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Exploring human mutuality in cyber and physical spaces using mobile big data
and network analysis
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Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China

ABSTRACT

Partially due to the limited access to datasets of human activities in cyber and physical (online
and offline) spaces, the exploration of weak human interactions, defined as human mutuality in
this work (i.e. co-location in physical space, and co-domain in cyber space) and their networks
in the two spaces have been constrained to some extent in recent years. To bridge this gap, this
study establishes a unified framework for directly comparing individual-level human mutuality
networks across physical and cyber spaces, based on large-scale Uniform Resource Locators
(URLs) data from tens of thousands of users in Jilin, China. Within this framework, human
mutuality networks are constructed with users as nodes and mutuality events as edges, based
on shared locations or shared website visits. The networks are systematically analyzed through
three dimensions: fundamental network properties (such as clustering coefficient and average
shortest path length), degree and strength distributions, and community structures. The results
show distinct structural differences between the two spaces. Cyber space displays
a significantly shorter average shortest path length (2.4) than the physical space (7.6), suggest-
ing faster information transmission and the potential to alleviate digital inequalities by accel-
erating access to resources. Both networks present heavy-tailed degree distributions,
indicating heterogeneous structures shaped by a few highly connected individuals.
Furthermore, while physical space exhibits numerous small communities with strong local
clustering, cyber space contains fewer but larger communities, with weaker local cohesion. This
reduced local clustering may increase the risk of rapid misinformation diffusion. Additionally,
the formation of cyber communities based on shared online behaviors reveals potential
socioeconomic similarities among users despite differences in their physical attributes.
Together, these insights offer a foundation for understanding human interactions across hybrid
spaces and inform strategies for managing cyber and physical social dynamics.
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1. Introduction random walk, and preferential return. However,
these models are often limited in capturing large-
scale spatial patterns and heterogeneity. To address
these gaps, population-level and place-based models,
including gravity, radiation, intervening opportu-
nities, and social-based models, have been developed,

offering insights into flows and relationships across

As digital technology advances, human activities (e.g.
shopping, banking) are increasingly transitioning
from offline (physical space) to online (cyber space),
resulting in the change of human interaction to
a mixed mode, i.e. co-location in physical space and

co-domain (website) in cyber space simultaneously
(Assimakopoulos 2000; Liu et al. 2021). Based upon
human interaction, different human interaction net-
works can be constructed based on the locations and
domains that users visited in chronological order in
cyber and physical spaces, respectively.

In physical space, human interaction is commonly
divided into strong interactions (e.g. face-to-face
communication) and weak interactions (e.g. co-
presence at a shared location) (Liu et al. 2023a; Liu
et al. 2023b; Zhang et al. 2023). To model these
interactions, early research focused on individual-
level behaviors using statistical models such as
Brownian motion, Lévy flight, continuous-time

regions (Barbosa et al. 2018; Schneider et al. 2013).
These models have been widely applied in fields such
as migration (Simini et al. 2012), trade (Silva and
Nelson 2012), and tourism demand (Morley,
Rosselld, and Santana-Gallego 2014). In recent
years, with the rise of big data, human interaction
models have further evolved by integrating multi-
source datasets, such as demographic and social
media data (Iacopini, Karsai, and Barrat 2024), and
advanced methods such as machine learning and
deep learning, enabling more accurate and individua-
lized predictions of complex spatiotemporal beha-
viors (Gao et al. 2024; Liu et al. 2024; Shi et al.
2024). Meanwhile, weak interactions have gained
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growing attention as a new form of social phenom-
enon. A notable example of the long-term influences
of weak interaction is place identity and attachment,
where individuals from the same hometown are more
likely to form connections in metropolitan regions.

In cyber space, both strong interactions (e.g.
direct communication through phone calls or mes-
saging) and weak interactions (e.g. passive co-
visitation of the same websites) may exist and
exert influence. Given the prevalence of such weak
forms of interaction, it is hypothesized that weak
interactions in cyber space, such as co-visiting the
same websites, might play a crucial role in reflecting
human demographic and socio-economic attributes,
facilitating information diffusion, and potentially
bridging digital inequality. This hypothesis moti-
vates the exploration of human mutuality in cyber
space and further supports the comparative analysis
of human mutuality across physical and cyber
spaces.

However, most research focuses predominantly on
human interaction in physical space, often oversimpli-
fying or neglecting their cyber counterparts. Although
some studies have examined strong cyber interaction
using data from social platforms like Weibo and Zcool
(Fang et al. 2020; He, Wang, and Zeng 2022; Hu et al.
2020), weak interaction in cyber space remains under-
explored. Furthermore, studies on cyber human inter-
action are typically conducted at an aggregate level,
such as city-level, neglecting the characteristics of
human interaction at the individual level. Despite
extensive research on cyber and physical human inter-
action networks separately, there’s a scarcity of studies
that directly and quantitatively compare these two types
of networks for the same group of people at the indivi-
dual level. This gap, largely due to the lack of datasets
capturing both cyber and physical interaction for the
same users, is critical for advancing current research
and addressing practical concerns, such as managing
information dissemination.

Additionally, aside from the examination of static
networks, there’s been growing attention to the tem-
poral patterns of networks. While many studies have
explored the temporal patterns of mobility networks,
few have delved into the potential dynamism of
human interaction. For example, studies have shown
strong correlations between community transforma-
tions and cycles of human movement (Walsh and
Pozdnoukhov 2011), and notable variations in tem-
poral characteristics of human mobility across differ-
ent cities (Sparks et al. 2022; Zhou et al. 2016).
Nevertheless, given that human interaction might
have significant changes during different periods,
comprehending the temporal characteristics of
human interaction networks is essential to grasping
the dynamics of human behavior and completing the
existing literature.

To address the research gaps, the study first defines
weak human interaction in cyber and physical spaces
as human mutuality, and then constructs the corre-
sponding networks, which are further compared with
reference networks and between two spaces. This
study offers several distinct contributions that set it
apart from previous research: (1) Our work theoreti-
cally defines weak human interaction (hereafter
referred to as human mutuality) in cyber and physical
spaces based on currently available data, URL; (2) the
utilization of URL data in this study effectively
resolves data mismatch problems, enabling a direct
comparison of human mutuality network between
cyber and physical spaces and providing reliable com-
parative results; (3) the characteristic of human
mutuality network is investigated and compared
between spaces at the individual level; (4) this study
further examines the temporal characteristic of net-
work structures in cyber and physical spaces, using
dynamics human mutuality networks. The experi-
ments were conducted in Jilin Province, where unique
users extracted from the URL datasets were considered
as nodes in the networks. The edges in the cyber and
physical spaces were determined based on the order of
time, location, and website records following specified
rules outlined in the methodology section. Four types
of networks were built, including static human
mutuality networks in cyber and physical spaces con-
taining all data used in the study, as well as dynamic
human mutuality networks based on partial data
within different periods. These networks were evalu-
ated and compared from three perspectives: network
property, network structure, and community
detection.

The remainder of the paper is organized as follows:
Section 2 introduces the study area and URL datasets.
Section 3 presents how human mutuality networks are
constructed, and the evaluation methods. Section 4
reports the results. Section 5 discusses the main find-
ings, limitations, and suggestions for future research,
and conclusions are drawn in Section 6.

2. Study area and datasets
2.1. Study area

This study was conducted in Jilin Province, located in
northeastern China, bordering Russia and North
Korea, as depicted on the left side of Figure 1. In the
1980s, Jilin Province experienced significant industrial
growth and became a prominent industrial region.
However, subsequent national policy changes led to
the relocation of resources and talent to southern
China, resulting in a gradual decline in Jilin’s devel-
opment compared to other regions. Jilin Province
approximately 191,202km”* and has
a population of 24.07 million according to the seventh
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Figure 1. The study area of Jilin Province in the northeast of China (left), and the 9 secondary administrative regions and 12,800

cellular towers in blue dots (right).

census. It comprises nine secondary administrative
regions, represented by colorful asterisks on the right
side of Figure 1, with Changchun as the capital city.
The figure also shows the distribution of 12,800 cellu-
lar towers (depicted as blue dots) across the province,
highlighting significant clusters in the more developed
areas.

2.2. Dataset

In this study, human mutuality is defined as a form of
weak human interaction, representing the subtle influ-
ence of co-presence in both physical and cyber space.
To explore human mutuality in cyber space, Uniform
Resource Locator (URL) data is used in the study,
which is one type of mobile phone data. The process
of generating URL data is displayed in Figure 2. Users’
smart mobile devices can visit the internet through

signal communication with cellular towers. These
towers are maintained by the service providers,
which not only provide access to the public network
but also monitor users” internet usage. The metadata
of usage is stored in the URL database, which includes
all information from the data transmission chain of
“user devices- cellular towers- servers of websites.”
However, to safeguard individuals’ privacy, only par-
tial data is utilized as URL data in the study, as
depicted in Table 1. The User ID serves as a unique
identity for each user when accessing mobile internet;
CELL ID records the users’ connected cellular towers;
Longitude and Latitude are the geographical coordi-
nates of the cellular towers; Request Time records the
time of website access, and the URLs encompass the
domain of the websites visited by the users.

Given the sensitive nature of mobile big data, strict
privacy protection measures were implemented in this

& K3

—_—

_ )
A=

sina @ ™M

Cellular tower

Server

User ID, CELL ID,
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Figure 2. The process of the generation of URL data.

Table 1. The sample from Uniform Resource Locator data.

User ID CELL ID URLs Request time Longitude Latitude
46000%*83987 7162 szextshort.sweixin.qq.com 2016-12-20 00:39:07 123.94101 43.79141
46007**00041 40083 mmsns.gpic.cn 2016-12-20 00:39:03 128.91792 43.11605
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study. The dataset was provided by China Unicom,
with all personally identifiable information, such as
user IDs, device identifiers, and other sensitive attri-
butes, fully anonymized and masked at the source in
accordance with relevant data protection regulations.
Prior to analysis, an additional layer of data masking
and aggregation was applied to further minimize any
potential risk of individual identification, as detailed
in Table 1. The final dataset used in this study contains
only anonymized records that cannot be traced back
to any specific individual. All procedures comply with
ethical standards to ensure the privacy and security of
user information throughout the research process.

The data used in this research was collected on
Tuesday, 20 December 2016, and consists of approxi-
mately 20 million records, from which we extracted
84,052 users and 12,800 cell towers. In physical space,
the geographical locations of connected cellular towers
can serve as an estimate of their physical locations.
Therefore, the data comprising User ID, CELL ID,
Longitude, Latitude, and Request Time are used for
the construction of a physical human mutuality net-
work, while the data comprising User ID, CELL ID,
URLs, and Request Time are used for the construction
of a cyber human mutuality network.

3. Methodology

A framework has been proposed to define and char-
acterize human mutuality networks in cyber and phy-
sical spaces in this study. The framework includes
three stages, as displayed in Figure 3. The first stage
defines human mutuality in cyber and physical spaces
and constructs corresponding networks from URL
data. The second stage characterizes these networks
from three aspects: network property, network struc-
ture, and community detection. The third stage
involves conducting separate comparisons of network

structures, first between cyber and physical spaces,
and second between dynamic and static aspects.

3.1. Constructing human mutuality networks

This subsection details the process of defining human
mutuality and constructing static and dynamic human
mutuality networks in both cyber and physical spaces
using massive URL data. It also includes direct com-
parisons of human mutuality definitions in cyber and
physical spaces. Additionally, two reference networks
are introduced and constructed as baselines to evalu-
ate the structures of the human mutuality networks.

3.1.1. Static human mutuality networks

Static human mutuality networks are constructed
using all records saved within a day. These networks
include two types: Cyber Static Human Mutuality
Network (CSHMN) and Physical Static Human
Mutuality Network (PSHMN), both of which are
undirected and weighted. The definitions for
CSHMN and PSHMN are as follows:

Gesumn or Gpsuvn = (VL E) (1)
V = unique (Z _V(d)while d € URL) )

E= de(UserA, UserB, Time, Place or Web)while d
€ URL

)

where V represents all nodes and E represents all
edges. In this study, V is defined as all unique users
extracted from the URL data, as presented in
Equation (2), and E represents all human mutuality
between users, as presented in Equation (3). Physical
human mutuality is defined as weak interaction

3.1 Constructing human mutuality networks

Physical static human Physical dynamic
mutuality networks human mutuality
(PSHMN) networks (PDHMN)

3.2 Characterizing human mutuality networks

[ Network property } [ Network structure J Community detection

[ Degree ][Strength} { Degree distribution } Community property

Local & average
clustering coefficients

[ Strength distribution

Clustering coefficients

length & network e

‘ Average shortest path
diameter L

Cyber static human Cyber dynamic human |
mutuality networks mutuality networks
(CSHMN) (CDHMN)
1 4.Results |
Physical space
versus
b cyber space
>
Community structure |: Dynamic
— — versus
Geographical clustering | static network
of community :

Figure 3. The workflow of the proposed analytical framework, including three stages (i.e. constructing human mutuality networks,
characterizing human mutuality networks, and comparative results).



between different users who have visited the same
place within a short time frame (Zheng 2011). Cyber
human mutuality is similarly defined, based on the
premise that visited websites and locations both reflect
people’s interests, cognition, and culture. Therefore,
cyber human mutuality is defined as weak interaction
between different users who visit the same websites
within a short time frame. The time interval for
mutuality in physical space is set to 1 minute, reflect-
ing typical pause times at locations according to pre-
vious studies (Alessandretti et al. 2017), while in cyber
space, it is set to 1second to account for the high
frequency of online activities.

The example in Figure 4 illustrates the definitions
of human mutuality in cyber and physical spaces. In
Figure 4(a), we have the mutuality between USER,
WEBSITE, and PLACE. For instance, t,; denotes the
first visit of User A to Google, while T, represents the
first visit of User A to Place X, and so on. The corre-
sponding human mutuality networks are shown in
Figure 4(b, c¢). In Figure 4(b), an edge is formed
between User A and User B because both of them
visited Google for the first time. This pattern con-
tinues for other users as well, such as User B and
User C. In Figure 4(c), an edge with a weight of 2 is
created between User B and User C since they visited
Place X for the first time and Place Y for the second
time. Similar patterns are observed for the rest edges
in the network.

3.1.2. Dynamic human mutuality networks

To investigate the temporal variation of human
mutuality networks between cyber and physical
spaces, dynamic human mutuality networks are con-
structed, comprising a series of subnetworks. The con-
struction process for these subnetworks is similar to

GEO-SPATIAL INFORMATION SCIENCE . 5

that of static networks, with the primary difference
being the data utilized. These subnetworks are built
by aggregating data from different periods separately.
The mathematical definition of dynamic human
mutuality networks is as follows:

t
Gepumn or Gepavn = Z(Vt; E') 4)
1
where ¢ is the number of time intervals, (V’, E') repre-
sents one subnetwork constructed from the data
belonging to the t period, V* includes all active users,
E' includes all human mutuality during this period,
CDHMN represents cyber dynamics human mutuality
networks, while PDHMN represents physical
dynamics human mutuality networks. In this study,
four periods are selected (Zhang, Shen, and Zhao
2021): 7 am. to 10 a.m. (morning); 11 a.m. to 2 p.m.
(noon); 5 p.m. to 8 p.m. (late afternoon); 9 p.m. to 12
a.m. (night).

3.1.3. Reference networks

Two reference networks, namely random networks
and scale-free networks, are included in this study as
they represent two extreme types of network struc-
tures, providing a basis for cross-comparisons. The
random network is entirely homogeneous, generated
by purely random connections between different
nodes. Typically, these networks have small clustering
coefficients, and their degree distributions follow
a Poisson distribution (Erdds and Rényi 1960; Frieze
and Karonski 2016). In this study, random networks
are generated by random walks between nodes, with
the average node degrees matching those of the
explored networks. On the other hand, the scale-free
network is a typical heterogeneous network, where
a few nodes account for many connections. This

i (b): Cyber human mutuality network

(c) Physical human mutuality network i

i iWelght—

__________________________________________________

Figure 4. The definition of human mutuality in cyber and physical spaces.
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imbalance is reflected in the heavy-tailed degree dis-
tribution, a key characteristic of scale-free networks
(Hein, Schwind, and Kdnig 2006). Another important
feature is the negative correlation between the cluster-
ing coefficient and node degree (Morita 2006). The
scale-free networks in this study are constructed based
on preferential attachment, with the node distribution
following a power law (Barabasi and Albert 1999).

3.2. Characterizing human mutuality networks

The human mutuality networks in the study are char-
acterized in three aspects: network properties include
the number of nodes, the number of human mutuality,
the number of edges, node degree, node strength,
clustering coefficient, average shortest path length,
and network diameter; network structures include
degree distribution, strength distribution, and scaling
relation between degree and clustering coefficient,
which are further compared with two reference net-
works; community detection to examine the similari-
ties and difference of community structure in cyber
and physical spaces. Additionally, all analyses are per-
formed on both static and dynamic networks.

3.2.1. Network property and structure

3.2.1.1. Node degree K; and degree distribution
P(k). Node degree and degree distribution are two
important measures to reflect the heterogeneities of
networks (Borgatti et al. 2009). Node degree measures
the number of connections each individual (node) has
in the network. For example, in a physical setting, it
represents how many different people a person shares
a public space with during a certain period. In cyber
space, it reflects how many other users someone is
indirectly connected to through co-visiting the same
websites. The nodes with higher degrees represent
people who are more connected in the networks.
Because the human mutuality networks in the study
are undirected, the in-degree and out-degree are not
considered. The mathematical definition of node
degree k; is shown in Equation (5), which measures
the number of nodes to which node i is connected.

ki = ZjeVN(Vi’ V) (5)

In this formulation, v; and v; represent nodes i and j in
the network, V denotes the set of all nodes, and the
summation iterates over all nodes j € V' except i. The
term N(v;,v;) is an indicator function that equals 1
when a link exists between node v; and node v; and 0
otherwise. Consequently, k; quantifies the total number
of direct neighbors of node i. The degree distribution
P(k) characterizes the proportion of nodes with degree k
in the human mutuality networks. In the random net-
work, P(k) is a Poisson distribution; in the scale-free
networks, P(k) is a power-law distribution.

3.2.1.2. Node strength s; and strength distribution P
(s). The node strength is employed to reflect the
degree of weight networks. Node strength captures
the intensity of connections, considering how fre-
quently the ties are between individuals. For
instance, in physical space, this could reflect how
frequently two people stay together in the same
place and same time, while in cyber space, it might
indicate how often two users browse the same web-
site within overlapping time windows. Higher
strength suggests more repeated interactions. The
nodes with high strength represent people who
have more mutuality with others and are possibly
the hub nodes. The mathematical definition of node
strength s; is displayed in Equation (6), which mea-
sures the sum of the weights of the edges connected
to node i. The strength distribution P(s) captures the
number of nodes with a specific strength s in the
human mutuality networks.

Si = Zjev W (vi, v;) (6)

In this equation, v; and v; denote nodes i and j in
the network, V represents the set of all nodes, and
the summation iterates over all nodes j € V except
i. The term W (v;,v;) denotes the weight of the
connection between nodes v; and v;, which reflects
the interaction intensity or frequency between the
two nodes. Consequently, s; quantifies the total
interaction weight associated with node i. The
strength distribution P(s) then describes the pro-
portion of nodes with strength s in the human
mutuality networks.

3.2.1.3. Local C(v) and average clustering coefficients
<C>. The clustering coefficients measure the degree
of clustering of the networks. Two types of clustering
coefficients are adopted in the study. The local cluster-
ing coefticients measure the likelihood that two of an
individual’s contacts are also connected to each other,
forming small groups or “triangles” in the network.
For example, in physical space, high clustering may
occur in office environments where many colleagues
regularly meet, while in cyber space, lower clustering
suggests that users who browse the same website are
less likely to have common browsing behaviors else-
where. This is important because lower clustering in
cyber space could reflect weaker online community
cohesion and may affect phenomena like the rapid
spread of misinformation, where tightly-knit groups
often amplify messages. The mathematical definition
of locally weighted clustering coefficients is shown in
Equation (7), where w;; is the weight between node i
and node j, a;; are the elements of the adjacency matrix
(Barrat et al. 2004).



1 Wi+ w;
cwlf) = si(ki — 1) Zj,h vy 42_ 2 ajandyy  (7)

The second type is the average clustering coeffi-
cient, which is used to quantify the density of the
entire network. It 1is calculated based on
Equation (8), where N is the number of nodes in the
networks.

2iev ow(i)

(c) = it

(8)

3.2.1.4. Average shortest path length L and network
diameter D. The average shortest path length in
a network is a measure of the average number of
steps along the shortest paths for all possible pairs of
nodes. It provides insight into the typical separation
between nodes, reflecting how efficiently information
or influence can spread across the network (Watts and
Strogatz 1998), such as the average number of people
you will need to connect with a stranger. For example,
in physical space, it might reflect how many shared
locations link two otherwise unconnected people,
while in cyber space, it shows how quickly information
or behaviors could spread through shared online
activities. Shorter paths imply more efficient connec-
tivity. Mathematically, it is the sum of the shortest
path lengths between all pairs of nodes divided by
the number of such pairs, as displayed in
Equation (9). Network diameter, on the other hand,
is the length of the longest shortest path between any
two nodes in the network, as shown in Equation (10).
It represents the maximum distance between any pair
of nodes, indicating the extent of the network. A larger
diameter suggests that the network is more spread out,
while a smaller diameter indicates a tightly connected
structure. In physical space, this could imply how far
apart different groups are in terms of shared locations,
whereas in cyber space, it may reflect the maximum
steps needed for information to potentially reach all
users. Both metrics are fundamental in the study of
network structure, helping to understand connectivity
and the potential speed of communication within the
network.

1 .
L= WZK]‘ d(i,j) 9)
2

where n represents the number of nodes in the net-
work, and d(i,j) is the shortest path length between
node i and node j.

3.2.1.5. Clustering coefficients versus degree. The
weighted clustering coefficient C, (k) of the nodes
with a specific degree k is calculated based on
Equation (11).

GEO-SPATIAL INFORMATION SCIENCE . 7

1
Cu(k) = Nk Zi/k,:k C(i) (11)

In the equation, k; denotes the degree of node 7, and
summation is performed over all nodes i with degree
ki = k. C(i) represents the weighted clustering coeffi-
cient of node i, and N(k) is the total number of nodes
with degree k, serving as a normalization factor to
compute the average clustering coefficient for nodes
of degree k. The scaling relationship between the
weighted clustering coefficient and degree is expressed
in Equation (12):

Cy(k) o< kK77 (12)

where y is a scaling exponent that captures how the
clustering coefficient changes as a function of node
degree. A decreasing scaling relation suggests that
denser clusters tend to have lower connectivity.

3.2.2. Community detection

Community detection is a fundamental step in net-
work analysis for understanding the group structure of
networks. There are many algorithms designed for
community detection, such as Infomap (Edler,
Bohlin, and Rosvall 2017) and the edge betweenness
method (Newman and Girvan 2004). Considering the
computation efficiency, the method proposed by
Blondel et al. (2008) is selected in this study, which is
a heuristic method based on modularity optimization.
Modularity is proposed by Newman and Girvan
(2004), and designed to evaluate how good
a particular partition of a network is. Communities
are analyzed from three aspects: community structure,
community properties, and geographical clustering.
To quantify the similarity of community structures
across different time intervals, this study employs the
Normalized Mutual Information (NMI) method pro-
posed by Danon et al. (2005). NMI is a widely used
metric for comparing community partitions in com-
plex networks, with values ranging from 0 to 1. An
NMI value close to 1 indicates a high degree of simi-
larity between two community structures, while
a value near 0 reflects significant differences. By apply-
ing NMI, the temporal stability of community struc-
tures in both cyber and physical human mutuality
networks can be systematically assessed. The geogra-
phical clustering is determined through the following
process: first, each user is mapped to a geographical
location based on the center point of their activity
space in physical space; second, Kernel Density
Estimation (KDE) is performed for each community,
with the bandwidth set to the average distance of all
nearest points based on the head/tail break (Jiang
2013), finally, the geographical clustering for each
community is defined as areas with a density value
greater than three standard deviations, as shown in
Equation (13).
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D = 30, (13)

where D, ; is the KDE value of i-th unit within the cth
community, and o, is the standard deviation of all
units within the community.

4. Results

The following three subsections compare the human
mutuality networks between cyber and physical spaces
from three aspects: 1) network properties in subsec-
tion 4.1, such as clustering coefficient, degree,
strength, average shortest path length, and network
diameter, 2) network structures in subsection 4.2,
and community properties and structures in subsec-
tion 4.3

4.1. Network properties

We first present the results of a comparative analysis
between the CSHMN and the PSHMN. As shown in
Table 2, PSHMN comprises 66,082 nodes, 220,185
edges, and 49,055,635 weights, indicating frequent
human mutuality despite relatively lower connectivity.
This suggests that human mutuality in physical space
primarily occurs among acquaintances or familiar
individuals.  Additionally, PSHMN  exhibits
a significantly larger clustering coefficient
({Cyp) = 0.494) compared to the corresponding ran-
dom network ({C,,) = 0.0113). In contrast, CSHMN
consists of 82,121 nodes 38,209,519 edges, and
158,393,745 weights, indicating more frequent
mutuality in cyber space compared to physical space.
CSHMN also exhibits larger average degree and
strength ((K) = 930.6, (S) = 3857.6) compared to
PSHMN ((K) = 6.6, (S) = 1484.6), suggesting more
frequent mutuality in cyber space likely due to the
absence of geographic constraints.
CSHMN has a relatively smaller clustering coefficient
({Cye) = 0.454) compared to PSHMN, although it is
still significantly larger than that of the cyber static
((C,) =9.801 x 1075).  This

However,

random network

indicates evident clustering in both spaces, with
a more pronounced effect in physical space.
Regarding the average shortest path length, PSHMN
has an average of 7.6, roughly adhering to the concept
of six degrees of separation, which posits that all
people are six or fewer social connections apart. In
contrast, CSHMN exhibits a significantly shorter aver-
age shortest path length of 2.4, indicating that indivi-
duals need only an average of three social connections
to connect with anyone in cyber space. Furthermore,
the network diameter in CSHMN is one-third that of
PSHMN, underscoring the more interconnected nat-
ure of cyber space compared to physical space.

In this subsection, we present a comparative quan-
titative analysis of network properties between cyber
dynamic human mutuality networks (CDHMN) and
physical dynamic human mutuality networks
(PDHMN). Table 2 provides an overview of the sta-
tistical properties of PDHMN and CDHMN.
Generally, the statistical properties in cyber space,
except for clustering coefficients, network diameter,
and average shortest path length, exhibit larger mag-
nitudes compared to those in physical space, consis-
tent with findings from static networks. Regarding
dynamic characteristics, the trends of these statistical
measures between the two spaces are generally similar,
with four exceptions. First, the number of edges and
average degree from noon to late afternoon show an
increasing trend in cyber space and a decreasing trend
in physical space. This difference suggests that indivi-
duals engage more in cyber human mutuality during
work hours and reduce physical human mutuality,
contrasting with leisure times. Second, clustering coef-
ficients ((C,) and (C)) decrease in cyber space from
late afternoon to night, while they increase in physical
space. This divergence implies that during leisure
hours, people tend to cluster more in physical space,
possibly for social activities, whereas in cyber space,
clustering decreases. These temporal variations in
human mutuality networks between cyber and physi-
cal spaces highlight a strong correlation between net-
work structure and individuals’ lifestyle states (leisure

Table 2. Properties of human mutuality networks in cyber and physical spaces.

Physical space Cyber space
Network Network in Network Network in

in the Network  the late Network in the Network the late Network
Property PSHMN morning  atnoon  afternoon  at night CSHMN morning  atnoon  afternoon  at night
The number of nodes 66,082 25,920 28,824 26,294 14,601 82,121 34,369 37,554 34,640 21,086
The number of 49,055,635 11,311,268 7,870,208 9,865,799 4,689,220 38,209,519 35,616,259 24,267,937 34,965,129 12,912,233

human mutuality

The number of edges 220,185 47,742 57,724 50,133 19,742 158,393,745 7,132,140 8,191,639 10,889,741 3,642,212
<K> 6.6 3.667 3.991 3.796 2.696 930.6 388.494 408.124 577.979 325.807
<5> 1484.6 872.783 546.087 750.422 642315 3857.6 2072.580  1292.429 2018.772 1224.721
<C> 0.449 0.533 0.538 0.555 0.599 0.429 0.351 0.365 0.418 0.393
<Cy> 0.494 0.571 0.581 0.603 0.637 0.454 0.374 0.390 0.446 0.425
D 25 59 50 63 34 9 1 14 13 12
L 7.6 18.6 15.0 17.5 13.1 24 25 25 24 25




or work). Regarding network diameter and average
shortest path length, the values in PDHMN are twice
those in PSHMN, indicating a significant difference.
However, in CDHMN, these two metrics are relatively
stable across different periods in comparison to
CSHMN. This stability is likely due to more cyber
human mutuality compared to physical space, ensur-
ing sufficient human mutuality within each period to
maintain shorter connections to others.

4.2. Network structures

Figure 5(a, b) depicts the Complementary Cumulative
Distribution Function (CCDF) of degree in cyber and
physical spaces on a log-log plot. The red points
represent empirical data used for constructing
PSHMN and CSHMN, while the purple lines depict
exponential fits based on the method by Clauset,
Shalizi, and Newman (2009). Additionally, degree dis-
tributions from random networks (green lines) and
scale-free networks (yellow lines) with the same aver-
age degree (K) as the explored networks are shown. It
is evident that for intermediate node degrees, both
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PSHMN and CSHMN follow exponential distribu-
tions (P(k) oc e ¢ with {, =0.092, {, =0.0007).
Figure 5(c, d) displays the CCDF of strength in physi-
cal and cyber spaces on a log-log plot. The strength
distributions P(s) in both spaces are fitted with

Weibull  distributions  (P(s) (i)ﬁ 1) with
B, =0.38, 5. = 0.491). The Weibull distribution,
characterized by shape parameter f3, is analyzed here
focusing on its shape rather than the scale parameter A,
which relates to data magnitude. First, the deviation of
the empirical data from random networks and scale-
free networks suggests that neither CSHMN nor
PSHMN can be purely characterized by these network
models. Moreover, both exponential and Weibull dis-
tributions exhibit heavy-tailed characteristics, indicat-
ing a universal feature of human mutuality networks
in cyber and physical spaces. This heavy-tailed struc-
ture signifies that some individuals are highly con-
nected and interactive, while others remain relatively
isolated. Comparing PSHMN and CSHMN, the expo-
nential parameter in PSHMN is larger, indicating
sharper distinctions between higher and lower degree
values and a greater departure from Poisson
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Figure 5. CCDF of the degrees in physical static human mutuality network (a) and cyber static human mutuality network (b); CCDF
of the strengths in physical static human mutuality network (c) and cyber static human mutuality network (d); scaling relation
between clustering coefficient and degree in physical static human mutuality network (e) and cyber static human mutuality

network (f).
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distribution. Conversely, the shape parameter in
CSHMN is larger, indicating a more pronounced
heavy-tailed distribution and highlighting greater net-
work vulnerability (Solé et al. 2008).

To further explore the structure of networks, we
analyzed the scaling relation between clustering coef-
ficients and degree. In Figure 5(e, f) , the red points
and blue points correspond to C,, (k) and C(k) respec-
tively. The two different purple lines are the corre-
sponding power-law fits, where C, (k) x k™7 with
y, = 0465 and y =0.126; C(k)ock™® with
8, = 0.628 and §. = 0.157. First, in both CSHMN
and PSHMN, the parameters in C, (k) is larger than
those in C(k), which suggests that people who have
higher connectivity accumulate a larger number of
human mutuality. However, the accumulating rate is
larger in physical space than that in cyber space.
Secondly, as proven by Dorogovtsev, Goltsev, and
Mendes (2002), the completely hierarchical poly-
centric networks display the scaling relation of y = 1.
The hierarchical polycentric networks describe the
characteristic of the highly clustered parts dividing
into sparsely connected parts, which are connected
by a few hubs. The finding (y, = 0.465,y. = 0.126)

suggests that the PSHMN is closer to the completely
hierarchical polycentric network.

As for the dynamic networks, the degree and
strength distributions exhibit similar patterns as the
static networks, with fit parameters differing as shown
in Table 3. For degree distributions, { ranges from
0.000987 to 0.00162 in cyber space and 0.191 to 0.359
in physical space; for strength distributions, § ranges
from 0.449 to 0.497 in cyber space and 0.315 to 0.399
in physical space. Comparing the magnitude of { and 8
separately between cyber and physical spaces, it is clear
that { is larger in physical space, while f3 is larger in
cyber space, aligning with the results of CSHMN and
PSHMN and indicating the relatively stable quantita-
tive relationship between two spaces regardless of
time. Regarding the dynamic aspect, significant varia-
tions in the temporal trends of ¢ and f can be observed
between cyber and physical spaces. The highest physi-
cal ¢ and f values occur at night and in the morning,
while the highest cyber { and S values appear at noon

and in the afternoon, suggesting a greater vulnerability
of network structures in physical space during free
time (night and morning) and in cyber space during
working time (noon and afternoon).

As for the scaling relation between clustering
coefficients and degree, similarly, all distributions
show similar patterns, which are fit by power-law
distributions. Regardless of space and time, y is
always smaller than the corresponding J, which
follows the same rule as static human mutuality
networks. Moreover, y can reflect the extent of
the hierarchical polycentric structures of networks.
As indicated in Table 3, y, >y, always exists for all

periods, which implies that hierarchical polycentric
structures are more significant in physical space
than in cyber space. As for the dynamic character-
istic, it is observed that the § and y generally move
toward different directions as time passes by: the
parameters in cyber spaces become smaller, while
they become larger in physical space.

4.3. Community properties and structures

This subsection investigated the results of community
detection in both cyber and physical spaces, revealing
notable differences and similarities. From the perspec-
tive of the number of detected communities, we iden-
tified a total of 1153 communities in physical space
and only 151 in cyber space, indicating a significant
reduction in the influence of geographical distance in
the cyber environment. This contrast underscores the
diminished impact of geographical distance in cyber
mutuality.

Further analysis was conducted by plotting the
community sizes in descending order for both cyber
and physical spaces, as illustrated in Figure 6(a, b).
Both distributions adhered to a heavy-tailed structure,
yet exhibited notable differences. In physical space,
community sizes decreased gradually, indicating
a relatively even distribution of community sizes.
Conversely, cyber space demonstrated a steep decline
from 30,000 to 10,000, signifying a more skewed dis-
tribution where only a few communities dominate in
size.

Table 3. Fit parameters to describe degree and strength distributions and scaling relations in the cyber and physical dynamic

human mutuality networks.

Physical space Cyber space

Network in the Network at Network in the late Network at  Network in the Network at Network in the late  Network at
Property morning noon afternoon night morning noon afternoon night
( (degree) 0.228 0.191 0.223 0.359 0.00158 0.00169 0.000987 0.00162
B (strength) 0.399 0.378 0.354 0.315 0.484 0.473 0.497 0.449
6 (non- -0.680 -0.627 —-0.628 —0.701 -0.244 -0.236 —0.168 —-0.171

weight)

y (weight) —0.563 —0.480 —0.477 —0.563 —0.207 —-0.195 —-0.131 —-0.122
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Figure 6. The plots of community sizes in descending order for physical (a) and cyber spaces (b). The community network for
physical (c) and cyber spaces (d), where edge color represents the number of human mutuality between communities, every node
represents one community, and node size represents the community size.

Examining the community structure from another
angle, as displayed in Figure 6(c, d), both cyber and
physical spaces displayed a core-periphery structure,
characterized by a dense central region and more dis-
persed peripheral communities. Central communities
showed strong interconnections, indicated by darker
red edges, suggesting frequent mutuality. In contrast,
connections between central and peripheral commu-
nities were weaker, as evidenced by lighter red edges.
Moreover, central communities tended to be larger,
while peripheral communities were relatively smaller.
However, some differences were observed. First, the
central communities in cyber space were larger than
those in physical space, suggesting stronger cohesion
in the cyber environment. Second, the mutuality
between central and peripheral communities differed
significantly. In physical space, there remained some
connections between central and peripheral commu-
nities, reflecting the fluidity and diversity of social
activities in real life. In contrast, in cyber space, there
was almost no connection between central and per-
ipheral communities, indicating that social mutuality
in cyber space is more concentrated and isolated.
Specifically, users in cyber space tend to interact
within a few specific communities. The discovery of
the core-periphery structure, especially the central

communities, highlights their potential role as key
hubs for information dissemination and social
influence.

In this study, we selected the five largest com-
munities from both cyber and physical spaces for
further investigation. Figure 7(a) presents a table
listing various measures for these communities. In
physical space, community sizes are relatively uni-
form, indicating a more evenly distributed mutual-
ity among users. In contrast, cyber space exhibits
a significant disparity, with the two largest commu-
nities dominating in size. This suggests that user
mutuality in cyber spaces is highly concentrated
within a few large communities. Analyzing commu-
nity density, the higher community density in cyber
space indicates more tightly-knit mutuality among
users within these communities. Regarding network
diameter and average shortest path length, the
values for each community in cyber space do not
differ significantly from those of CSHMN. The sta-
bility of network diameter and shortest path length
in cyber space across different communities sug-
gests uniformity in the structural characteristics of
cyber mutuality. Conversely, in physical space, the
network diameter of the top five communities is
roughly half that of PSHMN, and their average
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(@
Physical space Cyber space
Community ID 25 30 0 39 46 2 3 1 0 4
Community size 2488 2456 2029 1839 1719 31,214 31,174 10,929 6458 1141

Community density ~ 0.00217  0.00311  0.00249  0.00403 ~ 0.00412  0.0219  0.0260  0.0078  0.0269  0.0316

D 14 13 13 12 11 6 6 9 8 11
L 5.526 4.371 5.359 4.513 4.427 2.287 2.156 2.747 2.495 2.822
<C> 0.239 0.201 0.207 0.260 0.212 0.258 0.266 0.278 0.269 0.342
<K> 5.384 7.630 5.046 7.397 7.069  685.033 809.943  85.171  173.461  36.016
<S> 1092.591 1649.399 1002.469 1759.532 1616.570 2375.752 3249.538 780.793 2047.977  69.727

N

[ Community 25
[] Community 30
] Community 0
[J Community 39
Community 46

[] Community 2
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] Community 1
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Community 4

Figure 7. (a) The summaries of measures to characterize the five largest communities in cyber and physical spaces; the
geographical clustering of the five largest communities in physical (b) and cyber (c) spaces.

shortest path lengths are smaller than PSHMN’s.
The variation in these metrics in physical space
highlights a more diverse mutuality pattern, with
individual communities being more compact and
interconnected than the overall network. The higher
clustering coefficient in cyber communities suggests
a greater tendency for users within the same com-
munity to form tightly-knit groups, which contrasts
with the physical space where such clustering is less
pronounced. The significant fluctuations in degree
and strength within cyber space, particularly the
lower values in communities 1 and 4, indicate that
mutuality in these communities is less frequent or
less intense compared to others. This variability is
less evident in physical space, where these metrics
remain more consistent.

The geographical clustering of the five largest com-
munities in both physical and cyber spaces is visua-
lized in Figure 7(b, ¢). The spatial distribution reveals
distinct patterns: in cyber space, the geographical loca-
tions of different communities highly overlap, whereas
in physical space, community locations are relatively
dispersed. This disparity can be attributed to the
inherent characteristics of physical and cyber spaces.
In physical space, the relative geographical dispersion
of communities underscores the impact of spatial con-
straints on human mutuality. Physical proximity and
geographical features significantly influence where
and how communities form and interact. In contrast,
these spatial constraints are diminished in cyber space,

allowing for greater geographical overlap among
communities.

To further investigate the temporal dynamics of
community structures, modularity comparison and
NMI method are employed, as shown in Figure 8. The
modularity values across these periods suggest that the
overall community structures remain relatively stable
throughout the day in both spaces. However, the NMI
results reveal more significant differences: while com-
munities in physical space maintain high structural
similarity across different times, cyber space commu-
nities exhibit greater temporal variability. This contrast
likely reflects the stronger temporal regularity and spa-
tial constraints of physical activities, whereas online
behaviors are more dynamic and responsive to contex-
tual factors throughout the day.

5. Discussion

This study defines and quantifies human mutuality in
cyber space and conducts a comparative analysis of
human mutuality (weak human interaction) networks
between cyber and physical spaces from both static
and dynamic perspectives using complex network
methods based on massive URL data. Compared
with existing research, three key contributions are
made. First, a new framework is proposed that treats
websites as proxy locations in cyber space, providing
a novel approach to analyze online human activity.
This framework also creates opportunities for future
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Figure 8. (a) The modularity values of dynamic human mutuality networks in two spaces. The comparison results of the

community structures between PDHMN (b) and CDHMN (c).

research to apply advanced methods, such as multi-
layer network analysis and temporal community
detection, to further explore interactions across cyber-
physical spaces. Second, this study offers a new per-
spective to capture subtle, low-intensity social connec-
tions online, which have been largely overlooked in
previous studies focused on strong ties or explicit
communications. Third, the use of synchronized data-
sets that record user behaviors in both spaces simulta-
neously allows for a direct and reliable comparison
between cyber and physical human mutuality, addres-
sing the common problem of data mismatch in many
earlier studies. Further discussion of the findings and
limitations of the study are presented as follows.
First, our results reveal clear temporal variations
in network properties, such as average degree, aver-
age strength, and clustering coefficient, as well as in
the statistical distributions of degree and strength,
across both physical and cyber spaces. Specifically,
physical networks exhibit higher { and S values
during night and morning hours, typically asso-
ciated with individuals’ leisure time, whereas cyber
networks peak during noon and afternoon, aligning
with typical working hours. These patterns suggest
that individual daily routines and status may play
a critical role in shaping the temporal dynamics of
human mutuality structures. Beyond personal sche-
dules, external factors like the built environment
have also been shown to influence such temporal
variations (Zheng et al. 2022), highlighting the com-
plex interplay between individual behavior and
environmental context. However, fully unraveling
these multivariable influences remains
a challenging task that warrants further research.
Understanding these temporal shifts carries mean-
ingful implications. For instance, recognizing when
and where strong or weak connections dominate

could inform the optimization of urban spaces, digi-
tal platform design, or public health interventions.

Second, this study finds a stark contrast in the
average shortest path lengths between physical and
cyber spaces: approximately 7.6 in physical space,
echoing the classic “six degrees of separation” theory,
and just 2.4 in cyber space. This result highlights the
exceptional interconnectedness of cyber space, where
individuals are, on average, only a few steps away from
anyone else. Such heightened connectivity in cyber
space has profound implications. On one hand, it
enhances the speed and reach of beneficial informa-
tion flow. Critical updates like disaster warnings,
health advisories, or public service announcements
can rapidly reach vast populations, potentially save
lives and reduce societal disruptions. On the other
hand, the same structural advantages enable the swift
spread of misinformation, magnifying risks of public
panic, reputational harm, and social instability. These
dual effects stress the need for effective governance
mechanisms that not only promote the advantages of
rapid communication but also mitigate its vulnerabil-
ities. Beyond speed, this compressed network struc-
ture also carries important implications for social
equity. By reducing the number of steps required to
bridge diverse individuals and groups, cyber space
holds the potential to narrow information gaps, ensur-
ing that marginalized or geographically isolated com-
munities have better access to timely, critical
information. This highlights an opportunity to lever-
age online networks to support more inclusive knowl-
edge dissemination, public health outreach, and social
integration, ultimately fostering fairer, more resilient
societies.

Third, this study confirms that heavy-tailed dis-
tributions of degree and strength are a fundamental
feature of human mutuality networks in both cyber
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and physical spaces, regardless of time. This consis-
tent presence of heterogeneity means that while most
individuals engage in only a few weak interactions,
a small number serve as highly connected hubs,
a pattern widely observed in prior research on both
online and offline networks (Hu et al. 2020; Zignani
et al. 2014). It is further found that this uneven
structure manifests differently across spaces.
Physical human mutuality networks display
a stronger hierarchical polycentric structure, as
revealed by the relationship between clustering coef-
ficients and degree. This is likely shaped by urban
planning strategies designed to distribute popula-
tions and resources across multiple centers to miti-
gate congestion and housing pressures. The result is
a spatially localized clustering pattern, where mutual
interactions concentrate within distinct urban hubs.
In contrast, cyber space shows a weaker polycentric
tendency, as online interactions are freed from the
constraints of geography, time, and physical infra-
structure, allowing connections to form fluidly
across diverse locations and contexts. These findings
are essential for designing resilient systems, whether
optimizing transportation networks, managing
crowd flows, or safeguarding online platforms
against systemic risks.

Fourth, this study reveals clear differences in the
community structures of cyber and physical human
mutuality networks: cyber space features fewer but
larger communities (151), while physical space con-
tains many more, yet smaller communities (1151).
This contrast highlights how cyber space reduces the
constraints of geography, enabling broader, more
globally connected communities, whereas physical
space remains shaped by localized, fragmented clus-
ters tied to physical proximity. These structural differ-
ences carry meaningful implications. In cyber space,
weaker local clustering and the dominance of a few
large communities can accelerate the uncontrolled
spread of misinformation, as fewer tightly-knit sub-
groups exist to absorb, question, or slow down false
narratives. Conversely, the stronger localized cluster-
ing in physical communities promotes cohesion and
resilience, supporting targeted interventions such as
neighborhood-based public health campaigns or dis-
aster response efforts. Beyond structural patterns, our
findings also suggest that cyber communities may
reflect underlying socioeconomic characteristics.
Unlike physical communities, which often form
around shared geography, cyber communities connect
individuals who may differ in age, occupation, or
location but converge through shared online beha-
viors, such as visiting the same websites at similar
times. These latent similarities point to the potential
of cyber mutuality as a lens to detect hidden social
patterns, offering valuable insights for personalized
digital marketing, and inclusive policy design aimed

at bridging social divides across both physical and
digital spaces.

The findings of this study can also be linked to key
theories in urban sociology. Castells’ concept of the
“network society” highlights how information flows
and social ties extend beyond physical proximity,
which is echoed in this study’s observation of over-
lapping cyber communities and the shorter path
lengths that facilitate faster information flow
(Castells 2000). Bauman’s idea of “liquid modernity,”
describing fluid and transient relationships, is
reflected in the flexible and shifting patterns of cyber
interactions identified in the study (Bauman 2013).
Differences in network structures align with
Sennett’s view on community and individualism: phy-
sical communities are shaped by shared spaces, while
cyber communities are more individual-driven and
less spatially bound (Sennett 2017). The weak human
interactions analyzed in this study also parallel
Turkle’s work on how digital technologies reshape
everyday connections, with co-visiting behaviors
representing subtle but meaningful forms of online
engagement (Turkle 2011). Finally, the core-
periphery structures found in cyber communities
may signal shared socio-economic characteristics
among users, resonating with Sassen’s perspective on
how digital spaces reflect broader urban and economic
patterns (Sassen 2008).

Beyond the current analysis, the scalability of the
proposed framework is an important consideration,
particularly in light of the growing availability of large-
scale mobile big data. Although this study focuses on
a single day’s dataset, the methodological design,
including the construction of weak human interaction
networks based on spatiotemporal co-presence and
the application of traditional network analysis techni-
ques such as community detection, is inherently scal-
able. These methods have been widely applied in large-
scale mobility studies and are computationally effi-
cient. Moreover, the framework is adaptable to various
types of cyber datasets beyond website visit records,
such as social media platforms, where weak interac-
tions can be similarly defined through shared content
engagement within short time windows. From
a technical perspective, the modular structure of the
framework allows for parallel processing across tem-
poral intervals or spatial regions, supporting its exten-
sion to distributed computing environments for
handling larger datasets.

Nevertheless, it is important to acknowledge the
limitations of this study. This study is based on data
from a single day, which limits the ability to explore
temporal dynamics in human mutuality networks.
While the one-day dataset is sufficient to demonstrate
the feasibility of the proposed framework, it does not
capture longitudinal patterns or structural evolution
over time. If multi-day datasets become available in



the future, further research could examine the tem-
poral stability and evolution of cyber-physical human
mutuality networks, such as analyzing differences
between weekdays and weekends, identifying seasonal
or periodic variations, detecting structural changes
triggered by major events such as the COVID-19 pan-
demic, and identifying specific structural roles of cen-
tral and peripheral communities in cyber and physical
spaces. To enhance the understanding of their tem-
poral dynamics, future studies could also incorporate
interactive network dashboards or animated commu-
nity evolution maps, which would facilitate intuitive
exploration of the evolution of network properties and
community structures, particularly when extended
time-series data becomes available. Future work will
also focus on applying the framework to long-term
and large-scale datasets to evaluate its performance
and optimize computational efficiency. What’s more,
while the URL data captures synchronized cyber and
physical activities, future research could also further
enhance the understanding of cyber-physical human
mutuality by integrating additional data sources, such
as social media interactions and location-based ser-
vices from diverse regions and periods, to validate and
extend these findings. Such comparative studies would
not only provide deeper insights into how weak
human interactions manifest across varying platforms,
contexts, and regions, but also offer richer contextual
information, like individual activity purposes or social
attributes, to further explore interaction mechanisms.

6. Conclusions

This study develops an analytical framework to quantify
and compare human mutuality, defined as a form of
weak interaction, across physical and cyber spaces. By
constructing human mutuality networks from extensive
URL data that capture both online and offline behaviors,
the study proposes an innovative method of substituting
websites for locations in cyber space. This framework
can also apply to other forms of behavioral data, such as
social media data, enabling further comparative research
on human interactions across multiple digital contexts.

The analysis of these networks reveals several key
findings that contribute to the theoretical understand-
ing of human interactions in dual spaces. First, the
average shortest path length of 7.6 in physical space
supports the classic six degrees of separation theory,
while the shorter path length of 2.4 in cyber space
suggests faster and broader information dissemination,
contributing to the reduction of information gaps
between users. Second, the presence of heavy-tailed
degree and strength distributions in both spaces, con-
sistent across time, reinforces findings from previous
studies on heterogeneous network structures, while
expanding their validity to comparable dual-space data-
sets. Third, temporal differences between the networks,
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reflected in variations in network properties and distri-
bution coefficients, possibly reflect how daily routines,
work schedules, and leisure activities shape interactions
in physical and cyber spaces. Finally, the core-periphery
structures found in both spaces reveal how central
groups are strongly connected while peripheral users
are more loosely linked. In cyber space, these commu-
nity structures may also reflect shared socioeconomic
characteristics, as individuals within the same cyber
community often exhibit similar backgrounds, interests,
or consumption behaviors, highlighting cyber space as
a parallel dimension of social life.

Future research could extend this framework by
incorporating more diverse behavioral datasets and
applying the methodology across different geographical
regions and longer periods. Such work would contribute
to a more comprehensive understanding of human inter-
actions in increasingly integrated cyber-physical spaces.
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