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CONVERGENCE OF A STABILIZED PARAMETRIC FINITE ELEMENT
METHOD OF THE BARRETT-GARCKE-NURNBERG TYPE FOR CURVE
SHORTENING FLOW

GENMING BAI AND BUYANG LI

ABSTRACT. The parametric finite element methods of the Barrett—-Garcke-Niirnberg
(BGN) type have been successful in preventing mesh distortion/degeneration in ap-
proximating the evolution of surfaces under various geometric flows, including mean
curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on. However, the
rigorous justification of convergence of the BGN-type methods and the characeterization
of the particle trajectories produced by these methods, still remain open since this class
of methods was proposed in 2007. The main difficulty lies in the stability of the artificial
tangential velocity implicitly determined by the BGN methods. In this paper, we give
the first proof of convergence of a stabilized BGN method for curve shortening flow,
with optimal-order convergence in L? norm for finite elements of degree k > 2 under
the stepsize condition 7 < ch**! (for any fixed constant ¢). Moreover, we give the first
rigorous characterization of the particle trajectories produced by the BGN-type meth-
ods for one-dimensional curves, i.e., we prove that the particle trajectories produced
by the stabilized BGN methods converge to the particle trajectories determined by a
system of geometric partial differential equations which differs from the standard curve
shortening flow by a tangential motion. The characterization of the particle trajectories
also rigorously explains, for one-dimensional curves, why the BGN-type methods could
maintain the quality of the underlying evolving mesh.

1. Introduction

Parametric finite element methods for approximating surface evolution under geometric flows
were firstly proposed by Dziuk in his 1990 paper [19] for mean curvature flow. For a given
approximate surface I'}" at time level ¢ = t,,,, Dziuk proposed to determine the surface Fhm+1 at
time level ¢t = t,,,+1 as the image of a finite element parametrization function X ,TL”H g R R3,
satisfying the following weak formulation:

X —id
/ Th . Xh +/ Vf‘;lanT—i_l . VFZ”Xh =0 Vxue Sy, (1.1)
e T e

where 7 is the size of the time step, and Sj,(I'}') denotes the space of vector-valued finite
element space on the surface I'}'. At every time level, Dziuk’s semi-implicit parametric FEM
only requires solving a linear elliptic partial differential equation on a given surface. Since
Dziuk’s paper was published, parametric FEMs have become successful and widely used for
approximating the evolution of surfaces and interfaces in various different geometric flows and
related problems, including mean curvature flow, Willmore flow, Helfrich flow, surface diffusion,
and so on; see [11,13,16,19,21].

In practical computations, the accuracy of parametric FEMs in approximating an evolving
surface can be greatly influenced by the mesh quality of the triangulation which constitutes
the approximate surface. One of the main difficulties in approximating surface evolution under
geometric flows, which were not addressed by Dziuk’s parametric FEMs, is that the mesh
which forms the approximate surface often becomes distorted and degenerate as time grows.
One popular approach to overcome this difficulty is to artificially redistribute the mesh points
more equally when the mesh quality becomes bad (below some threshold), as proposed in [13].
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Another popular approach is to introduce an artificial tangential velocity, which could drive the
nodes moving tangentially as a surface evolves to maintain good mesh quality; see [5,6,8,27].
For example, the method proposed by Barrett, Garcke & Niirnberg in [8, Eq. (2.25)] (i.e., the
BGN method) for mean curvature flow seeks a parametrization X,TH I — R? satisfying the
following weak formulation:

h X}TJ’_I —id —m -m m+1 m
/me‘nh On -1 +/1“m VFZLXh ~V[‘zn¢>h:0 Von € Sp(I}Y), (1.2)
h h
where 77" is a weighted averaging normal vector at the nodes of the piecewise linear curve I'}"
(see [8, Eq. (2.7) and Remark 2.1] and [4, Eq. (47)]), and the superscript h in the integral
indicates that the mass lumping technique for piecewise linear FEM is used. In this method,
only the normal component of the velocity is explicitly specified, while the tangential component
of the velocity is implicitly determined to make the map X;L”H Iy — R? approximately
harmonic. It turns out that the tangential velocity implicitly determined in this way could
maintain good mesh quality of the approximate evolving surfaces. The idea of the BGN methods
has become popular and widely used for approximating various geometric flows, including mean
curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on; see [3,7-9]. However,
the convergence of such BGN methods has not been proved for any geometric flow.
Convergence of some semidiscrete and fully discrete parametric FEMs for mean curvature flow
and Willmore flow of curves was proved by Dziuk [20], Deckelnick & Dziuk [14,15], Bartels [10],
Li [37], Ye & Cui [42], etc. For mean curvature flow and Willmore flow of closed surfaces,
convergence results are available in the literature only in the following several cases:

e Evolving surface FEMs with finite elements of degree k > 2 based on reformulations of
mean curvature flow and Willmore flow in terms of the evolution equations of normal
vector and mean curvature; see [26,31,33,34].

e The semidiscrete version of Dziuk’s parametric FEM with finite elements of degree k > 6
based on H' parabolicity of the normal components in the framework of evolving surface
FEM [22,23] and matrix-vector techniques [35]; see [1,38].

e Dziuk’s semi-implicit parametric FEM with finite elements of degree £ > 3 based on a
new approach which recovers the full H' parabolicity of Dziuk’s method by measuring
the error in terms of the distance between the approximate surface and exact surface;
see [2].

The error and stability estimates in these articles all rely on corresponding continuous formu-
lations of the tangential velocity or evolution equations of normal vector and mean curvature,
which are not available for the BGN type of methods. Therefore, the convergence analyses in
these article cannot be applied/extended to the BGN type of methods.

Apart from the BGN methods, there are other approaches to constructing artificial tangen-
tial velocities for parametric finite element approximations of geometric flows. One popular
approach, originaly proposed by DeTurck in [18] in the context of Ricci flow and firstly brought
into the numerics world by Fritz in his dissertation [28] (see also [27]), is to introduce a tangen-
tial reparametrization of the geometric flow. It is also important to mention the work of Mikula
and Sevcovic [41] where the authors are able to construct a nontrivial tangential smoothing
velocity via solving a nonlocal equation. Error estimates of the evolving surface FEMs for curve
shortening flow and related problems based on this approach were established in [5,27,40] based
on available continuous formulations of the tangential velocity. Another approach, proposed by
Hu & Li in [31], is to construct an artificial tangential velocity in the reformations of mean
curvature flow and Willmore flow by Kovacs, Li & Lubich [33,34] to minimize the instantaneous
rate of deformation caused by the flow map. Error estimates for this type of methods are based
on the H'! parabolicity in the reformulations by Kovacs, Li & Lubich [33,34] as well as the
stability estimates of tangential velocity which further rely on the stability estimates of normal
vector and mean curvature from their evolution equations. These works provide insights into
the numerical importance of working with coupled systems. However, since the continuous for-
mulations of the tangential velocity produced by the BGN type methods are not available yet,
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and the evolution equations of normal vector and mean curvature are not available in the BGN
type of methods, the convergence analyses in these two approaches cannot be applied /extended
to the BGN type of methods.

The main difficulty in the analysis of the BGN type of methods is the lack of stability
estimates for the artificial tangential velocity. This is partly reflected by the following aspect:
The formal limiting equation of (1.2) as 7,h — 0, i.e.,

(B:X -n)n = (Apixid) o X, (1.3)

does not have a unique solution (adding an arbitrary tangential motion to the solution does
not change the equation). Therefore, the convergence of the BGN type methods to the origi-
nal geometric flow, such as curve shortening flow, has not been proved rigorously. Moreover,
the question of why the BGN methods could maintain good mesh quality of the evolving sur-
faces/curves has not been addressed rigorously, though this has been demonstrated intuitively
in [4,8]. These two open questions are both addressed in the current paper.

In this paper, we construct a high-order and stabilized version of the BGN method for curve
shortening flow, with high-order accuracy in space and as good performance as the original
BGN method in improving the distribution of mesh points, and provide rigorous analysis for
the convergence of the numerical solutions to the exact solution of curve shortening flow. The
continuous formulation of the artificial tangential velocity produced by the BGN method for
curve shortening flow is also derived rigorously. Correspondingly, the limit of the particle
trajectories produced by the BGN method is completely characterized.

Let I'}? be a closed and continuous piecewise polynomial curve which approximates the smooth
curve I'™ :=TI'(t,,) evolving under curve shortening flow. Each polynomial element K of I'} is
the image of an element K° C F?L under the discrete low map. We denote by KP the unique flat
segment which has the same endpoints as K°, and denote by F : K? — K the parametrization
of K, i.e., F is the unique polynomial of degree k£ that maps K? onto K. The finite element
space on the approximate curve I'}" is defined as

Sp(TT) = {v, € C(IT) : vy, o Fix € PF(KP)? for every element K C T},

where P* (KP) denotes the space of polynomials of degree k > 1 on the flat segment K7.
Then we introduce the mass lumping integral for high-order finite elements denoted by the
superscript h:

h
/ wenfoeng =y /OI,?L[(quK-nZ"‘oFK)(voFK-n?L"‘oFK)\VKfoFKH, (1.4)
s Kcrp Y Ky

where the summation extends over all elements of the curve I'}", and I,CL;L denotes the interpo-
lation operator at the Gauss-Lobatto points of the flat element K{ (cf. [12, Eq. (10.2.3)]). In
the special case of piecewise linear FEM (i.e., k = 1), the definition in (1.4) coincides with the
definition in [8, Eq. (2.2)].

Let t, =mr, m=0,1,...,|T/7], be a sequence of grid points in time with stepsize 7 > 0,
where |T'/7]| denotes the maximal integer not exceeding 7'/7. We propose the following high-
order and stabilized BGN method for curve shortening flow: For a given approximate curve I'7",
find a parametrization X;"*!: T — T/"*! such that X;"*! € S, (') and

/ A oy 4 | Ve X Vemgy
r

h T Iy
= - Vr‘;nid . sznfh[gbh — (gf)h . ’r_lzn)’ﬁzb] Y op € Sh(l“}l”), (1.5)
h
where the right-hand side of (1.5) is a (consistent) stabilization term which plays an important
role in proving the convergence of the numerical solutions as well as characterizing the tangential

motion produced by the method, and 7} € S,(I'}") is an averaged normal vector defined as
the discrete L? projection of the piecewise unit normal vector ny* onto the finite element space
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Sp(IT7), ie.,

h h
[oaweon=[ wpeon vone sy (1.6)
Iy Iy
In the case k = 1 (using piecewise linear finite elements), the numerical scheme in (1.5) differs
from the BGN method in (1.2) by the stabilization term on the right-hand side of (1.5). The
motivation of adding this stabilization term is stated in the text between (1.8)—(1.10).

Using the definition in (1.6), expressing the mass lumping integrals in (1.6) as the summation
of the quadrature weights times the evaluations at the quadrature points, and comparing the
coefficients of each degree of freedom on the both sides of (1.6), the following relations between

ny' and ny' can be shown:
np'(p) = np'(p) if p is an interior node of an element,
A (p) = i, ()| KTe nf |, (P) i, ()| K¢ |, (P) (1.7)

g, () IES] + [wie, 0)[|KG| [wie, (0) K] + [wie, (0)[ | K|
if p = K71 N Ky for two elements K7 and Ko,

where wi (p) = V koFrk o Fil(p) for p € K and n"|x denotes the normal vector on element

K. Note that both the mass lumping in (1.4) and the averaged normal vector in (1.7) are
intrinsically defined in the sense that they are independent of the choice of flat segment for
parametrization.

The proof of convergence of the proposed stabilized BGN method is based on the recently
developed new approach in [2] for the analysis of parametric finite element approximations to
geometric flows, where the error of concern is the distance projection from the numerically
computed curve to the exact smooth curve, rather than the error between particle trajectories
of the curves as in [31,33,35]. It has been shown in [2] that this approach (i.e., to estimate the
error of distance projection) can recover the full H' parabolicity of mean curvature flow and
therefore leads to better stability estimates.

The novel contributions of this article to the construction and analysis of parametric approx-
imations to geometric flows include the following several aspects.

e Stabilization and averaged normal vector: We stabilize the BGN method in two ways,
including the use of an averaged normal vector n}* defined in (1.6) and the introduction
of the stabilization term to the right-hand side of (1.5). Since the proposed stabilization
term vanishes in the continuous case, i.e.,

/FVrid-Vr[sb—(fb-n)n]Z/F—Arid-[¢—(¢>-n)n]Z/FHH-M—(QS-H)M=0,

the stabilization term is expected to vanish approximately at the discrete level. The
advantage of adding this stabilization term is that, for test functions ¢ in the finite
element tangential subspace

Sp(TT)" = {vn, € S(T) : vy - A" = 0 at the finite element nodes of T},
the weak formulation in (1.5) reduces to the following relation:

X —id -

- Vrp Vrpgp =0 Vo € Sp(Iy) (1.8)
h

which will be used to establish estimates for the tangential velocity of the approximate

curve in the (stabilized) BGN method. Therefore, the stabilization term on the right-

hand side of (1.5) is to stabilize the tangential velocity in the form of (1.8), rather than

enforcing some energy stability.

e Characterization of the tangential motion and the particle trajectories: It was formally
shown in [31, Section 1] that the velocity of the approximate curve given by the BGN
method converges to the velocity governed by the following elliptic system on the exact



curve I':
v-n=—H,

—Arv = Kn, (1.9)

which is the Euler-Lagrange equation of the following minimization problem:

min / |Vro|? under the pointwise constraint v -n = —H.
veHY(T) Jr

In this paper, we present rigorous justification of this convergence for the stabilized
BGN method by utilizing (1.8) (the derivation of this relation requires us to add the
stabilization term to the BGN method). This completely characterizes the underlying
geometric PDEs to which the stabilized BGN method converges, i.e., the particle tra-
jectories of approximate curve converge to the particle trajectories determined by the
following geometric PDEs:

X =volX,
v-n=—H,
N (1.10)
H = —Apid‘n.

As we shall see in the error estimation, the velocity v determined by the elliptic system
in (1.9) is compared with the velocity (X;"** — X/")/7 of the approximate curve to
establish stability estimates for the tangential velocity. This is one of the reasons that
we can prove the convergence of numerical solutions for the stabilized BGN method.

Since the velocity v determined by (1.9) minimizes the rate of the change of deforma-
tion at every time t € [0, 7], as explained in [31, Section 1], and the tangential velocity
in the stabilized BGN method can be proved convergent to the tangential component
of v, this explains why the tangential velocity generated by the stabilized BGN method
could improve the mesh quality.

Stability of the tangential velocity: The key stability structure in the tangential direction
follows from testing (1.9) by the tangential vector (I —nn')v, i.e.,

/F Vrov - Vr[(I —nn')v] = 0. (1.11)

If we denote by D;v the jth component of Vrv in the ambient geometry, using integra-
tion by parts and Young’s inequality, we can obtain the following relation:

J19rir = nn Ty
_ /F Vr(nn ) - V[(I = nn" )]
_ /F D, (nn ") - D,[(I —nn ) (I — nn" Y]
_ /FDj(nnTv) (I = o ")D,[(I — nn )]
- /F Di(nn"v) - [D;(I —nn")(I —nn')v] (product rule)

- _/F (Qj[(j N nnT)nnTU] - [QJ(I - n”T)]”nTU> 'Qj[(I — nnT)v]

+ /F(nn—rv) . (Qij(I —nn (I —nn" v +D;(I - nnT)Qj[(I - nnT)v])

(integration by parts)

T 2 —1 2
SG/FVF[(I—nn Jol? + Ce /F\u.m , (1.12)



with an arbitrary small constant e, where the last inequality uses the identity (I —
nn")nn"v = 0 and the following Poincaré type of inequality for the tangential velocity
field (I —nn')v:

/ \(I—nnT)v\Q < C/ |Vr[(I — nnT)vHZ. (1.13)
r r

By choosing a sufficiently small constant ¢ and absorbing the first term on the right-hand
side of (1.12) by its left-hand side, we obtain

Ty, 102 2
/F]Vp[(l—nn )| §C/F|v-n| . (1.14)

Therefore, the H! norm of the tangential velocity can be bounded by the L? norm of
the normal velocity (one derivative is removed). With (1.13) replaced by (see Lemma

3.10)
/ |on S/ Ih(lvh‘nhm,*lz)Jr/ Vi on?,
m m F;Ln,* h,*

hy* h,*
we manage to extend (1.14) to the discrete level in estimating the tangential velocity
generated by the stabilized BGN method. This is another reason that we manage to
prove the convergence of numerical solutions for the stabilized BGN method.

e Optimal-order convergence of the numerical solution: By combining the following tech-

niques in the analysis, i.e.,

(i) the introduction of stabilization to the BGN method,

(ii) the underlying PDEs in (1.9) which characterizes the tangential motion,

(iii) the stability of the tangential velocity in light of (1.14),
(iv) the mass lumping techniques based on the Gauss—-Lobatto quadrature nodes and

the averaged normal vector techniques,

(v) the super-approximation estimates in the consistency analysis,
(vi) the high-order a priori estimate for the shape regularity,
we manage to prove optimal-order convergence of the numerical solutions under the
stepsize condition 7 < ch**! (for any fixed constant c) in the L? norm which measures
the distance between the approximate curve and the exact curve, for the stabilized
BGN method. The stepsize condition is required in part (vi) mentioned above (also
see Remark 2.3). The use of the Gauss-Lobatto quadrature is the main obstacle that
prevents us to extend our current proof from the case of curves to surfaces with triangular
meshes. Nevertheless, such extension is still possible if we use tensorial parametric finite
elements (for example, for approximating two-dimensional surfaces of torus type), where
the construction of the tensorial Gauss—Lobatto quadrature is straightforward.

The underlying framework and techniques developed in this paper (with the above-mentioned
ingredients) may be applied/extended to other geometric flows and parametric finite element
approximations which contain artificial tangential motions of the BGN type.

The rest of this paper is organized as follows. The main theoretical results of this paper are
presented in Section 2. The notations and underlying framework for proving the main theorems
are presented in Section 3. The convergence of numerical solutions given by the stabilized BGN
method and the characterization of the particle trajecteries (continuous formulation of the
artificial tangential motion) are presented in Sections 4 and 5, respectively. Finally, numerical
examples and conclusions are presented in Sections 6 and 7, respectively.

2. Statement of the main theoretical results

Let 6 > 0 be a sufficiently small constant such that every point x in the d-neighborhood of
the exact curve I'™ = T'(t,,), denoted by Ds(I'") = {z € R? : dist(x,T™) < 6}, has a unique
smooth projection of distance retraction onto I'*, denoted by a™(x), satisfying the following



relation:

z—a"(z) = £lx —a™(z)|n" (o™ (z)),
where n™ is the unit normal vector on I'™. It is known that such a constant § exists and only
depends on the curvature of I'™ (thus ¢ is independent of m, but possibly dependent on T');
see [29, Lemma 14.17] and [36, Theorem 6.40].

We assume that each element K° C I‘% interpolates the smooth initial curve I'? at k41 nodes
and that the parametrization Fo : K — KV is a polynomial of degree < k with the following
property:

-1
22, (HFKOHW’%OO(KIQ) + [VioFyo ||L°°(K0)) < Ko, (2.1)
where kg is some constant that is independent of h. This property holds for standard parametric
finite elements which interpolate the smooth curve I'C and guarantees the following optimal-
order approximation to I'C by FO'
k+1

Krglg%co a® o Fro — FKOHLOO(K?) < Ch™. (2.2)
The projection a’(x) is well defined for points z in a neighborhood of I'° and therefore well

defined on F?L for sufficiently small mesh size h.
Let 27", j =1,...,J, be the nodes of the approximate curve I';* at the time ¢y, given by the

stabilized BGN method in (1.5). The interpolated piecewise polynomial curve Fm is determined
by the nodes which are obtained by projecting the nodes of I'}* onto I'™. We shall prove that
the approximate curve I'}" is in a é-neighborhood of the smooth curve I'™ so that the projection
of the nodes of I'}* onto I'"™ are well defined (thus the interpolated curve f‘zn* is well defined).

In view of the matrix-vector formulation which was firstly proposed in [35, Section 2.5] in the
context of numerical geometric flow and the notational conventions introduced in [2, Section
1], we will always identify a finite element function as a vector consisting of its nodal values.
Such representation is unique if we have specified the underlying domain. For example, the two

integrands of
/ vy, and g
a m Fm

have the same vector of nodal values, denoted by v, but are defined on different domains Fm 4
and I'}'. When the underlying domain is specified, v is automatically substantialized to a finite
element function vy on that domain. Since all of the quantitative computations in this paper
involve either integrals or norms, our notations for finite element functions will always have a
unique and clear meaning. For another example, ”U’l”f;”* and [lvp|[ry denote the norms of a

finite element function (a nodal vector) on the two different curves f?* and I'}", respectively.

Correspondingly, the interpolation operator I, should be interpreteci as the determination of
the nodal vector which uniquely corresponds to a finite element function after specifying the
underlying curve. The lift of a finite element function v, onto the smooth curve I'" is defined
as

)—1
by first identifying vy, as a finite element function on the interpolated curve [m hox See [17 , Section

2.4] and [33, Section 3.4]. The inverse lift of v € L?(I'"™) onto FZI* is defined as v™"' = v oa™
Let X;" be the finite element function with nodal vector x™. When X}" is considered as a

vh = vy 0 (a™;

h,x

finite element function on IA“Z‘ ,» it represents the piecewise polynomial of degree < k£ which maps

the nodes of fT* to the nodes of I';*. In order to measure the error between the approximate
curve I'}* and the smooth curve I'™, we define the lifted error

— (XJ" = Iyidph) e HY(T™),
where X;Ln’l denotes the lift of X} onto I through the interpolated curve f‘zn*



The main theoretical result of this article is the following theorem.

Theorem 2.1 (Convergence of the stabilized BGN method). Suppose that the flow map X : T x
[0,T] — R? of the curve shortening flow of a closed curve and its inverse map X (-,t)~! : T'(t) —
I'% are both sufficiently smooth, uniformly with respect to t € [0, T, and the initial approzimation
of the curve is sufficiently good, i.e. T is closed and satisfies (2.1) and ||°|lpo < coh** for
some constant co which is independent of h. Let X" be the finite element solution given by
the stablized BGN method in (1.5) with initial condition X = id on F?Z. Then, for any given
constant ¢ (independent of T and h), there exists a positive constant hg such that for T < chF*!
and h < hg the following error estimate holds for finite elements of degree k > 2:

(T/7]
15 1" Wiy + 3 7IVEm €™ aqrm) < OHHEED, (23)

where the constant C' is independent of T and h (but may depend on ¢ and T).

Theorem 2.2 (Characterization of the particle trajectories). Under the assumptions of The-
orem 2.1, the particle trajectories produced by the stabilized BGN method in (1.5) converge to
the particle trajectories determined by (1.10).

Remark 2.3. The stepsize condition 7 < ch**! is required to prove the shape regularity of the
interpolated curve F;{f* and the optimal-order approximation to I by the interpolated curve

fhm*; see Section 4.9 and, more specifically, (4.119).

3. Notations and underlying framework

In this section, we present the notation and underlying framework for proving Theorems
2.1 and 2.2. This includes the approximation properties of the interpolated surface Fm to
the smooth surface I'™, the mathematical induction assumptions under which we estabhsh the
consistency and stablhty estimates, the super-approximation properties of surface finite elements
and Gauss—Lobatto quadrature, the approximation properties of the averaged normal vectors to
the original normal vector, the Poincaré inequalities for vector-valued functions on triangulated
surfaces, and the geometric relations among the several different definitions of errors.

The underlying framework in this section is a substantial refinement of the general setting
presented in [2] for geometric flow of curves with mass lumping parametric FEMs based on
Gauss—Lobatto points, and provides a foundation for us to establish optimal-order error esti-
mates of the stabilized BGN method for curve shortening flow.

3.1. Notations

The following notations will be frequently used in this article. They are similar to the
notations in [2, Section 3.1] and are listed below for the convenience of the readers.

. The exact smooth curve at time level t = t,,

e The numerically computed curve at time level ¢t = ¢,,

x™: The nodal vector x™ = (z77,. .. ,:135”)T consisting of the positions of nodes on
.

X7 T}lble distance projection of x™ onto the exact curve I' ie., X' =
(&7, ..., @7,) " with 27, = a™(27").

x™F1: The new position of X7 evolving under curve shortening flow (without addi-
tional tangential motion) from ¢, to t;,41.

f‘zn* The piecewise polynomial curve which interpolates I at the nodes in X7*

FZ”*JFI: The piecewise polynomial curve which interpolates I %! at the nodes in x™*1.

X,’j"”: The finite element function with nodal vector x™. It coincides with the identity

map, i.e., id(z) = x, when it is considered as a function on I'}".



The finite element function with nodal vector x™*1. When it is considered as

a function on I'}, it represents the local flow map from I'}" to F’,;”H.
X;":  The finite element function with nodal vector x}"*. It coincides with the identity
map, i.e., id(xz) = x, when it is considered as a function on I'}",. It coincides

with the discrete flow map from f% , to f‘;l”* when it is considered as a function

on FO

M+l When it is considered as

ne o The ﬁnlte element function with nodal vector x7
a function on Fh ., it represents the local flow map from I}, to anjl.

X"+ The local flow map from I'™ to I under mean curvature flow.

ent: The finite element error function with nodal vector ™ = x™ — X"

e"1: The auxiliary error function with nodal vector e™+! = x™m+1 — xm+1,

nm™: The unit normal vector on I'™.

ni": The unit normal vector of I'™ inversely lifted to a neighborhood of T (in-
cluding f‘?*), ie.,n"=n"0oa™m.

T The normal vector on f‘Zf 8

ny..:  The averaged normal vector on f‘;{f*, which is not necessarily unit.

np': The normal vector on I'}".

np' The averaged normal vector on I'f*, which is not necessarily unit.

fy'.: The co-normal vector (unit tangent vector) on F

,uZ%: The co-normal vector (unit tangent vector) on Fm

N The normal projection operator N™ = n™(n™)" on f’Zf*

N™: The normal projection operator N = n™(n™)" on I'"™. Thus N™ is the lift
of N onto I'"*, and N]" is the extension of N™ to a neighborhood of I'™.

]\Afﬁ,‘*: The normal projection operator N,T* =y (A )" on I‘

N, % The averaged normal projection operator N o= IZ’:” (‘nﬁn’ *| )T on f‘?*

. The tangential projection operator 7™ = I — n™(n™)" on f‘f‘*

. The tangential projection operator T™ = I — n™(n™)T on I'"™. Thus T™ is
the lift of T]" onto I'™.

T,T* The tangential projection operator T,’Zﬁk =1-np, (thm*)T on F-m

T,T*: The averaged tangential projection operator T}T* =] - |ZZ:*‘ (| Z:l )T on fzn*

N (T7"): The collection of nodes of T}
Ny(T'3): The collection of endpoints (boundary points) of the elements of I'}".

For the simplicity of notation, we shall denote by Ij,N. hx®n and IhT;T " @1, the abbreviations
of Iy (N ,T*qﬁh) and Ih(T}T*qﬁh), respectively. Similar notations are also adopted for IhN}T*qﬁh,
InNT ", TTF én, InTgp, and so on.

If K is an element of f";f* then we denote by K° C F?L the element which is mapped to K by
the discrete flow map X}T* : F% — fm*, and denote by Flxo : Klp — KY the parametrization of

the element K° C Fh, where KP is the flat line segment which has the same endpoints as K°.
The flat line segments K? form a piecewise linear curve

he= |J K.
Kocr9
We still denote by X,Tl”* : F?Z ¢ f‘hm* the unique piecewise polynomial of degree k (with nodal
vector X' as before) which maps the Gauss—Lobatto points of every flat segment Kj 0 c FO
to the corresponding nodes of element K C f‘hm* Therefore, Xm hox F?Lf — Fh , is a piecewise

polynomial parametrization of f‘hm* We denote by HX 8 HW,,OO(FO ) the piecewise Sobolev norms
; ’ h h,f
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on F?L,f’ i.e.,
X ooy = e KR s gy
Since each piece K € f?* can be endowed with a canonical smooth structure, the piecewise
Sobolev norms can be also defined on f;l” i

We denote by I the interpolation operator on the flat segment Kfo . Since Fg = a™ o Fi at
the nodes of Kfo , it follows that Ix[a™ o Fx] = Fi. The interpolation of the distance projection

a™|pm fzn* — I'™ onto the curved surface f‘zn* is defined as
h,* ’ )
Ina™ = Igla™ o Fklo Fgl =1id on an element K C fzn*
For a smooth function f on the smooth curve I, we denote by Iy f the interpolation of the
inversely lifted function f~! = f o a™ onto I, e,

If:=Ig[foa™oFgloFg' on an element K C f‘Z‘*

We denote by (I,f)! = (Inf) o (a™

fm )=t the lift of I,f onto I'™. For a piecewise smooth
h %

function f on f‘zn* (instead of T'), we use the same notation Ijf to denote the following

interpolated function on f?*

Inf = Ik[f o Fg]o F'  on an element K C FZ””*

3.2. Approximation properties of the interpolated surface le*
For the discrete flow map X,TL”* : F%f — fzn*, we denote

— vm o-m \—1 )

Ki '_Orgnn%)g(l (HXh,*”W}’f«OO(F(}JL’f) + ||(Xh,*) ”WLOO(F;Z*)) o)

3.1
—1

= (B, e (15 llvwrw oo 0y + 1 F 5 oo (x0)) -

By pulling functions on fzn* back to F?z,f via the map X,T* : F%f — fzn* (and vice visa), one
can see that the WP, p € [1, 00|, norms of a finite element function (with a fixed nodal vector)
on F?L’f and I‘Zf* are equivalent up to constants which depend on xy, i.e.,
-1
Ot lonllwrngiye ) < lvnllwrowg ) < Callnllwro@p, ),
for 0 <m <. Since X}L“* : F?Z’f — f}?* is the Lagrange interpolation of a' o X,T* : F(,)l’f — I
on the piecewise flat curve F?L ¢» it follows that

la™ o X7, — Xi | orn ) + hlla™ o X — X lynoqry ) < Cuh5H (32)

Since Ipa™ = id on f‘g’f*, inequality (3.2) can be equivalently written as follows by using the

norm equivalence on Fgf and I'}",:

™ = 1™ ey + Blla™ = D0y < O (33

Moreover, the following estimates hold for any smooth function f on I'™:
17 = InFll gy + IF ™ = Dl ey < ol Fllzmsomy B (34)
I1f = T )l p2omy + b = Tnf) iy < CrolLF | ppeer qomyR* 1 (3.5)

Similar estimates have been shown in [2, inequalities (3.3) and (3.4)]. The boundedness of &;
(independent of 7, h and [) will be proved in Section 4.9.

We denote by n'™ and H™ the unit normal vector and the mean curvature on I'™, respectively,
and denote by n* = n™ o a™ and H* = H™ o a™ the smooth extensions of n™ and H™ to a
neighborhood Ds(I'") of T'"™. In particular, n”* and H]" are well defined on f‘hm* as the inverse
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lift of n™ and H™ via the distance projection a™, respectively, with
[0 lwieo (Dyrmyy + 1 lwioo (pgrmyy < Cj - for all j > 0.
Moreover, the normal vectors on f‘Zf* and I'" (inversely lifted to f’zn*) have the following expres-

sions (using the parametrizations X/, : T9  — I'™ and a™ o X", : ') . — I'™, respectively):

(Vg XDt Vro (@™o XPI
Mo = LA;L o (X}T*)_l and n}' = hf - A:L o (X;l’f*)_l, (3.6)
Vro Xp1 Ve (am o X))
where v— := (—wvy,v1) for any vector v = (vy,vs). ese expressions lead to the following
h L fi Th i lead he followi
estimates as a result of (3.2):
. k
Han* - nTHLoo(f‘Zm*) < Ci,h". (3.7)
The expression of 77", also implies that
Hﬁ?:,*||W}JL’°°(fm*) < Cm,j V] >0, (38)

which is due to the fact that the (k + 1)th-order partial derivatives of X,’;”* are zero on F%f.
The following lemma was proved in [35, Lemma 4.3]. It shows that norms of the finite element
functions with same nodal vectors on the family of surfaces

AEOZ(l_‘g)AZf*—FQF?v 0 e [011]7

are equivalent, provided that the distance between f’zl . and I'}" is small in the W1 norm.

Lemma 3.1. If IIVfg*élele(fg*) < 1 for 0 € [0,1] then the following equivalence of norms
hold for 1 < p < oo:
||UhHLp(f‘Zf*) S th”Lp(f;Ze) N ||Uh||Lp(f;er*)7
”szﬁ*vhHLp(th*) S ||Vf;zevh”]4p(fzf0) = ||vfzrf*vh||m(fzf*)-

The following lemma concerns the difference between integrals on the smooth curve I'* and
the interpolated curve I'}",.

Lemma 3.2 ([32, Lemma 5.6]). The following estimates hold for fi, fa € Hl(AZf*) and their
lifts fi, f3 € H'(T™):

| [ e [ AB] < Cal sy Wolzaep
N rm o o
l l k+1
| /F Vg S Uiy o /F Vet Ven B3] < ColF Ve fill e Ve foll g

In the rest of this article, we denote by C' a generic positive constant which may be different
at different occurrences, possibly dependent on x; and T, but is independent of 7, h and m.
We denote by Cy generic positive constant which is independent of x;. For the simplicity of
notation, we denote by A < B the statement “A < CB for some constant C”. The statement
“for sufficiently small A ...” means that “there exists a constant C, possibly depending on k;,
such that for h < C~1 .7,

3.3. Mathematical induction assumptions
We assume that the following conditions hold for m = 0,...,l (and then prove that these

conditions could be recovered for m = [+ 1):

(1) The numerically computed curve I'}* is in a d-neighborhood of the exact curve I'™.
Therefore, the distance projection of the nodes of I'}* onto I'"* are well defined (thus the

interpolated curve fﬁ”* is well defined).
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(2) The error €' = X} — X};”* satisfies the following estimates:

5 5 2.75
He?HL?(f‘m*) + hlép HHl(fo*) < h™'?, (3.9)
Remark 3.3. The exponent 2.75 is required in the derivation of the last inequality in (4.91),
; . 72|17, pm|2 <
which requires h HVF% ey ||L2(f‘hm7*) <1.

Based on these induction assumptions, the following results can be obtained from (3.9) by
applying the inverse inequality of finite element functions:

||vrm h ||L2(rm ) S < Rt 757 ||éh HLoo(fo*) < h*?%  and vam*éh ||Loo(f;[f*) < h1'25a (3.10)
which guarantee the equivalence of LP and WP norms, 1 < p < oo, of finite element functions
vp, with a common nodal vector on the family of curves

[y = (1—0)p, + 6T, 0 €[0,1].
They are intermediate curves between the interpolated curve I‘h , and the approximate curve

'™ given by the numerical solution; see [35, Lemma 4.3]. In particular, the LP and W norms
of a finite element function on I'}’, and I'}* (with a common nodal vector) are equivalent.

3.4. Super-approximation, Gauss—Lobatto quadrature and discrete norms

The following super-approximation estimates of products of finite element functions were
proved in [31, Lemma A] and [2, Lemma 4.4] for parametric finite elements on a surface in the
three-dimensional space. The same results and proofs also hold for parametric finite elements
on a curve in the two-dimensional plane.

Lemma 3.4 (Super-approximation estimates of type I). The following estimates hold for any
piecewise smooth function f and finite element functions ¢p, vy, wp € Sh(Fm ):

1O = L) (Fon) 2y S I F e g Rl @Rl o em
Ve (1= T (Fonllaey ) S rrfrrwk+1oo<rm YAl e 5
|(1— Ih)(vhwh)HLz ) N h? lvnllyp, oo (I, )Hwh”Hl rm)
IV (1= Tn)onwn)l g2 ey S Pllonllysce oy lwhll o -

Another super-approximation type of results which has application in the analysis of mass
lumping FEMs is based on the Gauss—Lobatto quadrature on each element. The following
lemma is a direct generalization of [30, Lemma 3.6, Eq. (3.15)] to finite element functions on
a piecewise polynomial curve (which can be proved by transforming the integrals from curved
elements to flat elements).

Lemma 3.5 (Super-approximation estimates of type II). Let f be a function which is smooth
on every element K of I'}!,, and assume that the pull-back function f o Fx wvanishes at all the

Gauss—Lobatto points of the flat segment KP for every element K of f;{f* Then the following
two types of estimates hold:

2k
AL . )

where || - szk,l(fm ) denotes the piecewise W1 norm, . If (f¢n)o Fx vanishes at all the Gauss—
h hy*

Lobatto points of Kfo, then the following result follows from Leibniz rule of differentiation and
the inverse inequality of finite element functions:

| [ £00e] S 18 e, 2 Wl o, (3.12)
hy*

The result below can be proved similarly as [30, Lemma 3.7] by using integration by parts
and the first result of Lemma 3.5.
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Lemma 3.6 (Super-approximation estimates of type III). For a smooth function f on T'™ the
following estimate holds:

| [ Sl = ) e | S oy ey Y € SER)

Since the weights of the Gauss—Lobatto quadrature are positive, the discrete LP norm defined
by

h 1
ey = ([ 0F) = ( % / I (v o Fie PV o Ficl) )

h,* KC Fm

is indeed a norm on the finite element space Sj,(I'}",) because HUHLp(fm y = 0iff v =0 at all
) S

the nodes of f‘}f* In addition, this discrete LP norm is also well defined for functions which are

piecewise continuous on I'}",. Its basic properties are summarized below.
b

Lemma 3.7. The following relations hold for all finite element functions vy € Sh(f;:*) and

piecewise continuous functions wi, ws, ws on f}?* :
||UhHL1}’L(fo*) ~ th”Lp(f;Z*)a

va’ﬁf*vhHLﬁ(fﬁ*) ~ ”vfm*vh“Lp(fm*)7
| [ wrwsun] S ol mqeg el e ool e

The proof of Lemma 3.7 is omitted as these results follow directly from the definition of the
discrete LP norm (analogous results on a bounded interval have been proved in [30]). The first
equivalence relation in Lemma 3.7 also holds for piecewise polynomials (not necessarily globally
continuous) of degree < k.

Since Hvrm én ”Loo(rm ) S < b

, as shown in (3.10), it follows from Lemma 3.1 that for

sufficiently small h the quantities |V KoF K| are equivalent for the elements on I‘h . and I}

Therefore, for any piecewise Contmuous function v on I'}" the following equlvalence relation
holds:

\|U||Lq rey ~ D> )t for1<g<oo. (3.13)

KCI'P peN(DiMNK
Moreover, the following result will be used for finite element functions vy, wy, € Sh(f?*):
HIh(thh)HLp(fo*) ~ thwh”LZ(f“;Z*)

N H%HLQI(W*)||wh|\L;;2(sz’*)

N HUhHLm (f;bn*)HwhHLpz(f‘Zz*) (3.14)
. 1 1 1
which holds for 1 < p, p1,p2 < co such that — = — + —.
p pP1 P2

3.5. Estimates of the averaged normal vectors

On the interpolated curve Fh , we can define the averaged normal vector ny., similarly as

ny' on I'}Y?, which is defined in (1.6). Namely, we define 7}, € Sh(f?*) to be the unique finite
element function satisfying the following relation:

h h
/ Ms - Oh = / s - On Vo € Sp(ly,)- (3.15)

m m
h,*
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Since (3.15) only involves nodal values, it follows that

h h
/ ap.o= [ Ay Vee Oy, (3.16)
oy, oy,
It is straightforward to verify the following relations:
np(p) = N () if p is an interior node of an element,
wi, ()| K| A (p— wr, () || K| AT, (p+
- s @I 77, (p-) i, )| 77, () o1

«\P) =
’ lwie, P)|E] + lwie, (D) IKS | wie, (p) [ KTe| + [wie, (p) K]

if p = Ky N Ky for two elements K7 and Ks,
where wg (p) = Vo Fk o Fit(p) for p € K, with iy (p—) and 27, (p+) denoting the left (from

K;) and right (from K5) values of the piecewisely defined normal vector 2}, on f‘zn* Therefore,
the amplitude of nj’, at the nodes satisfies the following estimates:

[y (p)| =1 if p is an interior node of an element,

)l <1, |l (p) = 1| < Clag (p+) — Af (p=)|? < Coh* (3.18)
if p = K71 N Ky for two elements K7 and Ko.

The estimate of “ﬁ;t”* (p)| — 1’ in (3.18) is obtained by using the expression

with A = |wg, (p)||K%|/(lw, ()| K| + |wi, (p)|| K%|), and then using the following identity:
[ (D) =1 + 225, (p=) - (AL, (p+) = A (p=) + N3 (p+) — A (p—) 2
=1+ Al (p+) — At (p=) | + N[ (p+) — g (=)
where we have used the orthogonality between 7y, (p+) + 7y« (p—) and 7ip, .« (p+) — 2o« (p—)-

From the expressions of nj" (the normal vector on I'}") and 7}, (the normal vector on fzn*),

as shown in (3.6), one can estimate n}’ —n}", in terms of the the derivative of €}" = X;" — X", ,
ie.,

Iny' — ﬁh,*H]ﬂ(fm*) + [Inp' — ﬁ;ﬁ*”Li(f"Zf*) S vaéﬂ"‘\lp(%), (3.19)
where we have used the equivalence between continuous and discrete L? norms in Lemma 3.7.
Since |[ny" — np, || (b ) can be converted to [|ny' — Ay, || L2 using the nodal expressions
of nj' and 7}, in (1.7) and (3.17), it follows that

||ﬁZl - ﬁZ’f*lle(fo*) 5 ann - ﬁm*HL%(fﬁ*) S ||szf*é;1n”L2(fwm*)- (3-20)

The following lemma shows that the averaged normal vectors approximate the normal vector
of I with the same order of accuracy as the piecewisely defined normal vectors.

Lemma 3.8. The following approrimation properties of ﬁ}l”* and n}* hold:

Hﬂ?{f* - IhnT”LOO(f‘hm*) S hk?

Hﬁ? - Ihn:nH[ﬂ(f‘Zﬂ*) N h* + vazn*éleL2(f;ln*)v (3.21)
_ o k
anl,* - n;er*HLoo(f‘Zn*) S h".

Proof. Since i}, is defined as the weighted sum of 7", , the L° approximation property

[t — IhnTHLoo(fzn*) S hF (3.22)

implies the first and the third results.
The second result of Lemma 3.8 follows from the application of the triangle inequality, i.e.,

17— ZanZ oy ) < IR = Tan oo s + 198 = Al e . (3.23)
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where the first term on the right-hand side of (3.23) is bounded by C,h* according to the first
result, and the second term on the right-hand side of (3.23) follows from (3.20). O

Lemma 3.8 and the boundedness of n]* imply the boundedness of n}", and n}* via the triangle
inequality, i.e.,

7 ey S 1

17 llgsoo oy S 1 +h S, (3.24)
Hﬁ?”wlm(f}?*) 5 1+ hk_l + h_IHVf;Ln*éZnHLZ(sz*) 5 ]-a

where the last inequality follows from the induction assumption in (3.9).
As an application of the discrete norms and the estimates of the normal vectors, we can
estimate the following type of endpoint terms arising from integration by parts on each element:

he > g +) + pp(0-)llen ()
PEN(TTY)

where pj" is the co-normal vector (tangent vector) at an endpoint of an element (pointing to
the outward direction) and ¢y, is a finite element function on the curve I'}*. Since |u}*(p+) +
ppt(p—)| = |nf*(p+) — nj*(p—)|, the following result holds:

he Y o) + up (0-)llen(p)]

PEN (I
<h > (Inpe+) = I (p+)| + [Innl (p=) = ni (=) [en (p)]
PEN,(TTY)
(since Ipnl*(p+) = Ipni(p—))
|lInpt — IhnTHLi(Fz«L) HQO}LHL}QL(F;F) (the equivalence relation in (3.13) is used)
(”me*ézznp(fm*) + hk)”@h“p(f;ﬁ*)» (3-25)
where the last inequality uses (3.7) and (3.19).

S
S

3.6. Poincaré inequalities for vector-valued functions

The following Poincaré type of inequality on a closed finite element curve/surface was proved
in [31, Lemma 3.4]:

[owPs [ ot [ Ve oP vee HAERR
", fm fm *

hyx hyx

which basically says that the full L? norm of a vector field can be controlled by the normal
component’s L? norm plus the H' semi-norm. By replacing I,n™ with ny', and using the first
result of Lemma 3.8, we immediately obtain the following Poincaré type inequality with the
averaged normal vector np’,.

Lemma 3.9 (The Poincaré inequality). For sufficiently small h, the following Poincaré type
inequality holds:

/ﬁm P [ loenpP e [V ol Ve HUERLP. (3.26)
h,x hy* h,* ’

In addition, we can replace the normal component’s L? norm in the Poincaré inequality by its
discrete L? norm corresponding to the mass lumping method. This is presented in the following
lemma.

Lemma 3.10 (The Poincaré inequality with discrete L? norm). For sufficiently small h, the
following Poincaré type inequalitie holds for v, € Sy(I'}',):

[l [ ndoea o+ [ 19w (3.27)
h,* ’

Fh,* Fh,*



16

/ I, T}, o) 5/ Vi T 0n )7, (3.28)
f\m* ’ f‘;{t* h,* ’
||UhHLoo f < lop, - 7y, *HL2 rm )+ HV m UhHLz ) (3.29)

Proof. From Lemma 3.9 and (3.2 ) we obtain
ooy S Nom A g + 1 o2
= lem T2 e+ Vg enlae ) (1 s chianged to [ -] )
L L R X

= 2
5 th : nh,*HL%(f\m*) + ||vfﬁ*vh||L2(fz*)

+ h2k||\(ﬁ21* “vp) o X,’Z?*F\VF%JXZS* (first result of Lemma 3.5)

’ ”W;?k’l(r(;)L,f)

S o ARl G oy + Ve 0l G

+ h2||ay *le o) ”vh|’12LIl(f;"*) (inverse inequality)
R O O i L Y W /St FP

(3.30)
where the second to last term can be absorbed by the left-hand side. This leads to inequality
(3.27). i

Inequality (3.28) follows from (3.27) once we note that I,T}"v, - 0y, = 0 at the nodes.
Inequality (3.29) also follows from the Sobolev embedding
lall ooy S Wonllp2eg ) + IV R VBl L2 ),
and that thHLQ(fm ) can be estimated by (3.27). O
h,*

Remark 3.11. Since n}" differs from np by a small quantity in the L® norm as a result of
Lemma 3.8 and the induction assumption in (3.9), we can replace 7}, by n}* in (3.27) and
absorb the remainder by the left-hand side. This leads to the followfng version of Poincaré
inequalities in terms of the averaged normal vector iy

Lol s [ o mpy+ [ 19w (331)
. B L

h,*

/ |IhT]TLn’Uh|2 S/ |Vf\zl*IhT;:nvh‘2. (3.32)
3.7. Geometric relations

The geometric setting in this article is the same as [2, Section 3.4], including the following
relations in (3.33)—(3.38) and Lemma 3.12.
Firstly, by the definition of em+1 we have the following nodal relation

with
FARI e ni”“(nTH)T]ez”HF at the nodes of fznjl, (3.34)
which means that é;*** differs from (e}t - n™+1)n™+1 by a much smaller quantity.

Secondly, we denote by X mH FZ”* — FmH the local flow map under which the nodes of

I’hm* move exactly according to curve shortemng flow without tangential motion, and denote by
XmAL . 5 I+ the local flow map of curve shortening flow. Since X}le —)A(,T* = XM+l _id
at the finite element nodes on I'™, it follows that

X - X = (XM —id) on '}, (3.35)
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X" _id = 7(=H™n™ + g™) on I'™, (3.36)
where —H™n™ is the exact velocity of curve shortening flow without tangential motion at time
level t = t,,,, and ¢" is the smooth correction from the Taylor expansion, satisfying the following
estimate:

9™ [weermy < CT. (3.37)

Therefore, we obtain
Xt — Xpr = et — e+ X = X
%

m+1 m, m m (338)
=ep " =y +TI(—H™n™ 4 g™).

This relation plays an important role in estimating the numerical displacement X;L’H'l - X7

The definition of €}* (i.e., orthogonal to I'"™ at the nodes) guarantees that the tangential
component of €} (at points which are not nodes) is much smaller than its normal component
in the L? and H' norms. As a result, the full L? and H! norms of é;' can be controlled
by the normal component’s L? and H' norms, respectively. These results are presented in
following lemma and will play important roles in the recovery of H' full parabolicity of the
curve shortening flow. The proof of this lemma can be found in [2, Section 3.5].

Lemma 3.12. For sufficiently small h, the following estimates hold:

1T = n ) )R ey S BINGER )0

(e (3.39)
1T =2 ) )R sty S PR s (3.40)
I ey < 2R AT o (3.41)

< 2)(e - nn (3.42)

Ch 1
Ch -1

||eh ||H1 [‘m ) m”Hl Fm )
The similar results hold if n" is replaced by the averaged normal vector nj,., on f‘zn* (thus

" =1 —n(n")" is replaced by T}", = I — |Z: N ( ‘nﬁq*| )T), as shown in the following lemma.

Lemma 3.13. For sufficiently small h, the following estimates hold:
HIhT}T*éh Hp(f;z*) S hllé? ' ﬁZf*HLi(fo*), (3-43)
(3.44)

lén H]ﬂ(fﬂm*) < 2|y ﬁ%”* ()

Proof. Since T" = I — nT(nT)T is piecewise smooth on le*, the first super-approximation
result in Lemma 3.4 implies that

101 = T o ) S RUER gy

By using the two results above and the smoothness of n7* in a neighborhood of I'" and the first
result of Lemma 3.8, as well as the L°°-stability of the interpolation operator I, we have

HIh(TlT* - Tln)éh ”LQ(f*;Ln*)
ST — T:nHLoo(f‘;rln*)Héh HLz(on*) ((3.14) is used)

_ _ T T ~
< AR )T = ) e IR g

—m (=m \ 1 h* hyox \T . Am R
+ g (Rh) ' — I ap, |(|ﬁzj*|) HLoo(r;Ln,*)Heh ”LQ(F;Z*)
<@ = D) ) T oo e 16 | 2 e

_ T ~
T [T o L N P

T T A

+ “(Ih”T)(IhnT) —ny'(ny") ”Loo(f;bn*)Heh H]ﬁ(f;y*)
i i

T h, hx \T -
) - _m* ( _m* ) ||Loo(fm )||eh Hp(fm )
]nh | ]nh*\ B hox

+ (|77 (77

%k
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1. 1. N ~
S hkz He’ﬁlHLz(f%) +hFz HehmHL2(fo*) + hk+lHeh Hm@m*) + thHeh HLQ(IA“QT*)
_1 .
< hF=2 len HL?(IA“Z“‘*)'

By using the three results above and the triangle inequality, as well as the first result of Lemma
3.12, we obtain

”IhTI’T*éZl”Lz(fw;n*)
ST = TRl o y + 10 = I)T e oy + 1T R o i
( h,*) ( h,*) ( h,*)

k—L, . ~ A
SR 2y F RIER | 2oy + RIER | 2o
O T7) T7)

S hHIhTfT*éh HL2(1A“;Ln*) + hHIhN}T*éh H]ﬂ(fhm*)

S RITTRER oy + PIEE - TR o (3.45)
where, in the last inequality, we have used the following norm equivalence
nj,
I,N"é oy ~ [ I NG @ Ay = €7 =
N sy ~ NN gy = 68 e
~ 6 AR (3.46)

and the last equivalence follows from (3.18). Since the first term on the right-hand side of (3.45)
can be absorbed by its left-hand side, we obtain the first result of Lemma 3.13. The second
result of Lemma 3.13 follows immediately. O

3.8. Surface calculus formulas

Given a smooth curve I' (with or without boundary) in R? and v € C*(I'), we denote
by D;u,i = 1,2, the ith component of the tangent vector Vru in R2. The corresponding
Leibniz rule, chain rule, integration-by-parts formula, commutators, and the evolution equation
of normal vector, are summarized below.

Lemma 3.14. Let I" and I be two smooth curves that are possibly open, such as smooth pieces
of some finite element curves, and let f,h € C*>°(T") and g € C*°(I";T") be given functions. Then
the following results hold.

1. D;(fh) =D;fh+ fD;h onT.

2. Di(go f) = (ng of)D;f onT".

3. [p fD;h = — [ D;fh+ [ fhHn; + [5n fhu; where n, o are the normal and co-normal
(tangential) direction, respectively, and H := D,n; (with the Einstein notation) is the
mean curvature, i.e. the trace of the second fundamental form.
D,D,;f=D,D,f+nHyD,f —n;HyD,f, where H;j := D;n; = D;n;.

If T evolves under the velocity field v, and G := Uyejo 17 T'(t) x {t}, then

0} (D;f) = Di(9; f) — (Dyv; —namDyu)D;f -V f € C*(Gr),
where 0F to denote the material derivative with respect to v.
6. If f,h € C*(Gr) then

g L= [arms [ sorn [ (oo

The divergence is defined as Vr-v := D,v;, which coincides with the intrinsic divergence
on the curve if v is a tangential vector field on I'. Since the Lagrange interpolation
commutes with the material time derivative, it is straightforward to check in the local
coordinates that an analogous result also holds for the mass lumping integral, i.e.,

d [ . R ho h
— | fh= | Ofh+ | fOrh+ [ fR(Vr,-vn),
dt I I Iy I'n

Al
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where I'y, is a finite element curve moving with polynomial velocity vy, € Sr(Ty) (mass
lumping is well defined on Ty, ), and f, h are continuous functions defined on Ute[o,T} Tp(t)x

{t}.
7. The evolution of the unit normal vector n of the curve I' with respect to the velocity field
v satisfies the following relation:

® f— . .
on; = —D;vjn;.

Proof. The first two relations are obvious from the local formula of D (cf. [2, Eq. (5.1)]). The
third relation is shown in [24, Theorem 2.10]. The fourth and fifth equalities are proved in [25,
Lemma 2.4 and 2.6], and the proof of the sixth and last formulae can be found in [22, Appendix
AJ and [39, p. 33] respectively.

O

The following formula can be derived by using the fundamental theorem of calculus and the
formulas in Lemma 3.14, item 5 and item 6 (proof is straightforward and omitted). In the case
guwt = 0529 = 0, this formula was proved in [33, Lemma 7.1].

Lemma 3.15. For two family of finite element functions wz and zz defined on the intermediate
curve f’g"e =(1- O)le* + 017", the following identity holds:

0 0 0 0
VFZ"wh . VFZLZh i me wy, - me Zn
F;Ln an hyx h,*
Jk

1 1
4 N 0 o 0 0
h,0 h,0
1
+ / Vi Wh - Vi 0524,d0, (3.47)
0 f;ffg h,0 h,0

where (Dv), := —Djv, — D, v; + 0,4D,, 0m.
4. Convergence of the stabilized BGN method (Proof of Theorem 2.1)

4.1. Consistency error

The optimal-order consistency estimates in this section use the following result.

Lemma 4.1. For any R?-valued function f on qu‘* which is smooth on each element of fhm*,
the following estimate holds:

f gt = 0| S RSl g - (4.1)

m
Fh,*

Proof. By using the triangle inequality, we have

7o =< | [t —am)

‘ m
Fh,*

o
A R A B (R Y (]
o, rm
SO A (G | R L PP S F P
Sl R (A | R T PR (4.2)

In order to estimate the first term on the right-hand side above, we define the intermediate
curve FTf = (1 — )™ + 6T7",, which can be parametrized by X" Hm anf with

X';Lnf = (1—0)a™ +6(I,a™)! and transport velocity 89)2;::9 = (Iya™)! — a™, where I, denotes
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the interpolation onto f‘zn We denote by nh ™9 the unit normal vector of Fh; , and denote by

v (and v™") the lift (and the inverse lift) of a function v from thk to I'™ (and I'™ to fznf)
via this transport velocity. Then

1
() = = [ on it yra0
and Lemma 3.14 (item 7) implies that
()" = (= Vi (Ina™) = a™) 70 a0, (43)

ok

By using the fundamental theorem of calculus and the commutator formula in Lemma 3.14, we
have

rm
=— L (Vem (Iha™)t — a™)n™
. ( (™)' = a”) )
1
- e / / Fma(([ha ) —a™) l“n?:*a) dadf
rm 0

- . (vpm (Ina™)! — a )nm)

I"m
-%2/;j”</ /‘ o((Ina™)! — )7MV%$f«Lﬂmy——dﬂ Mﬁﬁ“) dodd

(Lemma 3.14, item 7 is used)
- e

=: D1+ Dy + Ds.

Via integration by parts on each piece where Ia™ is smooth, and using Lemma 3.14 (item 3)
as well as the property that (Ia™)! — a™ vanishes at the endpoints of these smooth piecewises,
we have the following estimate of D;:

Dal=| = [ (Fon )™ = am)

= [ (Ten (™ = )
+/ H™n™ . fl ((Iham)l . am) . nm‘
S thHfHHl(f;:f*)' (4-4)

The two terms Dy and D3 contain squares of the interpolation errors and therefore can be
estimated to higher-order, i.e.,

Dol + D3] S [9em (Tna™) = @™ oo 1 ey S Bl (45)

2>hdad9

F'm a(([ham)l - am)_l ﬁ;Ln o

(Lemma 3.14, item 5 is used)
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The estimates of D1, Dy and D3 lead to

[ @ =] S gy
Tm hy*
The result of Lemma 4.1 can be obtained by substituting the above inequality into (4.2). O

In view of the stabilized BGN method in (1.5), we define the remainder (consistency error)
at the time level ¢,, to be the following linear functional on S, (I'},):

+1
m - " X}T* id —m —m m+1
d™(fn) = | A dn+ [ Vi X5 Vi o

m
h,* Fh,*

— Vfwm*X]T* . vfm Ih[(I - ﬁm*(ﬁm*)—r>¢h]

h h,
IV *
h X]T:_I id —m =m m, . m l
= | 'nh,*nh,*'¢h+ H™n 'd)h
’;ln* 7— m

: l 1
— Vrmid - Vrm ¢}, + [ me X,T:_ . me bn
Tm F»;Ln* hy* hy*

— | Vi X Vi Tl = AR 77 )én)

N
=0 di"(¢n) + d3'(¢n) + d5"(¢n), (4.6)
where we have used the identity Vrmid - Vpmh = H™p™ . ¢l

rm Irm

Proposition 4.2. The remainder defined in (4.6) satisfies the following estimate:

@7 ()] S 0l oy + R onll e ¥ bn € STL). (4.7)

Proof. By using relation (X,T:r1 —id)/7 = I(X™! —id)/7, the first term on the right-hand
side of (4.6) can be decomposed into six parts as follows:

. he X —id
di*(¢n) = / —
L

h +1
XMt —id
:/ Ih<77_ ! +Hm’rlm>ﬁ2?*ﬁhm’*¢h
T

m
h,*

T Tm

h
- / (In(H™ ™) — H™ =ty it i gy,
Fm
h %
h
_ A (Hmy_lnmy_l . ﬁhm7* ﬁ';:f* _ Hm7_lnm7_l . rfLZl* ﬁzrf*) . ¢h

pm ’
h I I
m,—l, . m,—l ~m ~m
- (/ _/ )H n “Mys s Ph

m m

h,* h,*

= [t g, - et g
r

m
hy*

-/ Hm,flnm,fl . (bh + H™nm . (Zslh
o rm

=t D dii(on), (48)
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where we have used the abbreviation ( fIfLm — ffm ) f = frl‘lm f— Jgm [ for any function f
hy* hy* hy* hy*

defined on fT* The first and second terms on the right-hand side of (4.8) can be estimated by
using relations (3.36)—(3.37) and the nodal relation, respectively, i.e.,

‘d71nl (‘bh)’ S TH¢hHL2(f;Ln*)7

12(¢n) = 0.
The third term on the right-hand side of (4.8) can be rewritten as
h h
d%((]ﬁh) - = fim Hm,ilnmﬁl ’ ﬁz?*(ﬁ‘z?* - ﬁzl,*) “On — - Hmﬁlnm’il ’ (ﬁ‘;Lr,L* - ’fl?’*) ﬁzjb* - On
hox B
h h
= - Hm7_lnm’ ! ”Zf*(nzl,* - ﬁ;{f*) : ¢h - . Hm7_lnm’ ! (ﬁzi,* ﬁhm,*)ﬁZ?* ¢h
L4 I,
h
+ . H™ lnm, : (ﬁZf* - TALZ?*) (ﬁZf* - ﬁh,*) ¢h
e,
h
= /. H™ lnm, ! (’ﬁ;Ln;* - ﬁz;f*) (ﬁgf* - ﬁh,*) P,
o
where we have used the following identities:
h h
. H™tym Ny (Mg —Npt) - dn =0 and A H™lym—t. (Mhe — M)y - G =0,
h,* Ry

which follow from property (3.16). Therefore, d75(¢y) can be estimated by using the third result
of Lemma 3.8, which implies that

|d71%(¢h)’ < thHQZ)hHLQ(on*)-

The fourth term on the right-hand side of (4.8) can be estimated by the super-convergence of
Gauss—Lobatto quadrature in Lemma 3.5, i.e.,

k+1 —l,m—l  ~m A bl
A3 ()] S A E™ A A e IO ) S HE T Inl e
where we have used the result ”ﬁZl*Hw%m(fm ) < 1, which is shown in (3.8).
’ h h,x
Since n™ "t =n™moa™ = n and H™ ! = H™ 0 o™ = H™, the fifth term on the right-hand

side of (4.8) can bedecomposed into the following three parts:

Bon) = [ (AL A, — HI ) - 0

- [ H el - ) -,
o,
which can be estimated by using (3.7) (for the first part) and Lemma 4.1 (for the second and
third parts), i.e.,

|di5(¢n)| < h2kll¢h\|L2(fﬁ*) + hk+1\\¢h!!H1(f$*).

The last term on the right-hand side of (4.8) can be estimated by using the geometric pertur-
bation estimate in Lemma 3.2 and the norm equivalence, which implies that



23

The estimates of d7}(¢p), ¢ = 1,...,6, lead to the following result:
’dT(¢h)| S T||¢h||L2(fm*) + hk—i-lH(ZshHHl(f}rﬁ*).

We can decompose dj'(¢p), which is defined in (4.6), into three parts in the same way
as [2, Lemma 4.3], i.e.,

dy' (¢n) :/fm Vf?*X;j}jl-Vf?*qsh/rm Vrmid - Vim @l
h,*

— +1 %
= | Vip (X5 = X0L) - Vg

m
Fh,*

+ [ Vip Xl Vip én— | Ven(X[L)'- Vend),

. P

+ me[(Ih(lm)l — am] . megblh
Fm

= d5i(n) + 35 (9n) + A5 (én), (4.9)
where we have used the following relations in the derivation of the second to last equality:

(X;ln*)l = (Iham)l and id =a™ on I'.
The two terms d3} (¢n) and dbs(¢p) are estimated in [2, Lemma 4.3] with the following results:
51 (dn)] S 7llonl oy and |d5a(n)] < hkﬂywhum(%).

By using the super-convergence result in Lemma 3.6, we can obtain the following estimate of
5% (which is better than the result in [2, Lemma 4.3]):

’d%(ﬁbh” 5 hk+1H¢h”H1(f;ﬁ*)-
The estimates of d5(¢n), ¢ = 1,2, 3, lead to the following result:
@) S Tlnll g ) + 1 N0l g
We can decompose di*(¢p,), which is defined in (fl.6), intoAseveral parts by using integration
by parts (Lemma 3.14, item 3) and identity Af;{f*XfT* = —H}T*ﬁzn* on any element of F;Z*, as
well as the mass lumping approximation of the integral, i.e.,

@5 on) = | [ Vi Kit Vi Il = w37 T)énl|

h
<| [ g, - (1 —ag @) Ton

m
Fh,*

e
" ' T
(= ) - g )l
h,* h,x

+ ( > (ﬂZf* (p+)TVf;n*XfT* (p+) + ﬂZf*(p—)vazb*Xg}* (p—)) [T = g () T én(p)] ’
pEN(T,) ’ ’

The first term on the right-hand side of the inequality above can be rewritten as
h h
rm —m (=m \T 2 . - —m —m \T
[ A (T =) o = [ = H R = ) - (1 = 7))o
h,* h,*
b T
[ (1 = )
By
" T
hy*
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h
= |, (Hj = HM) (g, —a) - (L= mpt (mpt) ) én,
h,*
where the last equality uses a7", - (I — A, (77,) " )¢n = 0 and the following relation as a result
of (3.16):
h h

| AR (=R () D = | HIAL - (= AR (AR T)én
hy* hy*

Therefore, using the identity /', (p:I:)TVfZL*X,’Z?* (p£) = g, (p£)", we have

)

h
o) <| [ - HIGR - ) - (0 A @) Do)
h,x

h
(= [ . nia - @) e,
h % h,*

X (en o) € - en) o)
peN(ER)

k— k
S h2 1||¢h||L2(fhm*) +h +1H¢hHH1(fhm*)

+ \ > (/12”,* (p+) + iy (p—)) (I = ap () ") én(p)
pe/\/b(f“gf*)

I

where the the second term on the right-hand side of the inequality above is obtained by using
the second super-approximation result in Lemma 3.5, and the first term on the right-hand side
follows from the estimates || H", — H?||L°°(fhm,*) < hk=1 (property of approximating I'™ by ry)
~ — k .
and [|ng’, — n}l’f*HLm(th*) < AP (the third result of Lemma 3.8).
Since ﬂZf* (p+) + T (p—) is the jump of tangential vector at the endpoint p of an element,

it has magnitude O(h*) and in the direction of (2}, (p+) + 7j",(p—))/2. Therefore,

> () + o) - (= R ) )|

peN, (fz’f*)

SH S o) + A=) - (1= A (i) T on()|
pGNb (f‘m*)

=T @)+ i (0-) — 203t - (= g () T onp)|
pENb (f‘m*)

k=14 _
Sh ||an* - nZ?*HL%(f;Z*)Héf)hHL}ZL(fm*)
S th_lHQSh”LQ(f‘;rZ*)u
where we have used the estimate ||n}", — 7} ||« () < hF (third result of Lemma 3.8) and
) ) hy*

the norm equivalence in Lemma 3.7. This proves |d§"(¢n)| S hk+1”¢h||H1(fm ) for k> 2.
h,*

Finally, combining the estimates of d{*(¢n), d5'(¢n) and df'(¢n), we obtain the result of
Proposition 4.2. O

4.2. The error equation and the H' parabolicity
The following error equation is obtained by subtracting (4.6) from (1.5):

R ym+l m m+l _ ym
Xh _Xh —m —m _ th* th* —m  =m
Sy Ny On X T s T on
r

T T
h Y4
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m—+1 m+1
+ /Fm VFZ"Xh .sznth — /f‘m VfT*Xh7* .Vf‘?*th
h h,* ’ ’

[V Ve bl AR o+ [ Vi XP e B A
hy* ’ ’

Iy
(6, (4.10)

where the first two terms on the left-hand side can be written as

1 ~
h Xl71n+1 — XIT =M =M h X’Tj B X}T* —m —m
Ny Ny, '¢h_ N 'nh,*nh,*'qsh
T

i T o, T
h eerl _m
_3/ hfhﬁ?* N - On+ J™ (dn), (4.11)
hy*
with
h Xm+1 _Xxm h Xm+1 —Xm
J™(pn) = / bR apal ¢ — / Tho _Thopm pg - g (4.12)
e T . T

In [2, Section 5.2] we see that the third and fourth terms on the left-hand side of (4.10) can
be rewritten into a H' bilinear form plus lower-order terms by using the following notations for
any two R2-valued functions u and v on I':

Ar(u,v) = /vau-vrv,
A, i= [ [(Tran]- [(Vropl,
AL (u,v) := /Ftr[(Vpu)(I — nnT)(VFU)T],

Br(u, 'U) = /F(VF . u)(Vr . 1)) — tr(Vrquv), (4.13)

with Ar(u,v) = AN (u,v) + AL (u,v). These bilinear forms can also be defined on the approxi-
mate curves I'}" , T')" and I'}?5. The following identity was shown in 2, Eq. (5.8)]:

/ Vrid - (Dru)Viv = — AL (u,v) + Br(u,v), (4.14)
r

which also holds for the approximate curves f;t" o L3t and f‘% It is shown in [1, Eq. (2.1)] that
(with integration by parts), if the underlying curve is sufficiently smooth, then the symmetric
bilinear form Br(u,v) can be written as

Br(u,v) = / u;jD;viHn; — / u;D v Hn;
r r
+ / ujDyvin; Hjp, — / ujDyviHgn; VYu,v € Hl(I‘). (4.15)
r r
We define X}Te =1 —G)X};’}*jLHX}Z"” and X7 = (1-0) X +0X," " in the sense of nodal
vectors. Then the third and fourth terms on the left-hand side of (4.10) can be decomposed as

follows (as shown in [2, Eq. (5.10)])

\V/ m+1 \V/ \V4 m+1
Fth +l. Fm(bh . m Xh:_ N C m (bh
h h ry , Ty

e fp, e -

= AN (et o) + AL (e — €7 on) + B™(ER, én) + K™ (o), (4.16)
where we have used the following notations for simplicity:
AN (up, vp) = A%V;L,t*(uh,vh) and  AJ (up,vp) = Ag’m(uh,vh), (4.17)

Ap i (up,vp) = A{x*(uh,vh) + A%:*(uh,vh) and  B™(up,vp) = Brm (u%, vﬁl) (4.18)
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1
Km(cbh):/o [A%V%( eyt on) — (m+1>¢h)]
1
+ [ AR, e et — AT (6 - e oo

1

+/ B i, (€1 ) — Bpm (e, on)]do
0 h,*

+ Bf‘m (eh 7¢h) — Bpm (ézl, gbh)

/ Vi, (Xt = Xiy) - D iy, E Vi, Ondo. (4.19)
Fm

The last two terms on the left-hand side of (4.10), which arise from the stabilization intro-
duced in this article, can be decomposed into the following several parts:

[ X Ve B =R o + [ Ve X Vi B~ ) e
h h,* ’ ’

= — | NVop X Voo L [(I— a7 () " =T én
rm
I Vi X0 Vi (T =gt (i) " = Ti0) én)
h,* ’ ’
— | Vrp Xy Vep (T = T3 ) ¢l
e

~ | Vrm Xi - Ve In (T3 ¢n) + /fm Vim Xpl Vf;n*lh(Tﬁf*th)
h h,x ’ ’
™ (on) + F5"(on) + F3"(on)
— ARL(E7 T} on) — B™ (e, LT3 on) — QT (In TR dn), (4.20)
where T/ = I — a(a) " /|a|? and T7°, = I —ay, (A,) T /|, |2, and the last three terms
are obtained from the following relation (cf. [2, Eq. (5.10)]):

- Vrem Xt - N IV 5 — /F i Vf%X;;}* . vfm*lhfgfwh
h h,x
1 1
h,0 ’ ’ 0 JIT ’
(Lemma 3.15 is used)

= Ah,*(ézna IhT}T*¢h) - Aril;*(éh thTh *¢h) + Bm(eh thT}T*¢h) + Qm(IhT}T*QSh)
(relation (4.14) and notations (4.17)—(4.18) are used)

= AN (7 I én) + B™ (R InTy én) + Q" (InT} én),
with
1 1
Qon)i= [ (AN, (@5 0n) — AY, @ on)]d0 + [ (B @F6n) — oy (65 00)]a0
0 hyx 0 s
+ Bf;;f* (en’ ,<Z5h) — Brm(ep', ¢n).

In summary, by substituting (4.11), (4.16) and (4.20) into (4.10), we can rewrite the error
equation into the following form:

h e’;ln-i-l éZL
/ " Ny On o N+ I (1)

m T

+ Ah *(ehm+17¢h) + Ah *(ezn—l—l - eh 7¢h) + Bm(eh ?d)h) + Km(¢h)
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3
+ Z Fzm(¢h) - A{z\f*(éznv IhTIZL*qSh) - Bm(ézn7 IhT;T*¢h) - Qm(IhT}T*¢h)

— —d™(en). (4.21)

By choosing ¢y = eZnH in the error equation we can obtain the following inequality (which

is proved in [2, Eq. (5.15)]):

Ape(en ™ e ) + A (e = et > o 24, slep et — A «ensep).  (4.22)

5Mm m

The full H! parabolicity stems from the property that 1Ah*(eh ,eh) is much smaller than

%Ah (eZH'1 m+1) due to the orthogonality between é}* and the tangent plane of I'"™ at the
nodes. This means on the left hand side of the error equation (4.22) we have a very good H'

positive definite term. In particular, the following estimates were shown in [2, Egs. (5.16),
(5.17), (5.22)]:

T /am ~ 1~
’Ah *(eznvezn)’ < lH €h HLQ Fm ) + GHVFW eh HL2 Fm )7 (423)
B e S U g )+ Vg e e (4.24)
|Km(¢h)’ 5 “vfm*éh ||Loo Fm vam h ||L2 Fm )Hvrm sth”L?(fm )
+ vawn h ||Loo FTVL HVF‘"L eh +1||L2 1’\7n Hvl'wn d)hHLQ(F"L )
+ (7 + hF )vaﬁf*eh ||L2(f2’f*)va;{f*qﬁhHL?(f;{f*)' (4.25)

Remark 4.3. The factor (7 4+ h*) in the last term of (4.25) is better than the the factor
(7 + h*=1) in [2, Eq. (5.22)] because we can use a better geometric perturbation estimate (i.e.,
Lemma 3.2 with L? norms on both f; and f) than that in [2, Lemma 4.2] (with L norm on
f1 and L? norm on f3). The reason that we have a better geometric perturbation estimate in

Lemma 3.2 to use in this article is that we allow the generic constant C' to depend on the W;f o0
norm of the map X", : F?L’f — I}, defined in (3.1), while [2] only allows the generic constant
C to depend on the H }]f norm of this map.

Moreover, from the expression of B™(-,-) in (4.15) and the geometric perturbation estimates,
we can obtain the following estimates similarly as [2, inequality (5.20)]:

B I o)) S IV g &l ey I TR Ol e

-1 2
S € ”gbhHLQ(f‘Zf ) + 6||v1"m eh ”L2 Fm ) (426)
Q" (InTi%om| S (Ve Rl oy + RNV e &2 e s IV Onll i
S € onlzay ) + el Vip &l7a ey ) (4.27)

where the last inequality uses (3.10) and the inverse inequality to remove the derivative from
¢n. The estimation of J™(¢y,), F™(¢p) and AN (7, I, T ¢5) in (4.21) is presented in the next
subsection.

Remark 4.4. By choosing ¢, = e%”“ in the error equation and a sufficiently small €, the terms

eHVFm ep ||L2 i) arising from (4.23)—(4.27) can be absorbed by the first term on the right-hand

side of (4.22). This benefits from the recovery of full H! parabolicity in (4.22)—(4.23).

4.3. Estimates for J™(¢), F"(¢p) and AhN*(éZ‘,IhTﬂ*qﬁh)

Let njy be the averaged normal vector on curve I‘h g = (1— H)f‘zn* + 0r7", with 6 € [0, 1],
defined in the same way as (3.15) in terms of the piecewise normal vector 7}’, on f?e- Thus

ny,'p is not necessarily of unit length. The curve f‘hmﬂ moves with velocity é;* as 0 increases,
and any finite element function v, with a fixed nodal vector independent of § € [0, 1] has the
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transport property dpv, = 0 on Fh - The functional J™(¢p,) defined in (4.12) can be rewritten
into the following form using the fundamental theorem of calculus:

h Xm+1 —_Xxm =1
h h — —
m(gn) = / 2o T gy g, A,

Xm+1 xXm
/ d9/m 7]1 nh9¢h nh0d9
Xm+1 xm
/ / 8@ nh 0 ¢h nzrf@dﬁ (428)

Xt — X

1 Xerl _Xm
+ / / Th Th o pm gy ﬁgng(vfme -é7")df (Lemma 3.14, item 6).
o ) ) h,

From Lemma 3.14, item 7, we know that
g = —Vrm €' - np'y (piecewisely defined on each element). (4.29)

The relation between ;' (p) and 7j5(p) at a node p, as shown in (3.17), implies the following
results:

|95nh ()| = |me en'(p) -nhg(p)|  if p is an interior node of an element, (4.30)
105720 (D) S [V, 5" (p+) - nip(pH)| + [V, €57 (p+)]
+ [V e (p=) - o (p=) | + [Vpe, &5 (p—)| (4.31)

if p = K; N Ky for two elements K7 and K»,

where the first and third terms on the right-hand side of (4.31) are generated from taking
material derivative of n}'y|x, (p) and n}'y| K, (p), respectively, while the second and the fourth

terms arise from taking material derivative of the weights wi (p) = V KO FroFit(p) for K = K;
and K = K, respectively. Hence, by using Holder’s inequality, we obtain the following estimate:

T S (¥ € i 190l i
A A LA g (432)

where € is an arbitrary small number arising from Young’s inequality.
By using the expression of 7}* in (1.7), we can estimate the amplitude of n}" at the nodes
similarly as (3.18), i.e
np(p)| =1 if p is an interior node of an element,
mn () <1, 1R ()| = 1| < Ini(p+) — nj (p—)? (4.33)
if p is an endpoint of an element.

This implies, in view of the norm equivalence relation in (3.13),
7R =iy ey S Y. g pt) = nj(p-)?

PEN,(TIR))

<Y h(ng(pt) = i ()P + Ini (p-) — InnZ'(p)*)
PENG(T,)

S gt = T

S g R 0%

where (3.7), (3.19) and the triangle inequality are used in deriving the last inequality. By using
this result and the inverse inequality, we obtain the following result for the F"(¢) defined in
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(4.20):
FP @) =] [ Sop X Vap Bl = o @) - T
h
< h—lmﬁm — 1|’L}L(f;z*)”¢h”1;oo(fm*) (inverse inequality)
S h_l(”vf%éh Hi%(f%) + h%)(e_1”¢hHL2(f%) + fHVf%¢hHL2(f;ﬁ*))- (4.34)
Similarly, using the estimate in (3.18), we have

ol = | [ Ve X Vi (1= A )T = T
hy*

S h2k_1(€_1”¢h||L2(fZl*) + €||Vf;n*¢h||L2(fzw*))~ (4.35)

The term |F3"(¢p)| can be estimated by using integration by parts similarly as d§'(¢én), i.e.,

R o) = [ Ve X Vep (T = T)60)
h

= — Ay X3 - Ih (T3 = T3, ) én]

Iy
b () - (Vep X))+ (0) - (Tep X)) ) T ) — T ) (o)
PEN(TTY)
= | Hpnp - (T =T )enl + Y (it (o) + pi (0=) - (T (p) — T3 (p)) 6 (p),

pEN, ()

where the first term on the right-hand side can be estimated by using the equivalence between
the discrete and continuous norms, i.e.,

| HEg T =Tl | S I =T oy
; ,

ST =Tl sy oy

I - Tonlay

S ||Tf7zn - TfT*prm*)”@bhHLz(fer*)

S va%éh HLQ(fo*)\WhHLZ(fm*) (here (3.20) is used).

The second term in the expression of F3"(¢y) can be estimated by using (3.25) with ¢ =
In (T —T}",) and (3.20). This leads to the following estimate:

> () + it (e-)) - (T (p) — Ti(p)) dn(p)
PEN(THY)

-1 N N
Sh va;z*@h ||L2(F?)||vf;ﬁ*eh ||L2(f;rf*)||¢h||Loo(waz’*)
_3 . .
Shz vaﬁ*eleLQ(F;L")va;z*eh HLz(f%)HﬁﬁhHLQ(f%)-
Therefore,
_3 . .
6] S (b3 Vg0 o) Vg Lo ) 00 aep - (436)

Analogous to [2, Egs. (5.41), (5.49)], the following estimate can be established by using the
nodal orthogonality relation (the details are omitted):

AR (@R I T )| < JARL (&R, I T o) + | AR (€5 In(T37 — T )|
< ‘|vfm*ézn||]42(fzrf*)HIhT}T*(ﬁhHLz(fZE*)

k— .
+h 1‘|vfzrf*eh ||L2(f2’f*)||¢h‘|L2(f;L’f*)'
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4.4. Stability of the tangential motion

For an arbitrarily prescribed smooth velocity field v on I' which is not necessarily tangential,
we consider the velocity v whose tangential motion is specified by the following elliptic system
onI'

v-n=1u-n, (4.37a)

—Arv = kn. (4.37b)

This system can be reformulated as the Fuler-Lagrange equation of the energy functional
fr |Vro|? under the pointwise constraint v -n = w -n. Formally the elliptic system (4.37)
with v = —Hn is underlying the PDE to which the BGN method converges; see [31, Section
1]. Since [i.|Vr - |? indicates the infinitesimal distortion of the mesh and v is the minimizer of

this functional, this correspondence explains why the tangential velocity endowed by the BGN
method helps to improve the mesh quality.

Lemma 4.5. If the underlying closed surface I' is smooth, then the elliptic velocity system
(4.37) has a unique solution (v,k) € H'(I') x H=Y(T) with v-n = u-n almost everywhere, and
moreover this solution (v, k) is smooth.

Proof. We first consider the following energy functional I : H(I') — R

I(v) = / Vol (4.38a)
r
with v in the convex admissible set
H={veH():v-n=u-n ae}. (4.38b)
We know H # () because u is in H. Then we define Iy = inf,cy I(v) > 0 and pick out a
minimizing sequence v; € H such that I(v;) — Ip. From the vectorial Poincaré inequality,
it follows that {v;} is bounded in H(T'). Therefore, by the compactness, we can extract a
subsequence, also denoted by {v;} for simplicity, such that v; — v in L?(T), v; — v in HY(T)
and v -n = u-n a.e.. According to the weak lower semi-continuity of the norm, it holds that
I(v) <inf; I(v;) = Iy, which means the infimum of energy I can be indeed reached at v.
For the uniqueness of the minimizer, if I(v;) = I(ve) = Iy for some vy # vy, by the strict
convexity of I, we have I(“14*2) < £1(vy) + 3I(v2) = Iy contradicting the minimality.
To obtain the Euler-Lagrange equation for the variational problem (4.38), we take the vari-
ation v + ep with ¢ € C°(I'; TT) being any smooth vector field on I'. Since ¢ is tangential,
v+ €p € H is also admissible. Using the minimality of v, we derive

d
0= &|€:01(v + €p)

-4 [+ e
P e=0 . r @

:2/VFU-VFQD.
r

Then we differentiate the constraint v -n = u - n twice and get the following distributional
identity
Arv-n = Ar(u-n) —2Vrv-Vrn —v - Arn € L*(T).

If we define k := —Arv-n € L?(T") and denote by P := I —nn' the pointwise orthogonal
tangential projection, then it follows that for any ¢ € H(T)

(=Arv, p) = / Vrov - Vrp
r
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= (—Arv-n,n- )

= (kn, ).
Thus —Arv = kn € L2(T) holds in the sense of distribution. By the elliptic regularity theory of
the Laplace-Beltrami operator Ar, we know v € H?(T') and hence k = —Arv-n = —Ar(u-n)+
2Vrv - Vrn +v - Apn € HY(T). Therefore, by applying this procedure recursively, we conclude
that (v, k) is smooth.

To complete the proof, it remains to show that the PDE system (4.37) has a unique solution.

If (9,%) € HY(I') x H~Y(T") with @ # v is another solution of (4.37), then by testing arbitrary
smooth vector field we know o is the local minimizer of (4.38). By the convexity of I and the
fact that v is the unique minimality of I, we have

I((1 - 0)7 + 0v) < (1 — 0)I(3) + 0I(v) < I(D)

for all € (0, 1], which contradicts the local minimality of © when 6 is sufficiently small. So we
have o = v and kK = —Ar?0-n = —Arv-n = k, and the proof is complete. O

Applying the above lemma with v = —Hn, let (v, k) be the unique smooth solution to the
following elliptic system on the smooth curve I' = I'(¢):
v-n=—H, (4.39a)
—Arv = Kkn. (4.39b)
In this subsection we present the stability estimates for the tangential velocity produced by the
stabilized BGN method by comparing the velocity v;* := (X,T'H — X7")/7 of the numerical
solution with the velocity v"™ = v(t,,) determined by the elliptic system (4.39). The estimates
of the function w} := v* — Iv™ € Sp(I'}*) in this subsection essentially characterize the limit
of the tangential motion produced by the stabilized BGN method.

Since (4.39a) implies that v™ = —H™n™ 4+T™v™, where T™ = I —n™(n™) T is the tangential
projection matrix on I'"™, the following relation follows from (3.38) and the nodal relation
™ =1T™

X - Xt — o™ = X - X — 1L (- H™ ™) — tL, T
= eyt — ey — L, T + TIg™ on T, (4.40)
The following relation can be obtained by subtracting integral = me Vm [pv™ - Vpm gy, from
h
the both sides of the numerical scheme in (1.5):
Vrzn (X;Ln—’_l — X]T — TIhUm) . VF;"d)h

Iy

1
Y . e XV I(6n - ) Ap?
= g -y Op - Ny, VF;{L h 'VF;;1 h[(¢h'nh )”h]

B T e
- T/ mefhvm . VFM¢h
h h
s

-/ P id
m T
— VFZLXlT : VF}I”Ih[(QSh ’ ﬁ}?)ﬁhm]

m
Fh

g dp - g
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- T V[‘;Lnfh’um . VFZ’L@Z)h +7 [ me Ipo™ - vfﬁt* Dn

F;ln l—w}:* hy*
=: > Li(¢n). (4.41)

For any function ¢y, € Sh(f‘m .), due to the orthogonality between 7}" and I, hT,’;"qSh at the nodes,
the two terms Ll(IhT}TgZ)h) and Lo (IhT,TqSh) vanish. The three terms L4 (), Ls(¢p) and Lg(¢p)
can be estimated by using the superconvergence of Gauss—Lobatto quadrature (Lemma 3.6),
the geometric perturbation estimate (Lemma 3.2), and the fundamental theorem of calculus
(Lemma 3.15), respectively:

|La(n)] S TR HIonll g e (4.42)
L5 (én)| < Tthrlefm*Ihvm”p(f;ln,*)”vfﬁ*ﬁﬁhHB(f;ﬁ*)v (4.43)
1L6(@n)l S TV e 8l 2 y Vi 0™l poo @ 1V Em Onll 2o - (4.44)

We can estimate L3(I, hT;sz)h) with integration by parts and relation (4.39b) as follows, using
the identities IhT]?L(bh = IhT,:n[hT}:n(ﬁh:

Ly(I,T"ép) = 7 g Armv™ - (I, T I, T ¢p)! (integration by parts)
=7 /m K™ (LT T é) (relation (4.39b) is used)
= [ =g (- TR

[ @ - T T

—7 / K™ (LT}, — T I én)! (4.45)
where the first term on the right-hand side is obtained by using the following identity:
—K™ (LT DT 6n)' = (1= IE) (5™ - (1= D) T LT ).
We can further decompose L3 (I, T}"¢y) into the following seven parts:

=m m, m my m !
Ly(InTMp) = T/ (1- I;L)(ﬁ n™ (1= L) T™ LT ) )
Fm
. / K (LT — TP LT ).
—( / W (I (T — T LT ¢p)!
B /fzt*
h _ _
_7-(/ —/ )mm’_lnm’_l'fh(T;T* — T I T3 on
’;7.77:* hm7*
h

-7 / KT — Tﬁf*)IhTfT¢h

R (T~ TV )

Fm
h A —
o= [ Yt - T
o o

7 / Kl (T LT,
I

m
hy*
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7
=: Z Lsi(¢n)- (4.46)
=1

The super-convergence result of the Gauss—Lobatto quadrature (i.e., Lemma 3.5) can be used
to prove the following estimates (the details are omitted):

|Ls1(¢n)] + [Lsa(én)| + [Lss(dn)] S TR IWTR 6l o -
L32(¢p) can be estimated by using the expressions Tj* = I — a7 (a™) " /|am|? and T,T* =
I- 'ﬁ}?*(ﬁzn*)T / \7‘12”*|2 and (3.20), which lead to the following result:
| Laz2(@n)| S TV e 8l 2oy IIRTH Sl 2 -

L33 (¢p) can be estimated by the geometric perturbation estimate in Lemma 3.2 and Lemma
3.8:

|Laa(dn)| € TH* W (T = T | oo MR T Gl g2y S TR TR Gnl| o o -

We can rewrite Lss(¢p) as

" m,—l, m,—l ﬁ?*(ﬁ?*)—r am (am o\ T 7m
Lss(¢p) =7 [ k™0™ ‘(#_”h,*(”h,*) )IhTh b

R ‘nh *
" I m,—1 1
= 27’/: A T (T_LZ?* — TALm ) 2 IhT;Ln(bh
F;Z* ‘ h *‘

h
1 _
— 7[ KMl (np', — fzm el (’m ﬁ%) DT o,
N |”h |

\./

om—l 1 . =
r [t (i <) LT,
Fm
h

h
1 m— - . _ . =
= [ R = AL — ) BT

h
1 _
+r / g —lml n;”( - 1)71;;; T,

e
where the last equality follows from (3.15). Then we can estimate ||n}", —7n}" ||, 2 (fm ) by using
’ h\" h

the equivalence between discrete and continuous norms as well as the estimates in (3.7) and

Lemma 3.8 with the triangle inequality, and estimate |0}, | — 1 by using (3.18). This leads to
the following estimate:

[ Las (@) S Th* T Snll s e

Similarly, we can rewrite Ls7(¢p) as

m

Lﬂ%hv/f%%ﬂﬂmmwmﬂwwwﬁmﬁm

m

h
= [ g, — 1T

h
+ T/ R (g, = n) (Ag) — 0l - I o,

m

where the last term is the same as the right-hand side of Lss(¢p) and therefore has already

been estimated, and the second to last term can be estimated by using Lemma 4.1. This leads
to the following result:

[Laz (@] £ TR HINT Gl g oy + TR DT 6 g o -
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In summary, since 2k > k + 1, we have
La(TnT )| S TR 4+ [V &g TR Ol s (447)

By using the above estimates of |L;(I,T}"¢p)|, j = 1,...,6, choosing ¢, = IhT;T(X;T—H -
X3t — tIpv™) in (4.41) leads to

VFT (X — X3 — 7 Iyo™) - Vo LT X — X3 — 71,0™)

6
:Z (LT (XM — X — 7To™))

swmwhmmm+M“Wﬂmx“hX$whwmpmy (4.48)

Utilizing the orthogonality between N " and T,Z”, we can prove the following result, which
essentially controls the H' bilinear form me Vi Ny fna- VFmT fn2 by the L? norm of Ini

and the H' seminorm of f), » for any two functlons Inis fn2 € Sh(IP).

Lemma 4.6. The following estimate for the displacement X}TH — X3 — 7Ipv™ holds:

‘ Vo N (X = X3 = 7 Lw™)] - Ve (BT (XH = X7 — 11o™)]
l"m

Set(l+nT 4IIme el RN (X = X5 — L™

L2( Fm ||L2 (f‘m*)

+(e+e 1h2)||vf;n*]hTh (X — X — L™ |12

Ieep,  Ye>0 (4.49)

Proof. For the simplicity of notation, we denote the displacement § X" := X mtl - X' —1Iv™ €

Sp(T'7). From the fundamental theorem of calculus, geometric perturbatlon estlmates and the
mathematlcal induction assumptions, we have

( Ve NP ] - Vo IhTmX}L”(
ry

= ‘( Vop LN OXG - Vrp TOX — | Vi BNPOXE - Vg IT X
F';Ln S S

.
+ ([ Vg BNPOXJ - Vo BTFOXE —
F;Z’L* 7* ,*
[ Vea(LNTSXMY - Vi (IhT,Tax,T)l(
Fm
S (4 ‘|vfm*éh ||Lw(fg*))||Vfg*IthT5Xirzn”L2(f;Z*)||Vfﬁ*IhTIT5XiTHL2(fhm7*)

Vrm (NS X - Vi ([thnax;r)l)
Fm

+| [ Ve NX) - T (L TSXE
I“m

< e YN X2

L2( I‘m +6va‘217*IhT 5Xh ”

L2(fp)

| [ Ve (BN Ven (TG, (4.50)
I‘m

where the last inequality uses the induction assumption ||V, €3] Leo(fm ) < hin (3.10) and the
}b* hy*

inverse inequality which removes the gradient in front of I, NJ*6 X;". By the super-convergence

estimates (Lemma 3.4) and (3.24), it follows that

\ Vi (L NS XTV - (LT LTS X )
Fm

= ] Vi (NPSXY - Vo (TP L, TS X!
Fm
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— | Vpa((1 = L)NPSXT) - Ve (LT X!
I‘m

— [ Ve (I,NPS X Vem (1 = I) T LT X!

I‘rn
— | Vpa((1 = L)NPSXT) - Vi (1= L) T LT X
]_“m
S| [V (SR Ve (T TR0 XT)
Fm

+hH(SXfT”Hl(fm*)HVIhTIT(SXITHB(fm*)
+ h”vf%Ith:n‘SXITHB(f%)HIhT}:n‘SX}THHl(fg*)
B2 USXE st I TR O X g (4.51)
where we have used the following estimates (which follow from Lemma 3.4):
V0 (1= )N S XG) 2y S PIAR oo o S 1OXE g1 e

L ) _ (4.52)
190 (1 = BTETTESXE) L caqeomy S AR s e ) IR XE 1 o -

(In our notation, I Ty 0 X;" = Iy[T;"6 X} is a finite element function and therefore satisfies the
requirement of Lemma 3.4.) The boundedness of ||N,7L”\|W1,oo(fm ) and HTiTHWl»OO(fm ) follows
hy* hy*

from the definitions of N;™ and Tg_” in terms of 7" as well as the W1o° estimate of 7" in (3.24).
By decomposing 6 X}" into IpN}"6X}" plus I, ;"6 X} on the right-hand side of (4.51), ap-
plying the inverse inequality to I, N;"0X}"|| H(E ) and the Poincaré inequality (3.32), we
hy*
obtain

\ Vi (NS X - Vi (IhT,ZnéX,T)l’
Fm

S| Vem(Naxp) - Vom0 X5
I‘m
DN OXG 2 g+ €T DTROXG 2 1 (4.53)

where the L? norm of IhT,znéX,T (arising from decomposing 6 X}" into IhN}TcSX,’:"‘ plus IhT,TéX}T)
is converted to its H' semi-norm by using the Poincaré type of inequality in (3.32). The first
term on the right-hand side of (4.53) can be further decomposed into

( Vi (NSXT) - Vo (T L, T 6 X!
]_"m

=| | Vrn(NINGOXG - Vem (T T8 X!
l“m

+ [ Vra((NJ* = N?YNPSXT) - Vem (T T LT X!
rm

[ Ve (NENXG - Von (T = T T T X5 |
Fm

<

~

| [V (NI e (T T LTS XR)|

+ (V8 (V5" = NI oo ) INFOXR | oo

NG = N2 e Vg N OXE ot ) T TS X5 s o
+ (IVep (T = T oy )| TR T T OX e

+ ”Ti:,n - TleLoo(f;Ln*)”szn*Ti:nIthznstiZnHL2(fhm*)) HNiTzn(stTHHl(f;f*)
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(product rule of differentiation is used)

<

< ‘ Vi (NN XY - Vpm (TyTgnIhT,;naX,T)l(
Fm

BTN (D e o INEOXE s e 1T INTRS X s o

<

~

| [ Ve NN Ve T T LT X))
Fm

+e T (hR IVem ellagep, ) VNS XE P

+ €| LT X + W26 X|2 (here (4.52) is used)

HY(P) H(Dp )

<

~

[ SN (ROXE - Venl T (T BT
l“m
+e TR IVem en'llagep, ) VI NS X T, i)

+ (e + hQ)HVFm LT XM + | I, NS X |

L2ty L2(ty,)

(inverse inequality and Poincaré inequality in (3.32) are used)

S| [ o X o [ (T X))

+e 1+ h74Hme el RN S X3

L2(y) L2(fp )

L2(f.) (k > 2 is used). (4.54)

+ (e + h2)||szn*IhT SXI?

For the first term on the right-hand side of (4.54), we consider the following further decompo-
sition:

‘ Vi [N (NS X™!] - Vpon [T™ (T L, T X Y]

F'm

= ‘ / (Vpmn NTYN™(NPS X - (Ven T™)T™(T LT X!

+ [ N™Vpn[N™(NPSX) - TV pm [T (T LT XY
Fm

+ / (Vemn NTYN™(NSX ) TV [T™(T L, T X )Y

+ [ N™Vpn[N(NPSXTY - (VenT™)T™( T LT X,

I'm

where the second term on the right-hand side is zero due to the orthogonality between the two

projections N and T™. For the last term on the right-hand side, we can remove the gradient
from N™(N™§X™)! via integration by parts. This leads to the following estimate:

] Von NN XG0 Von T (T LT 0 X7
Fm

S HNFOXT 2 e + el T I T ST

L2(fy,)
S eI NFOX

HY(P7,)
+e R2oX |3

~ L2 Fm) L2 Fm)

+eh?|| 6 X3 (4.55)

+ GHVf‘hm7*IhT 6Xh H Hl ]_"m

L2( Fm

where the last inequality follows from the triangle inequality and (4.52), as well as the following
result which is similar as (4.52):

11 = L) NOXE | o omy S hHéXﬁal(f;n*)
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The terms h2\|5X,T\\L2 P ) and h2H5X’THiII(f;'f*) on the right-hand side of (4.55) can be fur-

thermore decomposed into the normal and tangential parts, respectively, e.g.,

B2 0XT 2 o S D2 ITNT X2 o + W2IT TS X2

H( Fm H( Fm H( Fm o)

< N OXG 17 +h2||me LI X5

L2(fp,) L2(fp, )’

where the inverse inequality and the Poincaré inequality in (3.32) are used. Therefore, (4.55)
can be reduced to the following one:

‘ Vi NN XY pn T (T L, T 6 X )
l"m

S LN X, ) (e e D) Vi TR OXG 7o e - (4.56)
The result of Lemma 4.6 follows from (4.50)—(4.56). O

Remark 4.7. The same proof leads to the following result, with N,’L” and T}T replaced by N i

and T,’Zl*, respectively, and I'}* replaced by I Zl*

( - szn*IhN,T*(X,TL”H — X" — r ™) - Vf?*IhT}T*(X,TL”H — X — t ™)
h,*

S € HIRNT (X = X — 710"

2y + (e € BV BTG = X3 = ™)

HLz(fo*)'
(4.57)

Compared with (4 49), the right-hand side of the above inequality does not contain the term

e 1h 4||VFm ey HL2 ) because only the consistency error is involved here.

By using the estimates in (4.48) and (4.49), we have

Vn TN X = Xg = 7 1w™) - Ven TN (X = X3 — 7 1o™)
Iy

= [ Ven(XT = X —rL0™) - Ven LT (X - X — r1o™)
i

-/ Ven Iy NN (X = X3 — 7 Lw™) - Vo LT (X = XG0 — 7Io™)
h
T(IVim 2y, + R LT X = XE = 7 10™) | g )

+ e 1+ RV &1 RN (X = XJ = TI0™)

L2 Fm ||L2 Fm

+ eHme L,T" (Xm+1 — X" — r L™ )||L2 )

—1 2 2k+2 —1 2 A
5 h + +6 ||va 6h ”L2 Fm )

A+ hT 4HVFm el I NG X = XG0 — TIpo™)

L2(fy) ||L2 )

- euvfhm*thh (X — X — 1 T™)|12 (4.58)

‘|L2(fhm,*)

Since the L? norms of a finite element function on le* and I'}* are equivalent, by choosing
a sufficiently small €, the last term on the right-hand side of (4.58) can be absorbed by its
left-hand side. As a result, we obtain the following inequality:

IV INT (X = X5 = 710" | o
k+1 N
STh +T”vf}l'f*e;lnHL2(f‘Zf*)
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Hence, by using the relation ehm'H — e =TI, T = X,C”H — X" =1l —1Ig™ from (4.40)
and the estimate in (4.59), we have

_ o
IV InTR (e = € =TI 0™) o
ST+ + 7|V 6
_ . _ L.

+(1+h 2HVf,}?*eh ||L2(fwhm*))||IhN}T(eZL+ — = T | g

Vg Tl = T (e = e =TI T ™) iy
STE+ ) 47 Vi & 2 om

+ (1 + h_2"me*éh ||L2(fwhm*))||IhN}T(eZl+1 — éh — TIhTInUm)HLQ(f‘Z?*)

— - — 1 "
(inverse inequality and equivalence between discrete and continuous norms)

ST+ ) + 7V & e

+(1+ h—2y|v%éh ||L2(fz§*))||fhzv,;7*(ehm+1 = =TI T | i

+ hilef;y* éanLz(fhm*)Hthm*IhT;T*(e;l”H —ép — TIhvam)HLz(fzq*), (4.60)

where we have estimated |7} — T} || 2(fm ) by using (3.20) and decomposed the term ||e}" ™ —
’ h,*

eyt — /T oo ) into its normal and tangential parts, respectively, and have changed
N[L” to N,’L’:‘* by using estimate

N \T A 1.75
| Ny — NIT*HH(fZL*) S va?*eh Hp(f‘;bn*) Shet

This estimate follows from (3.20) and (3.10), and can be used to absorb the additional per-
turbation term caused by changing N;" to Np,. Since [[Vim €5l p2pm ) S h175 as shown in
’ h % h,*

(3.10), the last term on the right-hand side of (4.60) can be absorbed by the left-hand side.
This leads to the following result:

Vi T (et = &7 = I T0™) | o e

<r(r+ A 4 THVfT*é}?HLQ@T*)

(U B2V g &g VAN = & = TITT0™) g - (4.61)
Then, by applying the Poincaré inequality with v, = IhT}T*(e;L”“ — &yt — I, T"v™) satisfying

In(vp, - ﬁ?{”*) = 0 in Lemma 3.10, we can control the L? norm of the tangential component
IhT,T*(eZ”l — e — 71, T™v™) by the left-hand side of (4.61). Since the L? norm of the normal
component I, N [[f*(ehnﬂ'1 — et — 11, T"v'™) already appears on the right-hand side of (4.61), by

summing up the L? norms of the tangential and normal components of eZTH —ept — Tl TM™
we obtain the following result:
1 o
||ezwr —ép — TIhT?vm“Lz(fg*)

g 7'(7' + hk+1) —+ Tva‘;L"*é;LnHLZ(f‘T*)

+ (14 D2V &l NI (e = = 7 T0™) | o (4.62)



39

4.5. Velocity estimates

The last term on the right hand side (4.62) can be estimated by testing the error equation
(4.21) with ¢p = €, : (eZ”rl épt) — IpnT"v™. This leads to the following estimate:

h m+1 _em €m+1 —em
/ (" — o) g, (B - T
m

T T
h,*
h emtl _gm
= —/ LT ™ ﬁ}ﬂ( h h IhT,:”vm) np',
m
hyx
h _m+l m m+1 m
e e e —é _
+/ h - h 7}7:*< h - h . TIn'l)m) nzf*
m
hy*

h 6m+1 _em
_ / L,TMo™ - 7, (’17’1 - IhT;%m) AT,
Pm ’ T
—d"(eyp) = I (eyn) = BT (€ epn) — K™ (eyn)
m+1 ~m m+1 _ ém

e é N
A (m‘H,ih = h—Ithnvm) Ah*(eh"H'I em,ch__h . h—Ithnvm>

3
- Z F"Lm(e:)r}h) + Ai]zv,*(é;znv Iy 7}T*e;7h) + Bm(eh thT}T*evm,h) + Qm(IhT}T*evm,h)
i=1

h m+1 _em
< / (%’1 . IhT;"vm) A LT A
m

—d™(eyp) = I (egn) — B™(er' s epn) — K™ (en)

N (sm m, m e;zn—i_l _ézn m, m
— Ay ey + 7T T — LT,
emtl _ gm
Ah*(TIhTm m Ch T _ IhT;%m)
T

_ZFim(e:fh)"i_AhN,*(éthhTh* vh)+Bm(ehth hwCon) T QM (InTh ey'n),s (4.63)
i—1

where we have dropped the following two non-positive terms from the right-hand side of the
last inequality:

emtl _gm emtl _gm
_ TA;L\T*( h h I Tm m h h Ithn’Um>
T T
em+1 _em m+1 _em
and - TAz*(hih I T N N IhT;%m).
b 7— 7_

The first term on the right-hand side of (4.63) can be estimated by using the orthogonality
between I}, 17" v™ and 7}, at the nodes, which implies that I, 7;"v™ -}, = ([T 0™ =17 0™)-
ny', at nodes and therefore

m+1 _ é
€h T Ch _ _
( / LT m) A LT A,

emtl _gm
<7h . ho _ Ith”vm) ‘T

< NI = T

f‘m * ”
(@7) L2 ()

k eZH_l_éh m, m —-m
<hH<7—IhT )-nh*
7_ b

- 4.64
L2(E) (4.64)
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where the last inequality follows from Lemma 3.8. The second and third terms on the right-hand
side of (4.63) can be estimated by using the results in (4.7) and (4.32), i.e.,
m—+1

e — e
(e
T
6m+1 _em €m+1 _em
o | —IhT,:%m] R i | N IhT;%mH e (4.65)
2(Tm 1 m
T L2(Dy) T HY(T,)
m+1 ~m
e —e
(S )
T
m—+1

e —er
h - h —IhTInvm)

S va’gf*éhmnlﬂ(fzf*)u (4.66)

LA
The following result can be obtained by using the triangle inequality and the boundedness of

I, T ™:

+1

m sm
+1 A eh — eh
IVep b Nz ) SIVep el 2y, ”vazf*(f _IhT*m“m)‘

L2(Iy)
By substituting the above inequality into the right-hand side of (4.25) and (4.27), the following
estimates of K and Q™ can be verified:

+1 +1

et —ép o (ER e
(B e (i (VU )
eyt —em
< R N . . ~ . . “h — “h m, m
~ ]\Vrﬂ*eh HLOO(F;Z*) (HVF%eh HLZ(FZL,*) + THVFK*< - IhT* v )’ LQ(f‘zf*) + 7')
m+1 _ sm
o (2 i)
h* T LX)
k e;znﬂ — &y
N ~ . R “h  "h m,,m
+ (7 + 19| Vg € ||L2(F2,t*)Hva*( - 0,7 )(LQ(%)
m+1 Am
< (172 k e ) s ) Hu_ mmH
S ET B Ve e Ve &2y | = BB e
7|V, & Hv (@ZM — g m)‘ : (4.67)
R Aty ] Ry N P gy ‘

By the definitions of the bilinear forms AhN,*('v ), A%:*(-, -) and B™(-,-) in (4.17)—(4.18), we have
[ AR (s on)| + A (s vn) |+ [B™ (s on)| S Ve e I0n g e (4.68)

for any wup,v, € Sh(f}l”*) By substituting these estimates together with the estimates of
ET"(er,) from (4.34)—(4.36) into the right-hand side of (4.63), and then using the estimate in
(4.61), we obtain

m-+1 ~m
e — € 2
h _
H (u _ [thnvm> nT* )
T Lz @)
emtl _gm
~ h h,*
< (1 4+ B [ Vian €7 i Hi’—l T mH
N( || e h ”LQ(Fh,*)) h+« HI(Fp,
et _gm
5 h h m,. m
F 7V EP| e om HvAm( —ITU)’ )
| T Wil (LY AE0) I bt L2(y)
emtl _gm
I L S N
T L2(fe,)
eerl —¢é
— A N h h,*

< H (B 9 e ) | e )
~ || rm, h”p(rm*) h h,*( p ht ) LQ(f}f*
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m+1 ém

4 (B Ve &0 )HvA 1,7 (76’1 oy —Ihvam)H
Do Zh L2 )| T 2 hox T * L2

m+1

_ e — e 2
sm m h h
7V & e [V, T 1)
¥ 5% ol

L2(fy)

m—+1 ~m
_ e — e 2
IhN,’;"*<7h ho_ IhTmm)‘ )
’ T LQ(FZL*)

+ h727 || Vam €77 oo pm inverse inequality
Fh,* h L (Fh,*)
emtl _ gm
|| (B - )

L3 (Tp)
m+1 __ sm

S+ B+ b7V o )HI Ni.. (L - vam)H
~ ty Ch L2t ) ||V hox - hid L2(fy,)

+ (1 + A 4 \|vf$*é;”||L2(fm*)) [(T + Ry 4 va%éh ||L2(f$*)
et —em
+ (1472 Vi o HLQ@ZL*))HIhNg}* (s - o) H

T

LZ(fm*)}

N k N
+ Ve & ey [ 7+ B2+ Ve &
ehm+1 — e 2
-2 ~ N N 2 N ko m,,m
U W &gy, | B (= = BT L |

) em+1 _ ézz 9
— 5 \T h m, . m

+h™ || Vim € N THIN’"<7—IT v )‘ N
H e, h ‘|Lw(rm*) h4Vh, i hd s 2@

2
“1(; -1 k -1 A -2 ~m |2
S (e 2 P A P 4 Sy
k4142 am)2
+(T+h7)" + ||Vrgf*eh HH(fgf*)
, B eszrl _ ézz 2
_ ) . R m(*h " “h m, m
+ (€+h THVI—\Zt*eh ”Loo(rzt*))HIhNh’*( - IhT* v )‘ Lz(le*)

S e R O T A ) A
¥ h,* h,*x h,*
eZHl — éZf* 2

- Ith”vm) LA,

+ (e + P27\ Vi €7 oo pm H( frm )’
( IV n'll ooty ) L0y,

where, in the derivation of the last inequality, we have used the equivalence between continuous
and discrete norms for finite element functions, as shown in (3.46). Under the stepsize condition
T < ch¥t1, for sufficiently small h and e, the last term on the right-hand side above can be
absorbed by the left-hand side. Then we obtain

2

em-f— émh
h _
H( = _Ihjlnvm> n;Ln*
T ’

Ly(Tye,)

-2 k41N2 o 1 =27, am2
Sh (T +h" )" +h HVF;Z*eh ||L2(fo*)’ (4.69)
—4 . sm (|4 : -2 . sm (|2 ; ;
where we have absorbed h HVF% ey HLQ(fZ”,*) into h Hvrm*eh “LQ(f;L"*) by using the estimate

vazn*éanLg(fT*) < hin (3.10). By considering the square root of (4.’69) and using the norm
equivalence relation in (3.46) again, we obtain the following result:

m—+1 _sm
€n €h,*

HIhN,T* ( _ IhT;"vm) ‘

< -1 k“rl —1 . AM R
LQ(%)Nh (r+ B +h ||vrm*eh|ym(%), (4.70)

From (4.61) and (4.70), we get an H! estimate for the tangential velocity, i.e.,
[V i DT (e = & = TN 0™) | o
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Sh7ir(r + AET 4 h_lT”me €l o)

+h_3Hme Ch' ey )T T(r+ ) + 0|V  Ch 172 P

Sh7ir(r 4+ RMY 4 B T”vrm el e ) +h™ THva em||? (4.71)

L2,y
where we have used h=2(7 4+ h¥+1) < 1 in the last inequality.

Furthermore, by decomposing the velocity into its normal and tangential components, we
can obtain an H'! estimate of the full velocity, i.e.,

||em—H —ép — TIhTfUmHHufZL*)

ShT 1||Ith( p ey =TT ey + TR (e R e = LT M
where the last inequality follows from (4.71), the Poincaré inequality in Lemma 3.10 and the
estimate Hvrm ey HLQ(fm*) < pLTS,

An important application of the velocity estimates in (4.62) and (4.70)—(4.71) is the following
estimate of HeZ"‘HHLQ(f,ﬂ )

m—+1

e paqry < 1€ o+ 1€ = &l aep

< ey 'nh,*”Li ) + ||em+1 — ey — TIhT*mUme(fzn*) +7
((3.44) and the triangle inequality are used)

S gty + B IV &l ) + BV g S 7

L2(fy,)
Slen’ - akllz oy + 7 (4.73)
where we have used the induction assumption HVFm entll 12 () S < kY75 in the last inequality.

Inequality (4.73) will help us to convert [|e}"*||2 to [|ep" - ny; m 12 on the right-hand

L2(ty,) L2(ty,)
side of the error estimates. The latter will be absorbed by the left- hand side by using the
discrete version of Gronwall’s inequality.

Via the inverse inequality and the stepsize condition 7 < ch**1, inequality (4.73) also implies
that

leq ] Lo Py S < A2, (4.74)

From (3.33)—(3.34) we also see that

ler™ M gy S ler ™ oo iy + He’”“HLw(Fm ) SR (4.75)

Furthermore, the following 1nequaht1es can be proved by using (3.33)—(3.34) and (4.74):

HemHHLz(rm )~ H6h+ HL?(F’“ )’
o _— v. (4.76)
I€h HHl(rm )~ S ey HL2(rm y T | e, ep” HL2 fm.):

By substituting (4.73) into the right-hand side of (4.76), we can obtain the following result:

||ehm+1||H1(Fm y STy nh*HL? ) T vam ey 1HL2 Pe)- (4.77)

We can also prove the stability in the other way round (cf. [2, Egs. (5.68), (5.69)]):
ek’ H||L2(rm ) S eR 2 my T (4.78)
ler’ +1HH1(Fm )~ S lléx ”H1 fm ) +T. (4.79)

They can be shown by the velocity estimate (4.72) and the stepsize condition 7 < ch**+1:
”6m+1

é;ylnHHl(f*;ln ) S <7+ ||eerl —ey — I, T ||Hl )
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S T+ h_27'(7' + hk—i-l) + h—2T"Von éZlHLQ(f‘hm )
ey + 7

and then (4.78)-(4.79) follow imminently from the triangle inequality.

4.6. Norm equivalence on the curves I'}", F;L"H, . F?:*H and F;Zjl

In this subsection, we show the equivalence of LP and WP norms on the curves ry, FhmH, ., I‘hmjl

and Fhmjl by using the velocity estimates established in the previous subsection. In view of
the norm equivalence results in Lemma 3.1, it suffices to show that the distance between these
curves are small in the W1 norm.

From the velocity estimate (4.72) we can derive the following result by using the stepsize
condition 7 < chFt1:

||ezn+1 - éz’b - TIhTfLUmHHl(f*ZL*) 5 h2- (480)
Then, using the triangle inequality and (4.73)—(4.76), we get
ler ™ gy S lep ™ =& = T oy + 1€ oy +7 SRV (481)
A 1 .
167 sy S e asqepy S 7 (1.82)

By utilizing relation (3.38) and the two estimates above, we have

a1 N
||X}T* - X}T*HLoo(fo*)

< HX}T:_I - X}THHLoo(sz*) + ||X}T+1 - X}THLoo(f;Ln*) + ||X}7Ln - X}T*HLoo(f;Ln*)

e gy + 165 = 7 = L0 — )i+ 1R e
a1 1 R
S Hehm+ HLoo(fo*) + HQZH_ ”Loo(fm*) + Hezl”Loo(fm*) +7
< AT, (4.83)

From (3.35) we see that

1X7 = AT e S 7 (4.84)

() ~
The following lemma essentially helps us to bound the LP norm of the tangential part of the

error displacement, i.e. ehm'H — et — 71 T"v™, by the LP norm of its normal part and the

WP semi-norm of the tangential part which can be furthermore controlled by (4.70) and (4.71)

) . . . i ol

respectively. This lemma is needed to estimate | X;""" — X,Z?*||W17m(fﬁ*).

Lemma 4.8. The following estimate for the error displacement e?“ — eyt — I T"0™ holds:
1 A~

[T (e = e = T i

SN (et — eyt — I, T™)| o)
+ ||Vf$*IhT;T*(BZlH =& = T ) gy, VP E [2,00]. (4.85)
Proof. Using the triangle inequality, we have
IR (e = 5t = T T s
< ||I;~LT,T*(ehm+1 — ey — TIhT;:n’Um)HWLP(fm*)
+ R (TFY = LT (et = &7t — T LT ™) |y )
ST ™ = 6 = T T s

+ h—1||T}T* — IhT»:nHLoo(fzn*)HeZnH —ép — TIhTyU”I”Lﬂf,TJ (here (3.14) is used)
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S TR = & = 7L T 0™ Iy

+ fL’rl||€ZI+1 —ép — TIhT:nUmHLp(fm*) (Lemma 3.8 is used)
S MW T (et — &t — 71 T ™) o

+ RN LN (et — ey — 71, T ™) o)
S IV TR = &7 =TI | oy

+ RN LN (et — et — TIhTﬁvm)]\Lp(fm*), (4.86)

where, in the last inequality, we have applied Poincaré inequality (Lemma 3.10). O

The following identities have been proved in [2, Egs. (A.15) and (A.17)]:
N:"(X;fjl - X,T*) = (X™ —id)oa™ 4+ py at the nodes,  (4.87)
where |py| < Cor? + C’dT,:"(X,TjI - XZL”*)\Q at the nodes,  (4.88)
T (X = X)) = T (X — X3 + TN = NYep™  at the nodes,  (4.89)

where () is a constant that is independent of ;.
Note that n™*! is a smooth extension of n(-,t;,1) from I'"*! to a neighborhood of I'™*!

which contains I'™ for sufficiently small 7, and the gradient of n7"*! is bounded uniformly with
respect to m and 7. By considering both n71 = n(-,tm41) o X" and n™ = n(-,t,) o X2,

as functions defined on f‘?] ., and using estimates in (4.92) and (4.84), we have
[ =0l = (X ) — (X b))
= LR — I (R (R — ()
(X ) = (X )|
< |X,T:“1 — X |+ | X7 — X,lel + 7 at the nodes

SIX - X}T*\ + 7 at the nodes, (4.90)

where the second to last inequality uses the smoothness of n”*! in a neighborhood of I"™*1,
and the last inequality uses (4.84).
Combining (4.87)—(4.89) with the velocity estimates, we derive

A 1 A
||X}T:_ - X}T*le,oo(fm*)

< BN R = X0 g e ey + BT = X i

ST R R LT X BT = XE) i

~(iye.)
(inverse inequality and (4.87)—(4.88) are used)

ST+ T (X - ng*)uwl,m(%) ((4.83) is used)

<7+ [T (X - X)) ) IR (N = Nep ™)

((4.89) is used)

<7+ ||IhTfl(eZL+1 - TIhT’:nvm)HWI,oo(f‘Zl ) ((4.40) is used)

Wheo(fm ”Wlm(f;;f*)

+ h_l(T + HX}TJI - XfT*HLoo(fgf*))Hé?H”Lw(f;ﬁ*) ((4.90) is used)
ST+ vaZf*IhTiT*(eZH1 —ép — TIhT?Um)HLoo(fm*)
+ hk—l”[h]\_];T*(e’}?Jrl -y — TIhTInUm)HLOO(f‘;Ln’*) (Lemma 4.8 is used)

+hTH T4 IX - X’T*”L""(fz”*))”éznﬂHLoo(f;Ln*)



45

STHR (4 B 4 0V e + BTV e e

(inverse inequality, (4.70) and (4.71) are used)

+hTH (T4 IX - X’T*”L""(fz”*))”éznﬂHLoo(f;Ln*)

5 T4+ hO.75HX;ZL:'1 _ X;Z?*”LOO(IC‘ZL*)’ (491)

where the last inequality follows from the induction assumption ||szf*éhmH L2(F) < KT and

. amA4-1 75 . . ) 5 1 S .
the estimate [é]"" HLO@(f;Z*) < A7 in (4.82). By absorbing h° 75|]X}Tj - XfT*”L"O(fo*) into
the left-hand side, we get

cmtl
17 = R ey S 7 (4.92)
This implies the norm equivalence between f’g‘ , and fznjl according to Lemma 3.1. Moreover,
+1
HX;? - X;ZL”W1700(1C\ZT*)

= |lett — e — 7I,(H™n™ — gm)HWl"X’(fI{“’*) (relation (3.38) is used)

_ 1 - é
SR e + BT 1R s

< 2, (4.93)

where the last inequality uses (3.10) and (4.81). This implies the norm equivalence between I'}"
and F’,;”H according to Lemma 3.1.

The norm equivalence between I'}" and FZT* is a consequence of the induction assumption

lertllyp1,00 ) < A% in (3.10), and the norm equivalence between I'Y* and Iy, follows from

(4.84). Therefore, the norms of finite element functions on I'}*, T Zﬁ'l, r hoso f;’fjl and F;Zrl with

a common nodal vector are all equivalent.
To distinguish the domain of definition more clearly, we temporarily denote by X;L”:rl : F%ﬂf —

fznjl and Yh"1+1 T, — f‘hmjl the finite element functions with the same nodal vector but
defined on F?L,f and f‘Z‘ ., respectively. Then (4.92) can be written as
cmAl
1Y, — 1d||le°°(F;L'f*) < T

As a result, for sufficiently small 7, the map }A/h"fl =id+ (Y}:ZH —1id) is invertible and satisfies
that ||(Yﬂ+1)_1||wlym(f\m+l) < 1. From (4.92) we conclude that, by using the triangle inequality

’ B
and the inverse inequality,

om+1 o —k+1) m+l %

IR goe ey S DR rg ) + IR = KR lgrmg S 10 (499)

Since XM = v, o X1 it follows that

A 1 _ > — ", —
H(X;Z?:_ ) leLoo(f;L”jl) = H(XlT*) IO(Y}:TJ) 1HW1,oo(f;Ln*+1)

<) g IO ey S 1 (495)
The estimates in (4.94)—(4.95) imply that the constant x; defined in (3.1) satisfies that

As aresult, all the estimates in Section 3 proved for f’hm* also hold for f‘hmjl (with some constants
depending only on ;). In particular, (3.7) and Lemma 3.8 hold at time level m+1, and therefore

Iaht = Al o ey < BE (4.97)
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4.7. Stability of orthogonal projection on the error

In this subsection we establish the stability of converting [e"" - ny' m 12 L2 (fp) to [Tt -

’m+1 |2 L2 () at each time level. We decompose their difference into the following five parts:
I A 2 sy = € A 2 e
= et - ‘m+1|!L2 iy~ Ik et _m+1||L2 i) (change of [}"F! to I2,)
+ || eptt ﬁ;bnjlﬂLz 2 (0. — |leptt "M iQ 2 () (change of 7, mtl to np)
ol [ ”h*HLz Py~ e+t ﬁhm*H (change of &' to e]' ™)
— M+ MY+ M | (4.98)

By the fundamental theorem of calculus, (4.92) and the norm equivalence of curves Fh , and

anjl in Section 4.6, we know

_ H ~m+1 —m+l1

nh* ||L2(Fm+1 ||A7nJrl ﬁzljl”

L2 Fm
S Ve, (Xt - X Moo ey el 2 e, e e

S THA’"“H

)

L2ty ) (here (4.92) is used). (4.99)

The estimation of MJ" and M3 requires the following lemma which tells us that the L*
norms of the quantities nl*, 7}, and n}', at adjacent time levels differ at most O(7) from each
other. This additional O(7) will help us to eliminate the factor I in the fourth line of (4.115).

Lemma 4.9. We have the following estimates for the difference between normal vectors at two
adjacent time levels:

In™ Tt — ™ <7 at the nodes, (4.100)

~m+1
b = Al e ey S 7 (4.101)
It = AR ooy S T (4.102)

Proof. Note that n™*! is a smooth extension of n(-,t,,11) from I™%! to a neighborhood of
I+ which contains I'"™ when 7 is sufficiently small, and the gradient of n™*! is bounded
uniformly with respect to m and 7. From (4.90), (4.92) and (4.84), it follows that

[ =l S = XA IXRL — X 47 at the nodes
<T at the nodes. (4.103)

The second and the third results in Lemma 4.9 follow from Lemma 3.14 (item 7), (4.30)—(4.31)
and the norm equivalences in Section 4.6, i.e.,

e A N [ N [N
5 vazn* (X}T:_I - Xh’*)HLOO(th*) ,S T, (4104)
where the last inequality follows from (4.92). O

The third result in Lemma 4.9 implies that

Mgt = et Ay s oy — 6 en g

(4.105)

We decompose M3 into several parts as follows:

M3 - HAm—H Wf?*” %(f‘ - Hem-i-l ﬁ?*” }2l(f‘h )

h
_ / (et - e;%“) (D ety
m

)



47
h
:/ (IhT;nH(éZzH m+1)+fh) nh*(ean‘F@mH) Ay,
_ T Tm+1 m+1 (Am o ~m—+1 m—+1 —-m
=— | LI e, Ay — 0 ) (€ e ) - mpl,

IhTerl m+1 (n:l+1 . n;n)(wn—&-l + em+1) ﬁzl*

;Ln*
h

+ /F e G [ e s R
hy*
h

/ ’fl Am+1+em+1) ﬁzn*
_. Z M (4.106)
i=1

where we have applied (3.33) and (3.16) in the third equality, and have used the nodal orthog-
onality relation in the fourth equality.
Lemma 4.9 directly implies

T(lley 7 (4.107)

+ “6m+1”L2(Fm )

+ller ™ 17z i) (4.108)

By the velocity estimates in (4.70)—(4.71), we derive that

31N

Mg < (llep

L2(Fm )
LQ(F’" )
(H sm—+1

m+1_ ~m
Mp S hkui‘fh ~ LT

L2ty ) Hm@zn,*) + HeZ‘HHLg(f%))
STh N+ th)(HAmH”L%fm )+ ller’ +1”L2(f‘m )
+7h*(h 1|Wrm Eillpaep ) +h~ 3HVFm el i, )(HemHHLz(f;g*) + He}f“HLg(f%))
ThF (T + hk+l)(Hem+1HL2(fm )+ llep™ HL2(fm )
+T(h’f Ve el ) + BP0V 8 g VUG iy + ek ey )
SThM T+ hkﬂ)(HAmH”m(rm y T lley’ +1HL2(F’" )

+mk-1rrvf;aéh Ieqty ) U iz, + e loaep )+ 7001V ep &Ny
(4.109)
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where we have used the estimate [|&)" || L2(p) + eyt L2(ye,) < h%7 which follows from

(4.76), (4.78) and the induction assumption in (3 9). The super-convergence estimate in Lemma
3.5 leads to

k ~
Mg S TR gy + 1 s o) (4.110)
and, applying Lemma 4.1, we obtain

My < Th’““(HAm“HHl(%) e M ey ) (4.111)

Finally, by using the estimates in (3.34) and Lemma 4.9, as well as the relation (1—n"(n7") " )éy* =
0 at the nodes, we have
h
M= [ At e A
f‘;ln;* 7 7
m m

SIA =nIH et Dep 7, 2o, 1R ey + llen

et )
S =M (e m+1—eh>|rL2(Fm U+ ooy + I e )

-
R ()T — (] >>m+1uL2 oy (6 gy + 1 ongey )

m+1 ~m+1

(& — €
2 h h
S’T(H
T

e + 1) U poeqep ) + i ooy )
h,x

ST e,y + ||ez”“||L2 i)

~ 1 1
+T2(Hvrm BZH_ ||L2 Fm + ”vrm eh+ HL2 ))7

17
where the boundedness of H % — I o™ comes from a combination of the velocity

HL?(f;;f*)
estimates (4.62) and (4.70) as well as the induction assumption [|€}"|| HUER) < A5, Therefore,
by using Young’s inequality, we have

MG S T2 (e ey + el a i)

+elr —f—ET(Hva éZH'l + Hva et (4.112)

||L2 Fm HLQ Fm )'

By collecting the estimates of Mgh, j=1,...,6, we obtain the following estimate:

M S (1 +||em+1|\L2 by 182t )
k—0. k— ~ ~
e+ BB LR DT G )+ IV e ) + (Ve &)

TR ey + 18 ) (4.113)

4.8. Error estimates

Note that

S TR sy — IR A2, ) An (e )
= Lem a2

m+1 _m+41
nh * )

e A2 )+ A

(IIAerl ﬁZ”ZleLz (o) —flep™t- ﬁh*||L2 ) (4.114)

where the first line on the right-hand side above can be estimated by choosing ¢; = ehm+1 in

the error equation (4.21) and using the estimates of the linear and bilinear forms developed in
Sections 4.1 and 4.2. The second line on the right-hand side above can be estimated by using
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(4.98) and the estimates of M, j=1,...,3in Section 4.7. This leads to the following result:

(et - a7 o) = lleg - Aplls i) T Ans(en Phen ™

N =

,SAh*(éZ‘,éZ”) B™ (&, e ™) — T (ep ™) = K™ (et — d™ (e ™)

72Fm m+1 JrAh*(ehv Tm m+1)+Bm(€h’IhTm m+1)+Qm( m m+1)

+ = ZM"‘ (here (4.98) is used)

S.: 6_1(7- + h’k+1) +e _1(|’Am+1||L2(Fm ) + H€m+1||L2(f‘m ) + Heh ”LQ Fm + ||eh HL2 Fm ))

~m+1
+€(HVme*6TIIiQ( ) TV €x w3 2y )+ IV fm 6Z”lll Vi 62”* HL2 P ) )-

(i 115)

Then, by using the results in (3.44), (4.73) and (4.77), we can simplify (4.115) to the following
inequality:

L2(Fm )

et R ey IR
T Ot ey
S TR 4 U A2 g+ €V e (1.116)

where € is an arbitrary small constant. The last term in (4.116) can be absorbed by its left-hand
side. Then, by applying the discrete Gronwall’s inequality, the norm equivalence in Section 4.6
and (3.44), we obtain the following error estimate:

max [|é 2 ooyt anvrm il < C(r + hFH2, (4.117)

0<m<l LA(Iy,) =

For h?t < 7 < hF*1 and sufﬁmently small h, from (4.117) we can recover the induction
hypothesis (3.9) at time level t,,11. In view of (4.78)-(4.79), we also obtain the following
result:

+1 +1 k+1
Or<na§l||em 2oyt Z 7([Vip e ||L2(Fm , SO +h ). (4.118)

Note that the constants C' on the rlght—hand side of (4.117) and (4.118) depend on the
k; defined in (3.1), and the condition on the mesh size under which the error estimates are
established is h < hy, (for some constant h,, which may depend on r;). In order to conclude
Theorem 2.1, it remains to show that the constant ; defined in (3.1) is independent of 7 and [
(though possibly depending on 7). This is presented in the next subsection.

9. Uniform boundedness of k;

For any j =0,1,...,k, we can prove that

M . / : o-m )
o0ax | Xk ooy ) < Co i max XG0y -see g ) < Co,

where Cy and Cj, are constants which are independent of 7, h and k; (with Cj depending

on Cp). For illustration, however, we only prove ||X,T* ) < C{, under the condition

A HW:’OO(F?Lf
||X]’{Z?*||W}l:71,o<>(r‘2f) < Cp. The case j # k can be proved similarly; see [2, Appendix].
In this subsection, we regard X}?* and X" as the maps from the piecewise flat curve F%f

to Fh . and I'}", respectively. Let v{" = v™ oa™ o X}Zl* and gi* = g"oa™ o X}T*, which are
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functions defined on the piecewise flat curve I') ;. By using relations (4.87)-(4.89), we have
m+1 g

”X Xh,*”w}’:voo(r(})l’f)
S HI]—L[(Xm-Fl — ld) e} am o X}T*]HW:,OO(FO + ||ph e} X;;n*HWk,OO(FO )

LR (T2 0 X I(NH o X Pt — N o X7 ) (€77 o Xl koo o
) ) Wy (thf)

+ IR [(Tm o X ) (X —
=: E" + E3' + E3".

m
W ey

By using the stability of I, on C°(I'? ) N W}’f °°(T9,), chain rule, the inverse inequality and
(4.88), we have

+1_ . 0 o
Ef" < Coll X = id) 0 0™ 0 K7y g + 1m0 iy o

1 : % k %
S COvath* [(Xm+ — ld) O am] (@] X;[’L* vrgny}??*HLzo(Fg’f)
k—1

+Co Y XM —idyysee oy + Coh ™| pp 0 X;’Z?*Hmo(rg’f)
j=2

< ol s g+ Cor + Coh™ (72 + IL TG = )2 e )

< Cor | XR oo oy + Co + Con™ MILTI(XGET = X, — LT 0™)| 1

HY(D7p)

< Cor|| X},

, HW}'L“’OO(F?M) + COTa

where the last inequality follows from the velocity estimates (4.70), (4.71) and Lemma 4.8.

Furthermore, using the inverse inequality, we have
B < Coh ™3I (T 0 K7 TN+ 0 K7 = N o K)o X sz e
< Coh™F3C 70 (T + WFHY),
where we have used the estimate || N1 o X}le — N"o )A(}T*HL?(F%J) < Cj,7 which follows
from (4.90) and (4.92), and the estimate ||é]""! o X}T*HLi(ngf) < Oy, (T + h**1) which follows
from the error estimate (4.117). Under the condition 7 < ch**! we obtain
Eyr < C,ilh%T < Cpr under the condition C,ﬂh% <1
With the above estimates of E" and E3", we have
IR = K g

. . T
< COT(I + HX;Z?*HW;?OO(F%IC)) + COHIh[(Tln o X}T*)(X}T - iT)]HW:vOO(Fg’f)'
Using relation (4.40) we can estimate the last term in the above inequality as follows:
ITLICT 0 K (X = X ey

< LT o X ) (X7 = X5 = 7 1o ooy TR © X2 g
= I o X (et = & = DT + TIngP ooy o + T © 0P oy
< I o X ) (et = et = T T gyt g + Com(Cogh™ 17 4+ 1 X e ),

where the last inequality follows from the following estimates:
-k —k . .
HIthHW{f*”(F?ﬂ) <h +1||Ihg?1||w1,oo(rgyf) < O h "1 (in view of (3.37)),

(T o )A(}T*)UFHWS,OO(F?Z ) < Co(1+ HX,T*HW:,OO(F% f)) (chain rule of differentation).
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Therefore, by using the inverse inequality, under the condition 7 < ch*+1 and C,ﬂh% <1, we
have

I o R = Xy o

—k+1/2 +1 o A
< Coh™ 2| L (T o XJn) (e — & = TIn T o) g ) + Cor(1+ XA e o )
< Co k20 (7 4 W) 4 Coh ™27 |V 6 e

+ Ch™ 27|V &1 + Cor(L+ | X lwkoo (g ),

L2(ty)
where Lemma 4.8 and (4.70)—(4.71) are used in the last inequality. Then, using the error
estimate in (4.117) and the stepsize condition 7 < ch¥*!, and ||V1a2n éleLz(fhm ) < Cie, W75, we

have

1L [(T o X3 ) (XG0 — XMoo o
< h 7k 1/2T\|va el e fp |+ Ch™ k- 5/2T||vrm em? + Cor(1 + HX,T|1W,€,OO(F9M)),

(4.119)

L2(fy)

where we have used the mesh size condition Cnlh% < 1 again. In view of the estimates above,

we have proved the following result:
AR N PR
<, h k— 1/27_HVFm éh HL2 Fm )-i-C,.;lh k— 5/2T||va éh H -I-C()T(l + HX]Tuwk,oc(F(}l,f)).

(4.120)

L2( Fm

Therefore, by using the triangle inequality,
+1 o0
HXm HWkOO(FO D ”Xh,*HW;:»OO(F?Z’f)

g+l %
< Z HX h,*HW}If’OO(F?L’f)

< Cunt 1/QZTHVFW &l g2y + O™ 5/2ZTWFW el )
J=0 =0

+00+ZCOT|\XM||WW )
7=0

< Coyh ™ F 12 (7 + WP 4 O B R 52 (1 4 BEHY2 (here (4.117) is used)

+Cy + Z Cor|| X3, My g )
7=0

<Co+ ZC()THXh ywpoery ) (ander condition C,h2 < 1). (4.121)
7=0
By applying the discrete Gronwall’s inequality, we obtain the following result under the condition
1
Cphz <1:

Gl I 4.122
max [ X5 e g ) < Co. (4.122)
The proof of H(X,le)_lelyoo(fhmH) < (p is simpler, i.e., the same as [2, Appendix], and

therefore omitted. This proves that

ki+1 < Co,
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with a constant Cy which is independent of 7 and [. This proves the boundedness of the quantity

ky defined in (3.1). Moreover, the condition C,th% < 1 is essentially requiring h < hg for some
constant hg independent of [. This completes the proof of Theorem 2.1.

5. Characterization of the particle trajectories (Proof of Theorem 2.2)

Let {z;4(t) : t € [0,T]} be the trajectory of the particle under the flow determined by
(1.10), with initial position 1’9 €IV, Let X'y be the finite element function with nodal vector

(x1,4tm)s - 254 (tm)) . Thus Xj'y maps the initial curve I'Y to some finite element curve
Iy which interpolates the smooth curve I'"™ at the nodes Tju(tm), j=1,...,J.

Let I, be the interpolation operator onto the initial approximate curve I’%. Then the following
identity holds at the nodes of F?L:

X}T#H = Xp'y + 7Ip[v™ o Xp'u] + o(7?),
which is simply the Taylor expansion of the flow in (1.10) at the nodes. Therefore, the error
ehy = Xpy — Xy satisfies the following relation:
et = ety — (X = XJ' =TIy o X D) + T o™ o Xty — o™ o X ]+ O(72)
=epy — (et — e — rI,[(TM™) o X,T*] + 71g™) (here (4.40) is used)
+ 7Ip[v™ 0 X3ty —v™ o XZL”*] +O(1).
By using the smoothness of v™ on I'"", we have [0 o X}, —v™ o X,T*\ < O(lejy| +1é3']) and
therefore the following inequality holds at the nodes of F?L:
ey 2t < (L4 Cr)lepy| + lep ™ — eyt — 7T [(TI0™) o X3 ]| + C7° + Crlép].
By taking the discrete L? norm on I') and using the equivalence between discrete and continuous
L? norms on F?L, we have
1 1 ~ 5
etz e < (14 Cr)llefplls ray + Clle ™™ = &t — rL[(T0™) 0 X5l pagre)
9 ~
+Cr° + CTHehmHL%(F%)
-1 k+1
< (L+O7)lleptyllz oy + Ch 7 (T + A¥)

—1 _oamy -3 _amy2
+Ch T||VF»;:7;*€h HLQ(FZL’*) +Ch T||Vrm*eh ||L2(f‘;:t*)’
where ||é}"|] 2(r9) is estimated by using (4.117). By iterating the inequality above with respect

to m (equivalently, using the discrete Gronwall’s inequality), we obtain

! !
m+1 -1 k+1 -1 5 R -3 o smy|2
e gy < ChHT +170) + Ch ZOT||VFz'ffh”L2<rz;>+Ch Z()T”Vrz'f*eh’mfzt*)
m= m=

< ChF + ChF + Ch?—t < ChF,

where we have used 7 < ch**1 and the error estimate in (4.117). This proves that the particle
trajectory produced by the stabilized BGN method converges to the particle trajectory deter-
mined by (1.10). The latter minimizes the rate of deformation while maintaining the shape of
the curve under curve shortening flow at every time ¢ € [0,T]. This fully characterizes the par-
ticle trajectory produced by the stabilized BGN method and gives the first rigorous explanation
to why parametric FEMs of the BGN type could maintain mesh quality of the surfaces/curves
evolving under curvature flows.

6. Numerical experiments

We test the convergence of the proposed stabilized BGN method in (1.5) for approximating
curve shortening flow with the following benchmark example (see [5, Section 4]) of dumbbell
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N 1§n7ana§XNt HéZn”LQ(fT,*)
k=1]k=21k=3
21 1.11e-1 | 4.55e-2 | 4.46e-2
20 3.30e-2 | 7.11e-3 | 3.60e-3
26 8.90¢-3 | 9.18¢-4 | 2.25¢-4
Convergence rate | 1.89 2.95 4.00

TABLE 2. Rate of convergence of the error with 7 ~ hF*1,

N  Jax el e ey )
k=1] k=21 k=3
27 1.47e-2 | 1.34e-2 | 1.34e-2
28 7.34¢-3 | 7.01e-3 | 7.01e-3
29 3.68¢-3 | 3.59¢-3 | 3.59¢-5
Convergence rate | 1.00 0.96 0.96

TABLE 3. Rate of convergence of the error with 7 ~ h.

shape curve as the initial data

z(§) cos(27§)
<M®>:<Wmm%%®+anam%@>7femﬂk (6.1)

We solve the problem numerically by the stabilized BGN method on the time interval [0, 7] with
T = 0.15. Since there is no closed expression for the solution with initial data (6.1), we instead
compute the reference solution with very fine time and space grids, i.e. N = 2! N, = 222
and k£ = 1. Although our proof of Theorem 2.1 only guarantees the convergence of numerical
solutions for finite elements of degree k > 2, we perform numerical experiments for finite
elements of degree k = 1,2, 3.

The time stepsize condition 7 = O(h**1) is imposed by choosing the number of mesh points
N and the number of time levels N; in a consistent way. Namely, for N = 2%, 2% 26 we choose
Ny =25,27 29 for k =1, N, = 2%,28 2! for k = 2, and N, = 27,29 213 for k = 3, respectively.
The discrete L>(0, T; L?) errors of the numerical solutions, i.e.,

A1
o205, 1K Iy
are presented in Table 2, where the convergence rates for finite elements of degree k£ = 2,3
are consistent with the theoretical result proved in Theorem 2.1. The numerical results show
that the stabilized BGN method has optimal-order convergence also for piecewise linear finite
elements. The proof of this result is different from the current paper and therefore needs to be
studied in future work.

It is also desirable to test the sharpness and necessity of the CFL condition 7 < ch**+!. To this
end, we compute the errors and rate of convergence in the regime of 7 ~ h (in the experiment
we simply take N = N;). The results are shown in Table 3, which indicates a linear rate of
convergence for all cases. This means the convergence might hold for a larger regime of weaker
CFL condition.

Besides, we examine the convergence of the stabilization term. Since the stabilization term is
in the weak form, we denote by Stab the Riesz representation of the stabilization term, defined
as follows:

- Stab - ¢p, = /Fm Vrznid . VF;L"Ih[¢h — (¢n - ﬁ?)ﬁzn] Vo € Sh(FZ‘)
h h
The L{°LS® norm of Stab are presented in Table 4 with fixed N; = 25,2526 for k = 1,2,3,
respectively. The numerical results in Table 4 show that the stabilization term is O(h?) for
k =1 and O(h¥) for k = 2,3.
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N 1<I£1@a<XNt HStabHLw(Fm

k=1 | k=2 ]| k=3

27 7.57e-2 | 4.18¢e-2 | 1.62e-3

28 1.86e-2 | 1.18e-2 | 1.96e-4

29 4.67e-3 | 3.06e-3 | 2.41e-5
Convergence rate | 1.99 1.95 3.02

TABLE 4. Rate of convergence of the stabilization term.
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FIGURE 2. Mesh distributions of different methods at 7 = 0.15, with N = 26
for finite elements of degree k& = 1, and N = 2° for finite elements of degree

k=2.

In addition to testing the convergence rates of the proposed method, we test the performance
of the stabilized BGN method in improving the distribution of mesh points of curve shortening
flow with initial condition (6.1). For the initial distribution of mesh points shown in Figure 1,
we test the performance of Dziuk’s method, the BGN method and the stabilized BGN method
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proposed in this paper. The distribution of mesh points at T = 0.15, with number of time
levels N; = 27, are presented in Figures 2 for finite elements of degree k = 1,2, where N
denotes the total number of finite elements. The numerical results in Figure 2 show that, while
Dziuk’s method leads to clustering of mesh points, the stabilized BGN method can keep the
mesh quality (distribution of mesh points) good similarly as the BGN method. To be more
quantitative on the mesh quality, we present the mesh ratio Amax/hmin in Figure 3, which shows
that the stabilized BGN method has similar mesh quality as the BGN method.

hmax/Pmin

BGN
—— SBGN

hmax/Pmin

BGN
—— SBGN

pa————— R

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t t

(A) k=1, N =26 (B) k=2, N =2

FIGURE 3. Mesh ratio Amax/Pmin-

7. Conclusions

We have proposed a stabilized BGN method with possibly arbitrary high-order finite elements
based on mass lumping techniques using Gauss—Lobatto points, and proved the optimal-order
convergence of the method in the L? norm under the stepsize condition 7 < ch**1. The stabi-
lized BGN method differs from the classical BGN method from a stabilization term, with the
same effect as the BGN method in improving the mesh quality, with an additional stabilization
term helping to establish stability estimates for the artificial tangential velocity. We have found
the underlying geometric PDEs to which the stabilized BGN method converges, i.e., the system
of equations in (1.10), which is used to establish stability estimates for the artificial tangential
velocity and to characterize the limit of particle trajectories produced by the stabilized BGN
method. The convergence of the method is supported by the numerical results, which also show
that the proposed stabilized BGN method has the same effect as the original BGN method in
maintaining good mesh quality of the evolving curve.

Our analysis requires the projected normal vector 1} to be defined as a continuous finite
element function, which is essential for applying integration by parts in many places throughout
this article. Additionally, the quadrature points must coincide with the nodes used to define n}"
to ensure that the terms L1 (I, 77" ¢p) and Lo(I, 17" ¢p) vanish on the right-hand side of (4.41);
see the text below (4.41). These requirements necessitate that the quadrature points include
the endpoints of each finite element, thereby excluding Gauss quadrature. Instead, the Gauss—
Lobatto quadrature satisfies all these requirements. The underlying framework and techniques
established in this paper may be applied/extended to other geometric flows and parametric
finite element approximations which contain artificial tangential motions of the BGN type.
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