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Prospect theory-based portfolio selection using
multiple fuzzy reference intervals

Xianhe Wang, Bo Wang, Long Teng, Yaoxin Wu

Abstract—Portfolio selection stands as a paramount concern
within the realm of decision-making and management engineer-
ing. However, owing to the inherent intricacies of capital markets
and the presence of irrational investor behaviors, the attainment
of pre-defined investment objectives by investors remains a
formidable challenge. In order to comprehensively depict investor
behavior patterns and to provide investment guidance in highly
uncertain and volatile markets, this study introduces a novel
fuzzy model for representing prospect theory and based on
this, develops a novel portfolio selection optimisation framework.
Additionally, a new particle swarm optimization consists of
adaptive and cooperative strategy is proposed to find the optimal
solution of this model. The effectiveness of this model is validated
through two case study utilizing real-market data, while the
efficiency of the solution algorithm is confirmed through a test
fitness functions-based case study.

Index Terms—Fuzzy portfolio selection, optimal uncertainty
intervals, prospect theory, expected utility theory, mean-absolute
deviation.

I. INTRODUCTION

HE core issue of portfolio selection is how to make

the best possible investment strategy among a basket
of securities, so that investors can maximize the return or
minimize the risk. In the past decades, we saw an accelerated
evolution in portfolio theory since it was first proposed by
Markowitz in 1952 [1]. In Markowitz’s mean-variance model,
the investment return is expressed as the expected value of a
random variable and the risk is evaluated by average squared
deviation of the random variable from its expected value [2].
Following the above pioneer work, a series of effective risk
measurements have been proposed. For examples, Markowitz
et al. [3] developed the mean-semivariance model based on
the consideration that an investor care more about the part
where the return is lower than the expected value. Konno and
Yamazaki [4] introduced the mean-absolute deviation model
as an alternative to the mean-variance model. Experimental
results show that mean-absolute deviation generates similar
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portfolio to that of mean-variance within a fraction of time
required to solve [4]. Other risk measurements in portfolio
selection include, but not limited to entropy [5], Value-at-
Risk [6], conditional Value-at-Risk [7] and expected shortfall
with loss aversion [8].

The above models requires sufficient historical data to calcu-
late the statistical indexes of random variables. However there
are numerous non-probabilistic elements that may influence
financial markets. Various empirical studies have highlighted
the limitations of probabilistic methods in capturing the uncer-
tainty inherent in financial markets [9]. Fuzzy set theory serves
as an effective tool for describing uncertain environments
characterized by vagueness and ambiguity, or other forms of
fuzziness [10], [11], which are prevalent not only in financial
markets but also in the decision-making behaviors of financial
managers. Based on the above considerations, fuzzy set theory
has been characterized as an effective approach to depict
security returns, and a number of fuzzy portfolio selection
models have been built [12]-[19].

Despite the tremendous advances recently achieved, most
of the existing works were carried out based on the ex-
pected utility theory which views investors as rational beings
to maximize the expected wealth. Unfortunately, behavioral
finance developed in the 1980s posits that the cognitive biases
of investors have great influence on the decision making
process [20]. Luo [21] examined the impact of sentiment on
asset prices during periods of high and low risks and ambiguity
across countries. And Gao et al. [22] focus on how the
stock price daily momentum is driven by the investor trading
behavior in Chinese market. Prospect theory, the representative
behavioral theory, employs cognitive psychological features to
incorporate irrational human behavior into economic decision
making [23]. Building on this, many researchers have em-
barked on portfolio selection rooted in prospect theory [15],
[18], [24]. These endeavors have significantly propelled re-
search in the fields of prospect theory and portfolio selection.
Bi et al. [25] investigate a behavioral mean-variance portfolio
selection problem in continuous time. Gan et al. [26] review
the application of prospect theory in the field of power system
economic decisions. Zhou et al. [27] develop a decision-
making approach to help managers to select optimal portfolio
in which the group contains several experts’ personal evalu-
ations. These endeavors have significantly propelled research
in the fields of prospect theory and portfolio selection. Ferro
et al. [28] propose a new parameterized quantum theory based
model with rank dependent theory and prospect theory to
describe human risky choices, which takes data on choices
between pairs of lotteries as the validation example. Yadav et
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al. [29] discussed investors’ attitudes’ effects and influences in
the multiperiod portfolio selection framework. Gao et al. [30]
propose a prospect theory framework with multi-attribute
decision making for modeling travel behavior. Grant et al. [31]
models the decision to ’cash-out’ a bet under the prospect
theory framework.

Although the combination of prospect theory and fuzzy
portfolio selection is not new, the related works could be
further extended considering the following three aspects: First,
the key property of prospect theory is reference dependable.
Investors perceive gains and losses with respect to a reference
point (e.g. the status quo). In this regard, the prospect value
function can be divided into a gain domain and a loss
domain [27]. Although prospect theory is widely accepted,
some studies [32] question its accuracy in fitting investors’
investment paradigms in complex real-world decision-making
environments. For instance, Chapman et al. [33] observed
that while investors indeed exhibit loss aversion, some choose
high-risk investment targets when faced with opportunities for
high returns, a phenomenon that prospect theory cannot ex-
plain. Other researchers have sought the inclusion of reference
points besides the status quo, and researchers have explained
choice data by including multiple reference points within
the value function [34]. Comparing with classical prospect
theory, the use of multiple reference points divides the prospect
value function into more specific domains, e.g. the domain of
return rate lower than a minimum requirement, the domain
of return rate higher than a goal and the domain of return
rate between the minimum requirement and goal [35]. In this
way, the multiple reference points-based prospect theory is
able to address investors’ psychological mechanisms in a more
detailed manner, thus providing more comprehensive decision
support for investors especially those who are more sensitive
to risk-taking and goal-seeking.

Second, most of the existing studies assumed that the
numerical value of reference point is exactly known. This is
reasonable since investors have their specific target returns
towards an investment, or they can directly set the value
according to the risk-free rate. However, for some investors,
the reference point could be ambiguous and hard to deter-
mine due to the variation of psychological processes and the
complicated nature of financial market. In this regard, the
uncertainty of reference points could be considered in the
prospect theory-based portfolio selection. More importantly,
for a given distribution of security return, the setting of
different reference points can certainty has an impact on the
portfolio selection. Therefore, it is of interest to co-optimize
the reference point values with portfolio selection, so that not
only the exact reference point can be determined, but also an
optimal investment decision can be made.

Finally, as the most influential theory for describing human
behavior, prospect theory has been used to explain the im-
pact of psychological behavior of decision-makers. Although
prospect theory shows certain strong aspects than expected
utility theory in portfolio selection, the latter is still widely
adopted by a number of investors. In addition, Pfiffelmann et
al. [36] compared the assets allocation generated by prospect
theory based behavioral portfolio model [37] and mean-

variance model. Their simulations were run using U.S. stock
price from the Center for Research in Security Prices databases
for the 1995-2011 period. They show that behavioral portfolio
model optimal portfolios and the mean-variance efficient coin-
cide in 70% of cases. Therefore, they draw the conclusion that
even if the prospect optimal portfolio is often located on the
mean-variance (the representative expected utility) frontier, it
will not be chosen by typical expected utility investors since
it is associated with an extremely low degree of risk aversion.
As a result, expected utility investors with usual levels of risk
aversion would not invest in the prospect optimal portfolio.
Therefore, it could be meaningful to incorporate the merits of
expected utility into the prospect theory based fuzzy portfolio
selection, so that providing expected utility investors with
trusted decision support.

Based on the above analysis, this study introduces a prospect
theory based portfolio selection model under fuzzy uncertainty.
First, for each forecasted membership function of security
returns, two reference points i.e., the minimum requirement
and goal are used to divide the prospect value function into
three domains, the curvature parameters and related coeffi-
cients of which are set differently. The detailed knowledge of
the prospect value function is given in Sec. III-B. Second, the
uncertainty of reference points is addressed in the proposed
model, and we try to find effective portfolio by optimizing
the numerical values of the minimum requirement and goal
together with capital allocations. The detailed motivation of
performing the above optimization is provided in Sec. III-C.
Third, the model is established to incorporate expected utility
into prospect theory based fuzzy portfolio selection. Espe-
cially, mean-absolute deviation is converted to a constraint of
the proposed model, thus avoiding the assignment of extreme
reference points. The significance of the proposed model is
explained in Sec. III-D.

Clearly, the fuzzy portfolio selection model proposed in
this study presents a complex optimization challenge that
demands sophisticated quantitative analysis for its resolution.
To address this, we introduce an adaptive cooperative particle
swarm optimization (ACPSO) algorithm tailored to tackle the
problems in this study. We anticipate that this algorithm will
overcome issues related to local convergence and premature,
often encountered in traditional PSO and its variant algorithms.

The main contributions of this study can be summarized
as follows: (1) A new fuzzy model for representing prospect
theory in this study improves existing models to a multiple
reference points case, thus addressing investors’ psycholog-
ical mechanisms in a more detailed manner. For investors,
the proposed portfolio selection model is more aligned with
their decision-making paradigms than a single reference point
model, as the former considers both return and risk pref-
erences. On the other hand, having reference points in the
form of uncertain intervals is also consistent with investors’
decision-making paradigm in an capital market characterized
by uncertainty and volatility. (2) The fuzzy model consid-
ers the uncertainty of reference points and establishes an
investment portfolio selection framework based on this model.
Compared to portfolio selection models with a single reference
point, which can lead to risk concentration, this study achieves
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a balance between risk and return by introducing two reference
points. The use of uncertain reference points makes the model
more robust, allowing it better handle uncertainty and risk in
investments. (3) The proposed prospect theory based fuzzy
portfolio selection model mixes together the advantages of
expected utility and prospect theory, thus improving the prac-
tical significant of prospect theory to typical expected utility
investors. (4) A novel PSO algorithm is proposed to achieve
faster and more accurate solutions.

The paper is organized as follows: In Sec. II, some pre-
liminary notions of fuzzy set theory such as the expected
value and absolute deviation are introduced. In Sec. III, the
motivation and validity of this research are explained. In Sec.
IV, the mathematical model of the prospect theory based
fuzzy portfolio selection model is established, which can be
solved by the algorithm designed in Sec. V. A test function
based computational study is provided to demonstrate the
efficiency of the proposed solution algorithm and two real
market data-based case study is then provided to demonstrate
the application of the proposed approach in Sec. VI. Finally,
we conclude the paper in Sec. VIIL.

II. PRELIMINARY NOTIONS

In this section, we briefly review the definitions of expected
value and absolute deviation under fuzzy environment, which
will be used in subsequent sections.

Definition 2.1. Let £ be a fuzzy variable with membership
Sunction p¢ and ris a real number, the credibility function of
an event £ < r is expressed as:

Cr{e <} = L POS{E <7} +NECIE< )], (1)

where POS and NEC express the possibility and necessity
measurements , and:

P =
0s{¢ <r} sup pe(t), )

3)

As a self-dual set function, we have Cr{{ < r} = 1 —
Cr{¢ > r}.

Definition 2.2. For a fuzzy variable &, its expected value is
calculated as:

NEC{{ <7} =1 —sup pe(t).
t>r

o) 0
E[{] = /0+ Cr{¢ > r}dr —/_ Cr{¢ <r}dr. @)

Definition 2.3. Let & be a fuzzy variable with finite expected
value e. Then its absolute deviation is defined as:

Al¢] = E[[€ —e]]. (5)

And for a portfolio decision including n securities, its

absolute deviation can be calculated as :
S e B[S we B [z g] ] -
i=1 i=1 i=1

where &; represents the fuzzy return of security ¢ and z; is the
proportion of total fund invested in security <.

A =E

As mentioned before, mean-absolute deviation generates
similar portfolio to that of mean-variance within a fraction of
time required to solve. Therefore, in this paper, mean-absolute
deviation is used to incorporate excepted utility into prospect
theory based fuzzy portfolio selection.

IIT. MOTIVATIONS

In this section, we first illustrate the motivations of using
the minimum requirement and goal as the reference points
in prospect theory. Then the corresponding prospect value
function is constructed and the significance of involving ref-
erence points uncertainties is clarified. Finally, the method to
incorporate excepted utility into prospect theory based fuzzy
portfolio selection is provided.

A. Prospect theory

In the framework of classical prospect theory [38], the prospect
value function has three principles to satisfy: (1) Reference
dependence. Investors perceive gains and losses by comparison
with a given reference point. (2) Loss aversion. Investors
are more sensitive to losses than to gains. (3) Diminishing
sensitivity. Investors have a disposition to be risk-averse in
the domain of gains and risk-seeking in the domain of losses.
Based on the above principles, the prospect value function can
be represented as:

o) = {

Suppose that &; represents the fuzzy return of security i,
then v(r;) in Eq. (7) expresses the prospect value of any real
value r; in &;. T7p denotes the value of the reference point,
A is the loss aversion ratio, « and S indicate the curvature
parameters for gains and losses respectively.

T 2@7
r; < TP.

(7"7; - m)av

AFP - i), @

B. The using of two reference points

With respect to a single reference point, the prospect value in
classical prospect theory can be divided into a gain domain and
a loss domain, as shown in Fig. 1-(a), in which the reference
point is set as 0.05. However, researchers have doubted that
the using of one reference point may not sufficiently describe
investors’ psychological mechanisms [35], especially for those
investors who are sensitive to both risk-taking and goal-
seeking. More specifically, according to the discussion in [39],
investors’ psychological mechanisms can be rank ordered as
failure (r; < MR, MR is the value of the minimum requirement),
success (r; > G, G is the value of the goal) and status quo
(MR < 7; < G). Therefore, in this study, we consider the
minimum requirement and goal as the two reference points
which divide the prospect value function into three domains, as
shown in Fig. 1-(b). Accordingly, the classical prospect value
function is revised to Eq. (8) for investors who are sensitive
to both risk-taking and goal-seeking.

(ri =MR)® +n(ri —G)7,
(’/‘i - MR)Q, MR S T S G7
—AMR —7;)?, 7 < MR,

r; > G,
®)

v(r;) =
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where r; is any realization of ;. a, S and ~ represent
the curvature parameters for status quo, failure and success
respectively. A and 7 are the loss aversion ratio and seeking
pride ratio, and it is assumed that A > n > 1 which follows the
rank order mentioned above. Moreover, the prospect value of
the success domain includes two parts: (r; —MR)? indicates the
prospect value of reaching the minimum requirement, while
n(r; — G)* reflects an additional satisfaction of achieving the
goal. Generally, Eq. (8) can be changed without difficulty to
accommodate investors with different rank orders.

1.0, [ Domain of losses

Domain of gains

Domain of failure

Domain of status quo
I Domain of success

0.5

Membership degree

02 0.0 02 0.4 06

. 0.2 0.0 0.2 0.4 0.6
Security return
(a) (b)
1.0 10
0.5 05
0.2 0.0 0.2 0.4 0.6 02 0.0 0.4 06

0.2
(c) (d)
Fig. 1: Motivations of using two reference points, involving

reference points uncertainties and incorporating expected util-
ity theory into prospect theory-based fuzzy portfolio selection.

Fig. (2) depicts how the expected utility theory, the classical
prospect theory and the prospect theory with two reference
points used in this study quantitatively describe the rela-
tionship between investment returns and their utility to the
investor. As can be seen from the figure, expected utility theory
is a linear map which considers the effects produced by gains
and losses to be equal in magnitude. In this demonstration
figure, we set « = 8 = 0.88, A = 2.25 in Eq. (7),
which follows the findings in [40]. The reference point is set
as 0. Prospect theory considers the effects by losses to be
more significant than expected utility theory. The differences
between prospect theory and expected theory when the return
is negative is significantly smaller than the difference when the
the return exceeds the reference point. In this demonstration
figure, the minimum requirement is 0, the same as the value of
the reference point, and the goal is 0.12. The prospect theory-
variant used in this study assumes that the impact produced is
the same as prospect theory until the investment return reaches
the goal. However, after the return exceeds the goal, the return
will have a more significant impact on the investor due to the
return chasing behavior of the investor.

C. The consideration of reference points uncertainties

In this research, we take the minimum requirement and
goal as imprecise values for two reasons. First, due to the
variation of psychological process and the complicated nature
of financial market, it could be difficult for some investors
to assign exact minimum requirement and goal. For example,

- =EUT
4 Classical PT
PT-variant

1
-
-

w return
>

Fig. 2: Value functions of expected utility theory (EUT),
classical prospect theory (PT) and prospect theory with two
uncertain reference points (PT-variant)

these values might be expressed with ambiguity such as the
minimum requirement is about 8% or the goal is within [20%,
25%]. Therefore, it is reasonable to consider the ambiguity of
reference points. Second, for a given membership distribution
of security return, the assignment of varied the minimum
requirement and the goal leads to different prospect values. For
example, if we take Eq. (8) as the prospect value function, then
the prospect value of condition that the minimum requirement
is 0.05 and the goal is 0.35 is larger than that of the minimum
requirement is 0.1 and the goal is 0.4, as shown in Fig. 1-(b)
and Fig. 1-(c). Therefore, the prospect value is sensitive to
reference points, and investors with varied minimum require-
ment and goal could have totally different evaluations upon
the same distribution of security return, which certainty affects
the result of portfolio optimization. In view of this, it is also
meaningful to investigate the impact of varied reference points
on portfolio selection.

D. The incorporation of expected utility theory

Finally, the motivation of incorporating expected utility into
prospect theory based fuzzy portfolio selection is explained. In
some cases, an investor may set small values to both minimum
requirement and goal, e.g. Fig. 1-(d) depicts the membership
degree when the minimum requirement and goal are 0 and
0.25. According to Eq. (8), it can be found that the overall
prospect value of Fig. 1-(d) is obviously larger than that of
Fig. 1-(b) and Fig. 1-(c). Essentially, for a given distribution
of security return, the smaller minimum requirement and goal
are, the larger the prospect value will be, and vice versa.
Nevertheless, the behavior of obtaining large prospect values
via setting small reference points is unacceptable for rational
investors, especially those expected utility investors who aim
to maximize the possibility of obtaining high expected wealth
because the distribution of security return is fixed and does
not change with reference points. Generally, it is an important
concern for typical expected utility investors to give such
a confidence interval, so that the chance of obtaining high
expected wealth can be maximized.

Therefore, aims at improving the practical significant of
prospect theory, this study incorporates the merits of expected
utility into prospect theory based fuzzy portfolio selection
by using mean-absolute deviation. Specifically, the cumulative
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return and absolute deviation of the portfolio is combined to
the following inequality, which will be applied as a constraint
of the proposed model.

> M} —pA [Z 9:51 > L, ©)
i=1 i=1

where &; in constraint (9) represents the return rate variable
of security 7, E[-] and A[] indicate the cumulative return and
absolute deviation of the portfolio.

When &; follows normal distribution, the mean-absolute
deviation model is equivalent to the mean-variance model
in the same form. And when &; does not follow normal
distribution, the difference between the two models can be
considered negligible. In Eq. (9), absolute deviation measures
the risk level of the portfolio selection scheme, while p is a
non-negative constant specified by the investor, suggesting the
investor’s tolerance for risk. L is another constant specified
by the investor, which express the investor’s expectation of
the risk return profile of the portfolio selection scheme. As
discussed later in Sec. IV, constraint represented by Eq. (9)
could avoid the setting of extreme minimum requirement and
goal, thus improving the prospect theory portfolio selection.

IV. MATHEMATICAL MODELING

In this section, we present the mathematical formulation of
the prospect theory based fuzzy portfolio selection model
proposed in this study and discuss its impact. This model aims
to maximize the overall prospect value subjects to a given
mean-absolute deviation level, as shown in Eq. (10).

v(&; f + ’U(& sq) +v(&is)]

max i zv(&) = Z x; [v
i=1
szgz] - PA [Z i

i=1 i=1
p,x; > 0,0=0,1,...n

n
> ai=1i=01,..n
i=1

st. E > Ly

(10)

maxE

Zmi] —pA [Z a:i@,sq]

=1 =1

s.t. En:xiv({z Z x; [v
i=1

Py g > O7Z = 0717 sy
d wi=1i=0,1,..,n
i=1
an

In Eq. (10), v(&.f), v(&,sq) and v(&; s) represent the
prospect values of the failure, status quo and success domains
of each security respectively, which can be calculated by
Eq. (12). z; > 0 means that short sale is not allowed.
Meanwhile, the structure of Eq. (10) can be changed easily

+ ’U(& Sq) + v(gz s)] > Ly

to maximize E[-] — pAJ-] subjects to a predefined level of
prospect value, as shown in Eq. (11).

v(i s )— I
gz sq fR
(gz s) = -E

—AMR — 7)) g, (r;)dr;.
—MR)P g, (ri)dr;.
[( — MR)’B + ’17(7"1 — G) } e, (Ti)dTi.
(12)
Before giving the solution algorithm, we briefly discuss
some properties of the two reference points. Tab. (I) lists
the impact from the fluctuations of the minimum requirement
(when the goal is fixed) and the goal (when the minimum
requirement is fixed) on the prospect value as well as the
cumulative return and absolute deviation, where ‘1’ and ‘|’
express the increasing and decreasing of the corresponding
values. ‘-> means that the change of reference points has no

influence on the values.
TABLE I: Impact from fluctuations of the minimum require-

ment and goal.

MR] MRT G| G7

V(&.r) T - -
oisg) T 4 41
W&y 1L T
&) ot 1ot

B { ) xs} Tl o4t
Al mel toL Lot

Tab. (I) illustrates that, as a non-negative value, the decreas-
ing of minimum requirement improves the overall prospect
value (v(&;)) and the cumulative return (E[-]), but increases the
investment risk taken since the absolute deviation (A[‘]) has
been increased. By contrast, the rising of minimum require-
ment reduces the absolute deviation, which however leads to a
lower prospect value and cumulative return. On the goal side,
the decreasing of the goal improves the overall prospect value
and absolute deviation, but reduces the cumulative return.
By comparison, the increasing of the goal produces a higher
cumulative return, which however deteriorates the prospect
value as well as the absolute deviation.

Based on the above analysis, the following preliminary
conclusions can be arrived at: firstly, the decreasing of both
minimum requirement and goal results in a higher overall
prospect value; secondly, the decreasing of the minimum
requirement and the increasing of the goal produces a higher
cumulative return; finally, the increasing of the minimum
requirement and the decreasing of the goal leads to a lower
absolute deviation. Therefore, in view of the above contradic-
tions, it is meaningful to co-optimize the reference points with
capital allocations.

In Eq. (10), the mean-absolute deviation function incor-
porates investment return and risk indexes simultaneously.
We briefly discuss the effects of this function before intro-
ducing the solution algorithm. To streamline the discussion,
we suppose the investment scheme was made from two
independent security. Security’s return rates are denoted by
two symmetric triangular fuzzy variable & = (a1,b1,¢1)
and & = (ag,by,co). Assuming that the expected return
and risks of &; are higher than those of &;. which means
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as < ap <0 < by <by <y < cy. Suppose the investment
proportion for & is x1, and for & is z9, 1 = 1 — @o.

Since &7 and & are symmetric, then the expected return of
& and & are by and by. Assuming the expected return of the
investment scheme is by. Since &; and &; are independent, then

bo=E Z ;& | = 33151 + x2&>. It’s obvious b1 < by < bs.

i=1
The absolute deviation of the portfolio could be calculated as

2 2 2
A[infﬂ = E[Z z; | &—bo || = Z%EH &i—bo |] (13)
i=1 i=1 i=1
In order to calculate the expected value of | & — by |, the
membership function 1 (t) of £ was divided into two parts
w1z (t) and pypr(t) by bo. Similar to this, uo(t) was divided
into ,UQL(t) and M2R<t)~

c1—b
1—=01 O<t<b0_b1
=93 B =t= ) 14
:U/IL() {bol—all_ta boib1<t§b0*a1. ( )
Cl_bl
MlR() 017b07t, < _Cl 1 ( )
bo —
par(t) = 1727@ 0<t<by—as.  (16)
o—az—t
%’Ogtglb_bo,
per®) =" o, 0y, (17)
#’b2_b0<t§02—b0,
c2 —bo—1

Based on the Definitions 2.1, we could derive the POS(+),
NEC(-) and Cr(-) of event | &, —bg |< rand | & —bg |< 7,
as presented in Eqs. (18) ~ (29):

’I‘+Cl*b0
TTa=% g<p<py—b,
POS;, =4 e—b = =0TM (18)
l,bo—b1<r§b0—a1.
-
POSlRZ a O, O<t§01—b1. (19)
c1— b
OaTSbO_bh
NEC,, = — 20
1 w,bo—b1<t§b(]—a1. 20)
bl—al
bo — b
NEClR:%. Q1)
Irdetl=bo o p 0,
2 a-b - = ’
CriL =194 1:1+b . (22)
— 7#,b0—b1<7°§b0—a1.
2 2 bl—al
%%ao<ﬁr§cl_b07
_ 1— U1
Crin=9 | oo (23)
) 2Cl—b1’ 1 0 >~ C1 1-
by —
POSy, = 2% 0<r<by—as. (24)
bz—ag
by —b
NECy, = 2—0F" 6 chy—ay.  (25)

by — az

6
by —
M,ogrgbg—bo,
POSQR = b2 — az (26)
1,bo —bg < r < cg —bg.
0, 0<r <by— b,
NECg = —-b 27
2R %727b2_b0<7ﬂ§02_b0 @7)
Cg—bg
1 1 r
C =—-4 - 0<r<by—as. 28
Tar 2+2b2—a2’ <r<by—a (28)
1 bg —
iTJ?OSTSbQ_b(%
— Q
Crap = lc 2—b ir 29
1—*2 0 , bo — by < r < cy— bg.

2 CQ*bQ

Then the expected value of | & — by | and | &3 — by | could
be calculated since the credibility function is self-dual and by
the Definitions 2.2,

by — b1)? 1
Bllés — bol] =bo — ) + 5+ 1~ )
Y ) G0
2 “= o _4(Cl—b1)7
1
E[|& — bol] = 1(250 —ag — 2by + c2). (31)

Assuming a special condition b; = b, which means these
two security holds the same expected return. Then it’s obvious
by = by = bs. Since & and &5 are symmetric, we could assume
01—b1 :bl—al :Al, CQ—bQZbQ—CLQ:AQ, AQ ZAI
Then the absolute deviation of the portfolio could be denoted
as follow:

2
1
A[Z &l = E(zlAl + 29As). (32)
i=1

Then the mean-absolute deviation of this portfolio could be
denoted as follow:

2 2
B 6] - pADY 6] = bo — pplmaB +20s). (33)

=1 =1

Since p is a predefined constant, by is also a constant in
this example, and A; > A;. Obviously this function will
maximize xr; while minimize xo, which means increase the
investment proportion of the first security while decrease the
other. The first security is more conservative than the second
one, and it may yield lower potential returns (c; < c2) and
involve less risk (a1 > as) compared to the second one. Thus
we can draw the conclusion that the mean-absolute deviation
function is a risk-sensitive function, which will drive the model
to be conservative.

V. SOLUTION ALGORITHM

In this section, we introduce fuzzy simulation and ACPSO
proposed in this study and apply them to obtain the optimal
solution for the complex optimization problems encountered
in this research.
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A. Fuzzy simulation

In Sec. II, we appoint the definitions of the expected value,
prospect value and absolute deviation of a fuzzy variable,
elucidating the methodologies employed for their calculation
when applied to individual fuzzy variables. But it is im-
perative to acknowledge that, given the inter-dependencies
among securities within portfolio, the conventional methods
outlined above cease to be applicable. To resolve this inherent
challenge, Liu and Iwamura [41], as well as Liu and Liu [42]
proffer a discertization technique termed “fuzzy simulation”.
In this study, we employ the fuzzy simulation approach to
approximate the expected value, prospect value and absolute
deviation, effectively circumventing the constraints posed by
correlated securities within the portfolio scheme. The proce-
dures of fuzzy simulation were summarized as below.

The portfolio scheme is represented by (z1&1 + 2282 +
o+ 2,6,). kY and kY are the lower and upper supports,
respectively of continuous fuzzy variable &;. §; is divided into
[ parts and then its membership function is approximated by
a discrete fuzzy vector ¢ which could be calculated by:

r L, v L
Si =R + ;("% - ki) (34)
L,reZ, 0<r<lL

Then the fuzzy portfolio selection scheme could be simu-
lated by these discrete vectors. On the basis of the approxi-
mated membership function of the scheme and combined with
preliminary knowledge about fuzzy sets theory, the credibility
function could be could be calculated. Finally, the expected
value, prospect value and absolute deviation of the fuzzy port-
folio selection scheme could be obtained by approximation.
It should be noted that the larger of the [ value, the more
precise result could we obtain. You may refer to [43] for more
information.

B. Adaptive cooperative particle swarm algorithm

PSO was inspired by swarm behaviors in flocks of birds.
Suppose N particles are adopted to find the optimal solution
of a D-dimensional optimization problem and each particle
in the swarm is regarded as a member in flocks. Each
particle contains a D-dimensional position vector which is
a feasible solution of the optimization problem and a D-
dimensional velocity vector, e.g., particle ¢ contains position
vector P; = [p;1,pi2, -+ ,pi,p] and velocity vector V; =
['Ui,lavi,% T 7U¢,D}-

PSO stores the best position of each particle ever expe-
rienced named as personal best, e.g., personal best position
of particle i is Pbest; = [pb;1,pbi2, - ,pb; p] and its
fitness value is Pvalue;. The best position among all personal
best position is named as global best position Gbest =
[91, 92, ,gp], and its fitness value is Gvalue. Position and
velocity vectors of all particles are randomly initialized and
updated by iteration rules in Eq. (35).

Vi —w Vi +Cr-11- (Pbig —pik) +Co-ra- (9 — Disk),

Pik < Pik + Vik-
(35)

Eq. (35) is the k-th dimensional velocity and position
updating rules of particle <. The inertia weight w is commonly
set around 0.5, learning rates C; and C5 are commonly set to
2, r1 and ro are two random seeds within the range of (0, 1).

Wang et al. [18] proposed an improved cooperative PSO
(ICPSO) algorithm to deal with the issue “curse of dimension-
ality” of PSO while facing large-scale optimization problems.
They conducted a computational experiment on 8 test func-
tions against other heuristic algorithms, including PSO [44],
improved multi-objective PSO [12], adaptive granularity learn-
ing distributed PSO [45]. Based on the presented compre-
hensive experimental outcomes, ICPSO outperforms all other
comparison algorithms across all chosen test fitness functions.
The ICPSO algorithm demonstrates remarkable capabilities
in swiftly converging and identifying precise and reliable
optimization solutions. Experiment results also indicate that
when the problem dimension of the test function increased to
approximately 1000, ICPSO faced challenges in converging to
the optimal solution.

In order to address the issue of ICPSO’s inability to ac-
curately converge to the optimal solution when facing high-
dimensional problems, we introduce the adaptive strategy into
ICPSO. This modified version is referred to ACPSO, which is
proposed in this research. ACPSO is proposed by combining
time-varying acceleration coefficient strategy and cooperative
strategy. Specifically, the time-varying acceleration coefficient
strategy refers to adopting deep deterministic policy gradient
(DDPG) [46] to determine the optimal serial values of C}
and C5 in the iteration process. DDPG has demonstrated
its capacity to acquire competitive policies for all tasks in
our repertoire, leveraging low-dimensional observations while
maintaining uniform hyper-parameters and network architec-
ture across the board. Notably, across several instances, DDPG
has consistently exhibited its ability to acquire proficient
policies for various tasks while upholding constancy in hyper-
parameter settings and network structure [47]. Therefore, it is
precisely based on the success of DDPG in finding optimal
policy over continuous action spaces, this study employ it to
search for the optimal serial values of C7 and Cs. The coop-
erative strategy refers to dividing the raw particle swarm into
several sub-swarms. Each sub-swarm iterates independent and
identically while information exchanging still exists among
sub-swarms.

Suppose that the objective of the ACPSO algorithm is to
find the minimum of a fitness function denoted by F(-). The
swarm comprises N particles and is partitioned into M sub-
swarms, with each sub-swarm containing N/M particles. It
should be noted that if N%M # 0 (% represents the modulo
operation), then the first through (N — 1)y, sub-swarm will
contain (N — N%M)/(M — 1) particles, while the last sub-
swarm will contain N%M particles.

ACPSO stores the best position ever achieved by each sub-
swarm, denoted as Sbest,, = (sbm,1,8bm 1, -, $bm,p) and
its fitness value is Swalue,,, where m = 1,2--- M. This
position corresponds to the minimum fitness value among all
the particles that have been a part of the my;, sub-swarm.

Suppose ACPSO undergoes T iterations to obtain the op-
timal solution In the ¢, iteration, if particle ¢ in the myy,
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sub-swarm is different from Sbest,,, its velocity and position
can be updated as follows:

Vi = w v+ C - (Db — pige) + O - (sby, — pig),
Pik < Dik + Vik-
(36)
And if particle 7 is same with Sbest,,, its velocity and position
can be updated as follows:

Vik $ T * Vi + Gk
Dik < Vik + Dik

It should be noted that the values of C; and Cy in ACPSO
are determined by DDPG and form a list whose length equals
to the iteration times T'. C% and C} are the learning rates in the
typ, iteration. The procedures of adopting DDPG to determine
the optimal serial of C; and Cj5 are listed in Alg. (1).

The motivation behind adopting DDPG to determine the
learning rates C; and C5 over time is to balance the explo-
ration and exploitation abilities of PSO based on the current
iteration status. The input parameter for Alg. (1) include
a benchmark fitness value function Fj(-), searching space
dimension Dy, particle number N, and iteration time 73. The
optimal serial of values for C'; and C5 are stored in the output
variable a;.

Alg. (2) lists the main procedures of ACPSO. The input
parameter for Alg. (2) includes the objective fitness value func-
tion F,(-), searing space dimension D,, particle number N,,
sub-swarm number M, acceleration coefficient in Eq. (37),
optimal serial of values for C; and C5 determined by Alg. (1),
iteration time 7, and constraints. The optimal fitness value
Gualue and position Gbest are stored in the output variable
which is the optimal solution to the objective fitness value
function.

The cooperative strategy, and the velocity and position
updating strategy which refers to Eq. (37), has been proven
effective in ICPSO, and ACPSO introduces time-varying ac-
celeration strategy based on this. The novelty of ACPSO
lies in the optimal serial values of C7; and C5 based on
the characteristic of ICSPO using DDPG, rather than relying
on manually specified adaptive strategy as in other PSO
algorithms [48].

(37)

VI. NUMERICAL EXAMPLES

In this section, we will use one case to test the effectiveness of
the ACPSO algorithm and another case to test the effectiveness
of the proposed PT-FPS.

A. Case of ACPSO on test functions

In this section, we conduct a computational experiment to test
the effectiveness of adopting adaptive strategy into PSO. In
this experiment, 8 fitness functions [49] were selected as test
optimization problems, as listed in Tab. (II). Functions fi, fs,
fa-fe are unimodal with distinct structures. Function f3 is a
noisy sextic function. Function f7 is a step function which has
one minimum and is discontinuous. Function fg is dimension
sensitive quartic function.

The first step of this experiment is to find the optimal serial
values of learning rates C; and C by Alg. (1). The benchmark

Algorithm 1 Updating learning rates by DDPG.

Il’lpllt: Fb(-), Db, Nb, Tb
1: Randomly initialize actor and critic network p(s|6"),
Q(s,a|0%) with weights 6+, 6%
2: Initialize target network 4/ and Q' with weights 0* <
o1, 99" + 99
3: Initialize replay buffer D,
4: Initialize OU noise process M
5. for episode=1 to F, do
6: for i =1 to IV, do
7
8
9

Randomly generate position P; and velocity V;
Pualue; + F(P;)

Pbest; < P;
10:  end for
11:  Gualue < min{Pvalue;,i =1,2,--- | Np}
12 Gbest < argmin{Fy(Pbest;),i =1,2,--- , Np}
Pbest;
13:  fort =1 to Tj, do
14: State s; < Pbest
15: Action ay < u(s¢|60") + M,
16: for j =1 to N, do
17: Iterate V; and P; by rules in Eq. (38)
vjk =w- ik +Cr (Pbjk — Pjik)
+C - (9x — Pjk)s (38)
Djk = Djk + Vj k-
18: if Fy(P;) < Pvalue; then
19: Pbest; = P;
20: Pualue; = F,(P;)
21: end if
22: end for
23: Gualue < min{Pvalue;,i =1,2,--- | Ny}
24: Gbest < argmin{F,(Pbest;),i =1,--- ,Np}
Pbest;
Ny,
25: Reward ry < —A(Guvalue + + Y Pvalue;), and
i=1
scale r to [—0.1,0.1]
26: St+1 < Pbest
27: Store experience (¢, at, T, Se+1) into Dy
28: Randomly sample a minibatch of n experiences
(84, 4,74, 541) from Dy,
29: Yi 1+ Q' (i1, 1/ (541107 )]09)
30: Update the critic network by minimizing the loss:
1 )
L= > (i — Qlsi,ail6?))? (39)
31 Update the actor network by using the sampled policy
gradient:
1
Voud ~ — va ’ QQ $=Si,a=un(S;
on sz@: Q(s,al0%)|s=s; a=pu(s:) 40)
Voup(s0%)] s,
32: Update the target networks delayed and softly:
09 — 709 + (1 — 7)o
(1-7) @)

0" 10" + (1 — 7)o"

33:  end for
34: end for
Output: a;
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Algorithm 2 Adaptive Cooperative Particle Swarm Optimiza-
tion algorithm

Input: F,(-), N,, M, D,, 7, Cy, Ca, T,, constraints
1: fori=1to N do
2 repeat

3 generate random P;

4 until P; satisfies all the constraints

5. Pualue; = J(P;)

6 Pbest; = P;

7: end for

8: for m =1to M do

9:  Svalue,, = min{Pvalue;,i in my, sub — swarm}

10:  Sbest,, = argmin{J(Pbest;), i in my, sub — swarm}

11: end for Phest:

12: Gualue = min{Pvalue;,i =1,2,--- N,}

13: Gbest = argmin(J(Pbest;),i = 1,2, -+ N,)

14: for t =1 tlcj)b%fldo

15: fori=1to N, do

16: if P, and Sbest,, are different, then
17: repeat

18: Iterate P; using Eq. (36)

19: until P; satisfies all the constraints
20: else

21: repeat

22: Iterate P; using Eq. (37)

23: until P; satisfies all the constraints
24: end if

25: if F,(P;) < Pvalue; then

26: Pbest; = P,

27: Pualue; = F,(F;)

28: end if

29: if F,(P;) < Svalue,, then

30: Sbest,, = P;

31 Svalue,, = F,(P;)

32: end if

33: if F,(P;) < Gualue then

34: Gbest = P;

35 Gualue = F,(P;)

36: end if

37:  end for

38: end for

Output: Gualue , Gbest

TABLE II: Test fitness functions

D D
fi(z) = ;l’? fz(ﬂﬂ):(;l’f)2
D - 5
f3(x) = ‘21 z9(2+ sinm%) fa(z) = —20exp(—0.2\/]%) Z:le)
ZB D D —
fo(@) = X feil + T el fole) = 32 35 a2
=1 =1 1=175=1
D D
fr(@) = 3 (L +0.5))%  fs(z) = ) i}

D
function for Alg. (1) was selected as f1(z) = >_ 27, D = 100.

The iteration time 7} was set as 1000, it shOIZﬂcll be noted that
the iteration time 7, in Alg. (2) and in ICPSO were also set
as 1000. After executing Alg. (1) 1000 times, the mean values
of optimal serial C; and Cy were depicted in Fig. (3).

1.2 Cc2

0.8

Value

0.6

0.4

0.2]

0.0

200 400 600 800 1000
Step

Fig. 3: Optimal serial values of learning rates.

It could be observed from Fig. (3) that learning rates C1
and Cy decrease in the iteration process. In previous research,
it has also been demonstrated that employing larger learning
rates during the early stages of iteration in PSO can enhance
the algorithm’s exploration capability, while using smaller
learning rates in the later stages of iteration can strengthen
its exploitation capability. The optimal serial values of C'; and
Csy are contained in the input parameters of Alg. (2).

The setting of parameter values significantly impacts this
experimental results. Therefore, to ensure the fairness in the
experiments, the common parameters of ICPSO and ACPSO
have been set to the same values, and certain unique parame-
ters have also been set to the optimal performance values of
the respective algorithms. All parameter values are listed in
Tab. (IID).

TABLE III: Parameter settings for computational study.

Parameter Description Value

T Velocity coefficient in Eq.( 37) 0.5

w Inertia weight 0.5

N Population size 1000

To Iteration time 1000

M Sub-swarm number 10

D Problem dimension 1000

Ss Searching space [~10, 10]1000+
Ch Learning weight in ICPSO 2

Co Learning weight in ICPSO 2

*:Except for function f3 and fg whose searching space is
[—1.28,1.28]60

To assess the performance of ICPSO and ACPSO, each
algorithm will solve the minimum value of each selected test
fitness function 100 times, and the experiments results were
recorded in Tab. (IV) and Tab. (V). It should be noted the
theoretical minimal value for the first to 8th selected test fitness
function are all 0.

From the Tab. (IV), it can be observed that ICPSO achieves
results very close to the theoretical optimal value of 0 for
most of the test functions, demonstrating the effectiveness of
ICPSO in solving optimization problems. But for the 4th test
function, the result obtained in the worst scenario is almost
considered unusable. Additionally the results obtained for the
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TABLE IV: Test results of ICPSO.

No. | Best
3.62E-37
7.46E-77

Worst Median
2.58E-1 J78E-28
1.33E-38 1.31E-60

Mean Std*
2.90E-16 8.11E-I
1.13E-39 3.57E-39

1.23E-116 6.93E-68 1.38E-97 6.97E-69 2.19E-68
4.44E-16 6.81 4.00E-15 0.68 2.15
7.36E-21  2.96E-10 1.74E-14 3.16E-11 9.31E-11
497.54 49896 49879 49855  0.52

00 1O\ L LN =

0 0 0 0 0
4.29E-88 5.36E-59 5.20E-66 5.36E-60 1.69E-59

Std: Standard deviation
TABLE V: Test results of ACPSO.

‘Worst Median Std

Mean

7.50E-85

2 1.26E-97 7.45E-84 3.30E-91 2.35E-84
3 3.99E-155 6.42E-136 9.40E-145 6.42E-137 2.03E-136
4 |7.33E9  4.50E-5 3.56E-7 1.71E-5 2.144E-5
5 |4.27E-25 130E-20 8.82E-23 1.69E-21 4.25E-21
6 8.94E-49 3.71E-40 5.29E-45 3.72E-41 1.17E-40
7 0 0 0 0 0

8 1.50E-90 4.71E-84 2.25E-86 6.62E-85 1.49E-84

6th test function deviate significantly from the theoretical
optimal value, making them also unusable. These limitations
highlight the constraint of ICPSO.

The obtained results show low standard deviations, indi-
cating the stability of ICPSO. We speculate that this may be
attributed to the algorithm’s structure and a relatively large
population size of the particle swarm.

It can be observed from Tab. (V) that ACPSO achieves
results very close to the theoretical value O for all test func-
tions and scenarios. These results are considered acceptable
solutions. All solutions obtained by ACPSO exhibit higher
accuracy compared to ICPSO. From the most critical metric,
the median value, we can conclude that ACPSO consistently
outperforms ICPSO across all test functions. For certain test
functions, such as the 3th, where the results of ICPSO is
6.37E-69 and the result of ACPSO is 6.42E-137, although
the difference is small, it is still significant. As a general-
purpose solution algorithm applicable to many optimization
problems, obtaining solutions with higher precision is valu-
able and meaningful in many certain contexts, also for PSO
research [50], such as feature selection [51], wireless com-
munications [52] and image processing [53]. Therefore, it can
be considered that ACPSO is a more accurate and efficient
optimization algorithm than ICPSO. Utilizing DDPG to obtain
the optimal learning rates serial values within the PSO proves
to be an effective strategy for enhancing the algorithm’s
solving performance.

Another important metric to evaluate the performance of the
algorithm is the convergence speed. To test the convergence
performance of these algorithms, we recorded the average
number of iterations required for the algorithm to reach the
precision levels (100, 1,102, 10~%, 10~°) for all solutions
obtained. These results are presented in Tab. (VI) to Tab. (IX)
below.

From Tab. (VI) and Tab. (VII), it can be observed that
ICPSO take less iteration time to convergence to low precision
results (100, 1) compared to ACPSO. But in most cases,
ACPSO converges to higher-precision results (107%) in less
iteration time than ICPSO. This phenomenon may be attributed
to maintaining higher learning rates, which prevents ICPSO’s
exploratory nature from being weakened but also hinders the

TABLE VI: Convergence speed of ICPSO.

1001 1072 10~% 106
187 239 383 466 558
203 224 350 358 415
140 185 203 227 297
1 175 NA NA NA
27 136 257 513 613
NA NA NA NA NA
178 255 255 255 255
167 170 205 249 258

TABLE VII: Convergence speed of ACPSO.

°

001U A W=

100 1 1072 10~% 10°6
325 344 368 384 408
337 345 362 369 378
12 284 296 303 311
1 639 686 745 NA
273 339 382 414 449
311 335 361 383 399
330 350 350 350 350
350 358 366 379 393

o

XN NR LN Z

exploitation process, making it difficult for the algorithm to
achieve higher precision results.

From Tab. (VIII) and Tab. (IX), regarding the standard
deviation of convergence speed, we can observe that ACPSO
outperforms ICPSO on most test functions. This indicates that
ACPSO is able to find the optimal solution more quickly and
more stably in most cases. However, in the case of the 5th
test function and 3rd test function converging to 100, ACPSO
performs worse than ICPSO. We believe this is due to the
inherent randomness of the PSO algorithm.

In conclusion, from this experiment it can be inferred that,
in the iterative process of PSO, the use of higher learning rates
in the early stage can enhance the exploratory capabilities of
the algorithm and accelerate convergence. On the other hand,
utilizing lower learning rates in the later stage can enhance the
algorithm’s exploitation capabilities and improve the precision
of the solutions obtained.

This experiment has demonstrated that using DDPG can
yield optimal learning rate serial values, which in turn enables
the ACPSO to converge faster to higher precision solutions.
Considering the complexity of the mathematical model es-
tablished in this study and the scale of the variables used,
we believe that the use of ACPSO for model optimization
is reliable. Therefore, in the subsequent experiments, we will
continue using ACPSO for the optimization tasks.

TABLE VIII: Standard deviation of ICPSO convergence speed.

TABLE IX: Standard deviation of ACPSO convergence speed.

No. | 100 1 102 10=* 1076
T [13209 93853 9.727 10352 12.977
2 |12.251 10.176 7.997  8.146  9.166
3 |113.754 10.143  10.653 10.364 8.848
4 |0 28.873 43378 49.799 23.081
5 1220.164 204.637 190.612 178.979 168.963
6 |12.345 13.060 13501 12.139 10.956
7 118990 18969 18.969 18.969 18.969
8 |11.766 10719 11528 11.960 11.898
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B. Ablation study on real market data

Problem description: In this section, we will use a case study
based on real market data to discuss the possible effectiveness
of the proposed prospect theory based fuzzy portfolio selection
model. This case discusses impacts of the following settings
on portfolio selection: the impact of setting two reference
points compared to setting one reference point, the impact of
uncertain intervals compared to fixed values for the reference
points, and the impact of different values of the parameter p,
L, and L, in Eq. (10) and Eq. (11). In this case, considering
a portfolio selection problem includes 10 stocks selected from
Shanghai Stock Exchange (SSE) 50 Index. Experts carefully
examined the publicly financial reports of these companies,
along with historical stock prices and other relevant economic
data, to provide price prediction for these stocks over the
next three months in the future, i.e. from October 1, 2022
to December 31, 2022.

The stock selection was based on the following criteria to
ensure rigor, representativeness and comparability [54], [55].
1) Industry representativeness. Stocks from different industries
to ensure diversification and avoid sector-specific systematic
risk. 2) Market capitalization. Stocks with at least medium
capitalization to ensure stability. 3) Liquidity. Stocks with well
trading volumes to make the portfolio model practically trad-
able. 4) Data availability and completeness. Stocks must have
complete historical data for proper modeling and validation.

The detailed price prediction processes are listed as fol-
low [56]. Step 1. Collect historical data for the selected stocks
over the past 12 months. Step 2. Experts were invited to
predict expected returns for the given time period. Step 3.
Each expert provides return predictions to the selected stocks
in the form of triangular fuzzy variable £ = (a,b,c) where
a is the minimum possible return, b is the most likely return
and c is the maximum possible return. Step 4. Aggregating
all expert assessments into a singular fuzzy variable for each
stocks.

The return on each security is predicted in the form of a
triangular fuzzy variable for two main reasons. The first is
triangular fuzzy variable could effectively balance between
simplicity and expressiveness. And the other is the triangular
structure is consistency with the proposed double reference
point prospect theory framework, in which (a, b, ¢) correspond
to the minimum requirement, expected return and goal, respec-
tively.

Supposing the closing price of security 7 at Sept.30, 2022
iS pei, the predicted price during the selected time window is
represented as fuzzy variable p;, the dividend is d;. So the
return rate of security ¢ from Oct.1, 2022 to Dec.31, 2022
is modeled as fuzzy variable §; = %ﬁdi. Tab. (X) lists the
selected stocks and their corresponding predicted return rates.

TABLE X: Return rate of selected stocks.

No. Code Return Rate No. Code Return Rate

3600050 (0.77,122.1.75) 4 600276 (0.72, 1.02, 1.13)
5 600309 (0.89, 1.07,129) 6 600703 (0.91, 1.07, 1.17)
7 600809 (0.87.1.12,131) 8 601012 (0.84. 1.02, 1.14)
9 601668 (0.91,1.02, 1.09) 10 603986 (0.87, 1.05, 1.21)

In order to discover the impact of setting two reference
points compared to setting one reference point, we propose a
one reference point fuzzy portfolio selection model, shown in
Eq. (42), as the comparison model to the mathematical model
described in Eq. (10). Also the one reference point fuzzy
portfolio selection model shown in Eq. (43) is the comparison
model to the model described in Eq. (11). The prospect values
in Eqgs. (42) and (43) are calculated by Eq. (7). Moreover,
there are some parameter values needed to be specified in
advance, which are listed in Tab. (XI), before running the
real-market case study.

maxzn: x0(&;)
i=1

; z;&; ; xifil > I @)

p,x; >0,1=0,1,....,n
n

s.t.E — pA

maxE — pA

n
PES
i=1

n
sthlv(fz) Z L2

i=1

p,x; > 0,0=0,1,....n

n
E Ty = 1,i = 0,1,...,77,.
i=1

TABLE XI: Specified parameter values for case study.

> xifi‘|
i=1

(43)

Parameter Description Value
« Curvature parameter for status quo 0.88
B Curvature parameter for fail 0.88
¥ Curvature parameter for success 0.88
A Loss aversion ratio 2.25
n Seeking pride ratio 2.25
14 Coefficient in Egs. (10), (11), (42) and (43) 0.5
Ly Constraint in Egs. (10) and (42) 1.1
Lo Constraint in Egs. (11) and (43) 1.1

We specify a = 0.88, § = 0.88 and A = 2.25 according
to Tversky and Kahneman’s [40] findings. Setting v = 0.88
and n = 2.25 is done in order to maintain consistency
between the psychological mechanism of investors under two
reference points and classical prospect theory, and to maximize
the alignment with real investor decision-making scenarios.
Setting the value of p to be 0.5, Ly and Ly to be 1.1 is done
in order to ensure feasible solutions for the various investment
portfolio models involved in this case.

In order to discover the impact of uncertain intervals com-
pared to fixed values for the reference points, we introduce
uncertainty reference points and fixed reference points to fuzzy
portfolio selection models in this study. Therefore, there are 8
fuzzy portfolio selection models will be discussed in this case,
which are two uncertainty reference points model in Eq. (10)
named as TUP, two uncertainty reference points model in
Eq. (11) named as TUE, two fixed reference points model
in Eq. (10) named as TFP, two fixed reference points model
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in Eq. (11) named as TFE, one uncertainty reference points
model in Eq. (42) named as OUP, one uncertainty reference
points model in Eq. (43) named as OUE, one fixed reference
points model in Eq. (42) named as OFP, one fixed reference
point model in Eq. (43) named as OFE.

The assignment of reference points should comply with
the real investment paradigm, therefore we set minimum
requirement as non-loss and the goal as the average return
of the selected stocks within the investment period. Therefore
the uncertain interval for minimum requirement is specified
as a fuzzy triangular variable (0.985,1.001,1.017), the fixed
value for minimum requirement is specified as 1.000, the
uncertain interval for the goal is specified as a fuzzy triangular
variable (1.015,1.021,1.032) and the fixed value for the goal
is specified as 1.021.

The optimal solutions for each model were obtained using
ACPSO, which represents the stock position results of each
model within the investment period, as listed in Tab. (XII).

TABLE XII: Stock position in ablation study.

12 3 4 5 6 8 9 10
TUE |0 0 0.154 0 0234 0357 0255 0 0
TFP {0 0 0.645 0 O 0 0355 00
TFE |0 0 0.132 0 0.257 0.418 0.193 0 O
OUP|0 0 0133 0 O 0 0867 0 0
OUE|[0OO O 0 O 0 1 00
OFP |0 0 0.127 0 O 0 0873 0 0
OFE|0 O 0 0 O 0 1 00
It can be seen from Tab. (XII) that when using two

reference points, using the prospect values as the objective
function results in a relatively concentrated stock distribution
in the investment portfolio. It can also be observed that using
two reference points leads to a more diversified investment
portfolio compared to using one reference point. Addition-
ally, having uncertain intervals or fixed values for reference
points may cause fluctuations in the specific allocations of
selected stocks in the investment portfolio. All these stock
position results were tested in the real market to obtain their
corresponding investment performances. Their performances
were assessed by six widely adopted metrics whose definitions
and descriptions are listed below. The metric values of these
fuzzy portfolio selection models are listed in Tab. (XIV).
Meanwhile, the metric values of SSE 50 Index are also listed,
which serves as an indicator of the market. Within Tab. (XIV),
the best performances are highlighted in boldface for better

illustration.
TABLE XIII: Overview of selected metrics.

Type Metric Abbr. Descriptions
Return Cumulatiye wealth Cw  The most essentia} metric
Annual yield Ay A popular evaluation
Risk Maxi.rr}um drawdown Md  Downside risk m.etric ]
Volatility Vol  Comprehensive risk metric
. Sharpe ratio Sr Evaluates return and risk
RAROC* Calmar ratio Cr Widely adopted metric

RAROC: risk adjusted return on capital.

From Tab. (XIV), it could be observed that all models ex-
perienced growth during the selected investment period. This
is because the four stocks being invested in also experienced
growth, which demonstrates the effectiveness of stock return
prediction in Tab. (X).

TABLE XIV: Performances under selected metrics in ablation
study.

. Return Risk RAROC

Metric

Cw Ay Md Vol Sr Cr
TUP 1.311 1.245 0.106 0.243 5.123 11.745
TUE 1.108 0.434 0.158 0.148 2.932 2.747
TFP  1.258 1.032 0.089 0.227 4.546 11.596
TFE 1.088 0.352 0.156 0.131 2.687 2.256
OUP 1.241 0.963 0.220 0.321 3.010 4.377
OUE 1.226 0.904 0.251 0.410 2.205 3.602
OFP 1.240 0.960 0.219 0.330 2.909 4.384
OFE 1226 0.904 0.251 0.410 2.205 3.602

From the risk metrics, MD and Vol, in Tab. (XIV), this case
suggests that the risk associated with using a single reference
point in portfolio selection may be higher than that of using
two reference points. This suggests that incorporating two
reference points in portfolio selection can effectively reduce
investment risk. In Sec. IV, we have demonstrated that the
objective function in Eq. (11) drives the portfolio selection
model to be risk-sensitive , which also results in model TUE
performing exceptionally well under the risk metric Vol.

Introducing reference point goal into portfolio selection
enhances the model’s inclination toward pursuing higher re-
turns. Therefore, it can be observed that models incorporating
two reference points exhibit stronger performance in both the
CW and AY return metrics. Lastly, utilizing reference points
within uncertain intervals, as opposed to fixed values, not only
aligns the model more closely with investors’ decision-making
behaviors in uncertain markets but also bolsters the model’s
performance under the SR and CR risk-adjusted return metrics.
Consequently, the performance of the model TUP is optimal
under these two metrics.

Hence, based on this case study, introducing two reference
points in the portfolio selection model based on prospect
theory appears to offer a potential benefit in enhancing the
model’s ability to pursue higher returns, which could en-
courage investments in stocks with higher growth potential.
Simultaneously, when the reference points encompass uncer-
tain alongside fixed values, the model exhibits heightened
resilience against risk. These findings underscore the ability
of the portfolio selection model incorporating two uncertain
reference points to achieve more robust returns. Consequently,
we can assert that the fuzzy portfolio selection model based
on prospect theory proposed in this study is indeed effective.

C. Comparison study on real market data

Problem description: This section includes a comparison study
based on real market data, discussing the potential impact
and role of the fuzzy portfolio selection model proposed in
this study in the real market through comparison with three
portfolio selection models. In this case, 31 stocks were selected
from NYSE and NASDAQ, and the return rates of these stocks
from the period January, 4, 2016 to October, 7, 2016 (40
weeks) expressed in fuzzy variables can be obtained from [57].

Comparison models: Buy & Hold (B&H) model is often
chosen as a benchmark model due to its ability to intuitively
display the average return performance of the stock-pool.
Expected utility-CVaR (EU-C). The objective of this model
is to maximize the expected return of the portfolio selection
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scheme while adopts the Conditional Value-at-Risk (CVaR)
as the risk constraint. Prospect theory-based mean-variance
(PT-MV). Srivastava et al. [58] propose a prospect theory-
based portfolio selection model within the framework of mean-
variance under uncertainty with ambiguity.

Based on experts’ knowledge, the uncertain interval of
the reference point minimum requirement was assigned as a
triangular variable (0.992,1.000,1.007) which is a reflection
of the risk-free rate and the average return rate of NYSE
and NASDAQ in the past three months. And the uncertain
interval of the reference point goal was assigned as a triangular
variable (1.013,1.051, 1.072) which is based on the return rate
prediction of the stocks in the pool. Other parameters were
adopted the similar assignments in Tab. (XI). Similar to the
ablation study, ICPSO was adopted to find the optimal solution
of the aforementioned portfolio selection models, and these
solutions are the stock position of each model which will be
tested by real market data. The metric values of these fuzzy
portfolio selection models were listed in Tab. (XV), the best
performances are highlighted in boldface for better illustration.
TABLE XV: Performances under selected metrics in compar-
ison study.

. Return Risk RAROC
Metric
Cw Ay Md Vol Sr Cr
TUP . R 11 Nl R
B&H 1.018 0.023 0.073 0.074 0.311 0.311
EU-C 1.101 0.131 0.105 0.173 0.757 1.248

PT-MV 1.077 0.103 0.084 0.122 0.844 1.226

Under the metrics of cumulative wealth and annual yield,
B&H model performs the worst, indicating its inferior ability
to generate investment returns. This is due to B&H model’s
strategy of evenly distributing liquid cash across all invest-able
stocks without any selection, which only reflects the average
return of the stock pool. Therefore, this model is widely chosen
as a benchmark in the field of portfolio research. However, due
to its overly diversified investment strategy, it performs ex-
ceptionally well in terms of volatility. PT-MV model employs
prospect theory in characterizing investor behavior paradigms
within the mean-variance framework. Mean-variance has been
well-observed of risk-concentration, as discussed previously.

The fuzzy portfolio selection model proposed in this study,
based on prospect theory with two uncertain interval reference
points, takes into account not only the loss aversion effect
but also the pursuit of returns by investors, thus exhibiting
optimal performance under the metrics of cumulative wealth
and annual yield. This demonstrates that the use of a variant
of prospect theory with two reference points can effectively
enhance the model’s ability to generate returns, which is the
goal of many investors. In terms of volatility, this model
outperforms the PT-MV model, proving that the introduction
of prospect theory in portfolio research can effectively reduce
investment volatility. Finally, on the Sharpe ratio metric, this
model performs optimally. Therefore, we can conclude that
while achieving optimal investment returns, this model’s abil-
ity to control risk has not deteriorated. It effectively balances
the achievement of portfolio returns and risk aversion.

To further validate the robustness of the proposed portfolio
model under different market conditions, we compare the

performance of the SSE 50 Index during Q4 2022 with that
of comparison study market over the given time period. As
presented in Tab. (XIV), the cumulative wealth for the SSE
50 Index is 1.0354, corresponding to an annualized yield
of 15.75%, which significantly outperforms the comparison
market index with a cumulative wealth of 1.018 and an
annualized yield of only 2.30%.

However, this superior return from the SSE 50 Index comes
at the cost of higher volatility and downside risk. Specifically,
the SSE 50 Index exhibits an annualized volatility of 23.21%
and a maximum drawdown of 11.20%, compared to 7.40% and
7.30% respectively for the comparison market index. Despite
the increased risk exposure, the SSE 50 Index demonstrates
a stronger risk-adjusted performance. The Sharpe ratio and
Calmar ratio reach 0.679 and 1.406 respectively, markedly
surpassing the comparison’s corresponding values of 0.311.

These results suggest that while the SSE 50 Index entails
higher market fluctuations, it also delivers superior excess
returns per unit of risk. This indicates a more favorable risk-
reward trade-off and a higher risk premium embedded in the
SSE 50 Index during the observed period. In contrast, the
benchmark index exhibits a more stable yet conservative return
pattern, making it more suitable for risk-averse investors.

In summary, the two market indices display distinct char-
acteristics in terms of risk and return. The SSE 50 Index,
with higher volatility and stronger compensation for risk,
provides a suitable testing ground for behavior-based portfolio
optimization. The benchmark index, on the other hand, reflects
a low-risk, low-return profile aligned with more conservative
investment strategies.

VII. CONCLUSIONS

Traditional portfolio selection models, often based on expected
utility theory, fail to adequately account for behavioral biases
such as loss aversion, return chasing, and the psychological
lower bounds that influence investor decisions under extreme
market conditions. This research seeks to bridge these gaps
by proposing new model that better reflect the complexities of
real-world investor behavior while providing robust solutions
to high-dimensional portfolio optimization problems. This
research employs a theory-centric strategy through enhance-
ments to prospect theory to mitigate the research gap. Develop
a prospect theory-based multiple reference points model to
capture return chasing, addressing dynamic investor behavior
and mitigating loss aversion-driven conservatism. Integrate
risk constraints into portfolio selection for diversification and
enhanced risk control.

Specifically, this study proposes a fuzzy model with two
uncertain interval reference points for representing prospect
theory. Based on this model, a portfolio selection framework
is recommended with the mean-absolute deviation as a con-
straint. In comparison to existing works, this model closely
aligns with real-world investor behavior patterns and demon-
strates robust risk resilience. Simultaneously, it amalgamates
the advantages of expected utility theory and prospect theory,
achieving a balance between risk and return. It does not
err on the side of excessive conservatism, avoiding missing
opportunities, nor does it become overly aggressive, leading to
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excessive volatility. Two case study based on real-market data
validates the incorporation of two reference points empowers
the model to attain higher returns while reference points with
uncertain interval bolster its risk resilience to a certain extent.

Furthermore, to obtain optimal solutions for the intricate
optimization problems addressed in this study, we introduce
adaptive cooperative particle swarm optimization algorithm.
This algorithm incorporates adaptive and cooperative strate-
gies, whereby the optimal learning rate sequences is derived
via the deep deterministic policy gradient algorithm to achieve
the best adaptive strategy. The optimal cooperative strategy
is attained by decomposing the entire swarm randomly into
multiple sub-swarms. An computational study, based on test
fitness functions, verifies the capability of this algorithm to
rapidly yield solutions of sufficient precision.

Considering that capital markets are inherently random
and subject to various disturbances, implementing adaptive
intervals for fuzzy variables which could be derived from
machine learning methods, to better address these uncertainties
and disruption is an interesting and meaningful direction for
prospect theory based portfolio selection research. Meanwhile,
drawing on recent advances in the field of fuzzy sets, utilizing
more complex and sophisticated membership functions to
characterize and represent preferences regarding returns and
risks is a valuable approach for portfolio selection. In this
study, deep deterministic policy gradient was used to obtain the
optimal learning rate sequences. However, due to the inherent
randomness of particle swarm optimization algorithm, these
optimal sequences may vary depending the characteristics
of the input fitness functions and the dimensionality of the
searching space. Therefore, designing more efficient methods
to obtain the optimal sequences based on the structure of the
specific problem will be a meaningful and challenging research
direction.
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