥L2(Γ̂m

h,∗)
≤ ∥n̄m

h,∗ − Ihn
m
∗ ∥L2(Γ̂m

h,∗)
+ ∥n̄m

h − n̄m
h,∗∥L2(Γ̂m

h,∗)
, (3.23)
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where the first term on the right-hand side of (3.23) is bounded by Cκl
hk according to the first

result, and the second term on the right-hand side of (3.23) follows from (3.20). □

Lemma 3.8 and the boundedness of nm
∗ imply the boundedness of n̄m

h,∗ and n̄m
h via the triangle

inequality, i.e.,

∥n̄m
h,∗∥Hk

h(Γ̂
m
h,∗)

≲ 1,

∥n̄m
h,∗∥W 1,∞(Γ̂m

h,∗)
≲ 1 + hk−1 ≲ 1,

∥n̄m
h ∥W 1,∞(Γ̂m

h,∗)
≲ 1 + hk−1 + h−1∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
≲ 1,

(3.24)

where the last inequality follows from the induction assumption in (3.9).
As an application of the discrete norms and the estimates of the normal vectors, we can

estimate the following type of endpoint terms arising from integration by parts on each element:

h
∑

p∈Nb(Γ
m
h )

|µm
h (p+) + µm

h (p−)||φh(p)|

where µm
h is the co-normal vector (tangent vector) at an endpoint of an element (pointing to

the outward direction) and φh is a finite element function on the curve Γm
h . Since |µm

h (p+) +
µm
h (p−)| = |nm

h (p+)− nm
h (p−)|, the following result holds:

h
∑

p∈Nb(Γ
m
h )

|µm
h (p+) + µm

h (p−)||φh(p)|

≤ h
∑

p∈Nb(Γ
m
h )

(|nm
h (p+)− Ihn

m
∗ (p+)|+ |Ihnm

∗ (p−)− nm
h (p−)|)|φh(p)|

(since Ihn
m
∗ (p+) = Ihn

m
∗ (p−))

≲ ∥nm
h − Ihn

m
∗ ∥L2

h(Γ
m
h )∥φh∥L2

h(Γ
m
h ) (the equivalence relation in (3.13) is used)

≲ (∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ hk)∥φh∥L2(Γ̂m
h,∗)

, (3.25)

where the last inequality uses (3.7) and (3.19).

3.6. Poincaré inequalities for vector-valued functions

The following Poincaré type of inequality on a closed finite element curve/surface was proved
in [31, Lemma 3.4]:∫

Γ̂m
h,∗

|v|2 ≲
∫
Γ̂m
h,∗

|v · Ihnm
∗ |2 +

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

v|2 ∀ v ∈ H1(Γ̂m
h,∗)

2,

which basically says that the full L2 norm of a vector field can be controlled by the normal
component’s L2 norm plus the H1 semi-norm. By replacing Ihn

m
∗ with n̄m

h,∗ and using the first
result of Lemma 3.8, we immediately obtain the following Poincaré type inequality with the
averaged normal vector n̄m

h,∗.

Lemma 3.9 (The Poincaré inequality). For sufficiently small h, the following Poincaré type
inequality holds: ∫

Γ̂m
h,∗

|v|2 ≲
∫
Γ̂m
h,∗

|v · n̄m
h,∗|2 +

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

v|2 ∀ v ∈ H1(Γ̂m
h,∗)

2. (3.26)

In addition, we can replace the normal component’s L2 norm in the Poincaré inequality by its
discrete L2 norm corresponding to the mass lumping method. This is presented in the following
lemma.

Lemma 3.10 (The Poincaré inequality with discrete L2 norm). For sufficiently small h, the

following Poincaré type inequalitie holds for vh ∈ Sh(Γ̂
m
h,∗):∫

Γ̂m
h,∗

|vh|2 ≲
∫
Γ̂m
h,∗

Ih(|vh · n̄m
h,∗|2) +

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2, (3.27)
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Γ̂m
h,∗

|IhT̄m
h,∗vh|2 ≲

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

IhT̄
m
h,∗vh|2, (3.28)

∥vh∥L∞(Γ̂m
h,∗)

≲ ∥vh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥L2(Γ̂m
h,∗)

(3.29)

Proof. From Lemma 3.9 and (3.24) we obtain

∥vh∥2L2(Γ̂m
h,∗)

≲ ∥vh · n̄m
h,∗∥2L2(Γ̂m

h,∗)
+ ∥∇Γ̂m

h,∗
vh∥2L2(Γ̂m

h,∗)

= ∥vh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥2L2(Γ̂m
h,∗)

(∥ · ∥L2 is changed to ∥ · ∥L2
h
)

+ ∥vh · n̄m
h,∗∥2L2(Γ̂m

h,∗)
− ∥vh · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

≲ ∥vh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥2L2(Γ̂m
h,∗)

+ h2k∥|(n̄m
h,∗ · vh) ◦ X̂m

h,∗|2|∇Γ0
h,f
X̂m

h,∗|∥W 2k,1
h (Γ0

h,f)
(first result of Lemma 3.5)

≲ ∥vh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥2L2(Γ̂m
h,∗)

+ h2∥n̄m
h,∗∥2W 1,∞(Γ̂m

h,∗)
∥vh∥2H1(Γ̂m

h,∗)
(inverse inequality)

≲ ∥vh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥2L2(Γ̂m
h,∗)

+ h2∥vh∥2L2(Γ̂m
h,∗)

+ h2∥∇Γ̂m
h,∗

vh∥2L2(Γ̂m
h,∗)

,

(3.30)

where the second to last term can be absorbed by the left-hand side. This leads to inequality
(3.27).

Inequality (3.28) follows from (3.27) once we note that IhT̄
m
h,∗vh · n̄m

h,∗ = 0 at the nodes.

Inequality (3.29) also follows from the Sobolev embedding

∥vh∥L∞(Γ̂m
h,∗)

≲ ∥vh∥L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

vh∥L2(Γ̂m
h,∗)

,

and that ∥vh∥L2(Γ̂m
h,∗)

can be estimated by (3.27). □

Remark 3.11. Since n̄m
h differs from n̄m

h,∗ by a small quantity in the L∞ norm as a result of

Lemma 3.8 and the induction assumption in (3.9), we can replace n̄m
h,∗ by n̄m

h in (3.27) and
absorb the remainder by the left-hand side. This leads to the following version of Poincaré
inequalities in terms of the averaged normal vector n̄m

h :∫
Γ̂m
h,∗

|vh|2 ≲
∫
Γ̂m
h,∗

Ih(|vh · n̄m
h |2) +

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2, (3.31)∫
Γ̂m
h,∗

|IhT̄m
h vh|2 ≲

∫
Γ̂m
h,∗

|∇Γ̂m
h,∗

IhT̄
m
h vh|2. (3.32)

3.7. Geometric relations

The geometric setting in this article is the same as [2, Section 3.4], including the following
relations in (3.33)–(3.38) and Lemma 3.12.

Firstly, by the definition of êm+1
h we have the following nodal relation

êm+1
h = Ih

[
(em+1

h · nm+1
∗ )nm+1

∗
]
+ fh, (3.33)

with

|fh| ≲ |[1− nm+1
∗ (nm+1

∗ )⊤]em+1
h |2 at the nodes of Γ̂m+1

h,∗ , (3.34)

which means that êm+1
h differs from (em+1

h · nm+1
∗ )nm+1

∗ by a much smaller quantity.

Secondly, we denote by Xm+1
h,∗ : Γ̂m

h,∗ → Γm+1
h,∗ the local flow map under which the nodes of

Γ̂m
h,∗ move exactly according to curve shortening flow without tangential motion, and denote by

Xm+1 : Γm → Γm+1 the local flow map of curve shortening flow. SinceXm+1
h,∗ −X̂m

h,∗ = Xm+1−id

at the finite element nodes on Γm, it follows that

Xm+1
h,∗ − X̂m

h,∗ = Ih(X
m+1 − id) on Γ̂m

h,∗, (3.35)
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Xm+1 − id = τ(−Hmnm + gm) on Γm, (3.36)

where −Hmnm is the exact velocity of curve shortening flow without tangential motion at time
level t = tm, and gm is the smooth correction from the Taylor expansion, satisfying the following
estimate:

∥gm∥W 1,∞(Γm) ≤ Cτ. (3.37)

Therefore, we obtain

Xm+1
h −Xm

h = em+1
h − êmh +Xm+1

h,∗ − X̂m
h,∗

= em+1
h − êmh + τIh(−Hmnm + gm).

(3.38)

This relation plays an important role in estimating the numerical displacement Xm+1
h −Xm

h .
The definition of êmh (i.e., orthogonal to Γm at the nodes) guarantees that the tangential

component of êmh (at points which are not nodes) is much smaller than its normal component
in the L2 and H1 norms. As a result, the full L2 and H1 norms of êmh can be controlled
by the normal component’s L2 and H1 norms, respectively. These results are presented in
following lemma and will play important roles in the recovery of H1 full parabolicity of the
curve shortening flow. The proof of this lemma can be found in [2, Section 3.5].

Lemma 3.12. For sufficiently small h, the following estimates hold:

∥(I − nm
∗ (nm

∗ )⊤)êmh ∥L2(Γ̂m
h,∗)

≲ h∥(êmh · nm
∗ )nm

∗ ∥L2(Γ̂m
h,∗)

, (3.39)

∥(I − nm
∗ (nm

∗ )⊤)êmh ∥H1(Γ̂m
h,∗)

≲ h∥(êmh · nm
∗ )nm

∗ ∥H1(Γ̂m
h,∗)

, (3.40)

∥êmh ∥L2(Γ̂m
h,∗)

≤ 2∥(êmh · nm
∗ )nm

∗ ∥L2(Γ̂m
h,∗)

, (3.41)

∥êmh ∥H1(Γ̂m
h,∗)

≤ 2∥(êmh · nm
∗ )nm

∗ ∥H1(Γ̂m
h,∗)

. (3.42)

The similar results hold if nm
∗ is replaced by the averaged normal vector n̄m

h,∗ on Γ̂m
h,∗ (thus

Tm
∗ = I − nm

∗ (nm
∗ )⊤ is replaced by T̄m

h,∗ = I − n̄m
h,∗

|n̄m
h,∗|

(
n̄m
h,∗

|n̄m
h,∗|

)⊤), as shown in the following lemma.

Lemma 3.13. For sufficiently small h, the following estimates hold:

∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)
≲ h∥êmh · n̄m

h,∗∥L2
h(Γ̂

m
h,∗)

, (3.43)

∥êmh ∥L2(Γ̂m
h,∗)

≤ 2∥êmh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

. (3.44)

Proof. Since Tm
∗ = I − nm

∗ (nm
∗ )⊤ is piecewise smooth on Γ̂m

h,∗, the first super-approximation
result in Lemma 3.4 implies that

∥(1− Ih)T
m
∗ êmh ∥L2(Γ̂m

h,∗)
≲ h∥êmh ∥L2(Γ̂m

h,∗)
.

By using the two results above and the smoothness of nm
∗ in a neighborhood of Γm and the first

result of Lemma 3.8, as well as the L∞-stability of the interpolation operator Ih, we have

∥Ih(T̄m
h,∗ − Tm

∗ )êmh ∥L2(Γ̂m
h,∗)

≲ ∥T̄m
h,∗ − Tm

∗ ∥L∞(Γ̂m
h,∗)

∥êmh ∥L2(Γ̂m
h,∗)

((3.14) is used)

≤ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ − nm
∗ (nm

∗ )⊤∥L∞(Γ̂m
h,∗)

∥êmh ∥L2(Γ̂m
h,∗)

+ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ −
n̄m
h,∗

|n̄m
h,∗|

(
n̄m
h,∗

|n̄m
h,∗|

)⊤∥L∞(Γ̂m
h,∗)

∥êmh ∥L2(Γ̂m
h,∗)

≤ ∥(n̄m
h,∗ − Ihn

m
∗ )(n̄m

h,∗)
⊤∥L∞(Γ̂m

h,∗)
∥êmh ∥L2(Γ̂m

h,∗)

+ ∥(Ihnm
∗ )(n̄m

h,∗ − Ihn
m
∗ )⊤∥L∞(Γ̂m

h,∗)
∥êmh ∥L2(Γ̂m

h,∗)

+ ∥(Ihnm
∗ )(Ihn

m
∗ )⊤ − nm

∗ (nm
∗ )⊤∥L∞(Γ̂m

h,∗)
∥êmh ∥L2(Γ̂m

h,∗)

+ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ −
n̄m
h,∗

|n̄m
h,∗|

(
n̄m
h,∗

|n̄m
h,∗|

)⊤∥L∞(Γ̂m
h,∗)

∥êmh ∥L2(Γ̂m
h,∗)
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≲ hk−
1
2 ∥êmh ∥L2(Γ̂m

h,∗)
+ hk−

1
2 ∥êmh ∥L2(Γ̂m

h,∗)
+ hk+1∥êmh ∥L2(Γ̂m

h,∗)
+ h2k∥êmh ∥L2(Γ̂m

h,∗)

≲ hk−
1
2 ∥êmh ∥L2(Γ̂m

h,∗)
.

By using the three results above and the triangle inequality, as well as the first result of Lemma
3.12, we obtain

∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)

≲ ∥Ih(T̄m
h,∗ − Tm

∗ )êmh ∥L2(Γ̂m
h,∗)

+ ∥(1− Ih)T
m
∗ êmh ∥L2(Γ̂m

h,∗)
+ ∥Tm

∗ êmh ∥L2(Γ̂m
h,∗)

≲ hk−
1
2 ∥êmh ∥L2(Γ̂m

h,∗)
+ h∥êmh ∥L2(Γ̂m

h,∗)
+ h∥êmh ∥L2(Γ̂m

h,∗)

≲ h∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)
+ h∥IhN̄m

h,∗ê
m
h ∥L2(Γ̂m

h,∗)

≲ h∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)
+ h∥êmh · n̄m

h,∗∥L2
h(Γ̂

m
h,∗)

, (3.45)

where, in the last inequality, we have used the following norm equivalence

∥IhN̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)
∼ ∥IhN̄m

h,∗ê
m
h ∥L2

h(Γ̂
m
h,∗)

=
∥∥∥êmh ·

n̄m
h,∗

|n̄m
h,∗|

∥∥∥
L2
h(Γ̂

m
h,∗)

∼ ∥êmh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

, (3.46)

and the last equivalence follows from (3.18). Since the first term on the right-hand side of (3.45)
can be absorbed by its left-hand side, we obtain the first result of Lemma 3.13. The second
result of Lemma 3.13 follows immediately. □

3.8. Surface calculus formulas

Given a smooth curve Γ (with or without boundary) in R2 and u ∈ C∞(Γ), we denote
by Diu, i = 1, 2, the ith component of the tangent vector ∇Γu in R2. The corresponding
Leibniz rule, chain rule, integration-by-parts formula, commutators, and the evolution equation
of normal vector, are summarized below.

Lemma 3.14. Let Γ and Γ′ be two smooth curves that are possibly open, such as smooth pieces
of some finite element curves, and let f, h ∈ C∞(Γ) and g ∈ C∞(Γ′; Γ) be given functions. Then
the following results hold.

1. Di(fh) = Difh+ fDih on Γ.
2. Di(g ◦ f) = (Djg ◦ f)Dif on Γ′.

3.
∫
Γ fDih = −

∫
ΓDifh+

∫
Γ fhHni +

∫
∂Γ fhµi where n, µ are the normal and co-normal

(tangential) direction, respectively, and H := Dini (with the Einstein notation) is the
mean curvature, i.e. the trace of the second fundamental form.

4. DiDjf = DjDif + niHjlDlf − njHilDlf , where Hij := Dinj = Djni.
5. If Γ evolves under the velocity field v, and GT :=

⋃
t∈[0,T ] Γ(t)× {t}, then

∂•
t (Dif) = Di(∂

•
t f)− (Divj − ninlDjvl)Djf ∀ f ∈ C2(GT ),

where ∂•
t to denote the material derivative with respect to v.

6. If f, h ∈ C2(GT ) then

d

dt

∫
Γ
fh =

∫
Γ
∂•
t fh+

∫
Γ
f∂•

t h+

∫
Γ
fh(∇Γ · v).

The divergence is defined as ∇Γ ·v := Divi, which coincides with the intrinsic divergence
on the curve if v is a tangential vector field on Γ. Since the Lagrange interpolation
commutes with the material time derivative, it is straightforward to check in the local
coordinates that an analogous result also holds for the mass lumping integral, i.e.,

d

dt

∫ h

Γh

f̃ h̃ =

∫ h

Γh

∂•
t f̃ h̃+

∫ h

Γh

f̃∂•
t h̃+

∫ h

Γh

f̃ h̃(∇Γh
· vh),
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where Γh is a finite element curve moving with polynomial velocity vh ∈ Sh(Γh) (mass

lumping is well defined on Γh), and f̃ , h̃ are continuous functions defined on
⋃

t∈[0,T ] Γh(t)×
{t}.

7. The evolution of the unit normal vector n of the curve Γ with respect to the velocity field
v satisfies the following relation:

∂•
t ni = −Divjnj .

Proof. The first two relations are obvious from the local formula of D (cf. [2, Eq. (5.1)]). The
third relation is shown in [24, Theorem 2.10]. The fourth and fifth equalities are proved in [25,
Lemma 2.4 and 2.6], and the proof of the sixth and last formulae can be found in [22, Appendix
A] and [39, p. 33] respectively.

□

The following formula can be derived by using the fundamental theorem of calculus and the
formulas in Lemma 3.14, item 5 and item 6 (proof is straightforward and omitted). In the case
∂•
θw

θ
h = ∂•

θz
θ
h = 0, this formula was proved in [33, Lemma 7.1].

Lemma 3.15. For two family of finite element functions wθ
h and zθh defined on the intermediate

curve Γ̂m
h,θ = (1− θ)Γ̂m

h,∗ + θΓm
h , the following identity holds:∫

Γm
h

∇Γm
h
wθ
h · ∇Γm

h
zθh −

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

wθ
h · ∇Γ̂m

h,∗
zθh

=

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

wθ
h · (Dêmh )∇Γ̂m

h,θ
zθhdθ +

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

∂•
θw

θ
h · ∇Γ̂m

h,θ
zθhdθ

+

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

wθ
h · ∇Γ̂m

h,θ
∂•
θz

θ
hdθ, (3.47)

where (Dv)rl := −Dlvr −Drvl + δrlDmvm.

4. Convergence of the stabilized BGN method (Proof of Theorem 2.1)

4.1. Consistency error

The optimal-order consistency estimates in this section use the following result.

Lemma 4.1. For any R2-valued function f on Γ̂m
h,∗ which is smooth on each element of Γ̂m

h,∗,
the following estimate holds:∣∣∣ ∫

Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ )
∣∣∣ ≲ hk+1∥f∥H1(Γ̂m

h,∗)
. (4.1)

Proof. By using the triangle inequality, we have∣∣∣ ∫
Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ )
∣∣∣ ≤ ∣∣∣ ∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣

+
∣∣∣ ∫

Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ )−
∫
Γm

f l · (n̂m
h,∗ − nm

∗ )l
∣∣∣

≲
∣∣∣ ∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣+ hk+1∥n̂m

h,∗ − nm
∗ ∥L2(Γ̂m

h,∗)
∥f∥L2(Γ̂m

h,∗)

≲
∣∣∣ ∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣+ hk+1∥f∥H1(Γ̂m

h,∗)
. (4.2)

In order to estimate the first term on the right-hand side above, we define the intermediate

curve Γ̂m,θ
h,∗ = (1 − θ)Γm + θΓ̂m

h,∗, which can be parametrized by X̂m,θ
h,∗ : Γm → Γ̂m,θ

h,∗ with

X̂m,θ
h,∗ = (1− θ)am + θ(Iha

m)l and transport velocity ∂θX̂
m,θ
h,∗ = (Iha

m)l − am, where Ih denotes
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the interpolation onto Γ̂m
h,∗. We denote by n̂m,θ

h,∗ the unit normal vector of Γ̂m,θ
h,∗ , and denote by

vlθ (and v−lθ) the lift (and the inverse lift) of a function v from Γ̂m,θ
h,∗ to Γm (and Γm to Γ̂m,θ

h,∗ )

via this transport velocity. Then

(n̂m
h,∗)

l − nm =

∫ 1

0
∂•
θ (n̂

m,θ
h,∗ )

lθdθ

and Lemma 3.14 (item 7) implies that

∂•
θ (n̂

m,θ
h,∗ )

lθ =
(
−∇

Γ̂m,θ
h,∗

((Iha
m)l − am)−lθ n̂m,θ

h,∗
)lθ . (4.3)

By using the fundamental theorem of calculus and the commutator formula in Lemma 3.14, we
have ∫

Γm

f l · ((n̂m
h,∗)

l − nm)

=

∫
Γm

f l ·
∫ 1

0
∂•
θ (n̂

m,θ
h,∗ )

lθdθ

=

∫
Γm

f l ·
∫ 1

0

(
−∇

Γ̂m,θ
h,∗

((Iha
m)l − am)−lθ n̂m,θ

h,∗

)lθ
dθ

= −
∫
Γm

f l ·
(
∇Γm((Iha

m)l − am)nm
)

−
∫
Γm

f l ·
∫ 1

0

[(
∇

Γ̂m,θ
h,∗

((Iha
m)l − am)−lθ n̂m,θ

h,∗

)lθ
−∇Γm((Iha

m)l − am)nm
]
dθ

= −
∫
Γm

f l ·
(
∇Γm((Iha

m)l − am)nm
)

−
∫
Γm

f l ·
∫ 1

0

∫ θ

0
∂•
α

(
∇Γ̂m,α

h,∗
((Iha

m)l − am)−lα n̂m,α
h,∗

)lα
dαdθ

= −
∫
Γm

f l ·
(
∇Γm((Iha

m)l − am)nm
)

+ 2

∫
Γm

f l ·
∫ 1

0

∫ θ

0

(
∇Γ̂m,α

h,∗
((Iha

m)l − am)−lα∇Γ̂m,α
h,∗

((Iha
m)l − am)−lα n̂m,α

h,∗

)lα
dαdθ

(Lemma 3.14, item 7 is used)

−
∫
Γm

f l ·
∫ 1

0

∫ θ

0

(
n̂m,α
h,∗

∣∣∣∇Γ̂m,α
h,∗

((Iha
m)l − am)−lα n̂m,α

h,∗

∣∣∣2)lα
dαdθ

(Lemma 3.14, item 5 is used)

=: D1 +D2 +D3.

Via integration by parts on each piece where Iha
m is smooth, and using Lemma 3.14 (item 3)

as well as the property that (Iha
m)l − am vanishes at the endpoints of these smooth piecewises,

we have the following estimate of D1:

|D1| =
∣∣∣− ∫

Γm

(∇Γm · f l)((Iha
m)l − am) · nm

−
∫
Γm

f l ·
(
∇Γmnm ((Iha

m)l − am)
)

+

∫
Γm

Hmnm · f l ((Iha
m)l − am) · nm

∣∣∣
≲ hk+1∥f∥H1(Γ̂m

h,∗)
. (4.4)

The two terms D2 and D3 contain squares of the interpolation errors and therefore can be
estimated to higher-order, i.e.,

|D2|+ |D3| ≲ ∥∇Γm((Iha
m)l − am)∥2L2(Γm)∥f∥L∞(Γ̂m

h,∗)
≲ h2k∥f∥H1(Γ̂m

h,∗)
. (4.5)
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The estimates of D1, D2 and D3 lead to∣∣∣ ∫
Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣ ≲ hk+1∥f∥H1(Γ̂m

h,∗)
.

The result of Lemma 4.1 can be obtained by substituting the above inequality into (4.2). □

In view of the stabilized BGN method in (1.5), we define the remainder (consistency error)

at the time level tm to be the following linear functional on Sh(Γ̂
m
h,∗):

dm(ϕh) :=

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄
m
h,∗ · ϕh +

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
ϕh

−
∫
Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]

=

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄
m
h,∗ · ϕh +

∫
Γm

Hmnm · ϕl
h

−
∫
Γm

∇Γm id · ∇Γmϕl
h +

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
ϕh

−
∫
Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]

=: dm1 (ϕh) + dm2 (ϕh) + dm3 (ϕh), (4.6)

where we have used the identity

∫
Γm

∇Γm id · ∇Γmϕl
h =

∫
Γm

Hmnm · ϕl
h.

Proposition 4.2. The remainder defined in (4.6) satisfies the following estimate:

|dm(ϕh)| ≲ τ∥ϕh∥L2(Γ̂m
h,∗)

+ hk+1∥ϕh∥H1(Γ̂m
h,∗)

∀ϕh ∈ Sh(Γ̂
m
h,∗). (4.7)

Proof. By using relation (Xm+1
h,∗ − id)/τ = Ih(X

m+1 − id)/τ , the first term on the right-hand

side of (4.6) can be decomposed into six parts as follows:

dm1 (ϕh) =

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄
m
h,∗ · ϕh +

∫
Γm

Hmnm · ϕl
h

=

∫ h

Γ̂m
h,∗

Ih

(Xm+1 − id

τ
+Hmnm

)
· n̄m

h,∗ n̄
m
h,∗ · ϕh

−
∫ h

Γ̂m
h,∗

(Ih(H
mnm)−Hm,−lnm,−l) · n̄m

h,∗ n̄
m
h,∗ · ϕh

−
∫ h

Γ̂m
h,∗

(Hm,−lnm,−l · n̄m
h,∗ n̄

m
h,∗ −Hm,−lnm,−l · n̂m

h,∗ n̂
m
h,∗) · ϕh

−
(∫ h

Γ̂m
h,∗

−
∫
Γ̂m
h,∗

)
Hm,−lnm,−l · n̂m

h,∗ n̂
m
h,∗ · ϕh

−
∫
Γ̂m
h,∗

(Hm,−lnm,−l · n̂m
h,∗ n̂

m
h,∗ −Hm,−lnm,−l) · ϕh

−
∫
Γ̂m
h,∗

Hm,−lnm,−l · ϕh +

∫
Γm

Hmnm · ϕl
h

=:

6∑
i=1

dm1i(ϕh), (4.8)
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where we have used the abbreviation
( ∫ h

Γ̂m
h,∗

−
∫
Γ̂m
h,∗

)
f =

∫ h
Γ̂m
h,∗

f −
∫
Γ̂m
h,∗

f for any function f

defined on Γ̂m
h,∗. The first and second terms on the right-hand side of (4.8) can be estimated by

using relations (3.36)–(3.37) and the nodal relation, respectively, i.e.,

|dm11(ϕh)| ≲ τ∥ϕh∥L2(Γ̂m
h,∗)

,

dm12(ϕh) = 0.

The third term on the right-hand side of (4.8) can be rewritten as

dm13(ϕh) = −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · ϕh −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) n̂
m
h,∗ · ϕh

= −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · ϕh −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)n̄
m
h,∗ · ϕh

+

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) (n̄
m
h,∗ − n̂m

h,∗) · ϕh

=

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) (n̄
m
h,∗ − n̂m

h,∗) · ϕh,

where we have used the following identities:∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · ϕh = 0 and

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)n̄
m
h,∗ · ϕh = 0,

which follow from property (3.16). Therefore, dm13(ϕh) can be estimated by using the third result
of Lemma 3.8, which implies that

|dm13(ϕh)| ≲ h2k∥ϕh∥L2(Γ̂m
h,∗)

.

The fourth term on the right-hand side of (4.8) can be estimated by the super-convergence of
Gauss–Lobatto quadrature in Lemma 3.5, i.e.,

|dm14(ϕh)| ≲ hk+1∥Hm,−lnm,−l · n̂m
h,∗ n̂

m
h,∗∥H2k

h (Γ̂m
h,∗)

∥ϕh∥H1(Γ̂m
h,∗)

≲ hk+1∥ϕh∥H1(Γ̂m
h,∗)

,

where we have used the result ∥n̂m
h,∗∥W 2k,∞

h (Γ̂m
h,∗)

≲ 1, which is shown in (3.8).

Since nm,−l = nm ◦ am = nm
∗ and Hm,−l = Hm ◦ am = Hm

∗ , the fifth term on the right-hand
side of (4.8) can bedecomposed into the following three parts:

dm15(ϕh) = −
∫
Γ̂m
h,∗

(Hm
∗ nm

∗ · n̂m
h,∗ n̂

m
h,∗ −Hm

∗ nm
∗ · nm

∗ nm
∗ ) · ϕh

= −
∫
Γ̂m
h,∗

Hm
∗ nm

∗ · (n̂m
h,∗ − nm

∗ ) (n̂m
h,∗ − nm

∗ ) · ϕh

−
∫
Γ̂m
h,∗

Hm
∗ nm

∗ · (n̂m
h,∗ − nm

∗ )nm
∗ · ϕh

−
∫
Γ̂m
h,∗

Hm
∗ nm

∗ · nm
∗ (n̂m

h,∗ − nm
∗ ) · ϕh,

which can be estimated by using (3.7) (for the first part) and Lemma 4.1 (for the second and
third parts), i.e.,

|dm15(ϕh)| ≲ h2k∥ϕh∥L2(Γ̂m
h,∗)

+ hk+1∥ϕh∥H1(Γ̂m
h,∗)

.

The last term on the right-hand side of (4.8) can be estimated by using the geometric pertur-
bation estimate in Lemma 3.2 and the norm equivalence, which implies that

|dm16(ϕh)| ≲ hk+1∥ϕh∥L2(Γ̂m
h,∗)

.
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The estimates of dm1i(ϕh), i = 1, . . . , 6, lead to the following result:

|dm1 (ϕh)| ≲ τ∥ϕh∥L2(Γ̂m
h,∗)

+ hk+1∥ϕh∥H1(Γ̂m
h,∗)

.

We can decompose dm2 (ϕh), which is defined in (4.6), into three parts in the same way
as [2, Lemma 4.3], i.e.,

dm2 (ϕh) =

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
ϕh −

∫
Γm

∇Γm id · ∇Γmϕl
h

=

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

(Xm+1
h,∗ − X̂m

h,∗) · ∇Γ̂m
h,∗

ϕh

+

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
ϕh −

∫
Γm

∇Γm(X̂m
h,∗)

l · ∇Γmϕl
h

+

∫
Γm

∇Γm [(Iha
m)l − am] · ∇Γmϕl

h

= dm21(ϕh) + dm22(ϕh) + dm23(ϕh), (4.9)

where we have used the following relations in the derivation of the second to last equality:

(X̂m
h,∗)

l = (Iha
m)l and id = am on Γm.

The two terms dm21(ϕh) and dm22(ϕh) are estimated in [2, Lemma 4.3] with the following results:

|dm21(ϕh)| ≲ τ∥ϕh∥L2(Γ̂m
h,∗)

and |dm22(ϕh)| ≲ hk+1∥ϕh∥H1(Γ̂m
h,∗)

.

By using the super-convergence result in Lemma 3.6, we can obtain the following estimate of
dm23 (which is better than the result in [2, Lemma 4.3]):

|dm23(ϕh)| ≲ hk+1∥ϕh∥H1(Γ̂m
h,∗)

.

The estimates of dm2i(ϕh), i = 1, 2, 3, lead to the following result:

|dm2 (ϕh)| ≲ τ∥ϕh∥L2(Γ̂m
h,∗)

+ hk+1∥ϕh∥H1(Γ̂m
h,∗)

.

We can decompose dm3 (ϕh), which is defined in (4.6), into several parts by using integration

by parts (Lemma 3.14, item 3) and identity ∆Γ̂m
h,∗

X̂m
h,∗ = −Ĥm

h,∗n̂
m
h,∗ on any element of Γ̂m

h,∗, as

well as the mass lumping approximation of the integral, i.e.,

|dm3 (ϕh)| =
∣∣∣ ∫

Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]
∣∣∣

≤
∣∣∣ ∫ h

Γ̂m
h,∗

Ĥm
h,∗n̂

m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh

∣∣∣
+
∣∣∣( ∫

Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
Ĥm

h,∗n̂
m
h,∗ · Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]
∣∣∣

+
∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(
µ̂m
h,∗(p+)⊤∇Γ̂m

h,∗
X̂m

h,∗(p+) + µ̂m
h,∗(p−)⊤∇Γ̂m

h,∗
X̂m

h,∗(p−)
)
· Ih

[
(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh(p)
]∣∣∣.

The first term on the right-hand side of the inequality above can be rewritten as∫ h

Γ̂m
h,∗

Ĥm
h,∗n̂

m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh =

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ −Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh

+

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ −Hm

∗ )n̄m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh

+

∫ h

Γ̂m
h,∗

Hm
∗ n̂m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh
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=

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ −Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh,

where the last equality uses n̄m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh = 0 and the following relation as a result

of (3.16): ∫ h

Γ̂m
h,∗

Hm
∗ n̂m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh =

∫ h

Γ̂m
h,∗

Hm
∗ n̄m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh.

Therefore, using the identity µ̂m
h,∗(p±)⊤∇Γ̂m

h,∗
X̂m

h,∗(p±) = µ̂m
h,∗(p±)⊤, we have

|dm3 (ϕh)| ≤
∣∣∣ ∫ h

Γ̂m
h,∗

(Ĥm
h,∗ −Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh

∣∣∣
+
∣∣∣( ∫

Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
Ĥm

h,∗n̂
m
h,∗ · Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)]ϕh

∣∣∣
+
∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(
µ̂m
h,∗(p+) + µ̂m

h,∗(p−)
)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh(p)
∣∣∣

≲ h2k−1∥ϕh∥L2(Γ̂m
h,∗)

+ hk+1∥ϕh∥H1(Γ̂m
h,∗)

+
∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(
µ̂m
h,∗(p+) + µ̂m

h,∗(p−)
)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh(p)
∣∣∣,

where the the second term on the right-hand side of the inequality above is obtained by using
the second super-approximation result in Lemma 3.5, and the first term on the right-hand side
follows from the estimates ∥Ĥm

h,∗−Hm
∗ ∥L∞(Γ̂m

h,∗)
≲ hk−1 (property of approximating Γm by Γ̂m

h,∗)

and ∥n̂m
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗)

≲ hk (the third result of Lemma 3.8).

Since µ̂m
h,∗(p+) + µ̂m

h,∗(p−) is the jump of tangential vector at the endpoint p of an element,

it has magnitude O(hk) and in the direction of (n̂m
h,∗(p+) + n̂m

h,∗(p−))/2. Therefore,∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(
µ̂m
h,∗(p+) + µ̂m

h,∗(p−)
)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh(p)
∣∣∣

≲ hk
∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(n̂m
h,∗(p+) + n̂m

h,∗(p−)) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)ϕh(p)
∣∣∣

= hk
∣∣∣ ∑
p∈Nb(Γ̂

m
h,∗)

(n̂m
h,∗(p+) + n̂m

h,∗(p−)− 2n̄m
h,∗) · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh(p)
∣∣∣

≲ hk−1∥n̂m
h,∗ − n̄m

h,∗∥L2
h(Γ̂

m
h,∗)

∥ϕh∥L2
h(Γ̂

m
h,∗)

≲ h2k−1∥ϕh∥L2(Γ̂m
h,∗)

,

where we have used the estimate ∥n̂m
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗)

≲ hk (third result of Lemma 3.8) and

the norm equivalence in Lemma 3.7. This proves |dm3 (ϕh)| ≲ hk+1∥ϕh∥H1(Γ̂m
h,∗)

for k ≥ 2.

Finally, combining the estimates of dm1 (ϕh), dm2 (ϕh) and dm3 (ϕh), we obtain the result of
Proposition 4.2. □

4.2. The error equation and the H1 parabolicity

The following error equation is obtained by subtracting (4.6) from (1.5):∫ h

Γm
h

Xm+1
h −Xm

h

τ
· n̄m

h n̄m
h · ϕh −

∫
Γ̂m
h,∗

Xm+1
h,∗ − X̂m

h,∗
τ

· n̄m
h,∗ n̄

m
h,∗ · ϕh
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+

∫
Γm
h

∇Γm
h
Xm+1

h · ∇Γm
h
ϕh −

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
ϕh

−
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[I − n̄m

h (n̄m
h )⊤)ϕh] +

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]

= −dm(ϕh), (4.10)

where the first two terms on the left-hand side can be written as∫ h

Γm
h

Xm+1
h −Xm

h

τ
· n̄m

h n̄m
h · ϕh −

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − X̂m

h,∗
τ

· n̄m
h,∗ n̄

m
h,∗ · ϕh

=:

∫ h

Γ̂m
h,∗

em+1
h − êmh

τ
· n̄m

h,∗ n̄
m
h,∗ · ϕh + Jm(ϕh), (4.11)

with

Jm(ϕh) =

∫ h

Γm
h

Xm+1
h −Xm

h

τ
· n̄m

h n̄m
h · ϕh −

∫ h

Γ̂m
h,∗

Xm+1
h −Xm

h

τ
· n̄m

h,∗ n̄
m
h,∗ · ϕh. (4.12)

In [2, Section 5.2] we see that the third and fourth terms on the left-hand side of (4.10) can
be rewritten into a H1 bilinear form plus lower-order terms by using the following notations for
any two R2-valued functions u and v on Γ:

AΓ(u, v) :=

∫
Γ
∇Γu · ∇Γv,

AN
Γ (u, v) :=

∫
Γ
[(∇Γu)n] · [(∇Γv)n],

AT
Γ (u, v) :=

∫
Γ
tr
[
(∇Γu)(I − nn⊤)(∇Γv)

T
]
,

BΓ(u, v) :=

∫
Γ
(∇Γ · u)(∇Γ · v)− tr(∇Γu∇Γv), (4.13)

with AΓ(u, v) = AN
Γ (u, v) + AT

Γ (u, v). These bilinear forms can also be defined on the approxi-

mate curves Γ̂m
h,∗, Γ

m
h and Γ̂m

h,θ. The following identity was shown in [2, Eq. (5.8)]:∫
Γ
∇Γid · (DΓu)∇Γv = −AT

Γ (u, v) +BΓ(u, v), (4.14)

which also holds for the approximate curves Γ̂m
h,∗, Γ

m
h and Γ̂m

h,θ. It is shown in [1, Eq. (2.1)] that

(with integration by parts), if the underlying curve is sufficiently smooth, then the symmetric
bilinear form BΓ(u, v) can be written as

BΓ(u, v) =

∫
Γ
ujDiviHnj −

∫
Γ
ujDjviHni

+

∫
Γ
ujDkviniHjk −

∫
Γ
ujDkviHiknj ∀u, v ∈ H1(Γ). (4.15)

We define X̂m
h,θ := (1−θ)X̂m

h,∗+θXm
h and Xm+1

h,θ := (1−θ)Xm+1
h,∗ +θXm+1

h in the sense of nodal

vectors. Then the third and fourth terms on the left-hand side of (4.10) can be decomposed as
follows (as shown in [2, Eq. (5.10)])∫

Γm
h

∇Γm
h
Xm+1

h · ∇Γm
h
ϕh −

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
ϕh

= AN
h,∗(e

m+1
h , ϕh) +AT

h,∗(e
m+1
h − êmh , ϕh) +Bm(êmh , ϕh) +Km(ϕh), (4.16)

where we have used the following notations for simplicity:

AN
h,∗(uh, vh) := AN

Γ̂m
h,∗

(uh, vh) and AT
h,∗(uh, vh) := AT

Γ̂m
h,∗

(uh, vh), (4.17)

Ah,∗(uh, vh) := AN
h,∗(uh, vh) +AT

h,∗(uh, vh) and Bm(uh, vh) = BΓm(ulh, v
l
h) (4.18)
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Km(ϕh) =

∫ 1

0

[
AN

Γ̂m
h,θ

(em+1
h , ϕh)−AN

Γ̂m
h,∗

(em+1
h , ϕh)

]
dθ

+

∫ 1

0

[
AT

Γ̂m
h,θ

(em+1
h − êmh , ϕh)−AT

Γ̂m
h,∗

(em+1
h − êmh , ϕh)

]
dθ

+

∫ 1

0

[
BΓ̂m

h,θ
(êmh , ϕh)−BΓ̂m

h,∗
(êmh , ϕh)

]
dθ

+BΓ̂m
h,∗

(êmh , ϕh)−BΓm(êmh , ϕh)

+

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

(Xm+1
h,θ − X̂m

h,θ) ·DΓ̂m
h,θ

êmh ∇Γ̂m
h,θ

ϕhdθ. (4.19)

The last two terms on the left-hand side of (4.10), which arise from the stabilization intro-
duced in this article, can be decomposed into the following several parts:

−
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(I − n̄m

h (n̄m
h )⊤)ϕh] +

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)ϕh]

= −
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(I − n̄m

h (n̄m
h )⊤ − T̄m

h )ϕh]

+

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤ − T̄m
h,∗)ϕh]

−
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(T̄

m
h − T̄m

h,∗)ϕh]

−
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih(T̄

m
h,∗ϕh) +

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih(T̄

m
h,∗ϕh)

=: Fm
1 (ϕh) + Fm

2 (ϕh) + Fm
3 (ϕh)

−AN
h,∗(ê

m
h , IhT̄

m
h,∗ϕh)−Bm(êmh , IhT̄

m
h,∗ϕh)−Qm(IhT̄

m
h,∗ϕh), (4.20)

where T̄m
h = I − n̄m

h (n̄m
h )⊤/|n̄m

h |2 and T̄m
h,∗ = I − n̄m

h,∗(n̄
m
h,∗)

⊤/|n̄m
h,∗|2, and the last three terms

are obtained from the following relation (cf. [2, Eq. (5.10)]):∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
IhT̄

m
h,∗ϕh −

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
IhT̄

m
h,∗ϕh

=

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

êmh · ∇Γ̂m
h,θ

IhT̄
m
h,∗ϕhdθ +

∫ 1

0

∫
Γ̂m
h,θ

∇Γ̂m
h,θ

X̂m
h,θ ·DΓ̂m

h,θ
êmh ∇Γ̂m

h,θ
IhT̄

m
h,∗ϕhdθ

(Lemma 3.15 is used)

= Ah,∗(ê
m
h , IhT̄

m
h,∗ϕh)−AT

h,∗(ê
m
h , IhT̄

m
h,∗ϕh) +Bm(êmh , IhT̄

m
h,∗ϕh) +Qm(IhT̄

m
h,∗ϕh)

(relation (4.14) and notations (4.17)–(4.18) are used)

= AN
h,∗(ê

m
h , IhT̄

m
h,∗ϕh) +Bm(êmh , IhT̄

m
h,∗ϕh) +Qm(IhT̄

m
h,∗ϕh),

with

Qm(ϕh) :=

∫ 1

0

[
AN

Γ̂m
h,θ

(êmh , ϕh)−AN
Γ̂m
h,∗

(êmh , ϕh)
]
dθ +

∫ 1

0

[
BΓ̂m

h,θ
(êmh , ϕh)−BΓ̂m

h,∗
(êmh , ϕh)

]
dθ

+BΓ̂m
h,∗

(êmh , ϕh)−BΓm(êmh , ϕh).

In summary, by substituting (4.11), (4.16) and (4.20) into (4.10), we can rewrite the error
equation into the following form:∫ h

Γ̂m
h,∗

em+1
h − êmh

τ
· n̄m

h,∗ ϕh · n̄m
h,∗ + Jm(ϕh)

+AN
h,∗(e

m+1
h , ϕh) +AT

h,∗(e
m+1
h − êmh , ϕh) +Bm(êmh , ϕh) +Km(ϕh)
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+

3∑
i=1

Fm
i (ϕh)−AN

h,∗(ê
m
h , IhT̄

m
h,∗ϕh)−Bm(êmh , IhT̄

m
h,∗ϕh)−Qm(IhT̄

m
h,∗ϕh)

= −dm(ϕh). (4.21)

By choosing ϕh = em+1
h in the error equation we can obtain the following inequality (which

is proved in [2, Eq. (5.15)]):

AN
h,∗(e

m+1
h , em+1

h ) +AT
h,∗(e

m+1
h − êmh , em+1

h ) ≥ 1

2
Ah,∗(e

m+1
h , em+1

h )− 1

2
AT

h,∗(ê
m
h , êmh ). (4.22)

The full H1 parabolicity stems from the property that 1
2A

T
h,∗(ê

m
h , êmh ) is much smaller than

1
2Ah,∗(e

m+1
h , em+1

h ) due to the orthogonality between êmh and the tangent plane of Γm at the

nodes. This means on the left hand side of the error equation (4.22) we have a very good H1

positive definite term. In particular, the following estimates were shown in [2, Eqs. (5.16),
(5.17), (5.22)]:

|AT
h,∗(ê

m
h , êmh )| ≲ ϵ−1∥êmh ∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.23)

|Bm(êmh , em+1
h )| ≲ ϵ−1∥êmh ∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

, (4.24)

|Km(ϕh)| ≲ ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

ϕh∥L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)
∥∇Γ̂m

h,∗
ϕh∥L2(Γ̂m

h,∗)

+ (τ + hk)∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

ϕh∥L2(Γ̂m
h,∗)

. (4.25)

Remark 4.3. The factor (τ + hk) in the last term of (4.25) is better than the the factor
(τ + hk−1) in [2, Eq. (5.22)] because we can use a better geometric perturbation estimate (i.e.,
Lemma 3.2 with L2 norms on both f1 and f2) than that in [2, Lemma 4.2] (with L∞ norm on
f1 and L2 norm on f2). The reason that we have a better geometric perturbation estimate in

Lemma 3.2 to use in this article is that we allow the generic constant C to depend on the W k,∞
h

norm of the map X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ defined in (3.1), while [2] only allows the generic constant

C to depend on the Hk
h norm of this map.

Moreover, from the expression of Bm(·, ·) in (4.15) and the geometric perturbation estimates,
we can obtain the following estimates similarly as [2, inequality (5.20)]:

|Bm(êmh , IhT̄
m
h,∗ϕh)| ≲ ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
∥IhT̄m

h,∗ϕh∥L2(Γ̂m
h,∗)

≲ ϵ−1∥ϕh∥2L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.26)

|Qm(IhT̄
m
h,∗ϕh)| ≲ (∥∇Γ̂m

h,∗
êmh ∥L∞(Γ̂m

h,∗)
+ hk)∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
∥∇Γ̂m

h,∗
ϕh∥L2(Γ̂m

h,∗)

≲ ϵ−1∥ϕh∥2L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.27)

where the last inequality uses (3.10) and the inverse inequality to remove the derivative from
ϕh. The estimation of Jm(ϕh), F

m
i (ϕh) and AN

h,∗(ê
m
h , IhT̄

m
h,∗ϕh) in (4.21) is presented in the next

subsection.

Remark 4.4. By choosing ϕh = em+1
h in the error equation and a sufficiently small ϵ, the terms

ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
arising from (4.23)–(4.27) can be absorbed by the first term on the right-hand

side of (4.22). This benefits from the recovery of full H1 parabolicity in (4.22)–(4.23).

4.3. Estimates for Jm(ϕh), F
m
i (ϕh) and AN

h,∗(ê
m
h , IhT̄

m
h,∗ϕh)

Let n̄m
h,θ be the averaged normal vector on curve Γ̂m

h,θ = (1 − θ)Γ̂m
h,∗ + θΓm

h , with θ ∈ [0, 1],

defined in the same way as (3.15) in terms of the piecewise normal vector n̂m
h,θ on Γ̂m

h,θ. Thus

n̄m
h,θ is not necessarily of unit length. The curve Γ̂m

h,θ moves with velocity êmh as θ increases,

and any finite element function vh with a fixed nodal vector independent of θ ∈ [0, 1] has the



28

transport property ∂•
θvh = 0 on Γ̂m

h,θ. The functional Jm(ϕh) defined in (4.12) can be rewritten
into the following form using the fundamental theorem of calculus:

Jm(ϕh) =

∫ h

Γ̂m
h,θ

Xm+1
h −Xm

h

τ
· n̄m

h,θ ϕh · n̄m
h,θ

∣∣∣∣θ=1

θ=0

=

∫ 1

0

d

dθ

∫ h

Γ̂m
h,θ

Xm+1
h −Xm

h

τ
· n̄m

h,θ ϕh · n̄m
h,θdθ

=

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h −Xm

h

τ
· ∂•

θ n̄
m
h,θ ϕh · n̄m

h,θdθ (4.28)

+

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h −Xm

h

τ
· n̄m

h,θ ϕh · ∂•
θ n̄

m
h,θdθ

+

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h −Xm

h

τ
· n̄m

h,θ ϕh · n̄m
h,θ(∇Γ̂m

h,θ
· êmh )dθ (Lemma 3.14, item 6).

From Lemma 3.14, item 7, we know that

∂•
θ n̂

m
h,θ = −∇Γm

h,θ
êmh · n̂m

h,θ (piecewisely defined on each element). (4.29)

The relation between n̄m
h,θ(p) and n̂m

h,θ(p) at a node p, as shown in (3.17), implies the following
results:

|∂•
θ n̄

m
h,θ(p)| = |∇Γm

h,θ
êmh (p) · nm

h,θ(p)| if p is an interior node of an element, (4.30)

|∂•
θ n̄

m
h,θ(p)| ≲ |∇Γm

h,θ
êmh (p+) · nm

h,θ(p+)|+ |∇Γm
h,θ

êmh (p+)|
+ |∇Γm

h,θ
êmh (p−) · nm

h,θ(p−)|+ |∇Γm
h,θ

êmh (p−)| (4.31)

if p = K1 ∩K2 for two elements K1 and K2,

where the first and third terms on the right-hand side of (4.31) are generated from taking
material derivative of n̂m

h,θ|K1(p) and n̂m
h,θ|K2(p), respectively, while the second and the fourth

terms arise from taking material derivative of the weights wK(p) = ∇K0
f
FK ◦F−1

K (p) for K = K1

andK = K2, respectively. Hence, by using Hölder’s inequality, we obtain the following estimate:

|Jm(ϕh)| ≲ ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

≲ ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ ϵ−1∥ϕh∥2L2(Γ̂m

h,∗)
, (4.32)

where ϵ is an arbitrary small number arising from Young’s inequality.
By using the expression of n̄m

h in (1.7), we can estimate the amplitude of n̄m
h at the nodes

similarly as (3.18), i.e.,

|n̄m
h (p)| = 1 if p is an interior node of an element,

|n̄m
h (p)| ≤ 1,

∣∣|n̄m
h (p)| − 1

∣∣ ≲ |nm
h (p+)− nm

h (p−)|2

if p is an endpoint of an element.

(4.33)

This implies, in view of the norm equivalence relation in (3.13),

∥|n̄m
h | − 1∥L1

h(Γ̂
m
h,∗)

≲
∑

p∈Nb(Γ̂
m
h,∗)

h|nm
h (p+)− nm

h (p−)|2

≲
∑

p∈Nb(Γ̂
m
h,∗)

h(|nm
h (p+)− Ihn

m
∗ (p)|2 + |nm

h (p−)− Ihn
m
∗ (p)|2)

≲ ∥nm
h − Ihn

m
∗ ∥2

L2
h(Γ̂

m
h,∗)

≲ ∥∇Γ̂m
h,∗

êmh ∥2
L2
h(Γ̂

m
h,∗)

+ h2k,

where (3.7), (3.19) and the triangle inequality are used in deriving the last inequality. By using
this result and the inverse inequality, we obtain the following result for the Fm

1 (ϕh) defined in
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(4.20):

|Fm
1 (ϕh)| =

∣∣∣ ∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(I − n̄m

h (n̄m
h )⊤ − T̄m

h )ϕh]
∣∣∣

≲ h−1∥|n̄m
h | − 1∥L1

h(Γ̂
m
h,∗)

∥ϕh∥L∞(Γ̂m
h,∗)

(inverse inequality)

≲ h−1(∥∇Γ̂m
h,∗

êmh ∥2
L2
h(Γ̂

m
h,∗)

+ h2k)(ϵ−1∥ϕh∥L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

ϕh∥L2(Γ̂m
h,∗)

). (4.34)

Similarly, using the estimate in (3.18), we have

|Fm
2 (ϕh)| = |

∫
Γm
h,∗

∇Γm
h,∗

Xm
h,∗ · ∇Γm

h,∗
Ih(1− n̄m

h,∗(n̄
m
h,∗)

⊤ − T̄m
h,∗)ϕh|

≲ h2k−1(ϵ−1∥ϕh∥L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

ϕh∥L2(Γ̂m
h,∗)

). (4.35)

The term |Fm
3 (ϕh)| can be estimated by using integration by parts similarly as dm3 (ϕh), i.e.,

Fm
3 (ϕh) =

∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(T̄

m
h − T̄m

h,∗)ϕh]

= −
∫
Γm
h

∆Γm
h
Xm

h · Ih[(T̄m
h − T̄m

h,∗)ϕh]

+
∑

p∈Nb(Γ
m
h )

(
µm
h (p+) · (∇Γm

h
Xm

h )(p+) + µm
h (p−) · (∇Γm

h
Xm

h )(p−)
)
(T̄m

h (p)− T̄m
h,∗(p))ϕh(p)

=

∫
Γm
h

Hm
h nm

h · Ih[(T̄m
h − T̄m

h,∗)ϕh] +
∑

p∈Nb(Γ
m
h )

(µm
h (p+) + µm

h (p−)) · (T̄m
h (p)− T̄m

h,∗(p))ϕh(p),

where the first term on the right-hand side can be estimated by using the equivalence between
the discrete and continuous norms, i.e.,∣∣∣ ∫

Γm
h

Hm
h nm

h · Ih[(T̄m
h − T̄m

h,∗)ϕh]
∣∣∣ ≲ ∥Ih[(T̄m

h − T̄m
h,∗)ϕh]∥L1(Γ̂m

h,∗)

≲ ∥(T̄m
h − T̄m

h,∗)ϕh∥L1
h(Γ̂

m
h,∗)

≲ ∥(T̄m
h − T̄m

h,∗)ϕh∥L1(Γ̂m
h,∗)

≲ ∥T̄m
h − T̄m

h,∗∥L2Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

≲ ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

(here (3.20) is used).

The second term in the expression of Fm
3 (ϕh) can be estimated by using (3.25) with φh =

Ih(T̄
m
h − T̄m

h,∗) and (3.20). This leads to the following estimate:∑
p∈Nb(Γ

m
h )

(µm
h (p+) + µm

h (p−)) · (T̄m
h (p)− T̄m

h,∗(p))ϕh(p)

≲ h−1∥∇Γ̂m
h,∗

êmh ∥L2(Γm
h )∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
∥ϕh∥L∞(Γ̂m

h,∗)

≲ h−
3
2 ∥∇Γ̂m

h,∗
êmh ∥L2(Γm

h )∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

.

Therefore,

|Fm
3 (ϕh)| ≲ (1 + h−

3
2 ∥∇Γ̂m

h,∗
êmh ∥L2(Γm

h ))∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

. (4.36)

Analogous to [2, Eqs. (5.41), (5.49)], the following estimate can be established by using the
nodal orthogonality relation (the details are omitted):

|AN
h,∗(ê

m
h , IhT̄

m
h,∗ϕh)| ≤ |AN

h,∗(ê
m
h , IhT

m
∗ ϕh)|+ |AN

h,∗(ê
m
h , Ih(T̄

m
h,∗ − Tm

∗ )ϕh)|
≲ ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
∥IhT̄m

h,∗ϕh∥L2(Γ̂m
h,∗)

+ hk−1∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥ϕh∥L2(Γ̂m
h,∗)

.
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4.4. Stability of the tangential motion

For an arbitrarily prescribed smooth velocity field u on Γ which is not necessarily tangential,
we consider the velocity v whose tangential motion is specified by the following elliptic system
on Γ

v · n = u · n, (4.37a)

−∆Γv = κn. (4.37b)

This system can be reformulated as the Euler-Lagrange equation of the energy functional∫
Γ |∇Γv|2 under the pointwise constraint v · n = u · n. Formally the elliptic system (4.37)
with u = −Hn is underlying the PDE to which the BGN method converges; see [31, Section
1]. Since

∫
Γ |∇Γ · |2 indicates the infinitesimal distortion of the mesh and v is the minimizer of

this functional, this correspondence explains why the tangential velocity endowed by the BGN
method helps to improve the mesh quality.

Lemma 4.5. If the underlying closed surface Γ is smooth, then the elliptic velocity system
(4.37) has a unique solution (v, κ) ∈ H1(Γ)×H−1(Γ) with v · n = u · n almost everywhere, and
moreover this solution (v, κ) is smooth.

Proof. We first consider the following energy functional I : H1(Γ) → R

I(v) =

∫
Γ
|∇Γv|2 (4.38a)

with v in the convex admissible set

H = {v ∈ H1(Γ) : v · n = u · n a.e.}. (4.38b)

We know H ≠ ∅ because u is in H. Then we define I0 = infv∈H I(v) ≥ 0 and pick out a
minimizing sequence vi ∈ H such that I(vi) → I0. From the vectorial Poincaré inequality,
it follows that {vi} is bounded in H1(Γ). Therefore, by the compactness, we can extract a
subsequence, also denoted by {vi} for simplicity, such that vi → v in L2(Γ), vi ⇀ v in H1(Γ)
and v · n = u · n a.e.. According to the weak lower semi-continuity of the norm, it holds that
I(v) ≤ infi I(vi) = I0, which means the infimum of energy I0 can be indeed reached at v.

For the uniqueness of the minimizer, if I(v1) = I(v2) = I0 for some v1 ̸= v2, by the strict
convexity of I, we have I(v1+v2

2 ) < 1
2I(v1) +

1
2I(v2) = I0 contradicting the minimality.

To obtain the Euler-Lagrange equation for the variational problem (4.38), we take the vari-
ation v + ϵφ with φ ∈ C∞(Γ;TΓ) being any smooth vector field on Γ. Since φ is tangential,
v + ϵφ ∈ H is also admissible. Using the minimality of v, we derive

0 =
d

dϵ
|ϵ=0I(v + ϵφ)

=
d

dϵ
|ϵ=0

∫
Γ
|∇Γ(v + ϵφ)|2

= 2

∫
Γ
∇Γv · ∇Γφ.

Then we differentiate the constraint v · n = u · n twice and get the following distributional
identity

∆Γv · n = ∆Γ(u · n)− 2∇Γv · ∇Γn− v ·∆Γn ∈ L2(Γ).

If we define κ := −∆Γv · n ∈ L2(Γ) and denote by P := I − nn⊤ the pointwise orthogonal
tangential projection, then it follows that for any φ ∈ H1(Γ)

(−∆Γv, φ) =

∫
Γ
∇Γv · ∇Γφ

=

∫
Γ
∇Γv · ∇Γ(Pφ+ n(n · φ))

=

∫
Γ
∇Γv · ∇Γ(n(n · φ))
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= (−∆Γv · n, n · φ)
= (κn, φ).

Thus −∆Γv = κn ∈ L2(Γ) holds in the sense of distribution. By the elliptic regularity theory of
the Laplace-Beltrami operator ∆Γ, we know v ∈ H2(Γ) and hence κ = −∆Γv ·n = −∆Γ(u ·n)+
2∇Γv · ∇Γn+ v ·∆Γn ∈ H1(Γ). Therefore, by applying this procedure recursively, we conclude
that (v, κ) is smooth.

To complete the proof, it remains to show that the PDE system (4.37) has a unique solution.
If (ṽ, κ̃) ∈ H1(Γ) ×H−1(Γ) with ṽ ̸= v is another solution of (4.37), then by testing arbitrary
smooth vector field we know ṽ is the local minimizer of (4.38). By the convexity of I and the
fact that v is the unique minimality of I, we have

I((1− θ)ṽ + θv) < (1− θ)I(ṽ) + θI(v) < I(ṽ)

for all θ ∈ (0, 1], which contradicts the local minimality of ṽ when θ is sufficiently small. So we
have ṽ = v and κ̃ = −∆Γṽ · n = −∆Γv · n = κ, and the proof is complete. □

Applying the above lemma with u = −Hn, let (v, κ) be the unique smooth solution to the
following elliptic system on the smooth curve Γ = Γ(t):

v · n = −H, (4.39a)

−∆Γv = κn. (4.39b)

In this subsection we present the stability estimates for the tangential velocity produced by the
stabilized BGN method by comparing the velocity vmh := (Xm+1

h − Xm
h )/τ of the numerical

solution with the velocity vm = v(tm) determined by the elliptic system (4.39). The estimates
of the function wm

h := vmh − Ihv
m ∈ Sh(Γ

m
h ) in this subsection essentially characterize the limit

of the tangential motion produced by the stabilized BGN method.
Since (4.39a) implies that vm = −Hmnm+Tmvm, where Tm = I−nm(nm)⊤ is the tangential

projection matrix on Γm, the following relation follows from (3.38) and the nodal relation
Tm = Tm

∗ :

Xm+1
h −Xm

h − τIhv
m = Xm+1

h −Xm
h − τIh(−Hmnm)− τIhT

m
∗ vm

= em+1
h − êmh − τIhT

m
∗ vm + τIhg

m on Γ̂m
h,∗. (4.40)

The following relation can be obtained by subtracting integral τ
∫
Γm
h
∇Γm

h
Ihv

m · ∇Γm
h
ϕh from

the both sides of the numerical scheme in (1.5):∫
Γm
h

∇Γm
h
(Xm+1

h −Xm
h − τIhv

m) · ∇Γm
h
ϕh

= −
∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h ϕh · n̄m
h −

∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(ϕh · n̄m

h )n̄m
h ]

− τ

∫
Γm
h

∇Γm
h
Ihv

m · ∇Γm
h
ϕh

= −
∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h ϕh · n̄m
h

−
∫
Γm
h

∇Γm
h
Xm

h · ∇Γm
h
Ih[(ϕh · n̄m

h )n̄m
h ]

− τ

∫
Γm

∇Γmvm · ∇Γmϕl
h

+ τ

∫
Γm

∇Γm(vm − (Ihv
m)l) · ∇Γmϕl

h

− τ

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Ihv
m · ∇Γ̂m

h,∗
ϕh + τ

∫
Γm

∇Γm(Ihv
m)l · ∇Γmϕl

h
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− τ

∫
Γm
h

∇Γm
h
Ihv

m · ∇Γm
h
ϕh + τ

∫
Γ̂m
h,∗

∇Γ̂m
h,∗

Ihv
m · ∇Γ̂m

h,∗
ϕh

=:

6∑
i=1

Li(ϕh). (4.41)

For any function ϕh ∈ Sh(Γ̂
m
h,∗), due to the orthogonality between n̄m

h and IhT̄
m
h ϕh at the nodes,

the two terms L1(IhT̄
m
h ϕh) and L2(IhT̄

m
h ϕh) vanish. The three terms L4(ϕh), L5(ϕh) and L6(ϕh)

can be estimated by using the superconvergence of Gauss–Lobatto quadrature (Lemma 3.6),
the geometric perturbation estimate (Lemma 3.2), and the fundamental theorem of calculus
(Lemma 3.15), respectively:

|L4(ϕh)| ≲ τhk+1∥ϕh∥H1(Γ̂m
h,∗)

, (4.42)

|L5(ϕh)| ≲ τhk+1∥∇Γ̂m
h,∗

Ihv
m∥L2(Γ̂m

h,∗)
∥∇Γ̂m

h,∗
ϕh∥L2(Γ̂m

h,∗)
, (4.43)

|L6(ϕh)| ≲ τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

Ihv
m∥L∞(Γ̂m

h,∗)
∥∇Γ̂m

h,∗
ϕh∥L2(Γ̂m

h,∗)
. (4.44)

We can estimate L3(IhT̄
m
h ϕh) with integration by parts and relation (4.39b) as follows, using

the identities IhT̄
m
h ϕh = IhT̄

m
h IhT̄

m
h ϕh:

L3(IhT̄
m
h ϕh) = τ

∫
Γm

∆Γmvm · (IhT̄m
h IhT̄

m
h ϕh)

l (integration by parts)

= −τ

∫
Γm

κmnm · (IhT̄m
h IhT̄

m
h ϕh)

l (relation (4.39b) is used)

= τ

∫
Γm

(1− I lh)
(
κmnm ·

(
(1− Ih)T

m
∗ IhT̄

m
h ϕh

)l)
− τ

∫
Γm

κmnm · (Ih(T̄m
h − T̄m

h,∗)IhT̄
m
h ϕh)

l

− τ

∫
Γm

κmnm · (Ih(T̄m
h,∗ − Tm

∗ )IhT̄
m
h ϕh)

l (4.45)

where the first term on the right-hand side is obtained by using the following identity:

−κmnm ·
(
IhT

m
∗ IhT̄

m
h ϕh

)l
= (1− I lh)

(
κmnm ·

(
(1− Ih)T

m
∗ IhT̄

m
h ϕh

)l)
.

We can further decompose L3(IhT̄
m
h ϕh) into the following seven parts:

L3(IhT̄
m
h ϕh) = τ

∫
Γm

(1− I lh)
(
κmnm ·

(
(1− Ih)T

m
∗ IhT̄

m
h ϕh

)l)
− τ

∫
Γm

κmnm · (Ih(T̄m
h − T̄m

h,∗)IhT̄
m
h ϕh)

l

− τ
(∫

Γm

κmnm · (Ih(T̄m
h,∗ − Tm

∗ )IhT̄
m
h ϕh)

l

−
∫
Γ̂m
h,∗

κm,−lnm,−l · Ih(T̄m
h,∗ − Tm

∗ )IhT̄
m
h ϕh

)
− τ

(∫
Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
κm,−lnm,−l · Ih(T̄m

h,∗ − Tm
∗ )IhT̄

m
h ϕh

− τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (T̄m
h,∗ − T̂m

h,∗)IhT̄
m
h ϕh

− τ
(∫ h

Γ̂m
h,∗

−
∫
Γ̂m
h,∗

)
κm,−lnm,−l · (T̂m

h,∗ − Tm
∗ )IhT̄

m
h ϕh

− τ

∫
Γ̂m
h,∗

κm,−lnm,−l · (T̂m
h,∗ − Tm

∗ )IhT̄
m
h ϕh
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=:

7∑
i=1

L3i(ϕh). (4.46)

The super-convergence result of the Gauss–Lobatto quadrature (i.e., Lemma 3.5) can be used
to prove the following estimates (the details are omitted):

|L31(ϕh)|+ |L34(ϕh)|+ |L36(ϕh)| ≲ τhk+1∥IhT̄m
h ϕh∥H1(Γ̂m

h,∗)
.

L32(ϕh) can be estimated by using the expressions T̄m
h = I − n̄m

h (n̄m
h )⊤/|n̄m

h |2 and T̄m
h,∗ =

I − n̄m
h,∗(n̄

m
h,∗)

⊤/|n̄m
h,∗|2 and (3.20), which lead to the following result:

|L32(ϕh)| ≲ τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥IhT̄m
h ϕh∥L2(Γ̂m

h,∗)
.

L33(ϕh) can be estimated by the geometric perturbation estimate in Lemma 3.2 and Lemma
3.8:

|L33(ϕh)| ≲ τhk+1∥Ih(T̄m
h,∗ − Tm

∗ )∥L2(Γ̂m
h,∗)

∥IhT̄m
h ϕh∥L2(Γ̂m

h,∗)
≲ τh2k+1∥IhT̄m

h ϕh∥L2(Γ̂m
h,∗)

.

We can rewrite L35(ϕh) as

L35(ϕh) = τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l ·
( n̄m

h,∗(n̄
m
h,∗)

⊤

|n̄m
h,∗|2

− n̂m
h,∗(n̂

m
h,∗)

⊤
)
IhT̄

m
h ϕh

= 2τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)
1

|n̄m
h,∗|2

n̄m
h,∗ · IhT̄m

h ϕh

− τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)
1

|n̄m
h,∗|2

(n̄m
h,∗ − n̂m

h,∗) · IhT̄m
h ϕh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · n̂m
h,∗

( 1

|n̄m
h,∗|2

− 1
)
n̂m
h,∗ · IhT̄m

h ϕh

= −τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · 1

|n̄m
h,∗|2

(n̄m
h,∗ − n̂m

h,∗)(n̄
m
h,∗ − n̂m

h,∗) · IhT̄m
h ϕh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · n̂m
h,∗

( 1

|n̄m
h,∗|2

− 1
)
n̂m
h,∗ · IhT̄m

h ϕh,

where the last equality follows from (3.15). Then we can estimate ∥n̄m
h,∗− n̂m

h,∗∥L2
h(Γ̂

m
h,∗)

by using

the equivalence between discrete and continuous norms as well as the estimates in (3.7) and
Lemma 3.8 with the triangle inequality, and estimate |n̄m

h,∗| − 1 by using (3.18). This leads to
the following estimate:

|L35(ϕh)| ≲ τh2k∥IhT̄m
h ϕh∥H1(Γ̂m

h,∗)
.

Similarly, we can rewrite L37(ϕh) as

L37(ϕh) = τ

∫
Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗(n̂

m
h,∗)

⊤ − nm
∗ (nm

∗ )⊤)IhT̄
m
h ϕh

= 2τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗ − nm

∗ )nm
∗ · IhT̄m

h ϕh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗ − nm

∗ )(n̂m
h,∗ − nm

∗ ) · IhT̄m
h ϕh,

where the last term is the same as the right-hand side of L35(ϕh) and therefore has already
been estimated, and the second to last term can be estimated by using Lemma 4.1. This leads
to the following result:

|L37(ϕh)| ≲ τhk+1∥IhT̄m
h ϕh∥H1(Γ̂m

h,∗)
+ τh2k∥IhT̄m

h ϕh∥H1(Γ̂m
h,∗)

.
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In summary, since 2k ≥ k + 1, we have

|L3(IhT̄
m
h ϕh)| ≲ τ(hk+1 + ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
)∥IhT̄m

h ϕh∥H1(Γ̂m
h,∗)

. (4.47)

By using the above estimates of |Lj(IhT̄
m
h ϕh)|, j = 1, . . . , 6, choosing ϕh = IhT̄

m
h (Xm+1

h −
Xm

h − τIhv
m) in (4.41) leads to∫

Γm
h

∇Γm
h
(Xm+1

h −Xm
h − τIhv

m) · ∇Γm
h
IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m)

=
6∑

i=1

Li(IhT̄
m
h (Xm+1

h −Xm
h − τIhv

m))

≲ τ(∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ hk+1)∥IhT̄m
h (Xm+1

h −Xm
h − τIhv

m)∥H1(Γ̂m
h,∗)

. (4.48)

Utilizing the orthogonality between N̄m
h and T̄m

h , we can prove the following result, which
essentially controls the H1 bilinear form

∫
Γm
h
∇Γm

h
N̄m

h fh,1 · ∇Γm
h
T̄m
h fh,2 by the L2 norm of fh,1

and the H1 seminorm of fh,2 for any two functions fh,1, fh,2 ∈ Sh(Γ
m
h ).

Lemma 4.6. The following estimate for the displacement Xm+1
h −Xm

h − τIhv
m holds:∣∣∣ ∫

Γm
h

∇Γm
h
[IhN̄

m
h (Xm+1

h −Xm
h − τIhv

m)] · ∇Γm
h
[IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m)]
∣∣∣

≲ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)∥IhN̄m

h (Xm+1
h −Xm

h − τIhv
m)∥2

L2(Γ̂m
h,∗)

+ (ϵ+ ϵ−1h2)∥∇Γ̂m
h,∗

IhT̄
m
h (Xm+1

h −Xm
h − τIhv

m)∥2
L2(Γ̂m

h,∗)
∀ ϵ > 0. (4.49)

Proof. For the simplicity of notation, we denote the displacement δXm
h := Xm+1

h −Xm
h −τIhv

m ∈
Sh(Γ

m
h ). From the fundamental theorem of calculus, geometric perturbation estimates and the

mathematical induction assumptions, we have∣∣∣ ∫
Γm
h

∇Γm
h
IhN̄

m
h δXm

h · ∇Γm
h
IhT̄

m
h δXm

h

∣∣∣
=

∣∣∣( ∫
Γm
h

∇Γm
h
IhN̄

m
h δXm

h · ∇Γm
h
IhT̄

m
h δXm

h −
∫
Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄
m
h δXm

h · ∇Γ̂m
h,∗

IhT̄
m
h δXm

h

)
+
(∫

Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄
m
h δXm

h · ∇Γ̂m
h,∗

IhT̄
m
h δXm

h −
∫
Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l
)

+

∫
Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l
∣∣∣

≲ (hk+1 + ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

)∥∇Γ̂m
h,∗

IhN̄
m
h δXm

h ∥L2(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

IhT̄
m
h δXm

h ∥L2(Γ̂m
h,∗)

+
∣∣∣ ∫

Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l
∣∣∣

≲ ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
IhT̄

m
h δXm

h ∥2
L2(Γ̂m

h,∗)

+
∣∣∣ ∫

Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l
∣∣∣, (4.50)

where the last inequality uses the induction assumption ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

≲ h in (3.10) and the

inverse inequality which removes the gradient in front of IhN̄
m
h δXm

h . By the super-convergence
estimates (Lemma 3.4) and (3.24), it follows that∣∣∣ ∫

Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h IhT̄

m
h δXm

h )l
∣∣∣

=
∣∣∣ ∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄

m
h δXm

h )l
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−
∫
Γm

∇Γm((1− Ih)N̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l

−
∫
Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm((1− Ih)T̄
m
h IhT̄

m
h δXm

h )l

−
∫
Γm

∇Γm((1− Ih)N̄
m
h δXm

h )l · ∇Γm((1− Ih)T̄
m
h IhT̄

m
h δXm

h )l
∣∣∣

≲
∣∣∣ ∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

+ h∥δXm
h ∥H1(Γ̂m

h,∗)
∥∇IhT̄

m
h δXm

h ∥L2(Γ̂m
h,∗)

+ h∥∇Γ̂m
h,∗

IhN̄
m
h δXm

h ∥L2(Γ̂m
h,∗)

∥IhT̄m
h δXm

h ∥H1(Γ̂m
h,∗)

+ h2∥δXm
h ∥H1(Γ̂m

h,∗)
∥IhT̄m

h δXm
h ∥H1(Γ̂m

h,∗)
, (4.51)

where we have used the following estimates (which follow from Lemma 3.4):

∥∇Γm((1− Ih)N̄
m
h δXm

h )l∥L2(Γm) ≲ h∥n̄m
h ∥W 1,∞(Γ̂m

h,∗)
∥δXm

h ∥H1(Γ̂m
h,∗)

,

∥∇Γm((1− Ih)T̄
m
h IhT̄

m
h δXm

h )l∥L2(Γm) ≲ h∥n̄m
h ∥W 1,∞(Γ̂m

h,∗)
∥IhT̄m

h δXm
h ∥H1(Γ̂m

h,∗)
.

(4.52)

(In our notation, IhT̄
m
h δXm

h = Ih[T̄
m
h δXm

h ] is a finite element function and therefore satisfies the
requirement of Lemma 3.4.) The boundedness of ∥N̄m

h ∥W 1,∞(Γ̂m
h,∗)

and ∥T̄m
h ∥W 1,∞(Γ̂m

h,∗)
follows

from the definitions of N̄m
h and T̄m

h in terms of n̄m
h as well as the W 1,∞ estimate of n̄m

h in (3.24).
By decomposing δXm

h into IhN̄
m
h δXm

h plus IhT̄
m
h δXm

h on the right-hand side of (4.51), ap-
plying the inverse inequality to ∥IhN̄m

h δXm
h ∥H1(Γ̂m

h,∗)
and the Poincaré inequality (3.32), we

obtain ∣∣∣ ∫
Γm

∇Γm(IhN̄
m
h δXm

h )l · ∇Γm(IhT̄
m
h δXm

h )l
∣∣∣

≲
∣∣∣ ∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

+ ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
IhT̄

m
h δXm

h ∥2
L2(Γ̂m

h,∗)
, (4.53)

where the L2 norm of IhT̄
m
h δXm

h (arising from decomposing δXm
h into IhN̄

m
h δXm

h plus IhT̄
m
h δXm

h )
is converted to its H1 semi-norm by using the Poincaré type of inequality in (3.32). The first
term on the right-hand side of (4.53) can be further decomposed into∣∣∣ ∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

=
∣∣∣ ∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄

m
h δXm

h )l

+

∫
Γm

∇Γm((N̄m
h −Nm

∗ )N̄m
h δXm

h )l · ∇Γm(Tm
∗ T̄m

h IhT̄
m
h δXm

h )l

+

∫
Γm

∇Γm(N̄m
h N̄m

h δXm
h )l · ∇Γm((T̄m

h − Tm
∗ )T̄m

h IhT̄
m
h δXm

h )l
∣∣∣

≲
∣∣∣ ∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

+
(
∥∇Γ̂m

h,∗
(N̄m

h −Nm
∗ )∥L2(Γ̂m

h,∗)
∥N̄m

h δXm
h ∥L∞(Γ̂m

h,∗)

+ ∥N̄m
h −Nm

∗ ∥L∞(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

N̄m
h δXm

h ∥L2(Γ̂m
h,∗)

)
∥T̄m

h IhT̄
m
h δXm

h ∥H1(Γ̂m
h,∗)

+
(
∥∇Γ̂m

h,∗
(T̄m

h − Tm
∗ )∥L2(Γ̂m

h,∗)
∥T̄m

h IhT̄
m
h δXm

h ∥L∞(Γ̂m
h,∗)

+ ∥T̄m
h − Tm

∗ ∥L∞(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

T̄m
h IhT̄

m
h δXm

h ∥L2(Γ̂m
h,∗)

)
∥N̄m

h δXm
h ∥H1(Γ̂m

h,∗)
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(product rule of differentiation is used)

≲
∣∣∣ ∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

+ h−1(hk + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥N̄m
h δXm

h ∥H1(Γ̂m
h,∗)

∥T̄m
h IhT̄

m
h δXm

h ∥H1(Γ̂m
h,∗)

≲
∣∣∣ ∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]
∣∣∣

+ ϵ−1h−2(hk + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)2∥IhN̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)

+ ϵ∥IhT̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)
+ h2∥δXm

h ∥2
H1(Γ̂m

h,∗)
(here (4.52) is used)

≲
∣∣∣ ∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]
∣∣∣

+ ϵ−1h−4(hk + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)2∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)

+ (ϵ+ h2)∥∇Γ̂m
h,∗

IhT̄
m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ∥IhN̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

(inverse inequality and Poincaré inequality in (3.32) are used)

≲
∣∣∣ ∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]
∣∣∣

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)∥IhN̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

+ (ϵ+ h2)∥∇Γ̂m
h,∗

IhT̄
m
h δXm

h ∥2
L2(Γ̂m

h,∗)
(k ≥ 2 is used). (4.54)

For the first term on the right-hand side of (4.54), we consider the following further decompo-
sition: ∣∣∣ ∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]
∣∣∣

=
∣∣∣ ∫

Γm

(∇ΓmNm)Nm(N̄m
h δXm

h )l · (∇ΓmTm)Tm(T̄m
h IhT̄

m
h δXm

h )l

+

∫
Γm

Nm∇Γm [Nm(N̄m
h δXm

h )l] · Tm∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]

+

∫
Γm

(∇ΓmNm)Nm(N̄m
h δXm

h )l · Tm∇Γm [Tm(T̄m
h IhT̄

m
h δXm

h )l]

+

∫
Γm

Nm∇Γm [Nm(N̄m
h δXm

h )l] · (∇ΓmTm)Tm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣,

where the second term on the right-hand side is zero due to the orthogonality between the two
projections Nm and Tm. For the last term on the right-hand side, we can remove the gradient
from Nm(N̄m

h δXm
h )l via integration by parts. This leads to the following estimate:∣∣∣ ∫

Γm

∇ΓmNm(N̄m
h δXm

h )l · ∇ΓmTm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

≲ ϵ−1∥N̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥T̄m

h IhT̄
m
h δXm

h ∥2
H1(Γ̂m

h,∗)

≲ ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ε−1h2∥δXm

h ∥2
L2(Γ̂m

h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄
m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵh2∥δXm

h ∥2
H1(Γ̂m

h,∗)
, (4.55)

where the last inequality follows from the triangle inequality and (4.52), as well as the following
result which is similar as (4.52):

∥(1− Ih)N̄
m
h δXm

h ∥L2(Γm) ≲ h∥δXm
h ∥L2(Γ̂m

h,∗)
.
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The terms h2∥δXm
h ∥2

L2(Γ̂m
h,∗)

and h2∥δXm
h ∥2

H1(Γ̂m
h,∗)

on the right-hand side of (4.55) can be fur-

thermore decomposed into the normal and tangential parts, respectively, e.g.,

h2∥δXm
h ∥2

H1(Γ̂m
h,∗)

≲ h2∥IhN̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)
+ h2∥IhT̄m

h δXm
h ∥2

H1(Γ̂m
h,∗)

≲ ∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ h2∥∇Γ̂m

h,∗
IhT̄

m
h δXm

h ∥2
L2(Γ̂m

h,∗)
,

where the inverse inequality and the Poincaré inequality in (3.32) are used. Therefore, (4.55)
can be reduced to the following one:∣∣∣ ∫

Γm

∇ΓmNm(N̄m
h δXm

h )l · ∇ΓmTm(T̄m
h IhT̄

m
h δXm

h )l
∣∣∣

≲ ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ (ϵ+ ϵ−1h2)∥∇Γ̂m

h,∗
IhT̄

m
h δXm

h ∥2
L2(Γ̂m

h,∗)
. (4.56)

The result of Lemma 4.6 follows from (4.50)–(4.56). □

Remark 4.7. The same proof leads to the following result, with N̄m
h and T̄m

h replaced by N̄m
h,∗

and T̄m
h,∗, respectively, and Γm

h replaced by Γ̂m
h,∗:∣∣∣ ∫

Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄
m
h,∗(X

m+1
h −Xm

h − τIhv
m) · ∇Γ̂m

h,∗
IhT̄

m
h,∗(X

m+1
h −Xm

h − τIhv
m)

∣∣∣
≲ ϵ−1∥IhN̄m

h,∗(X
m+1
h −Xm

h − τIhv
m)∥2

L2(Γ̂m
h,∗)

+ (ϵ+ ϵ−1h2)∥∇Γ̂m
h,∗

IhT̄
m
h,∗(X

m+1
h −Xm

h − τIhv
m)∥2

L2(Γ̂m
h,∗)

.

(4.57)

Compared with (4.49), the right-hand side of the above inequality does not contain the term
ϵ−1h−4∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

because only the consistency error is involved here.

By using the estimates in (4.48) and (4.49), we have∫
Γm
h

∇Γm
h
IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m) · ∇Γm
h
IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m)

=

∫
Γm
h

∇Γm
h
(Xm+1

h −Xm
h − τIhv

m) · ∇Γm
h
IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m)

−
∫
Γm
h

∇Γm
h
IhN̄

m
h (Xm+1

h −Xm
h − τIhv

m) · ∇Γm
h
IhT̄

m
h (Xm+1

h −Xm
h − τIhv

m)

≲ τ(∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ hk+1)∥IhT̄m
h (Xm+1

h −Xm
h − τIhv

m)∥H1(Γ̂m
h,∗)

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)∥IhN̄m

h (Xm+1
h −Xm

h − τIhv
m)∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄
m
h (Xm+1

h −Xm
h − τIhv

m)∥2
L2(Γ̂m

h,∗)

≲ ϵ−1τ2h2k+2 + ϵ−1τ2∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)∥IhN̄m

h (Xm+1
h −Xm

h − τIhv
m)∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄
m
h (Xm+1

h −Xm
h − τIhv

m)∥2
L2(Γ̂m

h,∗)
. (4.58)

Since the L2 norms of a finite element function on Γ̂m
h,∗ and Γm

h are equivalent, by choosing

a sufficiently small ϵ, the last term on the right-hand side of (4.58) can be absorbed by its
left-hand side. As a result, we obtain the following inequality:

∥∇Γ̂m
h,∗

IhT̄
m
h (Xm+1

h −Xm
h − τIhv

m)∥L2(Γ̂m
h,∗)

≲ τhk+1 + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h (Xm+1

h −Xm
h − τIhv

m)∥L2(Γ̂m
h,∗)

. (4.59)
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Hence, by using the relation em+1
h − êmh −τIhT

m
∗ vm = Xm+1

h −Xm
h −τIhv

m−τIhg
m from (4.40)

and the estimate in (4.59), we have

∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)

≲ τ(τ + hk+1) + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h (em+1

h − êmh − τIhT
m
∗ vm)∥L2(Γ̂m

h,∗)

+ ∥∇Γ̂m
h,∗

Ih[(T̄
m
h − T̄m

h,∗)(e
m+1
h − êmh − τIhT

m
∗ vm)]∥L2(Γ̂m

h,∗)

≲ τ(τ + hk+1) + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h (em+1

h − êmh − τIhT
m
∗ vm)∥L2(Γ̂m

h,∗)

+ h−1∥T̄m
h − T̄m

h,∗∥L2(Γ̂m
h,∗)

∥em+1
h − êmh − τIhT

m
∗ vm∥L∞(Γ̂m

h,∗)

(inverse inequality and equivalence between discrete and continuous norms)

≲ τ(τ + hk+1) + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)

+ h−1∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)
, (4.60)

where we have estimated ∥T̄m
h − T̄m

h,∗∥L2(Γ̂m
h,∗)

by using (3.20) and decomposed the term ∥em+1
h −

êmh − τIhT
m
∗ vm∥L∞(Γ̂m

h,∗)
into its normal and tangential parts, respectively, and have changed

N̄m
h to N̄m

h,∗ by using estimate

∥N̄m
h − N̄m

h,∗∥L2(Γ̂m
h,∗)

≲ ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ h1.75.

This estimate follows from (3.20) and (3.10), and can be used to absorb the additional per-
turbation term caused by changing N̄m

h to N̄m
h,∗. Since ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
≲ h1.75, as shown in

(3.10), the last term on the right-hand side of (4.60) can be absorbed by the left-hand side.
This leads to the following result:

∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)

≲ τ(τ + hk+1) + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)
. (4.61)

Then, by applying the Poincaré inequality with vh = IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm) satisfying

Ih(vh · n̄m
h,∗) = 0 in Lemma 3.10, we can control the L2 norm of the tangential component

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm) by the left-hand side of (4.61). Since the L2 norm of the normal

component IhN̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm) already appears on the right-hand side of (4.61), by

summing up the L2 norms of the tangential and normal components of em+1
h − êmh − τIhT

m
∗ vm

we obtain the following result:

∥em+1
h − êmh − τIhT

m
∗ vm∥L2(Γ̂m

h,∗)

≲ τ(τ + hk+1) + τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)
. (4.62)
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4.5. Velocity estimates

The last term on the right-hand side (4.62) can be estimated by testing the error equation
(4.21) with ϕh = emv,h := 1

τ (e
m+1
h − êmh )− IhT

m
∗ vm. This leads to the following estimate:∫ h

Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

= −
∫ h

Γ̂m
h,∗

IhT
m
∗ vm · n̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

+

∫ h

Γ̂m
h,∗

em+1
h − êmh

τ
· n̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

= −
∫ h

Γ̂m
h,∗

IhT
m
∗ vm · n̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

− dm(emv,h)− Jm(emv,h)−Bm(êmh , emv,h)−Km(emv,h)

−AN
h,∗

(
em+1
h ,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
−AT

h,∗

(
em+1
h − êmh ,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
−

3∑
i=1

Fm
i (emv,h) +AN

h,∗(ê
m
h , IhT̄

m
h,∗e

m
v,h) +Bm(êmh , IhT̄

m
h,∗e

m
v,h) +Qm(IhT̄

m
h,∗e

m
v,h)

≤ −
∫ h

Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗ IhT
m
∗ vm · n̄m

h,∗

− dm(emv,h)− Jm(emv,h)−Bm(êmh , emv,h)−Km(emv,h)

−AN
h,∗

(
êmh + τIhT

m
∗ vm,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
−AT

h,∗

(
τIhT

m
∗ vm,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
−

3∑
i=1

Fm
i (emv,h) +AN

h,∗(ê
m
h , IhT̄

m
h,∗e

m
v,h) +Bm(êmh , IhT̄

m
h,∗e

m
v,h) +Qm(IhT̄

m
h,∗e

m
v,h), (4.63)

where we have dropped the following two non-positive terms from the right-hand side of the
last inequality:

− τAN
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
and − τAT

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm,

em+1
h − êmh

τ
− IhT

m
∗ vm

)
.

The first term on the right-hand side of (4.63) can be estimated by using the orthogonality
between IhT̄

m
h,∗v

m and n̄m
h,∗ at the nodes, which implies that IhT

m
∗ vm ·n̄m

h,∗ = (IhT
m
∗ vm−T̄m

h,∗v
m)·

n̄m
h,∗ at nodes and therefore∣∣∣ ∫ h

Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗ IhT
m
∗ vm · n̄m

h,∗

∣∣∣
≲ ∥IhTm

∗ − T̄m
h,∗∥L2

h(Γ̂
m
h,∗)

∥∥∥(em+1
h − êmh

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

∥∥∥
L2
h(Γ̂

m
h,∗)

≲ hk
∥∥∥(em+1

h − êmh
τ

− IhT
m
∗ vm

)
· n̄m

h,∗

∥∥∥
L2
h(Γ̂

m
h,∗)

, (4.64)
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where the last inequality follows from Lemma 3.8. The second and third terms on the right-hand
side of (4.63) can be estimated by using the results in (4.7) and (4.32), i.e.,∣∣∣dm(em+1

h − êmh
τ

− IhT
m
∗ vm

)∣∣∣
≲ τ

∥∥∥em+1
h − êmh

τ
− IhT

m
∗ vm

∥∥∥
L2(Γ̂m

h,∗)
+ hk+1

∥∥∥em+1
h − êmh

τ
− IhT

m
∗ vm

∥∥∥
H1(Γ̂m

h,∗)
, (4.65)

∣∣∣Jm
(em+1

h − êmh
τ

− IhT
m
∗ vm

)∣∣∣
≲ ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)

∥∥∥em+1
h − êmh

τ
− IhT

m
∗ vm

∥∥∥
L2(Γ̂m

h,∗)
. (4.66)

The following result can be obtained by using the triangle inequality and the boundedness of
IhT

m
∗ vm:

∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)
≲ ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ τ

∥∥∥∇Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)
+ τ.

By substituting the above inequality into the right-hand side of (4.25) and (4.27), the following
estimates of Km and Qm can be verified:∣∣∣Km

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∣∣∣+ ∣∣∣Qm
(
IhT̄

m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

))∣∣∣
≲ ∥∇Γ̂m

h,∗
êmh ∥L∞(Γ̂m

h,∗)

(
∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ τ

∥∥∥∇Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)
+ τ

)
×
∥∥∥∇Γ̂m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

+ (τ + hk)∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∥∥∇Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

≲ (h−1/2τ + hk + ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

)∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

∥∥∥em+1
h − êmh

τ
− IhT

m
∗ vm

∥∥∥
H1(Γ̂m

h,∗)

+ τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∥∥∇Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)
. (4.67)

By the definitions of the bilinear forms AN
h,∗(·, ·), AT

h,∗(·, ·) and Bm(·, ·) in (4.17)–(4.18), we have

|AN
h,∗(uh, vh)|+ |AT

h,∗(uh, vh)|+ |Bm(uh, vh)| ≲ ∥∇Γ̂m
h,∗

uh∥L2(Γ̂m
h,∗)

∥vh∥H1(Γ̂m
h,∗)

, (4.68)

for any uh, vh ∈ Sh(Γ̂
m
h,∗). By substituting these estimates together with the estimates of

Fm
i (emv,h) from (4.34)–(4.36) into the right-hand side of (4.63), and then using the estimate in

(4.61), we obtain∥∥∥(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)
· n̄m

h,∗

∥∥∥2
L2
h(Γ̂

m
h,∗)

≲ (τ + hk+1 + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)
∥∥∥em+1

h − êmh,∗
τ

− IhT
m
∗ vm

∥∥∥
H1(Γ̂m

h,∗)

+ τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∥∥∇Γ̂m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)

+ hk
∥∥∥(em+1

h − êmh
τ

− IhT
m
∗ vm

)
· n̄m

h,∗

∥∥∥
L2
h(Γ̂

m
h,∗)

≲ h−1
(
τ + hk+1 + ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)

)∥∥∥IhN̄m
h,∗(

em+1
h − êmh,∗

τ
− IhT

m
∗ vm)

∥∥∥
L2(Γ̂m

h,∗)
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+ (τ + hk+1 + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)
∥∥∥∇Γ̂m

h,∗
IhT̄

m
h,∗

(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

+ τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∥∥∇Γ̂m
h,∗

IhT̄
m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)

+ h−2τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

∥∥∥IhN̄m
h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)
(inverse inequality)

+ hk
∥∥∥(em+1

h − êmh
τ

− IhT
m
∗ vm

)
· n̄m

h,∗

∥∥∥
L2
h(Γ̂

m
h,∗)

≲ (h−1τ + hk + h−1∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)
∥∥∥IhN̄m

h,∗

(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

+ (τ + hk+1 + ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)
[
(τ + hk+1) + ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)
∥∥∥IhN̄m

h,∗

(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

]
+ τ∥∇Γ̂m

h,∗
êmh ∥L∞(Γ̂m

h,∗)

[
(τ + hk+1)2 + ∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

)2
∥∥∥IhN̄m

h,∗

(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)

]
+ h−2∥∇Γ̂m

h,∗
êmh ∥L∞(Γ̂m

h,∗)
τ
∥∥∥IhN̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)

≲ ϵ−1
(
h−1τ + hk + h−1∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ h−2∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

)2

+ (τ + hk+1)2 + ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

+ (ϵ+ h−2τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

)
∥∥∥IhN̄m

h,∗

(em+1
h − êmh

τ
− IhT

m
∗ vm

)∥∥∥2
L2(Γ̂m

h,∗)

≲ ϵ−1h−2(τ + hk+1)2 + ϵ−1h−2∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ ϵ−1h−4∥∇Γ̂m

h,∗
êmh ∥4

L2(Γ̂m
h,∗)

+ (ϵ+ h−2τ∥∇Γ̂m
h,∗

êmh ∥L∞(Γ̂m
h,∗)

)
∥∥∥(em+1

h − êmh,∗
τ

− IhT
m
∗ vm

)
· n̄m

h,∗

∥∥∥2
L2
h(Γ̂

m
h,∗)

,

where, in the derivation of the last inequality, we have used the equivalence between continuous
and discrete norms for finite element functions, as shown in (3.46). Under the stepsize condition
τ ≤ chk+1, for sufficiently small h and ϵ, the last term on the right-hand side above can be
absorbed by the left-hand side. Then we obtain∥∥∥(em+1

h − êmh,∗
τ

− IhT
m
∗ vm

)
· n̄m

h,∗

∥∥∥2
L2
h(Γ̂

m
h,∗)

≲ h−2(τ + hk+1)2 + h−2∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.69)

where we have absorbed h−4∥∇Γ̂m
h,∗

êmh ∥4
L2(Γ̂m

h,∗)
into h−2∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

by using the estimate

∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ h in (3.10). By considering the square root of (4.69) and using the norm

equivalence relation in (3.46) again, we obtain the following result:∥∥∥IhN̄m
h,∗

(em+1
h − êmh,∗

τ
− IhT

m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)
≲ h−1(τ + hk+1) + h−1∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
. (4.70)

From (4.61) and (4.70), we get an H1 estimate for the tangential velocity, i.e.,

∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)
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≲ h−1τ(τ + hk+1) + h−1τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ h−3∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

τ(τ + hk+1) + h−3τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

≲ h−1τ(τ + hk+1) + h−1τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ h−3τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.71)

where we have used h−2(τ + hk+1) ≲ 1 in the last inequality.
Furthermore, by decomposing the velocity into its normal and tangential components, we

can obtain an H1 estimate of the full velocity, i.e.,

∥em+1
h − êmh − τIhT

m
∗ vm∥H1(Γ̂m

h,∗)

≲ h−1∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L2(Γ̂m

h,∗)
+ ∥IhT̄m

h,∗(e
m+1
h − êmh − τIhT

m
∗ vm)∥H1(Γ̂m

h,∗)

≲ h−2τ(τ + hk+1) + h−2τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

, (4.72)

where the last inequality follows from (4.71), the Poincaré inequality in Lemma 3.10 and the
estimate ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
≲ h1.75.

An important application of the velocity estimates in (4.62) and (4.70)–(4.71) is the following
estimate of ∥em+1

h ∥L2(Γ̂m
h,∗)

:

∥em+1
h ∥L2(Γ̂m

h,∗)
≤ ∥êmh ∥L2(Γ̂m

h,∗)
+ ∥em+1

h − êmh ∥L2(Γ̂m
h,∗)

≲ ∥êmh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

+ ∥em+1
h − êmh − τIhT

m
∗ vm∥L2(Γ̂m

h,∗)
+ τ

((3.44) and the triangle inequality are used)

≲ ∥êmh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

+ h−1τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ h−3τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ τ

≲ ∥êmh · n̄m
h,∗∥L2

h(Γ̂
m
h,∗)

+ τ, (4.73)

where we have used the induction assumption ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ h1.75 in the last inequality.

Inequality (4.73) will help us to convert ∥em+1
h ∥2

L2(Γ̂m
h,∗)

to ∥êmh · n̄m
h,∗∥2L2(Γ̂m

h,∗)
on the right-hand

side of the error estimates. The latter will be absorbed by the left-hand side by using the
discrete version of Grönwall’s inequality.

Via the inverse inequality and the stepsize condition τ ≤ chk+1, inequality (4.73) also implies
that

∥em+1
h ∥L∞(Γ̂m

h,∗)
≲ h1.25. (4.74)

From (3.33)–(3.34) we also see that

∥êm+1
h ∥L∞(Γ̂m

h,∗)
≲ ∥em+1

h ∥L∞(Γ̂m
h,∗)

+ ∥em+1
h ∥2

L∞(Γ̂m
h,∗)

≲ h1.25. (4.75)

Furthermore, the following inequalities can be proved by using (3.33)–(3.34) and (4.74):

∥êm+1
h ∥L2(Γ̂m

h,∗)
≲ ∥em+1

h ∥L2(Γ̂m
h,∗)

,

∥êm+1
h ∥H1(Γ̂m

h,∗)
≲ ∥em+1

h ∥L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)
.

(4.76)

By substituting (4.73) into the right-hand side of (4.76), we can obtain the following result:

∥êm+1
h ∥H1(Γ̂m

h,∗)
≲ τ + ∥êmh · n̄m

h,∗∥L2
h(Γ̂

m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)
. (4.77)

We can also prove the stability in the other way round (cf. [2, Eqs. (5.68), (5.69)]):

∥em+1
h ∥L2(Γ̂m

h,∗)
≲ ∥êmh ∥L2(Γ̂m

h,∗)
+ τ, (4.78)

∥em+1
h ∥H1(Γ̂m

h,∗)
≲ ∥êmh ∥H1(Γ̂m

h,∗)
+ τ. (4.79)

They can be shown by the velocity estimate (4.72) and the stepsize condition τ ≤ chk+1:

∥em+1
h − êmh ∥H1(Γ̂m

h,∗)
≲ τ + ∥em+1

h − êmh − τIhT
m
∗ vm∥H1(Γ̂m

h,∗)
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≲ τ + h−2τ(τ + hk+1) + h−2τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ ∥êmh ∥L2(Γ̂m
h,∗)

+ τ,

and then (4.78)-(4.79) follow imminently from the triangle inequality.

4.6. Norm equivalence on the curves Γm
h , Γm+1

h , Γ̂m
h,∗, Γ̂

m+1
h,∗ and Γm+1

h,∗

In this subsection, we show the equivalence of Lp andW 1,p norms on the curves Γm
h ,Γm+1

h , Γ̂m
h,∗, Γ̂

m+1
h,∗

and Γm+1
h,∗ by using the velocity estimates established in the previous subsection. In view of

the norm equivalence results in Lemma 3.1, it suffices to show that the distance between these
curves are small in the W 1,∞ norm.

From the velocity estimate (4.72) we can derive the following result by using the stepsize
condition τ ≤ chk+1:

∥em+1
h − êmh − τIhT

m
∗ vm∥H1(Γ̂m

h,∗)
≲ h2. (4.80)

Then, using the triangle inequality and (4.73)–(4.76), we get

∥em+1
h ∥H1(Γ̂m

h,∗)
≲ ∥em+1

h − êmh − τIhT
m
∗ vm∥H1(Γ̂m

h,∗)
+ ∥êmh ∥H1(Γ̂m

h,∗)
+ τ ≲ h1.75, (4.81)

∥êm+1
h ∥H1(Γ̂m

h,∗)
≲ ∥em+1

h ∥H1(Γ̂m
h,∗)

≲ h1.75. (4.82)

By utilizing relation (3.38) and the two estimates above, we have

∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

≤ ∥X̂m+1
h,∗ −Xm+1

h ∥L∞(Γ̂m
h,∗)

+ ∥Xm+1
h −Xm

h ∥L∞(Γ̂m
h,∗)

+ ∥Xm
h − X̂m

h,∗∥L∞(Γ̂m
h,∗)

= ∥êm+1
h ∥L∞(Γ̂m

h,∗)
+ ∥em+1

h − êmh − τIh(H
mnm − gm)∥L∞(Γ̂m

h,∗)
+ ∥êmh ∥L∞(Γ̂m

h,∗)

≲ ∥êm+1
h ∥L∞(Γ̂m

h,∗)
+ ∥em+1

h ∥L∞(Γ̂m
h,∗)

+ ∥êmh ∥L∞(Γ̂m
h,∗)

+ τ

≲ h1.75. (4.83)

From (3.35) we see that

∥Xm+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗)

≲ τ. (4.84)

The following lemma essentially helps us to bound the Lp norm of the tangential part of the
error displacement, i.e. em+1

h − êmh − τIhT
m
∗ vm, by the Lp norm of its normal part and the

W 1,p semi-norm of the tangential part which can be furthermore controlled by (4.70) and (4.71)

respectively. This lemma is needed to estimate ∥X̂m+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗)

.

Lemma 4.8. The following estimate for the error displacement em+1
h − êmh − τIhT

m
∗ vm holds:

∥IhTm
∗ (em+1

h − êmh − τIhT
m
∗ vm)∥W 1,p(Γ̂m

h,∗)

≲ hk−1∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥Lp(Γ̂m

h,∗)

+ ∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥Lp(Γ̂m

h,∗)
, ∀ p ∈ [2,∞]. (4.85)

Proof. Using the triangle inequality, we have

∥IhTm
∗ (em+1

h − êmh − τIhT
m
∗ vm)∥W 1,p(Γ̂m

h,∗)

≤ ∥IhT̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥W 1,p(Γ̂m

h,∗)

+ ∥Ih(T̄m
h,∗ − IhT

m
∗ )(em+1

h − êmh − τIhT
m
∗ vm)∥W 1,p(Γ̂m

h,∗)

≲ ∥IhT̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥W 1,p(Γ̂m

h,∗)

+ h−1∥T̄m
h,∗ − IhT

m
∗ ∥L∞(Γ̂m

h,∗)
∥em+1

h − êmh − τIhT
m
∗ vm∥Lp(Γ̂m

h,∗)
(here (3.14) is used)
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≲ ∥IhT̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥W 1,p(Γ̂m

h,∗)

+ hk−1∥em+1
h − êmh − τIhT

m
∗ vm∥Lp(Γ̂m

h,∗)
(Lemma 3.8 is used)

≲ ∥IhT̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥W 1,p(Γ̂m

h,∗)

+ hk−1∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥Lp(Γ̂m

h,∗)

≲ ∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥Lp(Γ̂m

h,∗)

+ hk−1∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥Lp(Γ̂m

h,∗)
, (4.86)

where, in the last inequality, we have applied Poincaré inequality (Lemma 3.10). □

The following identities have been proved in [2, Eqs. (A.15) and (A.17)]:

Nm
∗ (X̂m+1

h,∗ − X̂m
h,∗) = (Xm+1 − id) ◦ am + ρh at the nodes, (4.87)

where |ρh| ≤ C0τ
2 + C0|Tm

∗ (X̂m+1
h,∗ − X̂m

h,∗)|2 at the nodes, (4.88)

Tm
∗ (X̂m+1

h,∗ − X̂m
h,∗) = Tm

∗ (Xm+1
h −Xm

h ) + Tm
∗ (Nm+1

∗ −Nm
∗ )êm+1

h at the nodes, (4.89)

where C0 is a constant that is independent of κl.
Note that nm+1

∗ is a smooth extension of n(·, tm+1) from Γm+1 to a neighborhood of Γm+1

which contains Γm for sufficiently small τ , and the gradient of nm+1
∗ is bounded uniformly with

respect to m and τ . By considering both nm+1
∗ = n(·, tm+1) ◦ X̂m+1

h,∗ and nm
∗ = n(·, tm) ◦ X̂m

h,∗
as functions defined on Γ̂m

h,∗, and using estimates in (4.92) and (4.84), we have

|nm+1
∗ − nm

∗ | = |n(X̂m+1
h,∗ , tm+1)− n(X̂m

h,∗, tm)|

= |nm+1
∗ (X̂m+1

h,∗ )− nm+1
∗ (X̂m

h,∗) + nm+1
∗ (X̂m

h,∗)− nm+1
∗ (Xm+1

h,∗ )

+ n(Xm+1
h,∗ , tm+1)− n(X̂m

h,∗, tm)|

≲ |X̂m+1
h,∗ − X̂m

h,∗|+ |X̂m
h,∗ −Xm+1

h,∗ |+ τ at the nodes

≲ |X̂m+1
h,∗ − X̂m

h,∗|+ τ at the nodes, (4.90)

where the second to last inequality uses the smoothness of nm+1
∗ in a neighborhood of Γm+1,

and the last inequality uses (4.84).
Combining (4.87)–(4.89) with the velocity estimates, we derive

∥X̂m+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗)

≤ ∥IhNm
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥W 1,∞(Γ̂m

h,∗)
+ ∥IhTm

∗ (X̂m+1
h,∗ − X̂m

h,∗)∥W 1,∞(Γ̂m
h,∗)

≲ τ + h−1(τ2 + ∥IhTm
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥2L∞(Γ̂m

h,∗)
) + ∥IhTm

∗ (X̂m+1
h,∗ − X̂m

h,∗)∥W 1,∞(Γ̂m
h,∗)

(inverse inequality and (4.87)–(4.88) are used)

≲ τ + ∥IhTm
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥W 1,∞(Γ̂m

h,∗)
((4.83) is used)

≤ τ + ∥IhTm
∗ (Xm+1

h −Xm
h )∥W 1,∞(Γ̂m

h,∗)
+ ∥IhTm

∗ ((Nm+1
∗ −Nm

∗ )êm+1
h )∥W 1,∞(Γ̂m

h,∗)

((4.89) is used)

≲ τ + ∥IhTm
∗ (em+1

h − êmh − τIhT
m
∗ vm)∥W 1,∞(Γ̂m

h,∗)
((4.40) is used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

)∥êm+1
h ∥L∞(Γ̂m

h,∗)
((4.90) is used)

≲ τ + ∥∇Γ̂m
h,∗

IhT̄
m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L∞(Γ̂m

h,∗)

+ hk−1∥IhN̄m
h,∗(e

m+1
h − êmh − τIhT

m
∗ vm)∥L∞(Γ̂m

h,∗)
(Lemma 4.8 is used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

)∥êm+1
h ∥L∞(Γ̂m

h,∗)
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≲ τ + h−3/2τ(τ + hk+1) + h−3/2τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ h−7/2τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

(inverse inequality, (4.70) and (4.71) are used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

)∥êm+1
h ∥L∞(Γ̂m

h,∗)

≲ τ + h0.75∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

, (4.91)

where the last inequality follows from the induction assumption ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

≲ h1.75 and

the estimate ∥êm+1
h ∥L∞(Γ̂m

h,∗)
≲ h1.75 in (4.82). By absorbing h0.75∥X̂m+1

h,∗ − X̂m
h,∗∥L∞(Γ̂m

h,∗)
into

the left-hand side, we get

∥X̂m+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗)

≲ τ. (4.92)

This implies the norm equivalence between Γ̂m
h,∗ and Γ̂m+1

h,∗ according to Lemma 3.1. Moreover,

∥Xm+1
h −Xm

h ∥W 1,∞(Γ̂m
h,∗)

= ∥em+1
h − êmh − τIh(H

mnm − gm)∥W 1,∞(Γ̂m
h,∗)

(relation (3.38) is used)

≲ τ + h−1/2∥em+1
h ∥H1(Γ̂m

h,∗)
+ h−1/2∥êmh ∥H1(Γ̂m

h,∗)

≲ h1.25, (4.93)

where the last inequality uses (3.10) and (4.81). This implies the norm equivalence between Γm
h

and Γm+1
h according to Lemma 3.1.

The norm equivalence between Γm
h and Γ̂m

h,∗ is a consequence of the induction assumption

∥êmh ∥W 1,∞(Γ̂m
h,∗)

≲ h1.25 in (3.10), and the norm equivalence between Γm
h and Γm

h,∗ follows from

(4.84). Therefore, the norms of finite element functions on Γm
h ,Γm+1

h , Γ̂m
h,∗, Γ̂

m+1
h,∗ and Γm+1

h,∗ with

a common nodal vector are all equivalent.
To distinguish the domain of definition more clearly, we temporarily denote by X̂m+1

h,∗ : Γ0
h,f →

Γ̂m+1
h,∗ and Ŷ m+1

h,∗ : Γ̂m
h,∗ → Γ̂m+1

h,∗ the finite element functions with the same nodal vector but

defined on Γ0
h,f and Γ̂m

h,∗, respectively. Then (4.92) can be written as

∥Ŷ m+1
h,∗ − id∥W 1,∞(Γ̂m

h,∗)
≲ τ.

As a result, for sufficiently small τ , the map Ŷ m+1
h,∗ = id+ (Ŷ m+1

h,∗ − id) is invertible and satisfies

that ∥(Ŷ m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ≲ 1. From (4.92) we conclude that, by using the triangle inequality

and the inverse inequality,

∥X̂m+1
h,∗ ∥

Wk,∞
h (Γ0

h,f)
≲ ∥X̂m

h,∗∥Wk,∞
h (Γ0

h,f)
+ h−k+1∥X̂m+1

h,∗ − X̂m
h,∗∥W 1,∞(Γ0

h,f)
≲ 1. (4.94)

Since X̂m+1
h,∗ = Ŷ m+1

h,∗ ◦ X̂m
h,∗, it follows that

∥(X̂m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) = ∥(X̂m
h,∗)

−1 ◦ (Ŷ m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ )

≤ ∥(X̂m
h,∗)

−1∥W 1,∞(Γ̂m
h,∗)

∥(Ŷ m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ≲ 1. (4.95)

The estimates in (4.94)–(4.95) imply that the constant κl defined in (3.1) satisfies that

κl+1 ≤ Cκl
. (4.96)

As a result, all the estimates in Section 3 proved for Γ̂m
h,∗ also hold for Γ̂m+1

h,∗ (with some constants

depending only on κl). In particular, (3.7) and Lemma 3.8 hold at time levelm+1, and therefore

∥n̄m+1
h,∗ − n̂m+1

h,∗ ∥L2(Γ̂m+1
h,∗ ) ≲ hk. (4.97)
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4.7. Stability of orthogonal projection on the error

In this subsection we establish the stability of converting ∥em+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

to ∥êm+1
h ·

n̄m+1
h,∗ ∥2

L2
h(Γ̂

m+1
h,∗ )

at each time level. We decompose their difference into the following five parts:

∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m+1
h,∗ )

− ∥em+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

= ∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m+1
h,∗ )

− ∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m
h,∗)

(change of Γ̂m+1
h,∗ to Γ̂m

h,∗)

+ ∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m
h,∗)

− ∥êm+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

(change of n̄m+1
h,∗ to n̄m

h,∗)

+ ∥êm+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

− ∥em+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

(change of êm+1
h to em+1

h )

=: Mm
1 +Mm

2 +Mm
3 . (4.98)

By the fundamental theorem of calculus, (4.92) and the norm equivalence of curves Γ̂m
h,∗ and

Γ̂m+1
h,∗ in Section 4.6, we know

Mm
1 = ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂

m+1
h,∗ )

− ∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m
h,∗)

≲ ∥∇Γ̂m
h,∗

(X̂m+1
h − X̂m

h )∥L∞(Γ̂m
h,∗)

∥êm+1
h ∥L2(Γ̂m

h,∗)
∥êm+1

h ∥L2(Γ̂m
h,∗)

≲ τ∥êm+1
h ∥2

L2(Γ̂m
h,∗)

(here (4.92) is used). (4.99)

The estimation of Mm
2 and Mm

3 requires the following lemma which tells us that the L∞

norms of the quantities nm
∗ , n̂m

h,∗ and n̄m
h,∗ at adjacent time levels differ at most O(τ) from each

other. This additional O(τ) will help us to eliminate the factor 1
τ in the fourth line of (4.115).

Lemma 4.9. We have the following estimates for the difference between normal vectors at two
adjacent time levels:

|nm+1
∗ − nm

∗ | ≲ τ at the nodes, (4.100)

∥n̂m+1
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗)

≲ τ, (4.101)

∥n̄m+1
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗)

≲ τ. (4.102)

Proof. Note that nm+1
∗ is a smooth extension of n(·, tm+1) from Γm+1 to a neighborhood of

Γm+1 which contains Γm when τ is sufficiently small, and the gradient of nm+1
∗ is bounded

uniformly with respect to m and τ . From (4.90), (4.92) and (4.84), it follows that

|nm+1
∗ − nm

∗ | ≲ |X̂m+1
h,∗ − X̂m

h,∗|+ |X̂m
h,∗ −Xm+1

h,∗ |+ τ at the nodes

≲ τ at the nodes. (4.103)

The second and the third results in Lemma 4.9 follow from Lemma 3.14 (item 7), (4.30)–(4.31)
and the norm equivalences in Section 4.6, i.e.,

∥n̂m+1
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗)

+ ∥n̄m+1
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗)

≲ ∥∇Γ̂m
h,∗

(X̂m+1
h,∗ − X̂m

h,∗)∥L∞(Γ̂m
h,∗)

≲ τ, (4.104)

where the last inequality follows from (4.92). □

The third result in Lemma 4.9 implies that

Mm
2 = ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂

m
h,∗)

− ∥êm+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

≲ τ∥êm+1
h ∥2

L2(Γ̂m
h,∗)

. (4.105)

We decompose Mm
3 into several parts as follows:

Mm
3 = ∥êm+1

h · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

− ∥em+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

=

∫ h

Γ̂m
h,∗

(êm+1
h − em+1

h ) · n̄m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗
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=

∫ h

Γ̂m
h,∗

(
IhT

m+1
∗ (êm+1

h − em+1
h ) + fh

)
· n̂m

h,∗(ê
m+1
h + em+1

h ) · n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

IhT
m+1
∗ em+1

h · (n̂m
h,∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

IhT
m+1
∗ em+1

h · (nm+1
∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

Ih(T
m+1
∗ − Tm

∗ )em+1
h · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

−
∫ h

Γ̂m
h,∗

IhT
m
∗ (em+1

h − êmh − τIhT
m
∗ vm) · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

−
(∫ h

Γ̂m
h,∗

−
∫
Γ̂m
h,∗

)
τIhT

m
∗ vm · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

−
∫
Γ̂m
h,∗

τIhT
m
∗ vm · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

+

∫ h

Γ̂m
h,∗

IhT
m+1
∗ em+1

h · (nm+1
∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

=:
6∑

i=1

Mm
3i , (4.106)

where we have applied (3.33) and (3.16) in the third equality, and have used the nodal orthog-
onality relation in the fourth equality.

Lemma 4.9 directly implies

Mm
31 ≲ τ(∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
), (4.107)

Mm
35 ≲ τ(∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
). (4.108)

By the velocity estimates in (4.70)–(4.71), we derive that

Mm
32 ≲ τhk

∥∥∥em+1
h − êmh

τ
− IhT

m
∗ vm

∥∥∥
L2(Γ̂m

h,∗)
(∥êm+1

h ∥L2(Γ̂m
h,∗)

+ ∥em+1
h ∥L2(Γ̂m

h,∗)
)

≲ τhk−1(τ + hk+1)(∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

)

+ τhk
(
h−1∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ h−3∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

)
(∥êm+1

h ∥L2(Γ̂m
h,∗)

+ ∥em+1
h ∥L2(Γ̂m

h,∗)
)

≲ τhk−1(τ + hk+1)(∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

)

+ τ(hk−1∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ hk−3∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)(∥êm+1

h ∥L2(Γ̂m
h,∗)

+ ∥em+1
h ∥L2(Γ̂m

h,∗)
)

≲ τhk−1(τ + hk+1)(∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

)

+ τhk−1∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

(∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

) + τhk−0.25∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
,

(4.109)
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where we have used the estimate ∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

≲ h2.75 which follows from

(4.76), (4.78) and the induction assumption in (3.9). The super-convergence estimate in Lemma
3.5 leads to

Mm
33 ≲ τhk+1(∥êm+1

h ∥H1(Γ̂m
h,∗)

+ ∥em+1
h ∥H1(Γ̂m

h,∗)
), (4.110)

and, applying Lemma 4.1, we obtain

Mm
34 ≲ τhk+1(∥êm+1

h ∥H1(Γ̂m
h,∗)

+ ∥em+1
h ∥H1(Γ̂m

h,∗)
). (4.111)

Finally, by using the estimates in (3.34) and Lemma 4.9, as well as the relation (1−nm
∗ (nm

∗ )⊤)êmh =
0 at the nodes, we have

Mm
36 =

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

≲ ∥(1− nm+1
∗ (nm+1

∗ )⊤)em+1
h ∥2

L2
h(Γ̂

m
h,∗)

(∥êm+1
h ∥L∞(Γ̂m

h,∗)
+ ∥em+1

h ∥L∞(Γ̂m
h,∗)

)

≲ ∥(1− nm
∗ (nm

∗ )⊤)(em+1
h − êmh )∥2

L2
h(Γ̂

m
h,∗)

(∥êm+1
h ∥L∞(Γ̂m

h,∗)
+ ∥em+1

h ∥L∞(Γ̂m
h,∗)

)

+ ∥(nm+1
∗ (nm+1

∗ )⊤ − nm
∗ (nm

∗ )⊤)em+1
h ∥2

L2
h(Γ̂

m
h,∗)

(∥êm+1
h ∥L∞(Γ̂m

h,∗)
+ ∥em+1

h ∥L∞(Γ̂m
h,∗)

)

≲ τ2
(∥∥∥em+1

h − êm+1
h

τ
− IhT

m
∗ vm

∥∥∥2
L2
h(Γ̂

m
h,∗)

+ 1
)
(∥êm+1

h ∥L∞(Γ̂m
h,∗)

+ ∥em+1
h ∥L∞(Γ̂m

h,∗)
)

≲ τ2(∥êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥em+1

h ∥L2(Γ̂m
h,∗)

)

+ τ2(∥∇Γ̂m
h,∗

êm+1
h ∥L2(Γ̂m

h,∗)
+ ∥∇Γ̂m

h,∗
em+1
h ∥L2(Γ̂m

h,∗)
),

where the boundedness of
∥∥ em+1

h −êmh
τ −IhT

m
∗ vm

∥∥
L2(Γ̂m

h,∗)
comes from a combination of the velocity

estimates (4.62) and (4.70) as well as the induction assumption ∥êmh ∥H1(Γ̂m
h,∗)

≲ h1.75. Therefore,

by using Young’s inequality, we have

Mm
36 ≲ τ2(∥êm+1

h ∥L2(Γ̂m
h,∗)

+ ∥em+1
h ∥L2(Γ̂m

h,∗)
)

+ ϵ−1τ3 + ϵτ(∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

). (4.112)

By collecting the estimates of Mm
3j , j = 1, . . . , 6, we obtain the following estimate:

Mm
3 ≲ ϵ−1τ3 + τ(∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥êmh ∥2

L2(Γ̂m
h,∗)

)

+ (ϵ+ hk−0.25 + h2k−2)τ(∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
)

+ τhk+1(∥êm+1
h ∥H1(Γ̂m

h,∗)
+ ∥em+1

h ∥H1(Γ̂m
h,∗)

). (4.113)

4.8. Error estimates

Note that
1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂

m+1
h,∗ )

− ∥êmh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

) +Ah,∗(e
m+1
h , em+1

h )

=
1

τ
(∥em+1

h · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

− ∥êmh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

) +Ah,∗(e
m+1
h , em+1

h )

+
1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂

m+1
h,∗ )

− ∥em+1
h · n̄m

h,∗∥2L2
h(Γ̂

m
h,∗)

), (4.114)

where the first line on the right-hand side above can be estimated by choosing ϕh = em+1
h in

the error equation (4.21) and using the estimates of the linear and bilinear forms developed in
Sections 4.1 and 4.2. The second line on the right-hand side above can be estimated by using
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(4.98) and the estimates of Mm
j , j = 1, . . . , 3 in Section 4.7. This leads to the following result:

1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂

m+1
h,∗ )

− ∥êmh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

) +Ah,∗(e
m+1
h , em+1

h )

≲ AT
h,∗(ê

m
h , êmh )−Bm(êmh , em+1

h )− Jm(em+1
h )−Km(em+1

h )− dm(em+1
h )

−
3∑

i=1

Fm
i (em+1

h ) +AN
h,∗(ê

m
h , IhT̄

m
h,∗e

m+1
h ) +Bm(êmh , IhT̄

m
h,∗e

m+1
h ) +Qm(IhT̄

m
h,∗e

m+1
h )

+
1

τ

3∑
i=1

Mm
i (here (4.98) is used)

≲ ϵ−1(τ + hk+1)2 + ϵ−1
(
∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥êmh ∥2

L2(Γ̂m
h,∗)

+ ∥emh ∥2
L2(Γ̂m

h,∗)

)
+ ϵ

(
∥∇Γ̂m

h,∗
emh ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ ∥∇Γ̂m

h,∗
em+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

)
.

(4.115)

Then, by using the results in (3.44), (4.73) and (4.77), we can simplify (4.115) to the following
inequality:

∥êm+1
h · n̄m+1

h,∗ ∥2
L2
h(Γ̂

m+1
h,∗ )

− ∥êmh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

2τ
+ C−1∥∇Γ̂m

h,∗
êm+1
h ∥2

L2(Γ̂m
h,∗)

≲ ϵ−1(τ + hk+1)2 + ϵ−1∥êmh · n̄m
h,∗∥2L2

h(Γ̂
m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
, (4.116)

where ϵ is an arbitrary small constant. The last term in (4.116) can be absorbed by its left-hand
side. Then, by applying the discrete Grönwall’s inequality, the norm equivalence in Section 4.6
and (3.44), we obtain the following error estimate:

max
0≤m≤l

∥êm+1
h ∥2

L2(Γ̂m
h,∗)

+
l∑

m=0

τ∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

≤ C(τ + hk+1)2. (4.117)

For h2k ≲ τ ≲ hk+1 and sufficiently small h, from (4.117) we can recover the induction
hypothesis (3.9) at time level tm+1. In view of (4.78)–(4.79), we also obtain the following
result:

max
0≤m≤l

∥em+1
h ∥2

L2(Γ̂m
h,∗)

+

l∑
m=0

τ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

≤ C(τ + hk+1)2. (4.118)

Note that the constants C on the right-hand side of (4.117) and (4.118) depend on the
κl defined in (3.1), and the condition on the mesh size under which the error estimates are
established is h ≤ hκl

(for some constant hκl
which may depend on κl). In order to conclude

Theorem 2.1, it remains to show that the constant κl defined in (3.1) is independent of τ and l
(though possibly depending on T ). This is presented in the next subsection.

4.9. Uniform boundedness of κl

For any j = 0, 1, . . . , k, we can prove that

max
0≤m≤l

∥X̂m
h,∗∥W j,∞

h (Γ0
h,f)

≤ C ′
0 if max

0≤m≤l
∥X̂m

h,∗∥W j−1,∞
h (Γ0

h,f)
≤ C0,

where C0 and C ′
0 are constants which are independent of τ , h and κl (with C ′

0 depending

on C0). For illustration, however, we only prove ∥X̂m
h,∗∥Wk,∞

h (Γ0
h,f)

≤ C ′
0 under the condition

∥X̂m
h,∗∥Wk−1,∞

h (Γ0
h,f)

≤ C0. The case j ̸= k can be proved similarly; see [2, Appendix].

In this subsection, we regard X̂m
h,∗ and Xm

h as the maps from the piecewise flat curve Γ0
h,f

to Γ̂m
h,∗ and Γm

h , respectively. Let vmf = vm ◦ am ◦ X̂m
h,∗ and gmf = gm ◦ am ◦ X̂m

h,∗, which are
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functions defined on the piecewise flat curve Γ0
h,f . By using relations (4.87)–(4.89), we have

∥X̂m+1
h,∗ − X̂m

h,∗∥Wk,∞
h (Γ0

h,f)

≤ ∥Ih[(Xm+1 − id) ◦ am ◦ X̂m
h,∗]∥Wk,∞

h (Γ0
h,f)

+ ∥ρh ◦ X̂m
h,∗∥Wk,∞

h (Γ0
h,f)

+ ∥Ih[Ih(Tm
∗ ◦ X̂m

h,∗)Ih(N
m+1
∗ ◦ X̂m+1

h,∗ −Nm
∗ ◦ X̂m

h,∗)(ê
m+1
h ◦ X̂m

h,∗)]∥Wk,∞
h (Γ0

h,f)

+ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h )]∥
Wk,∞

h (Γ0
h,f)

=: Em
1 + Em

2 + Em
3 .

By using the stability of Ih on C0(Γ0
h,f) ∩ W k,∞

h (Γ0
h,f), chain rule, the inverse inequality and

(4.88), we have

Em
1 ≤ C0∥(Xm+1 − id) ◦ am ◦ X̂m

h,∗∥Wk,∞
h (Γ0

h,f)
+ ∥ρh ◦ X̂m

h,∗∥Wk,∞
h (Γ0

h,f)

≤ C0∥∇Γ̂m
h,∗

[(Xm+1 − id) ◦ am] ◦ X̂m
h,∗∇k

Γ0
h,f
X̂m

h,∗∥L∞
h (Γ0

h,f)

+ C0

k−1∑
j=2

∥Xm+1 − id∥W j,∞(Γm) + C0h
−k∥ρh ◦ X̂m

h,∗∥L∞(Γ0
h,f)

≤ C0τ∥X̂m
h,∗∥Wk,∞

h (Γ0
h,f)

+ C0τ + C0h
−k

(
τ2 + ∥IhTm

∗ (X̂m+1
h,∗ − X̂m

h,∗)∥2L∞(Γ̂m
h,∗)

)
≤ C0τ∥X̂m

h,∗∥Wk,∞
h (Γ0

h,f)
+ C0τ + C0h

−k∥IhTm
∗ (X̂m+1

h,∗ − X̂m
h,∗ − τIhT

m
∗ vm)∥2

H1(Γ̂m
h,∗)

≤ C0τ∥X̂m
h,∗∥Wk,∞

h (Γ0
h,f)

+ C0τ,

where the last inequality follows from the velocity estimates (4.70), (4.71) and Lemma 4.8.
Furthermore, using the inverse inequality, we have

Em
2 ≤ C0h

−k− 1
2 ∥Ih[Ih(Tm

∗ ◦ X̂m
h,∗)Ih(N

m+1
∗ ◦ X̂m+1

h,∗ −Nm
∗ ◦ X̂m

h,∗)(ê
m+1
h ◦ X̂m

h,∗)]∥L2
h(Γ

0
h,f)

≤ C0h
−k− 1

2Cκl
τCκl

(τ + hk+1),

where we have used the estimate ∥Nm+1
∗ ◦ X̂m+1

h,∗ − Nm
∗ ◦ X̂m

h,∗∥L∞
h (Γ0

h,f)
≤ Cκl

τ which follows

from (4.90) and (4.92), and the estimate ∥êm+1
h ◦ X̂m

h,∗∥L2
h(Γ

0
h,f)

≤ Cκl
(τ + hk+1) which follows

from the error estimate (4.117). Under the condition τ ≤ chk+1 we obtain

Em
2 ≤ Cκl

h
1
2 τ ≤ C0τ under the condition Cκl

h
1
2 ≤ 1.

With the above estimates of Em
1 and Em

2 , we have

∥X̂m+1
h,∗ − X̂m

h,∗∥Wk,∞
h (Γ0

h,f)

≤ C0τ(1 + ∥X̂m
h,∗∥Wk,∞

h (Γ0
h,f)

) + C0∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h )]∥
Wk,∞

h (Γ0
h,f)

.

Using relation (4.40) we can estimate the last term in the above inequality as follows:

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h )]∥
Wk,∞

h (Γ0
h,f)

≤ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h − τIhv
m
f )]∥

Wk,∞
h (Γ0

h,f)
+ τ∥Ih[(Tm

∗ ◦ X̂m
h,∗)v

m
f ]∥

Wk,∞
h (Γ0

h,f)

= ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(e
m+1
h − êmh − τIhT

m
∗ vmf + τIhg

m
f )]∥

Wk,∞
h (Γ0

h,f)
+ τ∥Ih[(Tm

∗ ◦ X̂m
h,∗)v

m
f ]∥

Wk,∞
h (Γ0

h,f)

≤ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(e
m+1
h − êmh − τIhT

m
∗ vmf )]∥

Wk,∞
h (Γ0

h,f)
+ C0τ(Cκl

h−k+1τ + 1 + ∥X̂m
h ∥

Wk,∞
h (Γ0

h,f)
),

where the last inequality follows from the following estimates:

∥Ihgmf ∥
Wk,∞

h (Γ0
h,f)

≤ h−k+1∥Ihgmf ∥W 1,∞(Γ0
h,f)

≤ Cκl
h−k+1τ (in view of (3.37)),

∥(Tm
∗ ◦ X̂m

h,∗)v
m
f ∥

Wk,∞
h (Γ0

h,f)
≤ C0(1 + ∥X̂m

h,∗∥Wk,∞
h (Γ0

h,f)
) (chain rule of differentation).
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Therefore, by using the inverse inequality, under the condition τ ≤ chk+1 and Cκl
h

1
2 ≤ 1, we

have

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h )]∥
Wk,∞

h (Γ0
h,f)

≤ C0h
−k+1/2∥Ih[(Tm

∗ ◦ X̂m
h,∗)(e

m+1
h − êmh − τIhT

m
∗ vmf )]∥H1(Γ0

h,f)
+ C0τ(1 + ∥X̂m

h ∥
Wk,∞

h (Γ0
h,f)

)

≤ Cκl
h−k−1/2τ(τ + hk+1) + Cκl

h−k−1/2τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ Cκl
h−k−5/2τ∥∇Γ̂m

h,∗
êmh ∥2

L2(Γ̂m
h,∗)

+ C0τ(1 + ∥X̂m
h ∥Wk,∞(Γ0

h,f)
),

where Lemma 4.8 and (4.70)–(4.71) are used in the last inequality. Then, using the error
estimate in (4.117) and the stepsize condition τ ≤ chk+1, and ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
≤ Cκl

h1.75, we

have

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h −Xm

h )]∥
Wk,∞

h (Γ0
h,f)

≤ Cκl
h−k−1/2τ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ Cκl

h−k−5/2τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ C0τ(1 + ∥X̂m

h ∥Wk,∞(Γ0
h,f)

),

(4.119)

where we have used the mesh size condition Cκl
h

1
2 ≤ 1 again. In view of the estimates above,

we have proved the following result:

∥X̂m+1
h,∗ − X̂m

h,∗∥Wk,∞
h (Γ0

h,f)

≤ Cκl
h−k−1/2τ∥∇Γ̂m

h,∗
êmh ∥L2(Γ̂m

h,∗)
+ Cκl

h−k−5/2τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
+ C0τ(1 + ∥X̂m

h ∥Wk,∞(Γ0
h,f)

).

(4.120)

Therefore, by using the triangle inequality,

∥X̂m+1
h,∗ ∥

Wk,∞
h (Γ0

h,f)
− ∥X̂0

h,∗∥Wk,∞
h (Γ0

h,f)

≤
m∑
j=0

∥X̂j+1
h,∗ − X̂j

h,∗∥Wk,∞
h (Γ0

h,f)

≤ Cκl
h−k−1/2

m∑
j=0

τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ Cκl
h−k−5/2

m∑
j=0

τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

+ C0 +

m∑
j=0

C0τ∥X̂j
h,∗∥Wk,∞

h (Γ0
h,f)

≤ Cκl
h−k−1/2(τ + hk+1) + Cκl

h−k−5/2(τ + hk+1)2 (here (4.117) is used)

+ C0 +
m∑
j=0

C0τ∥X̂j
h,∗∥Wk,∞

h (Γ0
h,f)

≤ C0 +

m∑
j=0

C0τ∥X̂j
h,∗∥Wk,∞

h (Γ0
h,f)

(under condition Cκl
h

1
2 ≤ 1). (4.121)

By applying the discrete Grönwall’s inequality, we obtain the following result under the condition

Cκl
h

1
2 ≤ 1:

max
0≤m≤l

∥X̂m+1
h,∗ ∥

Wk,∞
h (Γ0

h,f)
≤ C0. (4.122)

The proof of ∥(X̂m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ≤ C0 is simpler, i.e., the same as [2, Appendix], and

therefore omitted. This proves that

κl+1 ≤ C0,
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with a constant C0 which is independent of τ and l. This proves the boundedness of the quantity

κl defined in (3.1). Moreover, the condition Cκl
h

1
2 ≤ 1 is essentially requiring h ≤ h0 for some

constant h0 independent of l. This completes the proof of Theorem 2.1.

5. Characterization of the particle trajectories (Proof of Theorem 2.2)

Let {xj,#(t) : t ∈ [0, T ]} be the trajectory of the particle under the flow determined by
(1.10), with initial position x0j ∈ Γ0

h. Let X
m
h,# be the finite element function with nodal vector

(x1,#(tm), . . . , xJ,#(tm))⊤. Thus Xm
h,# maps the initial curve Γ0

h to some finite element curve

Γm
h,# which interpolates the smooth curve Γm at the nodes xj,#(tm), j = 1, . . . , J .

Let Ih be the interpolation operator onto the initial approximate curve Γ0
h. Then the following

identity holds at the nodes of Γ0
h:

Xm+1
h,# = Xm

h,# + τIh[v
m ◦Xm

h,#] +O(τ2),

which is simply the Taylor expansion of the flow in (1.10) at the nodes. Therefore, the error
emh,# = Xm

h,# −Xm
h satisfies the following relation:

em+1
h,# = emh,# − (Xm+1

h −Xm
h − τIh[v

m ◦ X̂m
h,∗]) + τIh[v

m ◦Xm
h,# − vm ◦ X̂m

h,∗] +O(τ2)

= emh,# − (em+1
h − êmh − τIh[(T

m
∗ vm) ◦ X̂m

h,∗] + τIhg
m) (here (4.40) is used)

+ τIh[v
m ◦Xm

h,# − vm ◦ X̂m
h,∗] +O(τ2).

By using the smoothness of vm on Γm, we have |vm ◦Xm
h,# − vm ◦ X̂m

h,∗| ≤ C(|emh,#|+ |êmh |) and
therefore the following inequality holds at the nodes of Γ0

h:

|em+1
h,# | ≤ (1 + Cτ)|emh,#|+ |em+1

h − êmh − τIh[(T
m
∗ vm) ◦ X̂m

h,∗]|+ Cτ2 + Cτ |êmh |.

By taking the discrete L2 norm on Γ0
h and using the equivalence between discrete and continuous

L2 norms on Γ0
h, we have

∥em+1
h,# ∥L2

h(Γ
0
h)

≤ (1 + Cτ)∥emh,#∥L2
h(Γ

0
h)

+ C∥em+1
h − êmh − τIh[(T

m
∗ vm) ◦ X̂m

h,∗]∥L2(Γ0
h)

+ Cτ2 + Cτ∥êmh ∥L2
h(Γ

0
h)

≤ (1 + Cτ)∥emh,#∥L2
h(Γ

0
h)

+ Ch−1τ(τ + hk+1)

+ Ch−1τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ Ch−3τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)
,

where ∥êmh ∥L2
h(Γ

0
h)

is estimated by using (4.117). By iterating the inequality above with respect

to m (equivalently, using the discrete Grönwall’s inequality), we obtain

∥em+1
h,# ∥L2

h(Γ
0
h)

≤ Ch−1(τ + hk+1) + Ch−1
l∑

m=0

τ∥∇Γ̂m
h,∗

êmh ∥L2(Γ̂m
h,∗)

+ Ch−3
l∑

m=0

τ∥∇Γ̂m
h,∗

êmh ∥2
L2(Γ̂m

h,∗)

≤ Chk + Chk + Ch2k−1 ≤ Chk,

where we have used τ ≤ chk+1 and the error estimate in (4.117). This proves that the particle
trajectory produced by the stabilized BGN method converges to the particle trajectory deter-
mined by (1.10). The latter minimizes the rate of deformation while maintaining the shape of
the curve under curve shortening flow at every time t ∈ [0, T ]. This fully characterizes the par-
ticle trajectory produced by the stabilized BGN method and gives the first rigorous explanation
to why parametric FEMs of the BGN type could maintain mesh quality of the surfaces/curves
evolving under curvature flows.

6. Numerical experiments

We test the convergence of the proposed stabilized BGN method in (1.5) for approximating
curve shortening flow with the following benchmark example (see [5, Section 4]) of dumbbell
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N
max

1≤m≤Nt

∥êmh ∥L2(Γ̂m
h,∗)

k = 1 k = 2 k = 3
24 1.11e-1 4.55e-2 4.46e-2
25 3.30e-2 7.11e-3 3.60e-3
26 8.90e-3 9.18e-4 2.25e-4

Convergence rate 1.89 2.95 4.00

Table 2. Rate of convergence of the error with τ ∼ hk+1.

N
max

1≤m≤Nt

∥êmh ∥L2(Γ̂m
h,∗)

k = 1 k = 2 k = 3
27 1.47e-2 1.34e-2 1.34e-2
28 7.34e-3 7.01e-3 7.01e-3
29 3.68e-3 3.59e-3 3.59e-5

Convergence rate 1.00 0.96 0.96

Table 3. Rate of convergence of the error with τ ∼ h.

shape curve as the initial data(
x(ξ)
y(ξ)

)
=

(
cos(2πξ)

0.9(cos2(2πξ) + 0.1) sin(2πξ)

)
, ξ ∈ [0, 1]. (6.1)

We solve the problem numerically by the stabilized BGN method on the time interval [0, T ] with
T = 0.15. Since there is no closed expression for the solution with initial data (6.1), we instead
compute the reference solution with very fine time and space grids, i.e. N = 211, Nt = 222

and k = 1. Although our proof of Theorem 2.1 only guarantees the convergence of numerical
solutions for finite elements of degree k ≥ 2, we perform numerical experiments for finite
elements of degree k = 1, 2, 3.

The time stepsize condition τ = O(hk+1) is imposed by choosing the number of mesh points
N and the number of time levels Nt in a consistent way. Namely, for N = 24, 25, 26 we choose
Nt = 25, 27, 29 for k = 1, Nt = 25, 28, 211 for k = 2, and Nt = 25, 29, 213 for k = 3, respectively.
The discrete L∞(0, T ;L2) errors of the numerical solutions, i.e.,

max
0≤m≤Nt

∥êmh ∥L2(Γ̂m
h,∗)

are presented in Table 2, where the convergence rates for finite elements of degree k = 2, 3
are consistent with the theoretical result proved in Theorem 2.1. The numerical results show
that the stabilized BGN method has optimal-order convergence also for piecewise linear finite
elements. The proof of this result is different from the current paper and therefore needs to be
studied in future work.

It is also desirable to test the sharpness and necessity of the CFL condition τ ≤ chk+1. To this
end, we compute the errors and rate of convergence in the regime of τ ∼ h (in the experiment
we simply take N = Nt). The results are shown in Table 3, which indicates a linear rate of
convergence for all cases. This means the convergence might hold for a larger regime of weaker
CFL condition.

Besides, we examine the convergence of the stabilization term. Since the stabilization term is
in the weak form, we denote by Stab the Riesz representation of the stabilization term, defined
as follows: ∫

Γm
h

Stab · ϕh =

∫
Γm
h

∇Γm
h
id · ∇Γm

h
Ih[ϕh − (ϕh · n̄m

h )n̄m
h ] ∀ϕh ∈ Sh(Γ

m
h ).

The L∞
t L∞

x norm of Stab are presented in Table 4 with fixed Nt = 25, 25, 26 for k = 1, 2, 3,
respectively. The numerical results in Table 4 show that the stabilization term is O(h2) for
k = 1 and O(hk) for k = 2, 3.
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N
max

1≤m≤Nt

∥Stab∥L∞(Γm
h )

k = 1 k = 2 k = 3
27 7.57e-2 4.18e-2 1.62e-3
28 1.86e-2 1.18e-2 1.96e-4
29 4.67e-3 3.06e-3 2.41e-5

Convergence rate 1.99 1.95 3.02

Table 4. Rate of convergence of the stabilization term.

(a) k = 1, N = 26 (b) k = 2, N = 25

Figure 1. Initial nodal distribution.

(a) Dziuk’s method
(k = 1)

(b) BGN method
(k = 1)

(c) Stabilized BGN method
(k = 1)

(d) Dziuk’s method
(k = 2)

(e) BGN method
(k = 2)

(f) Stabilized BGN method
(k = 2)

Figure 2. Mesh distributions of different methods at T = 0.15, with N = 26

for finite elements of degree k = 1, and N = 25 for finite elements of degree
k = 2.

In addition to testing the convergence rates of the proposed method, we test the performance
of the stabilized BGN method in improving the distribution of mesh points of curve shortening
flow with initial condition (6.1). For the initial distribution of mesh points shown in Figure 1,
we test the performance of Dziuk’s method, the BGN method and the stabilized BGN method
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proposed in this paper. The distribution of mesh points at T = 0.15, with number of time
levels Nt = 27, are presented in Figures 2 for finite elements of degree k = 1, 2, where N
denotes the total number of finite elements. The numerical results in Figure 2 show that, while
Dziuk’s method leads to clustering of mesh points, the stabilized BGN method can keep the
mesh quality (distribution of mesh points) good similarly as the BGN method. To be more
quantitative on the mesh quality, we present the mesh ratio hmax/hmin in Figure 3, which shows
that the stabilized BGN method has similar mesh quality as the BGN method.

(a) k = 1, N = 26 (b) k = 2, N = 25

Figure 3. Mesh ratio hmax/hmin.

7. Conclusions

We have proposed a stabilized BGN method with possibly arbitrary high-order finite elements
based on mass lumping techniques using Gauss–Lobatto points, and proved the optimal-order
convergence of the method in the L2 norm under the stepsize condition τ ≤ chk+1. The stabi-
lized BGN method differs from the classical BGN method from a stabilization term, with the
same effect as the BGN method in improving the mesh quality, with an additional stabilization
term helping to establish stability estimates for the artificial tangential velocity. We have found
the underlying geometric PDEs to which the stabilized BGN method converges, i.e., the system
of equations in (1.10), which is used to establish stability estimates for the artificial tangential
velocity and to characterize the limit of particle trajectories produced by the stabilized BGN
method. The convergence of the method is supported by the numerical results, which also show
that the proposed stabilized BGN method has the same effect as the original BGN method in
maintaining good mesh quality of the evolving curve.

Our analysis requires the projected normal vector n̄m
h to be defined as a continuous finite

element function, which is essential for applying integration by parts in many places throughout
this article. Additionally, the quadrature points must coincide with the nodes used to define n̄m

h
to ensure that the terms L1(IhT̄

m
h ϕh) and L2(IhT̄

m
h ϕh) vanish on the right-hand side of (4.41);

see the text below (4.41). These requirements necessitate that the quadrature points include
the endpoints of each finite element, thereby excluding Gauss quadrature. Instead, the Gauss–
Lobatto quadrature satisfies all these requirements. The underlying framework and techniques
established in this paper may be applied/extended to other geometric flows and parametric
finite element approximations which contain artificial tangential motions of the BGN type.
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