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Abstract—Power flow (PF) calculation is essential for power
system analysis. In recent years, data-driven methods have
emerged as a promising approach to accelerate PF calculations.
However, these methods require high-quality labeled data and
often suffer from poor generalization. To address these issues, an
unsupervised physics-informed neural network (UPINN) method
is proposed for AC PF calculations. The proposed method follows
the general process of Newton-Raphson’s method. By minimizing
the physics-informed loss function, which is designed based on
active and reactive power mismatches, the PF equations will be
satisfied directly without the need to calculate the Jacobian ma-
trix’s inverse. Proofs of the proposed UPINN training method’s
convergence are provided. Case study results on the IEEE 24-bus
and 118-bus systems demonstrate the feasibility of the proposed
approach, showing that UPINN’s power flow model can achieve
high generalization performance without relying on labeled data.

Index Terms—AC Power flow, unsupervised learning, physics-
informed neural network, power systems.

I. INTRODUCTION

OWER flow (PF) calculation is essential for the analysis

of power systems. It offers crucial insights for both
planning and operation. Traditionally, Newton-Raphson (NR)
or similar methods have been reliable and effective in solving
PF equations. Recently, artificial neural networks (ANNs) have
emerged as a faster alternative. Recent research has concen-
trated on leveraging ANNS to enhance the speed and accuracy
of PF calculations [1]. When evaluating ANN-based methods,
generalization is a critical factor. This refers to the algorithm’s
ability to remain accurate and stable when applied to new
and unseen datasets. To improve the generalization of ANNS,
researchers have integrated physics-informed neural networks
(PINNSs) with ANNs by adding flow constraints to the model’s
loss function [2]. For instance, some studies use branch flow as
an additional loss term to ensure compliance with branch flow
equations, a method known as the Branch PINN (BPINN) [3],
[4]. Other studies employ graph convolutional neural networks
(GCNs) to incorporate the power system’s structure, referred
to as the GCN PINN (GPINN) [5], [6]. However, the BPINN
approach presumes that the reactive power of generators is
a known variable [4], which typically requires calculation
through power flow equations. Meanwhile, the GPINN method
does not fully exploit the physical information.
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On the other hand, advances in metering infrastructure have
simplified the collection of labeled data for PF calculations.
However, variability in load fluctuations means that historical
and future PF data often do not follow the same distribution,
which can significantly impair the performance of ANN-based
methods in future applications. To address these challenges,
developing unsupervised PINN learning methods for PF
calculations can reduce the dependence on extensive labeled
data while enhancing generalization performance.

This paper presents an innovative unsupervised PINN (UP-
INN) method for fast AC PF calculations. We began by
defining the inputs and outputs of a PINN-based PF solver.
Drawing inspiration from the NR method, we incorporated the
imbalance between power injection and power withdrawal at
each bus as a physical constraint. This informed the design of a
loss function based on these constraints. Additionally, we pro-
vide a proof of convergence for the proposed UPINN training
method. Ultimately, we developed an unsupervised learning
framework using PINNSs to solve PF equations, achieving high-
precision solutions without the need for labeled data.

The remaining sections are organized as follows: Section II
outlines the structure and principles of the proposed UPINN
method. Section III presents and discusses the experimental
results that validate the effectiveness of the UPINN method.
Lastly, Section IV provides the conclusion.

II. PHYSICS-INFORMED AC POWER FLOW SOLVER

A. Newton-Raphson Method for Solving AC PF Models

Assuming a m-bus power system contains r PQ buses, 1
balance bus, and (n—r —1) PV buses. P; and Q; represent the
active and reactive power injected by bus 7 respectively, while
U; and 6; denote the voltage amplitude and phase angle of bus
1 respectively. For PQ buses, the PF equations are expressed
as follows:

APy = (P{ - P{) =RE(}_ Skj) k=1,..n—r—1 (1)
ik

AQr= Q- QH+MMD_Sk)k=1,.,n—r-1 ()
ik

where PY (P{) and Qf (Q%) refer to the active and reactive

power of generators (loads) at bus k, respectively. S;; =

Ui 0y Uj(Gij+5Bij)e 7% =0%) refer to the branch powers

from bus 7 to bus j, and G;; and B;; denote the real and

imaginary parts of the element Y;; in the admittance matrix

Y. RE(-) and IM(+) refer to taking the real and imaginary parts

of a complex number. For PV buses, since {Q,—r, ..., @n_1}
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are unknown, we only need to write the active PF equations
for them:

AP, = (P} = P) =RE()_ Skj),k=n—r,.,n—1 (3)
i#k
Let AP = [APy,...,AP, 4] and AQ =
[AQ1, ..., AQp_1_,]. Ideally, both AP and AQ should
be zero vectors. The NR solution procedure can then be
written as oAP AP
[AP 90T U {Aﬂ @
0AQ OAQ )
AQ wr aor) AU
where U = [Uy,...,U,_1_,]7 is the bus voltage vector and
§ = [61,...,0,_1]T is the bus angle vector. AP, and AQq

can be calculated using (1)-(3) with initialized Uy and do.
Then, AU; and Ad; will be calculated with (4). This process
will continue until AP ; and AQg1 reach the pre-defined
thresholds by updating 6T = ' + Aé* and Ut = U’ +
AU?.

B. Unsupervised PINN for AC PF calculation

1) The Input and Output of PINN: The inputs to the PINN
include the active and reactive power of PQ buses, the active
power and voltage magnitudes of PV buses, and the voltage
magnitude and phase angle of the balance bus. The outputs
of the PINN are the reactive power values of the PV buses,
the voltage magnitudes of the PQ buses, and the phase angles
of all buses except the balance bus. Additionally, the reactive
power of the PV buses and the active power of the balance
bus, which can be derived from the PF equations, are also
included as the output.

Fig. 1 illustrates the structure and parameter settings of
the PINN model, which incorporates two GCNs for feature
extraction. The admittance matrix Y serves as the connection
matrix for GCN, while other inputs are used as features to
represent the information on the buses. Additional features are
extracted through multiple fully connected (FC) layers. Based
on the hyperparameters shown in Fig. 1, a parameter search
has been conducted during the experiment to identify the best
model parameter configuration. Here, Beta scales the output
of the activation function to fit the desired range.

2) Physics-Informed Loss Function Design: In contrast to
the approaches in [3], [4], which use branch power flow as
a loss term constrained by physical information, this study
adopts a more direct and practical loss term. Inspired by the
iteration process of the NR method described in [7], the ANN
generates the solutions U* and §*. These solutions are then
used to compute the power mismatches A P, and AQy, through
(1)-(3). Subsequently, we can directly use the imbalance
of the power flow equations as the loss term, defined as
L=5-3" (wpAP?+w,AQ?) in the optimization process.
There are two reasons for this. Firstly, £ directly reflects the
actual deviations in AC PF calculations. The corresponding
ANN weights 6 can be updated by ;1 = 0; — 17875, where 7
is the learning rate. Our method specifically adopts the error
concept used in the NR method. By continuously minimizing
the imbalance in the PF equations, a proper solution with the
desired accuracy level can be obtained. Using imbalances as

the loss term aligns with the principles of the NR method. Sec-
ondly, this concept inspires the expansion of our method into
an unsupervised learning framework. By using the imbalances
in the PF equations as the loss term, the model can be trained
without requiring additional supervised data. Furthermore, the
corresponding optimization problem can be expressed in the

following form

1
m Z(prPf + quQz?)
i=1

Subject to AP (0;x,u), AQk(6;xz,u), Vk; ||0]]1 <,
(5)

Minimize

L(O;x,u) =

where u, x and 6 refer to the input, output and the parameters

of PINN model, respectively. According to the chain rule

9L _ 0L Oz OL i
55 = or 50> ¢ can be written as

ou
T rgAP 9AP  HAP  9AP 0
oL AP aUT 95T 0P, 00T %
0 "r AQ IAQ HAQ IAQ OAQ| | 9P,
nwg ouT 05T OP,, QT 5
20
(6)
where AP = [APy,...,AP,], AQ = [AQ,...,AQ,] and
Q = [Qn_r,...,Qn]. Additionally, we employed L1 regular-

ization and proximal optimization methods during network
training to encourage sparsity in the weights. The correspond-
ing 0 can be updated by 6;11 = Prox,e, (0; — n%).
Furthermore, we introduce the second-order moments of gra-
dients to adaptively adjust the learning rate, i.e. 0y =
Proxﬁw”l(@t — %%), where vy = B *x v + (1 —
B)(%)Q, B is the decay rate of the second-order moment
and ranges between O and 1. The overall PINN training
process is shown in Fig. 1. Regarding £, we assume it is
continuously differentiable in the N-dimensional real space,
ie. £ e CYRN).

Theorem 1: Suppose that there exists L > 0 so that

IVL(01;2) — VL(O2;7)||2 < L||01 — 61]]2,V01,02 € RN,

(M

Then, for all ; and 6, € RY, it holds that [8]:

L
L(0237) < L{Ov;2) + VL0 (02— 01) + 5 [102 - 0u][5. (8)

=115
tion, de 2z will be very sparse and v, is bounded by -& i3 where
=15
Lemma LI |2, < |12
IV
BT 112 =
According to Lemma 1, L can be set as || \/,,;)THQ
Theorem 2: Consider (6) and let {6} be generated by the

Generally, ||2 maz. Due to the use of L1 regularlza—

||2 max-

<

H2 maxr X

2, then H

proximal gradient 61 = Prox n_ H9||1(9t f 80) Then for
all k£ > 1, there are
F(6);x) — F(6) < 160 =613,

—zkﬁ

where F(6;z) := L(0;2)+]||6||1; 0 is any element in Arg min
F. Proofs are provided in [7]. This theorem indicates that the
sequence {0y} generated by the proposed method converges
to a stationary point. The convergence rate is featured by the
initial distance ||y — 6|2 and the number of iterations k, 7,
£ and G.
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Fig. 1. Model Architecture and PINN for PF Training Process
0.3 1 TABLE I
PERFORMANCE COMPARISONS ON THE IEEE 24-BUs AND IEEE 118-BUS
5 SYSTEMS

L
JEL

Probability Distribution

Test Cases Error (RMSE) Time/

and Algorithm AP AQ Br-P Br-Q Upg Qpv dpQ&pVv SeC.
0000 435 45.0 475 500 52.5 55.0 575 UPINN 0.0399 0.0683 0.0048 0.0348 0.0016 0.0123  0.0067 < 0.1
| Load/MW IEEE BPINN 0.9095 5.9128 0.4065 3.0583 0.11210.1962 0.0549 < 0.1
l Y mmm Historical Load Distribution Future Load Distribution case24 GPINN 0.72194.3715 0.3034 2.2949 0.0886 0.0937 0.0547 < 0.1
Dataset Description PM.jl 0.00410.0197 0.0000 0.0000 0.0000 0.0000 0.0000 37.6
Supervised Training Set | Unsupervised Training Set | Testing Set UPINN 0.0475 0.0358 0.0021 0.0102 0.0014 0.0204  0.1301 < 0.1
Input: z . | Input: @ | Input: IEEE BPINN 0.6839 3.3929 0.2450 1.8415 0.0739 0.0961 0.0848 < 0.1
| | casel18 GPINN 0.8362 3.9006 0.2668 2.0220 0.0774 0.0562 0.0693 < 0.1
Labeled Output: y i Labeled Output: None | Labeled Output: y PM.jl 0.0053 0.0201 0.0000 0.0000 0.0000 0.0000 0.0000 150.1

Fig. 2. Data Set Distribution Example

ITII. CASE STUDY

A. Data Set

This paper utilizes PowerModel.jl (PM.jl) [9] to generate
AC power flow data and implements the standard IEEE 24-
bus and 118-bus systems to evaluate the proposed methods.
We adjust the loads to a certain ratio based on the standard
IEEE 24-bus and 118-bus systems, creating a total of 16,000
sample points for each test system. Given the availability and
precision of probabilistic load forecasting results, we assume
that the training set contains a subset of data that shares the
same distribution as the test set. However, it is important to
acknowledge that while ultra-short-term or short-term load
forecasts are typically accurate [10], the associated training
set data often lacks labels for AC power flow due to time
constraints. Therefore, we have further segmented the dataset
into three components: a supervised training set (the first
10,000 samples), an unsupervised training set (samples 10,001
to 15,000), and a test set (the remaining samples), as illustrated
in Fig. 2. Since the data is already in per-unit format, no further
normalization is applied in this study.
B. Result Analysis

The performance results are shown in the Table I, using
PowerModel.jl as a benchmark. The root mean square error
(RMSE) serves as a metric to evaluate the performances.
Various factors are assessed, including the active and reactive
power balance at all buses (AP and AQ), the branch active

and reactive power (Br-P and Br-Q)), the voltage magnitudes
and reactive power of PQ buses (Upg and @py), and the
phase angles for PQ and PV buses (dpgspyv). The term
“T'ime” in Tables I indicates the total time required for
the entire testing set. The comparative analysis shows that
the proposed UPINN method offers superior generalization
performance over existing approaches. It maintains high ac-
curacy even when faced with distribution shifts, indicating its
effectiveness in performing PF calculations under conditions
of high load uncertainty. Compared to existing methods, the
proposed approach improves precision by nearly two orders of
magnitude. Additionally, the time required for the ANN-based
PF solution is significantly less than that of the NR method.
Furthermore, the UPINN is part of a category of learning
methods that do not require labeled data, akin to the au-
toregression technique used in large language models. The
proposed approach could be used to improve the speed of
solving large-scale AC optimal power flow (OPF) problems.

C. Discussion on UPINN Performance as the Power System
Approaches the Maximum Loading Point

As demonstrated in Section II-A, it is essential to iteratively
compute AU; and Ad; based on equation (4). This process
inevitably involves calculating the inverse of the Jacobian
matrix. However, when the Jacobian matrix approaches sin-
gularity in certain regions (especially as the power system
approaches the maximum loading point), it becomes non-
invertible. In contrast, as discussed in Section II-B, during the



TABLE II
PERFORMANCE COMPARISONS UNDER NOISE CONDITION ON THE IEEE
24-BUS SYSTEM

. Error (RMSE)
Algorithm AP AQ BrP BrQ
UPINN ¢ = 0.001  0.03930.0729 0.0055 0.0400
PowerModel.jl & = 0.001 0.0059 0.0372 0.0028 0.0202
UPINN ¢ = 0.005  0.05070.18220.0149 0.1069
PowerModel.jl o = 0.005 0.0260 0.1629 0.0142 0.1021
UPINN ¢ = 0.01 0.0707 0.3508 0.0284 0.2032
PowerModel.jl o = 0.01 0.0540 0.3452 0.0287 0.2047

training process of the ANN, we only need to compute the
Jacobian matrix itself, without the need to solve its inverse.
This greatly enhances the stability of the proposed method.
D. Discussion on UPINN Performance under Measurement
Unit Error Noise

Our proposed algorithm also presents high robustness, as
demonstrated in [7]. To empirically validate these theoreti-
cal insights, we conducted experiments on the IEEE 24-bus
system under varying noise levels, with ¢ ~ A(0,0?) for
o € {0.001,0.005,0.01} [11]. In these tests, PowerModel.jl
computes performance metrics using the noisy input @ and the
true solution x, whereas our method (UPINN) evaluates them
using @ and the network output £. The results, as summarized
in Table II, confirm that the proposed approach maintains
strong performance across all noise conditions, demonstrating
its practical reliability in noisy environments.

IV. CONCLUSION

This article introduces an UPINN method designed to
eliminate the need for high-quality labeled data while en-
hancing generalization capabilities in AC PF calculations.
The proposed method adheres to the general process of the
NR method. By minimizing a physics-informed loss function,
which is based on active and reactive power mismatches,

the PF equations are directly satisfied without the need to
compute the Jacobian matrix’s inverse. Validation results
on IEEE 24-bus and 118-bus systems demonstrate that the
proposed UPINN-based model achieves high generalization
performance without relying on labeled data. This method
can be seamlessly integrated into existing ANNs for solving
AC OPF by providing gradient information through automatic
differentiation. Additionally, it can be integrated with the
MASK method to solve the power flow equation in situations
involving PQ-PV transformations. In future work, we plan
to develop fully UPINN-based methods for solving AC OPF
problems.
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