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Exploring human mutuality in cyber and physical spaces using mobile big data 
and network analysis
Minglei Liao and Xintao Liu

Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China

ABSTRACT
Partially due to the limited access to datasets of human activities in cyber and physical (online 
and offline) spaces, the exploration of weak human interactions, defined as human mutuality in 
this work (i.e. co-location in physical space, and co-domain in cyber space) and their networks 
in the two spaces have been constrained to some extent in recent years. To bridge this gap, this 
study establishes a unified framework for directly comparing individual-level human mutuality 
networks across physical and cyber spaces, based on large-scale Uniform Resource Locators 
(URLs) data from tens of thousands of users in Jilin, China. Within this framework, human 
mutuality networks are constructed with users as nodes and mutuality events as edges, based 
on shared locations or shared website visits. The networks are systematically analyzed through 
three dimensions: fundamental network properties (such as clustering coefficient and average 
shortest path length), degree and strength distributions, and community structures. The results 
show distinct structural differences between the two spaces. Cyber space displays 
a significantly shorter average shortest path length (2.4) than the physical space (7.6), suggest
ing faster information transmission and the potential to alleviate digital inequalities by accel
erating access to resources. Both networks present heavy-tailed degree distributions, 
indicating heterogeneous structures shaped by a few highly connected individuals. 
Furthermore, while physical space exhibits numerous small communities with strong local 
clustering, cyber space contains fewer but larger communities, with weaker local cohesion. This 
reduced local clustering may increase the risk of rapid misinformation diffusion. Additionally, 
the formation of cyber communities based on shared online behaviors reveals potential 
socioeconomic similarities among users despite differences in their physical attributes. 
Together, these insights offer a foundation for understanding human interactions across hybrid 
spaces and inform strategies for managing cyber and physical social dynamics.
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1. Introduction

As digital technology advances, human activities (e.g. 
shopping, banking) are increasingly transitioning 
from offline (physical space) to online (cyber space), 
resulting in the change of human interaction to 
a mixed mode, i.e. co-location in physical space and 
co-domain (website) in cyber space simultaneously 
(Assimakopoulos 2000; Liu et al. 2021). Based upon 
human interaction, different human interaction net
works can be constructed based on the locations and 
domains that users visited in chronological order in 
cyber and physical spaces, respectively.

In physical space, human interaction is commonly 
divided into strong interactions (e.g. face-to-face 
communication) and weak interactions (e.g. co- 
presence at a shared location) (Liu et al. 2023a; Liu 
et al. 2023b; Zhang et al. 2023). To model these 
interactions, early research focused on individual- 
level behaviors using statistical models such as 
Brownian motion, Lévy flight, continuous-time 

random walk, and preferential return. However, 
these models are often limited in capturing large- 
scale spatial patterns and heterogeneity. To address 
these gaps, population-level and place-based models, 
including gravity, radiation, intervening opportu
nities, and social-based models, have been developed, 
offering insights into flows and relationships across 
regions (Barbosa et al. 2018; Schneider et al. 2013). 
These models have been widely applied in fields such 
as migration (Simini et al. 2012), trade (Silva and 
Nelson 2012), and tourism demand (Morley, 
Rosselló, and Santana-Gallego 2014). In recent 
years, with the rise of big data, human interaction 
models have further evolved by integrating multi- 
source datasets, such as demographic and social 
media data (Iacopini, Karsai, and Barrat 2024), and 
advanced methods such as machine learning and 
deep learning, enabling more accurate and individua
lized predictions of complex spatiotemporal beha
viors (Gao et al. 2024; Liu et al. 2024; Shi et al.  
2024). Meanwhile, weak interactions have gained 
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growing attention as a new form of social phenom
enon. A notable example of the long-term influences 
of weak interaction is place identity and attachment, 
where individuals from the same hometown are more 
likely to form connections in metropolitan regions.

In cyber space, both strong interactions (e.g. 
direct communication through phone calls or mes
saging) and weak interactions (e.g. passive co- 
visitation of the same websites) may exist and 
exert influence. Given the prevalence of such weak 
forms of interaction, it is hypothesized that weak 
interactions in cyber space, such as co-visiting the 
same websites, might play a crucial role in reflecting 
human demographic and socio-economic attributes, 
facilitating information diffusion, and potentially 
bridging digital inequality. This hypothesis moti
vates the exploration of human mutuality in cyber 
space and further supports the comparative analysis 
of human mutuality across physical and cyber 
spaces.

However, most research focuses predominantly on 
human interaction in physical space, often oversimpli
fying or neglecting their cyber counterparts. Although 
some studies have examined strong cyber interaction 
using data from social platforms like Weibo and Zcool 
(Fang et al. 2020; He, Wang, and Zeng 2022; Hu et al.  
2020), weak interaction in cyber space remains under
explored. Furthermore, studies on cyber human inter
action are typically conducted at an aggregate level, 
such as city-level, neglecting the characteristics of 
human interaction at the individual level. Despite 
extensive research on cyber and physical human inter
action networks separately, there’s a scarcity of studies 
that directly and quantitatively compare these two types 
of networks for the same group of people at the indivi
dual level. This gap, largely due to the lack of datasets 
capturing both cyber and physical interaction for the 
same users, is critical for advancing current research 
and addressing practical concerns, such as managing 
information dissemination.

Additionally, aside from the examination of static 
networks, there’s been growing attention to the tem
poral patterns of networks. While many studies have 
explored the temporal patterns of mobility networks, 
few have delved into the potential dynamism of 
human interaction. For example, studies have shown 
strong correlations between community transforma
tions and cycles of human movement (Walsh and 
Pozdnoukhov 2011), and notable variations in tem
poral characteristics of human mobility across differ
ent cities (Sparks et al. 2022; Zhou et al. 2016). 
Nevertheless, given that human interaction might 
have significant changes during different periods, 
comprehending the temporal characteristics of 
human interaction networks is essential to grasping 
the dynamics of human behavior and completing the 
existing literature.

To address the research gaps, the study first defines 
weak human interaction in cyber and physical spaces 
as human mutuality, and then constructs the corre
sponding networks, which are further compared with 
reference networks and between two spaces. This 
study offers several distinct contributions that set it 
apart from previous research: (1) Our work theoreti
cally defines weak human interaction (hereafter 
referred to as human mutuality) in cyber and physical 
spaces based on currently available data, URL; (2) the 
utilization of URL data in this study effectively 
resolves data mismatch problems, enabling a direct 
comparison of human mutuality network between 
cyber and physical spaces and providing reliable com
parative results; (3) the characteristic of human 
mutuality network is investigated and compared 
between spaces at the individual level; (4) this study 
further examines the temporal characteristic of net
work structures in cyber and physical spaces, using 
dynamics human mutuality networks. The experi
ments were conducted in Jilin Province, where unique 
users extracted from the URL datasets were considered 
as nodes in the networks. The edges in the cyber and 
physical spaces were determined based on the order of 
time, location, and website records following specified 
rules outlined in the methodology section. Four types 
of networks were built, including static human 
mutuality networks in cyber and physical spaces con
taining all data used in the study, as well as dynamic 
human mutuality networks based on partial data 
within different periods. These networks were evalu
ated and compared from three perspectives: network 
property, network structure, and community 
detection.

The remainder of the paper is organized as follows: 
Section 2 introduces the study area and URL datasets. 
Section 3 presents how human mutuality networks are 
constructed, and the evaluation methods. Section 4 
reports the results. Section 5 discusses the main find
ings, limitations, and suggestions for future research, 
and conclusions are drawn in Section 6.

2. Study area and datasets

2.1. Study area

This study was conducted in Jilin Province, located in 
northeastern China, bordering Russia and North 
Korea, as depicted on the left side of Figure 1. In the 
1980s, Jilin Province experienced significant industrial 
growth and became a prominent industrial region. 
However, subsequent national policy changes led to 
the relocation of resources and talent to southern 
China, resulting in a gradual decline in Jilin’s devel
opment compared to other regions. Jilin Province 
covers approximately 191,202 km2 and has 
a population of 24.07 million according to the seventh 
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census. It comprises nine secondary administrative 
regions, represented by colorful asterisks on the right 
side of Figure 1, with Changchun as the capital city. 
The figure also shows the distribution of 12,800 cellu
lar towers (depicted as blue dots) across the province, 
highlighting significant clusters in the more developed 
areas.

2.2. Dataset

In this study, human mutuality is defined as a form of 
weak human interaction, representing the subtle influ
ence of co-presence in both physical and cyber space. 
To explore human mutuality in cyber space, Uniform 
Resource Locator (URL) data is used in the study, 
which is one type of mobile phone data. The process 
of generating URL data is displayed in Figure 2. Users’ 
smart mobile devices can visit the internet through 

signal communication with cellular towers. These 
towers are maintained by the service providers, 
which not only provide access to the public network 
but also monitor users’ internet usage. The metadata 
of usage is stored in the URL database, which includes 
all information from the data transmission chain of 
“user devices- cellular towers- servers of websites.” 
However, to safeguard individuals’ privacy, only par
tial data is utilized as URL data in the study, as 
depicted in Table 1. The User ID serves as a unique 
identity for each user when accessing mobile internet; 
CELL ID records the users’ connected cellular towers; 
Longitude and Latitude are the geographical coordi
nates of the cellular towers; Request Time records the 
time of website access, and the URLs encompass the 
domain of the websites visited by the users.

Given the sensitive nature of mobile big data, strict 
privacy protection measures were implemented in this 

Figure 1. The study area of Jilin Province in the northeast of China (left), and the 9 secondary administrative regions and 12,800 
cellular towers in blue dots (right).

Figure 2. The process of the generation of URL data.

Table 1. The sample from Uniform Resource Locator data.
User ID CELL ID URLs Request time Longitude Latitude

46000**83987 7162 szextshort.sweixin.qq.com 2016–12–20 00:39:07 123.94101 43.79141
46007**00041 40083 mmsns.qpic.cn 2016–12–20 00:39:03 128.91792 43.11605
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study. The dataset was provided by China Unicom, 
with all personally identifiable information, such as 
user IDs, device identifiers, and other sensitive attri
butes, fully anonymized and masked at the source in 
accordance with relevant data protection regulations. 
Prior to analysis, an additional layer of data masking 
and aggregation was applied to further minimize any 
potential risk of individual identification, as detailed 
in Table 1. The final dataset used in this study contains 
only anonymized records that cannot be traced back 
to any specific individual. All procedures comply with 
ethical standards to ensure the privacy and security of 
user information throughout the research process.

The data used in this research was collected on 
Tuesday, 20 December 2016, and consists of approxi
mately 20 million records, from which we extracted 
84,052 users and 12,800 cell towers. In physical space, 
the geographical locations of connected cellular towers 
can serve as an estimate of their physical locations. 
Therefore, the data comprising User ID, CELL ID, 
Longitude, Latitude, and Request Time are used for 
the construction of a physical human mutuality net
work, while the data comprising User ID, CELL ID, 
URLs, and Request Time are used for the construction 
of a cyber human mutuality network.

3. Methodology

A framework has been proposed to define and char
acterize human mutuality networks in cyber and phy
sical spaces in this study. The framework includes 
three stages, as displayed in Figure 3. The first stage 
defines human mutuality in cyber and physical spaces 
and constructs corresponding networks from URL 
data. The second stage characterizes these networks 
from three aspects: network property, network struc
ture, and community detection. The third stage 
involves conducting separate comparisons of network 

structures, first between cyber and physical spaces, 
and second between dynamic and static aspects.

3.1. Constructing human mutuality networks

This subsection details the process of defining human 
mutuality and constructing static and dynamic human 
mutuality networks in both cyber and physical spaces 
using massive URL data. It also includes direct com
parisons of human mutuality definitions in cyber and 
physical spaces. Additionally, two reference networks 
are introduced and constructed as baselines to evalu
ate the structures of the human mutuality networks.

3.1.1. Static human mutuality networks
Static human mutuality networks are constructed 
using all records saved within a day. These networks 
include two types: Cyber Static Human Mutuality 
Network (CSHMN) and Physical Static Human 
Mutuality Network (PSHMN), both of which are 
undirected and weighted. The definitions for 
CSHMN and PSHMN are as follows: 

where V represents all nodes and E represents all 
edges. In this study, V is defined as all unique users 
extracted from the URL data, as presented in 
Equation (2), and E represents all human mutuality 
between users, as presented in Equation (3). Physical 
human mutuality is defined as weak interaction 

Figure 3. The workflow of the proposed analytical framework, including three stages (i.e. constructing human mutuality networks, 
characterizing human mutuality networks, and comparative results).
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between different users who have visited the same 
place within a short time frame (Zheng 2011). Cyber 
human mutuality is similarly defined, based on the 
premise that visited websites and locations both reflect 
people’s interests, cognition, and culture. Therefore, 
cyber human mutuality is defined as weak interaction 
between different users who visit the same websites 
within a short time frame. The time interval for 
mutuality in physical space is set to 1 minute, reflect
ing typical pause times at locations according to pre
vious studies (Alessandretti et al. 2017), while in cyber 
space, it is set to 1 second to account for the high 
frequency of online activities.

The example in Figure 4 illustrates the definitions 
of human mutuality in cyber and physical spaces. In 
Figure 4(a), we have the mutuality between USER, 
WEBSITE, and PLACE. For instance, tA1 denotes the 
first visit of User A to Google, while TA1 represents the 
first visit of User A to Place X, and so on. The corre
sponding human mutuality networks are shown in 
Figure 4(b, c). In Figure 4(b), an edge is formed 
between User A and User B because both of them 
visited Google for the first time. This pattern con
tinues for other users as well, such as User B and 
User C. In Figure 4(c), an edge with a weight of 2 is 
created between User B and User C since they visited 
Place X for the first time and Place Y for the second 
time. Similar patterns are observed for the rest edges 
in the network.

3.1.2. Dynamic human mutuality networks
To investigate the temporal variation of human 
mutuality networks between cyber and physical 
spaces, dynamic human mutuality networks are con
structed, comprising a series of subnetworks. The con
struction process for these subnetworks is similar to 

that of static networks, with the primary difference 
being the data utilized. These subnetworks are built 
by aggregating data from different periods separately. 
The mathematical definition of dynamic human 
mutuality networks is as follows: 

where t is the number of time intervals, Vt;Etð Þ repre
sents one subnetwork constructed from the data 
belonging to the t period, Vt includes all active users, 
Et includes all human mutuality during this period, 
CDHMN represents cyber dynamics human mutuality 
networks, while PDHMN represents physical 
dynamics human mutuality networks. In this study, 
four periods are selected (Zhang, Shen, and Zhao  
2021): 7 a.m. to 10 a.m. (morning); 11 a.m. to 2 p.m. 
(noon); 5 p.m. to 8 p.m. (late afternoon); 9 p.m. to 12 
a.m. (night).

3.1.3. Reference networks
Two reference networks, namely random networks 
and scale-free networks, are included in this study as 
they represent two extreme types of network struc
tures, providing a basis for cross-comparisons. The 
random network is entirely homogeneous, generated 
by purely random connections between different 
nodes. Typically, these networks have small clustering 
coefficients, and their degree distributions follow 
a Poisson distribution (Erdős and Rényi 1960; Frieze 
and Karoński 2016). In this study, random networks 
are generated by random walks between nodes, with 
the average node degrees matching those of the 
explored networks. On the other hand, the scale-free 
network is a typical heterogeneous network, where 
a few nodes account for many connections. This 

Figure 4. The definition of human mutuality in cyber and physical spaces.
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imbalance is reflected in the heavy-tailed degree dis
tribution, a key characteristic of scale-free networks 
(Hein, Schwind, and König 2006). Another important 
feature is the negative correlation between the cluster
ing coefficient and node degree (Morita 2006). The 
scale-free networks in this study are constructed based 
on preferential attachment, with the node distribution 
following a power law (Barabási and Albert 1999).

3.2. Characterizing human mutuality networks

The human mutuality networks in the study are char
acterized in three aspects: network properties include 
the number of nodes, the number of human mutuality, 
the number of edges, node degree, node strength, 
clustering coefficient, average shortest path length, 
and network diameter; network structures include 
degree distribution, strength distribution, and scaling 
relation between degree and clustering coefficient, 
which are further compared with two reference net
works; community detection to examine the similari
ties and difference of community structure in cyber 
and physical spaces. Additionally, all analyses are per
formed on both static and dynamic networks.

3.2.1. Network property and structure
3.2.1.1. Node degree Ki and degree distribution 
P(k). Node degree and degree distribution are two 
important measures to reflect the heterogeneities of 
networks (Borgatti et al. 2009). Node degree measures 
the number of connections each individual (node) has 
in the network. For example, in a physical setting, it 
represents how many different people a person shares 
a public space with during a certain period. In cyber 
space, it reflects how many other users someone is 
indirectly connected to through co-visiting the same 
websites. The nodes with higher degrees represent 
people who are more connected in the networks. 
Because the human mutuality networks in the study 
are undirected, the in-degree and out-degree are not 
considered. The mathematical definition of node 
degree ki is shown in Equation (5), which measures 
the number of nodes to which node i is connected. 

In this formulation, vi and vj represent nodes i and j in 
the network, V denotes the set of all nodes, and the 
summation iterates over all nodes j 2 V except i. The 
term N vi; vj

� �
is an indicator function that equals 1 

when a link exists between node vi and node vj and 0 
otherwise. Consequently, ki quantifies the total number 
of direct neighbors of node i. The degree distribution 
P kð Þ characterizes the proportion of nodes with degree k 
in the human mutuality networks. In the random net
work, P kð Þ is a Poisson distribution; in the scale-free 
networks, P kð Þ is a power-law distribution.

3.2.1.2. Node strength si and strength distribution P 
(s). The node strength is employed to reflect the 
degree of weight networks. Node strength captures 
the intensity of connections, considering how fre
quently the ties are between individuals. For 
instance, in physical space, this could reflect how 
frequently two people stay together in the same 
place and same time, while in cyber space, it might 
indicate how often two users browse the same web
site within overlapping time windows. Higher 
strength suggests more repeated interactions. The 
nodes with high strength represent people who 
have more mutuality with others and are possibly 
the hub nodes. The mathematical definition of node 
strength si is displayed in Equation (6), which mea
sures the sum of the weights of the edges connected 
to node i. The strength distribution P sð Þ captures the 
number of nodes with a specific strength s in the 
human mutuality networks.

In this equation, vi and vj denote nodes i and j in 
the network, V represents the set of all nodes, and 
the summation iterates over all nodes j 2 V except 
i. The term W vi; vj

� �
denotes the weight of the 

connection between nodes vi and vj, which reflects 
the interaction intensity or frequency between the 
two nodes. Consequently, si quantifies the total 
interaction weight associated with node i. The 
strength distribution P sð Þ then describes the pro
portion of nodes with strength s in the human 
mutuality networks.

3.2.1.3. Local C(v) and average clustering coefficients 
<C>. The clustering coefficients measure the degree 
of clustering of the networks. Two types of clustering 
coefficients are adopted in the study. The local cluster
ing coefficients measure the likelihood that two of an 
individual’s contacts are also connected to each other, 
forming small groups or “triangles” in the network. 
For example, in physical space, high clustering may 
occur in office environments where many colleagues 
regularly meet, while in cyber space, lower clustering 
suggests that users who browse the same website are 
less likely to have common browsing behaviors else
where. This is important because lower clustering in 
cyber space could reflect weaker online community 
cohesion and may affect phenomena like the rapid 
spread of misinformation, where tightly-knit groups 
often amplify messages. The mathematical definition 
of locally weighted clustering coefficients is shown in 
Equation (7), where wi;j is the weight between node i 
and node j, aij are the elements of the adjacency matrix 
(Barrat et al. 2004). 
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The second type is the average clustering coeffi
cient, which is used to quantify the density of the 
entire network. It is calculated based on 
Equation (8), where N is the number of nodes in the 
networks. 

3.2.1.4. Average shortest path length L and network 
diameter D. The average shortest path length in 
a network is a measure of the average number of 
steps along the shortest paths for all possible pairs of 
nodes. It provides insight into the typical separation 
between nodes, reflecting how efficiently information 
or influence can spread across the network (Watts and 
Strogatz 1998), such as the average number of people 
you will need to connect with a stranger. For example, 
in physical space, it might reflect how many shared 
locations link two otherwise unconnected people, 
while in cyber space, it shows how quickly information 
or behaviors could spread through shared online 
activities. Shorter paths imply more efficient connec
tivity. Mathematically, it is the sum of the shortest 
path lengths between all pairs of nodes divided by 
the number of such pairs, as displayed in 
Equation (9). Network diameter, on the other hand, 
is the length of the longest shortest path between any 
two nodes in the network, as shown in Equation (10). 
It represents the maximum distance between any pair 
of nodes, indicating the extent of the network. A larger 
diameter suggests that the network is more spread out, 
while a smaller diameter indicates a tightly connected 
structure. In physical space, this could imply how far 
apart different groups are in terms of shared locations, 
whereas in cyber space, it may reflect the maximum 
steps needed for information to potentially reach all 
users. Both metrics are fundamental in the study of 
network structure, helping to understand connectivity 
and the potential speed of communication within the 
network. 

where n represents the number of nodes in the net
work, and d i; jð Þ is the shortest path length between 
node i and node j.

3.2.1.5. Clustering coefficients versus degree. The 
weighted clustering coefficient Cw kð Þ of the nodes 
with a specific degree k is calculated based on 
Equation (11). 

In the equation, ki denotes the degree of node i, and 
summation is performed over all nodes i with degree 
ki ¼ k. C ið Þ represents the weighted clustering coeffi
cient of node i, and N kð Þ is the total number of nodes 
with degree k, serving as a normalization factor to 
compute the average clustering coefficient for nodes 
of degree k. The scaling relationship between the 
weighted clustering coefficient and degree is expressed 
in Equation (12): 

where γ is a scaling exponent that captures how the 
clustering coefficient changes as a function of node 
degree. A decreasing scaling relation suggests that 
denser clusters tend to have lower connectivity.

3.2.2. Community detection
Community detection is a fundamental step in net
work analysis for understanding the group structure of 
networks. There are many algorithms designed for 
community detection, such as Infomap (Edler, 
Bohlin, and Rosvall 2017) and the edge betweenness 
method (Newman and Girvan 2004). Considering the 
computation efficiency, the method proposed by 
Blondel et al. (2008) is selected in this study, which is 
a heuristic method based on modularity optimization. 
Modularity is proposed by Newman and Girvan 
(2004), and designed to evaluate how good 
a particular partition of a network is. Communities 
are analyzed from three aspects: community structure, 
community properties, and geographical clustering. 
To quantify the similarity of community structures 
across different time intervals, this study employs the 
Normalized Mutual Information (NMI) method pro
posed by Danon et al. (2005). NMI is a widely used 
metric for comparing community partitions in com
plex networks, with values ranging from 0 to 1. An 
NMI value close to 1 indicates a high degree of simi
larity between two community structures, while 
a value near 0 reflects significant differences. By apply
ing NMI, the temporal stability of community struc
tures in both cyber and physical human mutuality 
networks can be systematically assessed. The geogra
phical clustering is determined through the following 
process: first, each user is mapped to a geographical 
location based on the center point of their activity 
space in physical space; second, Kernel Density 
Estimation (KDE) is performed for each community, 
with the bandwidth set to the average distance of all 
nearest points based on the head/tail break (Jiang  
2013), finally, the geographical clustering for each 
community is defined as areas with a density value 
greater than three standard deviations, as shown in 
Equation (13). 
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where Dc;i is the KDE value of i-th unit within the cth 
community, and σc is the standard deviation of all 
units within the community.

4. Results

The following three subsections compare the human 
mutuality networks between cyber and physical spaces 
from three aspects: 1) network properties in subsec
tion 4.1, such as clustering coefficient, degree, 
strength, average shortest path length, and network 
diameter, 2) network structures in subsection 4.2, 
and community properties and structures in subsec
tion 4.3

4.1. Network properties

We first present the results of a comparative analysis 
between the CSHMN and the PSHMN. As shown in 
Table 2, PSHMN comprises 66,082 nodes, 220,185 
edges, and 49,055,635 weights, indicating frequent 
human mutuality despite relatively lower connectivity. 
This suggests that human mutuality in physical space 
primarily occurs among acquaintances or familiar 
individuals. Additionally, PSHMN exhibits 
a significantly larger clustering coefficient 
( Cwp
� �

¼ 0:494) compared to the corresponding ran
dom network ( Cwh i ¼ 0:0113). In contrast, CSHMN 
consists of 82,121 nodes 38,209,519 edges, and 
158,393,745 weights, indicating more frequent 
mutuality in cyber space compared to physical space. 
CSHMN also exhibits larger average degree and 
strength ( Kh i ¼ 930:6, Sh i ¼ 3857:6) compared to 
PSHMN ( Kh i ¼ 6:6, Sh i ¼ 1484:6), suggesting more 
frequent mutuality in cyber space likely due to the 
absence of geographic constraints. However, 
CSHMN has a relatively smaller clustering coefficient 
( Cwch i ¼ 0:454) compared to PSHMN, although it is 
still significantly larger than that of the cyber static 
random network ( Cwh i ¼ 9:801� 10� 5). This 

indicates evident clustering in both spaces, with 
a more pronounced effect in physical space. 
Regarding the average shortest path length, PSHMN 
has an average of 7.6, roughly adhering to the concept 
of six degrees of separation, which posits that all 
people are six or fewer social connections apart. In 
contrast, CSHMN exhibits a significantly shorter aver
age shortest path length of 2.4, indicating that indivi
duals need only an average of three social connections 
to connect with anyone in cyber space. Furthermore, 
the network diameter in CSHMN is one-third that of 
PSHMN, underscoring the more interconnected nat
ure of cyber space compared to physical space.

In this subsection, we present a comparative quan
titative analysis of network properties between cyber 
dynamic human mutuality networks (CDHMN) and 
physical dynamic human mutuality networks 
(PDHMN). Table 2 provides an overview of the sta
tistical properties of PDHMN and CDHMN. 
Generally, the statistical properties in cyber space, 
except for clustering coefficients, network diameter, 
and average shortest path length, exhibit larger mag
nitudes compared to those in physical space, consis
tent with findings from static networks. Regarding 
dynamic characteristics, the trends of these statistical 
measures between the two spaces are generally similar, 
with four exceptions. First, the number of edges and 
average degree from noon to late afternoon show an 
increasing trend in cyber space and a decreasing trend 
in physical space. This difference suggests that indivi
duals engage more in cyber human mutuality during 
work hours and reduce physical human mutuality, 
contrasting with leisure times. Second, clustering coef
ficients ( Cwh i and Ch i) decrease in cyber space from 
late afternoon to night, while they increase in physical 
space. This divergence implies that during leisure 
hours, people tend to cluster more in physical space, 
possibly for social activities, whereas in cyber space, 
clustering decreases. These temporal variations in 
human mutuality networks between cyber and physi
cal spaces highlight a strong correlation between net
work structure and individuals’ lifestyle states (leisure 

Table 2. Properties of human mutuality networks in cyber and physical spaces.

Property

Physical space Cyber space

PSHMN

Network 
in the 

morning
Network 
at noon

Network in 
the late 

afternoon
Network 
at night CSHMN

Network 
in the 

morning
Network 
at noon

Network in 
the late 

afternoon
Network 
at night

The number of nodes 66,082 25,920 28,824 26,294 14,601 82,121 34,369 37,554 34,640 21,086
The number of 

human mutuality
49,055,635 11,311,268 7,870,208 9,865,799 4,689,220 38,209,519 35,616,259 24,267,937 34,965,129 12,912,233

The number of edges 220,185 47,742 57,724 50,133 19,742 158,393,745 7,132,140 8,191,639 10,889,741 3,642,212
<K> 6.6 3.667 3.991 3.796 2.696 930.6 388.494 408.124 577.979 325.807
<S> 1484.6 872.783 546.087 750.422 642.315 3857.6 2072.580 1292.429 2018.772 1224.721
<C> 0.449 0.533 0.538 0.555 0.599 0.429 0.351 0.365 0.418 0.393
<CW> 0.494 0.571 0.581 0.603 0.637 0.454 0.374 0.390 0.446 0.425
D 25 59 50 63 34 9 11 14 13 12
L 7.6 18.6 15.0 17.5 13.1 2.4 2.5 2.5 2.4 2.5
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or work). Regarding network diameter and average 
shortest path length, the values in PDHMN are twice 
those in PSHMN, indicating a significant difference. 
However, in CDHMN, these two metrics are relatively 
stable across different periods in comparison to 
CSHMN. This stability is likely due to more cyber 
human mutuality compared to physical space, ensur
ing sufficient human mutuality within each period to 
maintain shorter connections to others.

4.2. Network structures

Figure 5(a, b) depicts the Complementary Cumulative 
Distribution Function (CCDF) of degree in cyber and 
physical spaces on a log-log plot. The red points 
represent empirical data used for constructing 
PSHMN and CSHMN, while the purple lines depict 
exponential fits based on the method by Clauset, 
Shalizi, and Newman (2009). Additionally, degree dis
tributions from random networks (green lines) and 
scale-free networks (yellow lines) with the same aver
age degree Kh i as the explored networks are shown. It 
is evident that for intermediate node degrees, both 

PSHMN and CSHMN follow exponential distribu
tions (P kð Þ / e� ζk with ζp ¼ 0:092, ζc ¼ 0:0007). 
Figure 5(c, d) displays the CCDF of strength in physi
cal and cyber spaces on a log-log plot. The strength 
distributions P sð Þ in both spaces are fitted with 

Weibull distributions (P sð Þ / s
λ

� �β� 1e�
s
λð Þ

β

with 
βp ¼ 0:38; βc ¼ 0:491). The Weibull distribution, 
characterized by shape parameter β, is analyzed here 
focusing on its shape rather than the scale parameter λ, 
which relates to data magnitude. First, the deviation of 
the empirical data from random networks and scale- 
free networks suggests that neither CSHMN nor 
PSHMN can be purely characterized by these network 
models. Moreover, both exponential and Weibull dis
tributions exhibit heavy-tailed characteristics, indicat
ing a universal feature of human mutuality networks 
in cyber and physical spaces. This heavy-tailed struc
ture signifies that some individuals are highly con
nected and interactive, while others remain relatively 
isolated. Comparing PSHMN and CSHMN, the expo
nential parameter in PSHMN is larger, indicating 
sharper distinctions between higher and lower degree 
values and a greater departure from Poisson 

Figure 5. CCDF of the degrees in physical static human mutuality network (a) and cyber static human mutuality network (b); CCDF 
of the strengths in physical static human mutuality network (c) and cyber static human mutuality network (d); scaling relation 
between clustering coefficient and degree in physical static human mutuality network (e) and cyber static human mutuality 
network (f).
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distribution. Conversely, the shape parameter in 
CSHMN is larger, indicating a more pronounced 
heavy-tailed distribution and highlighting greater net
work vulnerability (Solé et al. 2008).

To further explore the structure of networks, we 
analyzed the scaling relation between clustering coef
ficients and degree. In Figure 5(e, f) , the red points 
and blue points correspond to Cw kð Þ and C kð Þ respec
tively. The two different purple lines are the corre
sponding power-law fits, where Cw kð Þ / k� γ with 
γp ¼ 0:465 and γc ¼ 0:126; C kð Þ / k� δ with 
δp ¼ 0:628 and δc ¼ 0:157. First, in both CSHMN 
and PSHMN, the parameters in Cw kð Þ is larger than 
those in C kð Þ, which suggests that people who have 
higher connectivity accumulate a larger number of 
human mutuality. However, the accumulating rate is 
larger in physical space than that in cyber space. 
Secondly, as proven by Dorogovtsev, Goltsev, and 
Mendes (2002), the completely hierarchical poly
centric networks display the scaling relation of γ ¼ 1. 
The hierarchical polycentric networks describe the 
characteristic of the highly clustered parts dividing 
into sparsely connected parts, which are connected 
by a few hubs. The finding (γp ¼ 0:465; γc ¼ 0:126) 
suggests that the PSHMN is closer to the completely 
hierarchical polycentric network.

As for the dynamic networks, the degree and 
strength distributions exhibit similar patterns as the 
static networks, with fit parameters differing as shown 
in Table 3. For degree distributions, ζ ranges from 
0.000987 to 0.00162 in cyber space and 0.191 to 0.359 
in physical space; for strength distributions, β ranges 
from 0.449 to 0.497 in cyber space and 0.315 to 0.399 
in physical space. Comparing the magnitude of ζ and β 
separately between cyber and physical spaces, it is clear 
that ζ is larger in physical space, while β is larger in 
cyber space, aligning with the results of CSHMN and 
PSHMN and indicating the relatively stable quantita
tive relationship between two spaces regardless of 
time. Regarding the dynamic aspect, significant varia
tions in the temporal trends of ζ and β can be observed 
between cyber and physical spaces. The highest physi
cal ζ and β values occur at night and in the morning, 
while the highest cyber ζ and β values appear at noon 

and in the afternoon, suggesting a greater vulnerability 
of network structures in physical space during free 
time (night and morning) and in cyber space during 
working time (noon and afternoon).

As for the scaling relation between clustering 
coefficients and degree, similarly, all distributions 
show similar patterns, which are fit by power-law 
distributions. Regardless of space and time, γ is 
always smaller than the corresponding δ, which 
follows the same rule as static human mutuality 
networks. Moreover, γ can reflect the extent of 
the hierarchical polycentric structures of networks. 
As indicated in Table 3, γp > γc always exists for all 
periods, which implies that hierarchical polycentric 
structures are more significant in physical space 
than in cyber space. As for the dynamic character
istic, it is observed that the δ and γ generally move 
toward different directions as time passes by: the 
parameters in cyber spaces become smaller, while 
they become larger in physical space.

4.3. Community properties and structures

This subsection investigated the results of community 
detection in both cyber and physical spaces, revealing 
notable differences and similarities. From the perspec
tive of the number of detected communities, we iden
tified a total of 1153 communities in physical space 
and only 151 in cyber space, indicating a significant 
reduction in the influence of geographical distance in 
the cyber environment. This contrast underscores the 
diminished impact of geographical distance in cyber 
mutuality.

Further analysis was conducted by plotting the 
community sizes in descending order for both cyber 
and physical spaces, as illustrated in Figure 6(a, b). 
Both distributions adhered to a heavy-tailed structure, 
yet exhibited notable differences. In physical space, 
community sizes decreased gradually, indicating 
a relatively even distribution of community sizes. 
Conversely, cyber space demonstrated a steep decline 
from 30,000 to 10,000, signifying a more skewed dis
tribution where only a few communities dominate in 
size.

Table 3. Fit parameters to describe degree and strength distributions and scaling relations in the cyber and physical dynamic 
human mutuality networks.

Property

Physical space Cyber space

Network in the 
morning

Network at 
noon

Network in the late 
afternoon

Network at 
night

Network in the 
morning

Network at 
noon

Network in the late 
afternoon

Network at 
night

ζ (degree) 0.228 0.191 0.223 0.359 0.00158 0.00169 0.000987 0.00162
β (strength) 0.399 0.378 0.354 0.315 0.484 0.473 0.497 0.449
δ (non- 

weight)
−0.680 −0.627 −0.628 −0.701 −0.244 −0.236 −0.168 −0.171

γ (weight) −0.563 −0.480 −0.477 −0.563 −0.207 −0.195 −0.131 −0.122
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Examining the community structure from another 
angle, as displayed in Figure 6(c, d), both cyber and 
physical spaces displayed a core-periphery structure, 
characterized by a dense central region and more dis
persed peripheral communities. Central communities 
showed strong interconnections, indicated by darker 
red edges, suggesting frequent mutuality. In contrast, 
connections between central and peripheral commu
nities were weaker, as evidenced by lighter red edges. 
Moreover, central communities tended to be larger, 
while peripheral communities were relatively smaller. 
However, some differences were observed. First, the 
central communities in cyber space were larger than 
those in physical space, suggesting stronger cohesion 
in the cyber environment. Second, the mutuality 
between central and peripheral communities differed 
significantly. In physical space, there remained some 
connections between central and peripheral commu
nities, reflecting the fluidity and diversity of social 
activities in real life. In contrast, in cyber space, there 
was almost no connection between central and per
ipheral communities, indicating that social mutuality 
in cyber space is more concentrated and isolated. 
Specifically, users in cyber space tend to interact 
within a few specific communities. The discovery of 
the core-periphery structure, especially the central 

communities, highlights their potential role as key 
hubs for information dissemination and social 
influence.

In this study, we selected the five largest com
munities from both cyber and physical spaces for 
further investigation. Figure 7(a) presents a table 
listing various measures for these communities. In 
physical space, community sizes are relatively uni
form, indicating a more evenly distributed mutual
ity among users. In contrast, cyber space exhibits 
a significant disparity, with the two largest commu
nities dominating in size. This suggests that user 
mutuality in cyber spaces is highly concentrated 
within a few large communities. Analyzing commu
nity density, the higher community density in cyber 
space indicates more tightly-knit mutuality among 
users within these communities. Regarding network 
diameter and average shortest path length, the 
values for each community in cyber space do not 
differ significantly from those of CSHMN. The sta
bility of network diameter and shortest path length 
in cyber space across different communities sug
gests uniformity in the structural characteristics of 
cyber mutuality. Conversely, in physical space, the 
network diameter of the top five communities is 
roughly half that of PSHMN, and their average 

Figure 6. The plots of community sizes in descending order for physical (a) and cyber spaces (b). The community network for 
physical (c) and cyber spaces (d), where edge color represents the number of human mutuality between communities, every node 
represents one community, and node size represents the community size.
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shortest path lengths are smaller than PSHMN’s. 
The variation in these metrics in physical space 
highlights a more diverse mutuality pattern, with 
individual communities being more compact and 
interconnected than the overall network. The higher 
clustering coefficient in cyber communities suggests 
a greater tendency for users within the same com
munity to form tightly-knit groups, which contrasts 
with the physical space where such clustering is less 
pronounced. The significant fluctuations in degree 
and strength within cyber space, particularly the 
lower values in communities 1 and 4, indicate that 
mutuality in these communities is less frequent or 
less intense compared to others. This variability is 
less evident in physical space, where these metrics 
remain more consistent.

The geographical clustering of the five largest com
munities in both physical and cyber spaces is visua
lized in Figure 7(b, c). The spatial distribution reveals 
distinct patterns: in cyber space, the geographical loca
tions of different communities highly overlap, whereas 
in physical space, community locations are relatively 
dispersed. This disparity can be attributed to the 
inherent characteristics of physical and cyber spaces. 
In physical space, the relative geographical dispersion 
of communities underscores the impact of spatial con
straints on human mutuality. Physical proximity and 
geographical features significantly influence where 
and how communities form and interact. In contrast, 
these spatial constraints are diminished in cyber space, 

allowing for greater geographical overlap among 
communities.

To further investigate the temporal dynamics of 
community structures, modularity comparison and 
NMI method are employed, as shown in Figure 8. The 
modularity values across these periods suggest that the 
overall community structures remain relatively stable 
throughout the day in both spaces. However, the NMI 
results reveal more significant differences: while com
munities in physical space maintain high structural 
similarity across different times, cyber space commu
nities exhibit greater temporal variability. This contrast 
likely reflects the stronger temporal regularity and spa
tial constraints of physical activities, whereas online 
behaviors are more dynamic and responsive to contex
tual factors throughout the day.

5. Discussion

This study defines and quantifies human mutuality in 
cyber space and conducts a comparative analysis of 
human mutuality (weak human interaction) networks 
between cyber and physical spaces from both static 
and dynamic perspectives using complex network 
methods based on massive URL data. Compared 
with existing research, three key contributions are 
made. First, a new framework is proposed that treats 
websites as proxy locations in cyber space, providing 
a novel approach to analyze online human activity. 
This framework also creates opportunities for future 

Figure 7. (a) The summaries of measures to characterize the five largest communities in cyber and physical spaces; the 
geographical clustering of the five largest communities in physical (b) and cyber (c) spaces.
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research to apply advanced methods, such as multi
layer network analysis and temporal community 
detection, to further explore interactions across cyber- 
physical spaces. Second, this study offers a new per
spective to capture subtle, low-intensity social connec
tions online, which have been largely overlooked in 
previous studies focused on strong ties or explicit 
communications. Third, the use of synchronized data
sets that record user behaviors in both spaces simulta
neously allows for a direct and reliable comparison 
between cyber and physical human mutuality, addres
sing the common problem of data mismatch in many 
earlier studies. Further discussion of the findings and 
limitations of the study are presented as follows.

First, our results reveal clear temporal variations 
in network properties, such as average degree, aver
age strength, and clustering coefficient, as well as in 
the statistical distributions of degree and strength, 
across both physical and cyber spaces. Specifically, 
physical networks exhibit higher ζ and β values 
during night and morning hours, typically asso
ciated with individuals’ leisure time, whereas cyber 
networks peak during noon and afternoon, aligning 
with typical working hours. These patterns suggest 
that individual daily routines and status may play 
a critical role in shaping the temporal dynamics of 
human mutuality structures. Beyond personal sche
dules, external factors like the built environment 
have also been shown to influence such temporal 
variations (Zheng et al. 2022), highlighting the com
plex interplay between individual behavior and 
environmental context. However, fully unraveling 
these multivariable influences remains 
a challenging task that warrants further research. 
Understanding these temporal shifts carries mean
ingful implications. For instance, recognizing when 
and where strong or weak connections dominate 

could inform the optimization of urban spaces, digi
tal platform design, or public health interventions.

Second, this study finds a stark contrast in the 
average shortest path lengths between physical and 
cyber spaces: approximately 7.6 in physical space, 
echoing the classic “six degrees of separation” theory, 
and just 2.4 in cyber space. This result highlights the 
exceptional interconnectedness of cyber space, where 
individuals are, on average, only a few steps away from 
anyone else. Such heightened connectivity in cyber 
space has profound implications. On one hand, it 
enhances the speed and reach of beneficial informa
tion flow. Critical updates like disaster warnings, 
health advisories, or public service announcements 
can rapidly reach vast populations, potentially save 
lives and reduce societal disruptions. On the other 
hand, the same structural advantages enable the swift 
spread of misinformation, magnifying risks of public 
panic, reputational harm, and social instability. These 
dual effects stress the need for effective governance 
mechanisms that not only promote the advantages of 
rapid communication but also mitigate its vulnerabil
ities. Beyond speed, this compressed network struc
ture also carries important implications for social 
equity. By reducing the number of steps required to 
bridge diverse individuals and groups, cyber space 
holds the potential to narrow information gaps, ensur
ing that marginalized or geographically isolated com
munities have better access to timely, critical 
information. This highlights an opportunity to lever
age online networks to support more inclusive knowl
edge dissemination, public health outreach, and social 
integration, ultimately fostering fairer, more resilient 
societies.

Third, this study confirms that heavy-tailed dis
tributions of degree and strength are a fundamental 
feature of human mutuality networks in both cyber 

Figure 8. (a) The modularity values of dynamic human mutuality networks in two spaces. The comparison results of the 
community structures between PDHMN (b) and CDHMN (c).
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and physical spaces, regardless of time. This consis
tent presence of heterogeneity means that while most 
individuals engage in only a few weak interactions, 
a small number serve as highly connected hubs, 
a pattern widely observed in prior research on both 
online and offline networks (Hu et al. 2020; Zignani 
et al. 2014). It is further found that this uneven 
structure manifests differently across spaces. 
Physical human mutuality networks display 
a stronger hierarchical polycentric structure, as 
revealed by the relationship between clustering coef
ficients and degree. This is likely shaped by urban 
planning strategies designed to distribute popula
tions and resources across multiple centers to miti
gate congestion and housing pressures. The result is 
a spatially localized clustering pattern, where mutual 
interactions concentrate within distinct urban hubs. 
In contrast, cyber space shows a weaker polycentric 
tendency, as online interactions are freed from the 
constraints of geography, time, and physical infra
structure, allowing connections to form fluidly 
across diverse locations and contexts. These findings 
are essential for designing resilient systems, whether 
optimizing transportation networks, managing 
crowd flows, or safeguarding online platforms 
against systemic risks.

Fourth, this study reveals clear differences in the 
community structures of cyber and physical human 
mutuality networks: cyber space features fewer but 
larger communities (151), while physical space con
tains many more, yet smaller communities (1151). 
This contrast highlights how cyber space reduces the 
constraints of geography, enabling broader, more 
globally connected communities, whereas physical 
space remains shaped by localized, fragmented clus
ters tied to physical proximity. These structural differ
ences carry meaningful implications. In cyber space, 
weaker local clustering and the dominance of a few 
large communities can accelerate the uncontrolled 
spread of misinformation, as fewer tightly-knit sub
groups exist to absorb, question, or slow down false 
narratives. Conversely, the stronger localized cluster
ing in physical communities promotes cohesion and 
resilience, supporting targeted interventions such as 
neighborhood-based public health campaigns or dis
aster response efforts. Beyond structural patterns, our 
findings also suggest that cyber communities may 
reflect underlying socioeconomic characteristics. 
Unlike physical communities, which often form 
around shared geography, cyber communities connect 
individuals who may differ in age, occupation, or 
location but converge through shared online beha
viors, such as visiting the same websites at similar 
times. These latent similarities point to the potential 
of cyber mutuality as a lens to detect hidden social 
patterns, offering valuable insights for personalized 
digital marketing, and inclusive policy design aimed 

at bridging social divides across both physical and 
digital spaces.

The findings of this study can also be linked to key 
theories in urban sociology. Castells’ concept of the 
“network society” highlights how information flows 
and social ties extend beyond physical proximity, 
which is echoed in this study’s observation of over
lapping cyber communities and the shorter path 
lengths that facilitate faster information flow 
(Castells 2000). Bauman’s idea of “liquid modernity,” 
describing fluid and transient relationships, is 
reflected in the flexible and shifting patterns of cyber 
interactions identified in the study (Bauman 2013). 
Differences in network structures align with 
Sennett’s view on community and individualism: phy
sical communities are shaped by shared spaces, while 
cyber communities are more individual-driven and 
less spatially bound (Sennett 2017). The weak human 
interactions analyzed in this study also parallel 
Turkle’s work on how digital technologies reshape 
everyday connections, with co-visiting behaviors 
representing subtle but meaningful forms of online 
engagement (Turkle 2011). Finally, the core- 
periphery structures found in cyber communities 
may signal shared socio-economic characteristics 
among users, resonating with Sassen’s perspective on 
how digital spaces reflect broader urban and economic 
patterns (Sassen 2008).

Beyond the current analysis, the scalability of the 
proposed framework is an important consideration, 
particularly in light of the growing availability of large- 
scale mobile big data. Although this study focuses on 
a single day’s dataset, the methodological design, 
including the construction of weak human interaction 
networks based on spatiotemporal co-presence and 
the application of traditional network analysis techni
ques such as community detection, is inherently scal
able. These methods have been widely applied in large- 
scale mobility studies and are computationally effi
cient. Moreover, the framework is adaptable to various 
types of cyber datasets beyond website visit records, 
such as social media platforms, where weak interac
tions can be similarly defined through shared content 
engagement within short time windows. From 
a technical perspective, the modular structure of the 
framework allows for parallel processing across tem
poral intervals or spatial regions, supporting its exten
sion to distributed computing environments for 
handling larger datasets.

Nevertheless, it is important to acknowledge the 
limitations of this study. This study is based on data 
from a single day, which limits the ability to explore 
temporal dynamics in human mutuality networks. 
While the one-day dataset is sufficient to demonstrate 
the feasibility of the proposed framework, it does not 
capture longitudinal patterns or structural evolution 
over time. If multi-day datasets become available in 
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the future, further research could examine the tem
poral stability and evolution of cyber-physical human 
mutuality networks, such as analyzing differences 
between weekdays and weekends, identifying seasonal 
or periodic variations, detecting structural changes 
triggered by major events such as the COVID-19 pan
demic, and identifying specific structural roles of cen
tral and peripheral communities in cyber and physical 
spaces. To enhance the understanding of their tem
poral dynamics, future studies could also incorporate 
interactive network dashboards or animated commu
nity evolution maps, which would facilitate intuitive 
exploration of the evolution of network properties and 
community structures, particularly when extended 
time-series data becomes available. Future work will 
also focus on applying the framework to long-term 
and large-scale datasets to evaluate its performance 
and optimize computational efficiency. What’s more, 
while the URL data captures synchronized cyber and 
physical activities, future research could also further 
enhance the understanding of cyber-physical human 
mutuality by integrating additional data sources, such 
as social media interactions and location-based ser
vices from diverse regions and periods, to validate and 
extend these findings. Such comparative studies would 
not only provide deeper insights into how weak 
human interactions manifest across varying platforms, 
contexts, and regions, but also offer richer contextual 
information, like individual activity purposes or social 
attributes, to further explore interaction mechanisms.

6. Conclusions

This study develops an analytical framework to quantify 
and compare human mutuality, defined as a form of 
weak interaction, across physical and cyber spaces. By 
constructing human mutuality networks from extensive 
URL data that capture both online and offline behaviors, 
the study proposes an innovative method of substituting 
websites for locations in cyber space. This framework 
can also apply to other forms of behavioral data, such as 
social media data, enabling further comparative research 
on human interactions across multiple digital contexts.

The analysis of these networks reveals several key 
findings that contribute to the theoretical understand
ing of human interactions in dual spaces. First, the 
average shortest path length of 7.6 in physical space 
supports the classic six degrees of separation theory, 
while the shorter path length of 2.4 in cyber space 
suggests faster and broader information dissemination, 
contributing to the reduction of information gaps 
between users. Second, the presence of heavy-tailed 
degree and strength distributions in both spaces, con
sistent across time, reinforces findings from previous 
studies on heterogeneous network structures, while 
expanding their validity to comparable dual-space data
sets. Third, temporal differences between the networks, 

reflected in variations in network properties and distri
bution coefficients, possibly reflect how daily routines, 
work schedules, and leisure activities shape interactions 
in physical and cyber spaces. Finally, the core-periphery 
structures found in both spaces reveal how central 
groups are strongly connected while peripheral users 
are more loosely linked. In cyber space, these commu
nity structures may also reflect shared socioeconomic 
characteristics, as individuals within the same cyber 
community often exhibit similar backgrounds, interests, 
or consumption behaviors, highlighting cyber space as 
a parallel dimension of social life.

Future research could extend this framework by 
incorporating more diverse behavioral datasets and 
applying the methodology across different geographical 
regions and longer periods. Such work would contribute 
to a more comprehensive understanding of human inter
actions in increasingly integrated cyber-physical spaces.
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