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Given a setO of objects consisting of 𝑛 high-dimensional vectors, the problem of approximate nearest neighbor
(ANN) search for a query vector 𝒒 is crucial in many applications where objects are represented as feature

vectors in high-dimensional spaces. Each object in O often has attributes like popularity or price, which

influence the search. Practically, searching for the nearest neighbor to 𝒒 might include a range filter specifying

the desired attribute values, e.g., within a specific price range. Existing solutions for range filtered ANN search

often face trade-offs among excessive storage, poor query performance, and limited support for updates. To

address this challenge, we propose RangePQ, a novel indexing scheme that supports efficient range filtered

ANN searches and updates, requiring only linear space. Our scheme integrates seamlessly with existing

PQ-based index—a widely recognized, scalable index type for ANN searches—to enhance range-filtered ANN

queries and update capabilities. Our indexing method, supporting arbitrary range filters, has a space complexity

of𝑂 (𝑛 log𝐾), where𝐾 is a parameter of the PQ-based index and log𝐾 scales with𝑂 (log𝑛). To reduce the space
cost, we further present a hybrid two-layer structure to reduce space usage to𝑂 (𝑛), preserving query efficiency

without additional update costs. Experimental results demonstrate that our indexing scheme significantly

improves query performance while maintaining competitive update performance and space efficiency.
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1 Introduction
In recent years, the rise of large language models [48] and advancements in machine learning [34]

have greatly increased the demand for managing high-dimensional data [52]. High-dimensional

data, or vectors, are crucial today as many machine learning models compress real-world objects

into feature vectors. These models transform various data types, such as images and graphs,

into vectors that encapsulate essential information in high-dimensional space [25, 26, 33, 41, 42,

46]. Consequently, vector queries have become vital for applications like online search [15] and

recommendation systems [35, 36, 57]. The expanding applications and data volumes have also

driven advancements in vector database management systems [52, 56, 59].

A vector database is a set O of 𝑛 objects, each represented as a vector in R𝑑 . A fundamental

query is finding the nearest neighbor of a given query vector 𝒒 ∈ R𝑑 [32]. Due to the curse of

dimensionality [39, 55], exact nearest neighbor search in high-dimensional space is difficult, and

thus the focus often shifts to approximate nearest neighbor (ANN) searches [3]. ANN algorithms

are essential tools for extracting relevant information from large vector databases and are used

in systems like Apache Lucene [12] and Milvus [52]. They support top-𝑘 queries, returning the

𝑘 vectors closest to the query vector 𝒒. Often, objects have additional attributes like popularity
or price that influence search outcomes. Applying attribute-based range filters during an ANN

search narrows the search to a subset of O meeting specific filtering criteria. For instance, Google

Multisearch integrates attribute filters with top-𝑘 searches based on image vectors. In e-commerce,

each item has a feature vector and an associated price. A typical query might seek the top-𝑘

items closest to a querying item vector, with prices not more than a threshold 𝑡 . Such range-

filtered ANN searches are common in vector databases, and many studies have addressed this topic

[44, 52, 56, 59, 60].

Limitations of existing solutions. In order to handle range-filtered ANN search, existing

solutions are categorized into the following types: ANN-first methods, range-first methods, and

range-index methods. Given a query, ANN-first methods search the well-constructed index for the

objects closest to the query vector 𝒒 and then check each accessed object to see if it meets the filter

criteria [59]. When the number of accessed objects that satisfy the filter reaches a configurable

parameter, the nearest 𝑘 objects are returned as the approximate answer. Range-first methods use a

pre-established index on attributes to select objects that satisfy the filter criteria and then perform a

linear scan on these objects [52]. These simple query strategies would scan many irrelevant objects,

resulting in inferior query performance.

Most recently, several graph-based indices have been specifically designed to support more

efficient range-filtered ANN search. One such method is SeRF [60], which utilizes the graph-based

ANN search index HNSW [38]. SeRF compresses indexes built for different ranges to avoid retrieving

objects that do not meet the filter criteria during the search. However, this approach faces several

challenges. First, due to the compression of graphs constructed within various attribute ranges, the

worst-case space overhead can reach 𝑂 (𝑛2𝑀𝐻 ), where𝑀𝐻 is the maximum out-degree of nodes in

the HNSW graph. For large datasets, this space cost is clearly unacceptable. To mitigate this, SeRF

employs a graph compression technique called MaxLeap, which results in significant information

loss, leading to sub-optimal query performance, as observed in experiments. Second, SeRF struggles

with dynamic updates, such as inserting or deleting objects. Its construction process requires

objects to be inserted in order of their attribute values, with newly inserted objects needing an
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attribute value larger than all existing objects in O; otherwise, the index must be rebuilt. Similarly,

SeRF is inefficient in handling deletions, as it lacks a mechanism to update the index after object

removal. Another approach, proposed in [20], constructs separate graph indexes for multiple range

combinations. During the search, it selects a pre-built index to answer the query, but the index

may include objects outside the query range, requiring further filtering to ensure the results meet

the range criteria. This method incurs significant space overhead due to redundancy in building

multiple overlapping graph indexes. Besides, it is unclear how to efficiently update the index when

the dataset changes.

Product Quantization (PQ) is an effective indexing method that compresses high-dimensional

vectors into several low-dimensional subspaces. To accelerate the search process further, the

data points are grouped into coarse clusters [29]. PQ-index methods are generally more scalable

than graph-based indices. For example, they require only 30GB for a billion-entry dataset while

delivering millisecond query latencies and a recall@10 rate above 0.8, indicating good accuracy [9].

In many applications, this recall is already satisfactory [31]. When higher quality query results

are required, re-ranking techniques based on the original vectors can be employed to obtain more

accurate results [22]. Due to its impressive performance, PQ-indexes have been widely adopted in

real-world systems like Faiss [19, 30], ScaNN [27], Milvus [52], and AnalyticDB [56]. Yet, challenges

persist with PQ-based indices in range-filtered ANN search. Traditional ANN-first and range-first

approaches often yield sub-optimal results for previously discussed reasons.

Our solution. Addressing the shortcomings of existing techniques, we introduce RangePQ, an

indexing scheme tailored for efficient range-filtered ANN searches, which also facilitates efficient

updates within linear space. Recent methods, such as those used in graph indices [20, 60], often

build dedicated ANN indices—like multiple HNSW indices—for specific attribute. This approach,

however, is resource-intensive: for an attribute of interest, an ANN index of size 𝑂 (𝑛𝑀𝐻 log𝑛)
must be created, where𝑀𝐻 is a parameter of the HNSW graph. For example, we may be interested

in products filtered by the price range, the sales, or the ratings of an online shop. It is evident that

these methods fail to leverage the existing ANNS index within the system, resulting in additional

time and space overhead.

RangePQ distinguishes itself by utilizing a common PQ index and introducing a lightweight

index that encodes coarse cluster information derived from this PQ-index for a given attribute

attr . Specifically, we construct a binary search tree (BST) T for the attribute attr to encode this

information. In the BST, the key at each node corresponds to the attribute value of an object, and

each node is associated with a range of attribute values. Each node records 𝑙𝑝 and 𝑟𝑝 indicating

the smallest and largest attribute value in the subtree within the node, respectively. The root node

𝑟 represents the entire attribute value range of the object set O. This hierarchical partitioning

continues recursively, mapping each node 𝑢 to a specific range [𝑢.𝑙𝑝,𝑢.𝑟𝑝]. At each node 𝑢 in the

BST T associated with the range [𝑢.𝑙𝑝,𝑢.𝑟𝑝], we maintain a set 𝑢.SP of coarse cluster IDs. If a

coarse cluster with ID 𝑖 contains any data point whose attribute attr falls within [𝑢.𝑙𝑝,𝑢.𝑟𝑝], we
include 𝑖 in 𝑢.SP . As we will show, the space cost of this index design is 𝑂 (𝑛 · log𝐾), where 𝑛
is the number of nodes in the BST and 𝐾 is the number of clusters. To reduce the space cost to

𝑂 (𝑛), we introduce a hybrid two-layer structure called RangePQ+, significantly lowering the space

requirements compared to existing solutions.

Using the proposed index T, we efficiently process a range filtered ANN query by identifying

the clusters containing objects within the specified range. This direct access to relevant clusters

enhances query performance without requiring additional indexing structures. Utilizing these

clusters and index T, we further retrieve the top 𝐿 relevant objects close to the query vector q
for subsequent search, based on the distances between the cluster centers and q. By leveraging

the encoded information in the BST, our method facilitates efficient data retrieval within specified
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ranges. RangePQ+ offers significant advantages: (i) Unlike ANN-first methods, it avoids computing

distances for irrelevant vectors; (ii) Compared to range-first methods, it does not require retrieving

all objects within the range; (iii) In contrast to existing graph-based indices [20, 60], it employs

lightweight BST for a range filtered ANN query and shares a common ANN index, thereby avoiding

the excessive space costs.

Despite having a lightweight and efficient index structure, updating the index when the dataset

changes remains a challenging problem. In our solution, at each node 𝑢 of the BST T with range

[𝑢.𝑙𝑝,𝑢.𝑟𝑝], we maintain a set 𝑢.𝑆𝑃 of coarse cluster IDs that contain data points whose attribute

attr falls within [𝑢.𝑙𝑝,𝑢.𝑟𝑝]. Efficiently maintaining this information during updates is non-trivial.

On the one hand, we need the BST to remain balanced to ensure a bounded depth for search

operations, thus avoiding a degraded 𝑂 (𝑛) search time. However, existing balanced BSTs such

as AVL trees and Red-Black trees complicate efficient updates in our index structure. These trees

perform rotations to re-balance their height, and a rotation at the root can affect the entire subtree.

Consequently, the sets 𝑢.𝑆𝑃 at the affected nodes may need to be updated, potentially involving up

to𝑂 (𝐾 log𝑛) coarse cluster IDs, where 𝐾 is the number of coarse clusters. To address this issue, we

propose an efficient update strategy that reduces the update cost to 𝑂 (log𝑛). This strategy allows

us to maintain the balance of the BST and the correctness of the cluster ID sets 𝑢.𝑆𝑃 efficiently

during dataset changes. To summarize, our main contributions are as follows.

• We propose an effective index to efficiently answer range filtered ANN search, which can be

seamlessly integrated with existing PQ-index schemes; We further prove that the query cost of

the proposed index is only related to the number of objects that fall into the range, thus avoiding

additional overhead.

• We further propose update algorithms to efficiently maintain indexes against dynamic object

sets and prove that our update algorithms have an amortized update cost of 𝑂 (log𝑛) time.

• We further reduce the space cost from 𝑂 (𝑛 log𝐾) to 𝑂 (𝑛) with a hybrid two-layer index

RangePQ+, while achieving a comparable query cost and the same update cost.

• Experiments on real high-dimensional datasets show RangePQ+ improves query times tenfold

while maintaining accuracy and update efficiency comparable to existing PQ-based methods.

• We further demonstrate that compared to graph-based specialized methods for range-filtered

ANN search, the proposed method achieves an excellent trade-off among index size, query

performance, and update overhead.

2 Background
2.1 Preliminaries
LetO be a set of𝑛 objects {𝒐1, 𝒐2, . . . , 𝒐𝑛}, where each object is a vector in a𝑑-dimensional Euclidean

space R𝑑 . For any two objects 𝒑, 𝒒 ∈ R𝑑 , we can measure their distance by using Euclidean distance

𝑑𝑖𝑠 (𝒑, 𝒒), i.e., 𝑑𝑖𝑠 (𝒑, 𝒒) =
√︃∑𝑑

𝑖=1
(𝒑 (𝑖 ) − 𝒒 (𝑖 ) )2, where 𝒑 (𝑖 ) is the 𝑖-th coordinate of vector 𝒑. In

high-dimensional spaces, many applications in information retrieval and database management

are related to nearest neighbor search problems in high-dimensional spaces. The nearest neighbor

search problem is defined as follows:

Definition 2.1 (NN Search). Given an object set O, a query vector 𝒒, and a positive integer 𝑘 , the

Nearest Neighbor (NN) search returns a set with 𝑘 objects that has the top-𝑘 smallest distance to 𝒒.

The exact search of NN is expensive since it takes too much computation [54]. Therefore, an

approximate nearest neighbor (ANN) search is more popular in practice due to its good trade-off

between accuracy and efficiency. The definition is given as follows:
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Definition 2.2 (ANN search). Given an object set O, a query vector 𝒒, an approximation ratio

𝑐 > 1 and a positive integer 𝑘 , an approximate nearest neighbor (ANN) search returns 𝑘 objects

𝒐1, . . . , 𝒐𝒌 sorted in ascending order of their distances to 𝒒. If 𝒐∗𝒊 is the 𝑖-th nearest neighbor of 𝒒 in

O, it satisfies that 𝑑𝑖𝑠 (𝒒, 𝒐𝒊) ≤ 𝑐 · 𝑑𝑖𝑠 (𝒒, 𝒐∗𝒊 ).

In practice, for ease of evaluation, we typically do not compute the exact approximation value

𝑐 . Instead, recall is often employed as a proxy metric. The popular metric 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , is used to

measure the quality of the search [29]. It is defined as the fraction of query objects that the nearest

neighbor is contained in the top 𝑘 results. In many applications [44, 52, 56, 59], each object in the

database O is associated with a specific attribute 𝑎𝑡𝑡𝑟 of interest. For the user, the goal is to filter

elements from the setO based on attributes within a given range. For example, in a scenario where

each object is a product vector, the "price" attribute might be particularly relevant for queries that

target products within a certain price range. We use 𝑎𝑡𝑡𝑟 (𝒐) to denote the value for attribute 𝑎𝑡𝑡𝑟

of object 𝒐, with each 𝑎𝑡𝑡𝑟 (𝒐) falling into R. This is known as range filtered ANN search, a concept

introduced earlier, formally defined as follows:

Definition 2.3 (Range Filtered ANN Search). Given a query vector 𝒒, a range 𝑄 = [𝑥,𝑦] and a

positive integer 𝑘 , a range filtered ANN search returns the ANN search result to query vector 𝒒 on

the set O𝑄 = {𝒐 |𝑎𝑡𝑡𝑟 (𝒐) ∈ 𝑄 ∧ 𝒐 ∈ O}.

Example 2.4. Consider an object set O = {𝒐1, 𝒐2, . . . , 𝒐15} of 𝑛 = 15 objects, as shown in Fig. 1.

Each pair in Fig. 1 indicates an object and its attribute value. Given a query vector 𝒒, depicted as a

circular point, the NN search with 𝑘 = 1 would return 𝒐2 as the nearest neighbor. When the query

vector 𝒒 is associated with a range filter [4, 5] for attribute 𝑎𝑡𝑡𝑟 , the subset filtered by the range is

O𝑄 = {𝒐5, 𝒐6, 𝒐8, 𝒐11, 𝒐12}. Therefore, 𝒐5 is the nearest neighbor satisfying the filter condition.

2.2 ProductQuantization
Next, we provide a concise review of Product Quantization (PQ). PQ compresses high-dimensional

vectors into compact, memory-friendly codes. It enables the efficient approximation of the squared

Euclidean distance between an input vector and its compressed counterpart. In PQ, a 𝑑-dimensional

input row vector 𝒙 ∈ R𝑑 is split into 𝑀-subvectors, where each sub-vector includes 𝑑 ′ = 𝑑/𝑀
dimensions, assuming that 𝑑 can be divided by𝑀 . The vector 𝒙 can be represented as:

𝒙 = [𝑥1, 𝑥2, . . . , 𝑥𝑑 ′ ,𝑥𝑑 ′+1, 𝑥𝑑 ′+2, . . . , 𝑥2𝑑 ′ , · · · , 𝑥𝑑−𝑑 ′+1, . . . , 𝑥𝑑 ]
= [𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑀 ) ],

where 𝒙 (𝑖 ) ∈ R𝑑 ′ is the 𝑖-th sub-vector, for 𝑖 ∈ {1, 2, . . . , 𝑀}. Define O′𝑖 as the set containing the

𝑖-th sub-vector 𝒙 (𝑖 ) from each vector 𝒙 ∈ O. In PQ-based solution, for each set O′𝑖 (1 ≤ 𝑖 ≤ 𝑀), it

further identifies 𝑍 representative 𝑑 ′-dimensional data points as the surrogate for each of 𝒙 (𝑖 ) ∈
O′𝑖 . A classic solution to identify the representative surrogate is to apply a clustering algorithm,

say 𝑘-Means, on set O′𝑖 to derive 𝑍 clusters and use the 𝑍 centroids, {𝒃 (𝑖 )
1
, 𝒃 (𝑖 )

2
, · · · , 𝒃 (𝑖 )

𝑍
}, as the

representative data points. The 𝑖-th sub-codebook, which is the set of centroids for O′𝑖 , contains the

𝑗-th centroid 𝒃 (𝑖 )
𝑗
, referred to as the 𝑗-th sub-codeword.

Then, each sub-vector 𝒙 (𝑖 ) is assigned to the closest centroid 𝒃 (𝑖 )
𝑗

and use 𝒃 (𝑖 )
𝑗

as its surrogate.

To reduce the space, PQ-based method further directly uses the identifier to represent its surrogate.

For instance, in case 𝒙 (𝑖 ) has a surrogate 𝒃 (𝑖 )
𝑗
, then we directly use an ID 𝑥 (𝑖 ) = 𝑗 to represent

sub-vector 𝒙 (𝑖 ) . After this mapping, each vector 𝒙 = [𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑀 ) ] is encoded as:

𝒙 → 𝒙̄ = [𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑖 ) , · · · , 𝑥 (𝑀 ) ] ∈ {1, 2, · · · , 𝑍 }𝑀 ,
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(o18,12)

Query q

C1

Fig. 1. An example of an object set that is divided into five clusters {𝐶1,𝐶2, . . . ,𝐶5}. Circular point: query
vector 𝒒. Square points: new objects added in latter examples.

where 𝑥 (𝑖 ) is the ID of the closest centroid of 𝒙 (𝑖 ) from the 𝑖-th sub-codebook. We call 𝒙̄ the PQ-code
of 𝒙 . Given a query vector 𝒒, in the search phase, instead of using the original Euclidean distance,

an asymmetric distance is used as an approximation. A distance table 𝐴 ∈ R𝑀×𝑍 is computed on the

fly by searching the query vector 𝒒 to𝑚 sub-codebooks. A value 𝐴(𝑚, 𝑧) in the distance table is

the squared Euclidean distance between the𝑚-th sub-vector of 𝒒 and the 𝑧-th sub-codeword from

the𝑚-th sub-codebook. The asymmetric distance is derived as:

𝑑𝑖𝑠 (𝒒, 𝒙) ≈ 𝑑𝐴 (𝒒, 𝒙) =
𝑀∑︁
𝑖=1

𝐴(𝑖, 𝑥 (𝑖 ) ).

It is an approximation of Euclidean distance between 𝒒 and 𝒙 . The PQ index is typically constructed

using inverted file system (IVF) [29], which employs clustering algorithms to partition all 𝑛 objects

into 𝐾 coarse clusters to speed up the search efficiency. In particular, it first identifies 𝐾 coarse

centers 𝒄1, 𝒄2, . . . , 𝒄𝐾 by using the clustering algorithm on the 𝑛 objects. In existing solutions, 𝐾

is generally set as Θ(
√
𝑛). After obtaining these coarse centers, we can divide the objects into 𝐾

coarse clusters. Then, for each coarse cluster 𝑖 ∈ {1, 2, · · · , 𝐾}, we keep a set 𝐶𝑖 for the IDs of

objects falling into the cluster 𝑖 . In the search phase, it first computes the distances between the

query vector and the 𝐾 coarse centers. Next, it identifies the closest 𝑛𝑝𝑟𝑜𝑏𝑒 centers and merges

the object IDs in their clusters to obtain the set of candidate object IDs, where 𝑛𝑝𝑟𝑜𝑏𝑒 is a tunable

parameter determined by the user. Then, it uses the distance table 𝐴 to derive the approximate

distance between each object and the query vector 𝒒. Finally, it returns the nearest 𝑘 vectors based

on the approximate distance. This significantly reduces the query time.

Example 2.5. With the same object set O in Example 2.4, we divide the object set into 5 coarse

clusters. For example, set𝐶5 of coarse cluster with ID 5 contains three objects 𝒐6, 𝒐8, 𝒐12. If we want

to search the ANN of query vector 𝑞, we can retrieve the nearest coarse center 𝒄2. Next, the set 𝐶2

is scanned, and the asymmetric distance between each object and the query vector is computed

one by one. The 𝑘 nearest objects are then returned.

2.3 Existing Solutions
Milvus. Milvus [52] employs several strategies for handling range-filtered ANN searches, each

tailored for specific use cases: Strategy (i), "Attribute-First-Vector-Full-Scan", utilizes attribute range
filters to locate relevant objects via binary search or B-tree indices, followed by a full scan to produce

the top-𝑘 results. This method is optimal under conditions of high selectivity, where only a limited

number of objects meet the criteria of the range filter. Strategy (ii), "Attribute-First-Vector-Search",
begins by filtering objects based on attribute range, creating a bitmap of object IDs. Subsequent

vector query processing checks if each encountered object is included in the bitmap. Strategy
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(iii), "Vector-First-Attribute-Full-Scan", starts with vector queries without range filtering to collect

objects, which are then evaluated against the range filter. This strategy targets to fetch 𝜃 · 𝑘 objects

initially, ensuring at least 𝑘 objects satisfy the filter criteria with 𝜃 > 1. With these strategies, they

develop mixed methods to achieve better performance for range filtered ANN search.

SeRF. SeRF [60] combines with HNSW graph [38] to compress 𝑂 (𝑛2) intervals into a single

ANN index. Each SeRF graph edge is annotated with four values, 𝑙, 𝑟 , 𝑏, 𝑒 , indicating its validity

based on query filters [𝑥,𝑦] where 𝑥 ∈ [𝑙, 𝑟 ] and 𝑦 ∈ [𝑏, 𝑒]. Objects are sorted by attribute value

and sequentially inserted into HNSW-based graph, creating𝑀𝐻 new edges per insertion. When an

object’s out-degree exceeds𝑀𝐻 , pruning reduces it to𝑀𝐻 and sets valid intervals for pruned edges.

Queries use standard ANN search, traversing only edges meeting range filters. The method has

𝑂 (𝑛2𝑀𝐻 ) space overhead in the worst case. Hence, they use a method called MaxLeap for further

compression, which reduces space by sacrificing query performance. Moreover, SeRF does not

support arbitrary insertion and deletion of objects. Therefore, SeRF will not be able to support large

and dynamically changing data volumes.

SuperPostfiltering. SuperPostfiltering pre-builds graph indexes for a specific range set [20].

Given a parameter 𝛽 , the set of ranges at level 𝑖 is {[ 𝑗 · 𝛽𝑖 + 1, ( 𝑗 + 2) · 𝛽𝑖 ] | 𝑗 ≥ 0 ∧ ( 𝑗 + 2)𝛽𝑖 ≤ 𝑛}.
For a query range containing 𝑚 elements, it can find a range that covers it, where 𝑖 satisfies

𝛽𝑖−1 ≤ 𝑚 ≤ 𝛽𝑖 . After finding such a range, it queries the index built for that range and then applies

filtering. SuperPostfilter demonstrates competitive query performance. However, due to the overlap

between internal ranges at each level and the creation of multiple search graph indexes across

different levels, it consumes a large amount of space. Besides, it does not support any form of

updates. Hence, it is ineffective when the dataset is large and dynamically changing.

VBase. VBase [59] is built on the iterator model [24], allowing objects in the index to be traversed

one by one using the Next interface. To process a range-filtered query, VBase first traverses objects

in the ANN index according to the standard ANN search process. Upon visiting a new object, it

checks for relaxed monotonicity to determine if the search is steadily deviating from the query

vector. It then applies the range filter to the traversed objects; if an object meets the filter criteria,

it is added to the result set. The search stops when relaxed monotonicity is met, returning top-𝑘

nearest objects. Unlike other systems [52, 56, 58] that filter after a top-𝑘 search and struggle to

ensure exactly 𝑘 results due to challenges in setting 𝑘 ′, VBase avoids performance issues caused

by trial-and-error. It achieves equivalent results with optimal 𝑘 ′ and improves efficiency using

attribute indexes and cost-based query plan selection.

RII. The Reconfigurable Inverted Index (RII) [40] was initially designed to manage ANN searches

with dynamically created subsets O𝑠 of O by using the set 𝑆 , of object IDs of each object in O𝑠 ,

as input. Unlike traditional methods that assume a static input set O, RII adjusts to changes by

managing and searching within these subsets. RII mainly utilizes a PQ-based index as its backbone.

Recap that PQ-based index divides the 𝑛 objects in O into 𝐾 clusters. During a search, RII first

derives the distance between the query vector 𝒒 and each coarse center 𝒄1, 𝒄2, . . . , 𝒄𝐾 of the PQ

index. It then selects the top-⌈ 𝐾𝐿|O𝑠 | ⌉ nearest coarse centers, choosing their cluster as candidate

clusters for subsequent searches. Here, 𝐿 is a parameter to balance the trade-off between query time

and accuracy. RII retrieves elements in 𝑆 within these clusters. Once 𝐿 IDs or all candidate lists are

processed, it sorts the IDs by distance and returns the top-𝑘 nearest elements based on approximate

distances from a precomputed table𝐴. If fewer than 𝜃 elements are found in 𝑆 , RII performs a linear

scan over O𝑠 , calculating distances directly to ensure 𝑘 results. Index reconstruction is triggered

when substantial size changes occur to maintain query efficiency. For range-filtered queries, RII

retrieves IDs meeting the range criteria before applying its query algorithm to generate results.
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3 Our Solution
As outlined in Sec. 2.2, PQ-based indexing methods partition the dataset into 𝐾 coarse clusters,

each represented by a centroid, enabling efficient ANN search by limiting computations to the

most relevant clusters. But when applied to range-filtered queries, existing PQ-based methods

suffer from efficiency issues. The primary issues include (i) Irrelevant cluster scanning: Clusters

closest to the query vector may not contain any objects satisfying the specified range, leading to

redundant computations. (ii) Unnecessary accesses of objects: Existing approaches further generate

unnecessary accesses when retrieving objects that satisfy the range filter in the order of the distance

from the cluster centers to the query vector 𝒒. Since objects in the corresponding clusters may not

meet the range filter, which also results in sub-optimal performance.

To address these limitations, we propose a new structure that efficiently returns relevant coarse

clusters and a specified number of relevant objects, sorted by distance from these coarse cluster

centers to the query vector 𝒒, and with attribute values within [ℓ, 𝑟 ]. We utilize a BST to encode

the range information linked to cluster IDs and propose a two-step query method. Step (i) Relevant

clusters identification: this step exclusively identifies coarse clusters containing objects within the

range [ℓ, 𝑟 ]. Step (ii) Refined Retrieval: subsequently, we retrieve the top 𝐿 relevant objects from

these clusters, ordered by the distance of query vector 𝒒 to the coarse centers for the following

search ensuring that results meet both proximity and range criteria. Even with efficient query

processing algorithms, efficiently supporting updates remains a significant challenge. As mentioned

in Sec. 1, conventional update strategies can incur update overhead as high as 𝑂 (𝐾 log𝑛), where
𝐾 is typically set to Θ(

√
𝑛). Therefore, we propose a weight-based amortized update algorithm

characterized by its ability to average the number of updates based on the number of nodes, ensuring

that the amortized cost for each update can be reduced to 𝑂 (log𝑛), independent of 𝐾 , significantly
lowering the cost of updates. Finally, to make the index more lightweight, we employ a hybrid

two-layer structure that reduces the index size to linear while keeping high query and update

efficiency. Next, we present our indexing scheme RangePQ that supports efficient range-filtered

ANN searches and index updates.

3.1 Index Scheme
Next, we elaborate on how our structure addresses range filtered queries. The proposed index is to

use the BST to encode the range information and the coarse clustering information so that given

an arbitrary range [ℓ, 𝑟 ], we can easily retrieve the set of coarse clusters that include objects with

𝑎𝑡𝑡𝑟 (·) falling into [ℓ, 𝑟 ]. To tackle this challenge, for each node 𝑢 in the BST T, we further map

it as a range. In particular, let 𝑢.𝑙𝑝 (lowest point) and 𝑢.𝑟𝑝 (highest point) be the minimum and

maximum attribute values of all nodes in the subtree rooted at 𝑢, respectively. We define the range

of node 𝑢 as 𝑢.𝑟𝑎𝑛𝑔𝑒 = [𝑢.𝑙𝑝,𝑢.𝑟𝑝]. Then, given an arbitrary range [ℓ, 𝑟 ] at query time, we have

the following theorem.

Theorem 3.1 ([50, 51]). For an arbitrary range [ℓ, 𝑟 ] in a BST, where each node 𝑢 is associated with
the range [𝑢.lp, 𝑢.rp], we can find: (i) A set𝑂1 of𝑂 (log𝑛) singleton nodes, where each node 𝑣 ∈ 𝑂1 has
𝑣 .range not completely within [ℓ, 𝑟 ] but 𝑎𝑡𝑡𝑟 (𝑣 .𝒐) ∈ [ℓ, 𝑟 ]. (ii) Another set 𝑂2, also of 𝑂 (log𝑛) nodes,
where each node 𝑤 ∈ 𝑂2 has 𝑤.range ⊆ [ℓ, 𝑟 ] and the subtrees rooted at nodes in 𝑂2 are disjoint.
Let 𝑂𝑤 denote the set of objects in the subtree rooted at𝑤 . Define 𝑂 ′ =

⋃
𝑤∈𝑂2

𝑂𝑤 . The combined set
𝑂 = 𝑂1 ∪𝑂 ′ exactly includes all objects whose attribute values fall within [ℓ, 𝑟 ].

Using the theorem above, we can easily identify all objects in O with attribute values within

[ℓ, 𝑟 ]. However, this does not improve ANN query performance as it lacks the PQ-index information

necessary for speeding up ANN query processing. To address this, we encode cluster IDs into the

BST. Specifically, each node 𝑢 includes the set of all cluster IDs for objects in its subtree. This allows
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us to effectively identify clusters containing data points within [ℓ, 𝑟 ]. Maintaining additional cluster

ID information at each node poses challenges. Traditional height-balanced trees use rotation and

can result in 𝑂 (𝐾) changes in the nodes of the rotated subtree, significantly altering cluster IDs

and making updates prohibitively expensive. To tackle this issue, we will use a weight-balancing

strategy to avoid frequent rebalancing. We will show that with such a weight-balancing strategy,

the update costs for the tree index can be bounded in 𝑂 (log𝑛). Next, we explain the detailed index

structure, how queries are processed with the index, and how to update the index efficiently.

RangePQ index structure. Suppose we have already performed PQ index processing for the

entire object setO and have constructed 𝐾 coarse clusters. The RangePQ index scheme integrates a

binary search tree (BST) with cluster IDs to enable efficient retrieval of clusters containing objects

that fall within a designated range. The proposed method is an independent component based on the

PQ index, which means that it will not modify its internal structure and affect other functionalities

of the systems.

Let T be the BST constructed from the set O of 𝑛 objects, sorted ascendingly by the attribute

values of 𝑎𝑡𝑡𝑟 (·), with unique object IDs to distinguish objects with identical attributes. This means

that even if a lot of objects have the same attribute value, theywill have no effect on the balance of the

tree. Therefore, the proposed scheme is insensitive to the distribution of the attributes of the objects.

Each node inT contains an object fromO and maintains range information: 𝑢.𝑟𝑎𝑛𝑔𝑒 = [𝑢.𝑙𝑝,𝑢.𝑟𝑝],
covering the attribute ranges of its child nodes. Additionally, 𝑢.𝑙𝑒 𝑓 𝑡 and 𝑢.𝑟𝑖𝑔ℎ𝑡 represent the left

and right children of 𝑢, which can be null if no child exists.

Next, we associate each node 𝑢 in the tree with its object 𝑢.𝒐 (we only keep the object ID) and the
corresponding cluster ID𝑢.𝑃 . For each node𝑢, we derive a union set of the cluster IDs of all nodes in

the subtree of 𝑢 and save it as 𝑢.𝑆𝑃 . We use 𝑢.𝑛𝑢𝑚[𝑖] to denote the number of objects in the subtree

of 𝑢 that belong to cluster 𝒄 𝒊 . These two auxiliary structures can be implemented using a hash table.

This will help subsequent algorithms quickly extract 𝐿 objects correlated to the query range based

on the distance of the candidate coarse centers to the query vector 𝒒. The above structure can be

built bottom-up for the set O by modifying the standard method of building a binary search tree

using recursion. This is done by updating the auxiliary data structure of each node from the leaves

upward, and the process can be completed in 𝑂 (𝑛 log𝑛) time. The pseudo-code for building the

index is omitted due to simplicity.

Example 3.2. With the object set from Example 2.4, the initial object set isO = {o1, o2 . . . , o15}. To
construct a corresponding indexT, its construction process is similar to that of a standard BST. First,

we sort the objects according to their attribute values, and the sorted order is {o3, o1, o2, o7, o5, o8, o11
, o6, o12, o4, o9, o10, o14, o13, o15}. Then we select the median element o6 as the root node and proceed
recursively to create the left and right subtrees of the root node. The built structure is shown in Fig.

2 (a). When the tree structure of index T is created, we backtrack up from the leaf nodes, gradually

updating the auxiliary information of each node by aggregating the information of the child nodes

during the backtracking process. As an example, the 𝑆𝑃 set of the node o10 includes the cluster IDs

{1, 4, 5}. This is because the 𝑆𝑃 set of o4 includes {4, 5} (since o4 and o9 are in Cluster 4, and o12 is

in Cluster 5), and the 𝑆𝑃 set of o14 includes {1} (as o13, o14, o15 are all in Cluster 1). Therefore, by

merging the cluster IDs of the children and the cluster ID of o10, its 𝑆𝑃 set is derived as {1, 4, 5}.

We first revisit weight-balanced BST and its key properties.

Definition 3.3 (Weight-Balancing Condition). Given a balancing parameter 𝛼 ∈ (0, 0.2], for any
node 𝑢, either𝑚𝑖𝑛{𝑠𝑖𝑧𝑒 (𝑢.𝑙𝑒 𝑓 𝑡), 𝑠𝑖𝑧𝑒 (𝑢.𝑟𝑖𝑔ℎ𝑡)} ≥ 𝛼 · 𝑠𝑖𝑧𝑒 (𝑢) or 𝑠𝑖𝑧𝑒 (𝑢) ≥ 4 must hold.

If a node 𝑢 does not satisfy the weight-balancing condition, we call it imbalanced. When all nodes

are balanced, we can bound the height of index T with the following lemma:
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Algorithm 1: RangePQ-Query(T, 𝒒, [ℓ, 𝑟 ], 𝑘)

1 𝐶 ← ∅, 𝑅 ← ∅, 𝑁𝑆 ←− ∅;
2 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛(𝑟𝑜𝑜𝑡 (T), ℓ, 𝑟 ,𝐶, 𝑁𝑆);
3 𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 (𝒒,𝐶, ℓ, 𝑟, 𝑅, 𝑁𝑆);
4 return top-𝑘 nearest objects to 𝒒 in 𝑅;

5 procedure IndexSetUnion(𝑢, ℓ , 𝑟 , 𝐶 , 𝑁𝑆):
6 if 𝑎𝑡𝑡𝑟 (𝑢.𝑜) ∈ [ℓ, 𝑟 ] then 𝐶 ←− 𝐶 ∪ {𝑢.𝑃}, 𝑁𝑆 ←− 𝑁𝑆 ∪ {𝑢};
7 if [𝑢.𝑙𝑝,𝑢.𝑟𝑝] ∩ [ℓ, 𝑟 ] = ∅ then return;
8 if [𝑢.𝑙𝑝,𝑢.𝑟𝑝] ⊆ [ℓ, 𝑟 ] then
9 𝐶 ←− 𝐶 ∪ 𝑢.𝑆𝑃, 𝑁𝑆 ←− 𝑁𝑆 ∪ {𝑢};

10 return;
11 if node 𝑢.𝑙𝑒 𝑓 𝑡 ≠ ∅ then
12 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛(𝑢.𝑙𝑒 𝑓 𝑡 , ℓ , 𝑟 , 𝑁𝑆);

13 if node 𝑢.𝑟𝑖𝑔ℎ𝑡 ≠ ∅ then
14 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛(𝑢.𝑟𝑖𝑔ℎ𝑡 , ℓ , 𝑟 , 𝑁𝑆);

Lemma 3.4. The height of index T is 𝑂 (log𝑛).

This is obvious: 𝑠𝑖𝑧𝑒 (𝑢.𝑙𝑒 𝑓 𝑡) ≥ 𝛼 ·𝑠𝑖𝑧𝑒 (𝑢) and 𝑠𝑖𝑧𝑒 (𝑢.𝑟𝑖𝑔ℎ𝑡) ≥ 𝛼 ·𝑠𝑖𝑧𝑒 (𝑢). The size of each subtree
decreases exponentially. So the height of T is bounded by 𝑂 (log𝑛). The next lemma will be used

in the design and cost analysis of subsequent update algorithms.

Lemma 3.5 ([14]). Whenever a node 𝑢 becomes imbalanced, we can fix it in constant time by
performing constant rotations. After the fix, 𝑢 can become imbalanced only after Ω(𝑠𝑖𝑧𝑒 (𝑢)) updates
have taken place in the subtree of node 𝑢.

Query with RangePQ index. Alg. 1 shows the pseudo-code of how to do a range filtered

ANN search query with the index T. First, the algorithm takes as input a range [ℓ, 𝑟 ] on 𝑎𝑡𝑡𝑟 (·),
a query vector 𝒒, and a positive integer 𝑘 . Then we initialize three sets: candidate set 𝐶 , which

stores IDs of coarse clusters that contain objects in the query range [ℓ, 𝑟 ]; result set 𝑅 for storing

the final query results; node set 𝑁𝑆 = 𝑂1 ∪𝑂2 to hold the set 𝑂1 of roots of the 𝑂 (log𝑛) disjoint
subtrees and the set 𝑂2 of 𝑂 (log𝑛) singleton nodes according to Theorem 3.1, which is further

needed for subsequent object retrieval (Line 1). Starting from the root node 𝑟𝑜𝑜𝑡 (T), we obtain the

corresponding sets by calling 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 (Line 2). Given the currently searched node 𝑢, if the

attribute value 𝑎𝑡𝑡𝑟 (𝑢.𝒐) of the object stored by 𝑢 is within the query range, we would update set𝐶

to𝐶 ∪ {𝑢.𝑃} and 𝑁𝑆 to 𝑁𝑆 ∪ {𝑢} (Line 6). If the subtree rooted at the current node 𝑢 being searched

has no intersection with the query range, the procedure returns directly (Line 7). If 𝑢.𝑟𝑎𝑛𝑔𝑒 is fully

contained by the query range, we update set 𝐶 and 𝑁𝑆 and end the search process for nodes (Lines

8-10). Otherwise, we recursively search left and right children nodes of 𝑢 to continue updating the

maintained sets (Lines 11-14). Through the above process, we can obtain the candidate cluster set

𝐶 and the node set 𝑁𝑆 .

Next, we can compute the final query result by invoking the 𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 procedure with

pseudo-code in Alg. 2. First, for each cluster ID 𝑖 in the candidate set 𝐶 , we compute the distance

between its coarse center 𝒄𝑖 and the query vector 𝒒 (Lines 1-2). After calculating the distances, all

the clusters are sorted in increasing order of distances (Line 3). Next, we traverse the clusters with

ID in𝐶 based on distance order. For each cluster, we perform the fetching and distance computation

of the relevant objects (Lines 4-10). In particular, for each traversed coarse cluster ID 𝑖 , we first

record the size of the current result set 𝑅 as 𝑐𝑛𝑡𝑜𝑙𝑑 . Then we extract a new object 𝒏𝒑 from the set

𝑁𝑆 that satisfies the query range and belongs to the cluster𝐶𝑖 by calling 𝐹𝑒𝑡𝑐ℎ𝑁𝑒𝑤𝑂𝑏 𝑗𝑒𝑐𝑡 (Line 7).
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Algorithm 2: SearchByCCenters(𝒒, 𝐶 , [ℓ, 𝑟 ], 𝑅, 𝑁𝑆)

1 for each 𝑖 ∈ 𝐶 do
2 Compute asymmetric distance between 𝒒 and coarse center 𝒄 𝒊 by using distance table;

3 Sort cluster IDs in 𝐶 in increasing order of distance to 𝒒;

4 for each 𝑖 ∈ 𝐶 in increasing order of distance from 𝒄𝑖 to 𝒒 do
5 𝑐𝑛𝑡𝑜𝑙𝑑 ←− |𝑅 |;
6 while true do
7 𝒏𝒑 ←− 𝐹𝑒𝑡𝑐ℎ𝑁𝑒𝑤𝑂𝑏 𝑗𝑒𝑐𝑡 (𝑁𝑆, 𝑖, 𝑗 = |𝑅 | − 𝑐𝑛𝑡𝑜𝑙𝑑 + 1, ℓ, 𝑟 )
8 if 𝒏𝒑 == ∅ then break;
9 Append 𝒏𝒑 into 𝑅 and compute the asymmetric distance between 𝒏𝒑 and 𝒒 by using distance

table;

10 if |𝑅 | == 𝐿 then return search results 𝑅;

11 return 𝑅;
12 procedure FetchNewObject(𝑁𝑆, 𝑖, 𝑐𝑛𝑡, ℓ, 𝑟 ):
13 for node 𝑢 ∈ 𝑁𝑆 do
14 if [𝑢.𝑙𝑝,𝑢.𝑟𝑝] ⊆ [ℓ, 𝑟 ] then
15 if 𝑐𝑛𝑡 ≤ 𝑢.𝑛𝑢𝑚[𝑖] then
16 return 𝐹𝑖𝑛𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒 (𝑢, 𝑖, 𝑐𝑛𝑡) ;
17 𝑐𝑛𝑡 ←− 𝑐𝑛𝑡 − 𝑢.𝑛𝑢𝑚[𝑖];
18 else
19 if 𝑢.𝑃 == 𝑐 then
20 if 𝑐𝑛𝑡 == 1 then return 𝑢.𝒐;
21 𝑐𝑛𝑡 ←− 𝑐𝑛𝑡 − 1;

22 return ∅ ;
23 procedure FindObjectFromNode(𝑢, 𝑖, 𝑐𝑛𝑡 ):
24 Fetch the 𝑐𝑛𝑡-th object in cluster ID 𝑖 from the subtree rooted at 𝑢 using 𝑢.𝑛𝑢𝑚[𝑖], at node 𝑢.

Notice that at each node 𝑢, we have encoded the cluster ID information 𝑢.𝑃 for each object, and the

set of coarse clusters 𝑢.𝑆𝑃 for all the subtree rooted at 𝑢. Then, we can take 𝑂 (log𝑛) time to go

through the nodes in 𝑁𝑆 one by one and fetch the 𝑗-th object in cluster ID 𝑖 (assuming that the

objects are ordered based on nodes in 𝑁𝑆) (Lines 13-21). As we have maintained the 𝑢.𝑛𝑢𝑚[𝑖] and
𝑢.𝑃 , we can derive the 𝑗-th object by taking a prefix sum over the objects in 𝑁𝑆 using 𝑂 (log𝑛)
time. In case the 𝑗-th object falls into a singleton node 𝑢, we can immediately return 𝑢.𝒐. In case 𝑢

represents a subtree, then we can further map the 𝑗-th object to the 𝑐𝑛𝑡-th object in cluster ID 𝑖

inside the subtree rooted at 𝑢 (Line 17). Again, as we have recorded 𝑢.𝑛𝑢𝑚[𝑖] and 𝑢.𝑃 , we can easily

find the 𝑐𝑛𝑡-th object in cluster ID 𝑖 using a recursive function 𝐹𝑖𝑛𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒 in Line 19

with 𝑂 (log𝑛) time. The recursion shares a similar idea as finding the 𝑘-th smallest element in BST

with minor modification and hence the detailed pseudo-code is omitted due to simplicity. After

fetching the 𝑗-th object 𝒏𝒑 in cluster ID 𝑖 , we then use the distance table to compute the distance

between 𝒏𝒑 and 𝒒 and add it to the set 𝑅 (Line 9). When the size of set 𝑅 reaches the set parameter

𝐿, we return the set 𝑅 directly (Line 10). Finally, the result set 𝑅 is returned. We have the following

theorem for query time complexity of RangePQ. The omitted proofs can be found in our technical

report [1].

Theorem 3.6. The RangePQ index T can answer a range filtered ANN search query in 𝑂 (𝑑 · 𝑍 +
(𝐶𝑄 + 𝐿) · (𝑀 + log𝑛)) time, where 𝑍 and𝑀 are defined in PQ-index (Sec. 2.2), 𝐶𝑄 is the number of
clusters that include objects in O𝑄 . The space cost of RangePQ is 𝑂 (𝑛 log𝐾).
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Algorithm 3: RangePQ-Insertion(T, 𝒆)

1 𝐼𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑜𝑡 (T), 𝒆);
2 procedure Insert(𝑢, 𝒆):
3 if 𝑢 = ∅ then
4 Replace node 𝑢 with an node contains object 𝒆;

5 return;
6 Update auxiliary structures maintained by internal node 𝑢 with the coarse cluster ID of 𝒆 and

𝑎𝑡𝑡𝑟 (𝒆);
7 if 𝑎𝑡𝑡𝑟 (𝒆) < 𝑎𝑡𝑡𝑟 (𝑢.𝒐) then 𝐼𝑛𝑠𝑒𝑟𝑡 (𝑢.𝑙𝑒 𝑓 𝑡, 𝒆);
8 else 𝐼𝑛𝑠𝑒𝑟𝑡 (𝑢.𝑟𝑖𝑔ℎ𝑡, 𝒆);
9 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑢);

10 procedure Maintain(𝑢):
11 if 𝑢 is imbalanced then
12 Make 𝑢 balanced by rotation [14];

13 Update the auxiliary structures of 𝑢 based on the auxiliary structures of 𝑢.𝑙𝑒 𝑓 𝑡 and 𝑢.𝑟𝑖𝑔ℎ𝑡 ;

14 else return;

Algorithm 4: RangePQ-Deletion(T, 𝒆)

1 𝑢 ← 𝑟𝑜𝑜𝑡 (T);
2 while 𝑢.𝒐 ≠ 𝒆 do
3 Update auxiliary structures maintained by internal node 𝑢 with the coarse cluster ID of 𝒆 and

𝑎𝑡𝑡𝑟 (𝒆);
4 if 𝑎𝑡𝑡𝑟 (𝑒) < 𝑎𝑡𝑡𝑟 (𝑢.𝒐) then 𝑢 = 𝑢.𝑙𝑒 𝑓 𝑡 ;

5 else 𝑢 = 𝑢.𝑟𝑖𝑔ℎ𝑡 ;

6 Mark 𝑢 as invalid, 𝑖𝑛𝑣 += 1

7 if 2 · 𝑖𝑛𝑣 > 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡 (T)) then Rebuild the entire index T;

Example 3.7. Continuing with the object set from Example 2.4, we now construct the proposed

index for this set, with the completed index shown in Figure 2(a). Given a query vector 𝒒 and a

range filter of [4, 7]. We first quickly identify the nodes as shown in gray color, where we have

two disjoint subtrees with nodes at 𝒐8 and 𝒐4 as the root. We further have a singleton node storing

object 𝒐6. The corresponding range of each of these three nodes is shown in Figure 2. The 𝑆𝑃 sets

maintained by the nodes containing 𝒐4 and 𝒐8 are {4, 5} and {3, 5}, respectively. The coarse cluster
ID 𝑃 for in the node containing 𝒐6 is 5. Then we obtain the final candidate set of query coarse

cluster IDs, 𝐶 = {3, 4, 5}. With the obtained candidate set 𝐶 and the query range, we can further

obtain approximate nearest neighbor query results using the 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 .

The choice of 𝑳. The parameter 𝐿 controls the number of objects accessed. A larger 𝐿 increases

recall but also raises query time, while a smaller 𝐿 reduces both time and recall. Typically, 𝐿 is

set based on experimental results. Additionally, the ratio of 𝐿 to the number of objects within the

query range impacts recall. For implementation, we use an adaptive mechanism to select 𝐿, based

on a predefined 𝐿𝑏𝑎𝑠𝑒 and the number of elements covered by the query range 𝑟𝑄 . We define 𝐿

as𝑚𝑎𝑥 (𝐿𝑏𝑎𝑠𝑒 ·
𝑟𝑄

𝑟𝑏𝑎𝑠𝑒
, 𝐿𝑏𝑎𝑠𝑒 ) where 𝑟𝑏𝑎𝑠𝑒 is the base parameter for the number of elements covered.

Experiments have validated the effectiveness of the proposed adaptive method.
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Fig. 2. An example of updates with BST (𝜶 = 0.2). In (a), the objects with attributes are
{(o1, 2), (o2, 2), (o3, 1), (o4, 6), (o5, 4), (o6, 5), (o7, 3), (o8, 4), (o9, 7), (o10, 8), (o11, 4), (o12, 5), (o13, 8), (o14, 9)
, (o15, 11)}, where the second value in each tuple is the attribute of the corresponding object. Then the set is
inserted with objects (o16, 11), (o17, 10), (o18, 12).

3.2 Dynamic Updates
Insertion of RangePQ index. Alg. 3 shows the pseudo-code for dealing with insertions. Starting

from the root node 𝑟𝑜𝑜𝑡 (T), we insert a new object 𝒆. The insertion process is performed through

recursive traversal. If the current node 𝑢 is empty, it means we have found the position where the

new node is to be inserted. Then, we create a new node at the corresponding position of 𝑢 on the

tree, which contains the newly inserted object 𝒆 (Lines 3-5). We also update the link relationship

between node 𝑢 and its parent. When the current node 𝑢 is not empty, we first update the auxiliary

structures (𝑢.𝑆𝑃 , 𝑢.𝑛𝑢𝑚, 𝑢.𝑙𝑝 , and 𝑢.𝑟𝑝) maintained by 𝑢 with the coarse cluster ID of the new

object 𝒆 and the attribute value of the new object 𝒆 (Line 6). The reason is that the new node will

be inserted into the subtree of 𝑢, so 𝑢.𝑆𝑃 and 𝑢.𝑛𝑢𝑚 will change with the insertion of the new

node. Then, we compare the attribute value of the node to be inserted with the attribute value

of the current node 𝑢, to decide whether to search left or right for the position to insert the new

node (Lines 7-8). After inserting the node, it backtracks up to the root node level by level, and a

balance check is conducted on each backtracked node through the 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 procedure (Line 9). If

node 𝑢 violates the balance condition, we re-balance node 𝑢 through rotation and update the data

maintained by 𝑢 with the data maintained by two child nodes of 𝑢 (Lines 11-14).

Theorem 3.8. The RangePQ index T handles each insertion in 𝑂 (log𝑛) amortized expected time.

Deletion of RangePQ index. Alg. 4 shows the pseudo-code for deletion. When an object 𝒆 is
removed from O, we start from the root node to find the node containing 𝒆 (Lines 1-5). During the

search process, it updates the coarse cluster set 𝑢.𝑆𝑃 and 𝑢.𝑛𝑢𝑚 for each node 𝑢 it visits. It searches

downward according to the key of 𝑢 until it finds the corresponding node. Then, it marks 𝑢 as

invalid but does not delete𝑢 (Line 6). At the same time, the number 𝑖𝑛𝑣 of invalid nodes 𝑣 in the tree

is updated, and this value is set to 0 when the tree is first created. This deletion does not affect the

insertion process because it does not affect the actual size of the left and right subtree leaves of each

node. If the existing node containing 𝒆 is marked as invalid at the time of insertion 𝒆, we simply

mark it as valid. Clearly, 𝑖𝑛𝑣 can be maintained within 𝑂 (1) time. When 2 · 𝑖𝑛𝑣 > 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡 (T)),
the entire tree is rebuilt and set 𝑖𝑛𝑣 to 0 (Line 8). Note that 𝑠𝑖𝑧𝑒 (𝑢) includes the number of all invalid

and valid nodes in the subtree of 𝑢. Also, the number of valid nodes is at least half of the total
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Algorithm 5: RangePQ+ Query(TH, 𝒒, [ℓ, 𝑟 ], 𝑘)

1 𝐶 ← ∅, 𝑅 ← ∅, 𝑁𝑆 ← ∅;
2 𝐻𝑦𝑏𝑟𝑖𝑑𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛(𝑟𝑜𝑜𝑡 (TH), ℓ, 𝑟 ,𝐶, 𝑁𝑆);
3 𝐻𝑦𝑏𝑟𝑖𝑑𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑖𝑜𝑛(𝑟𝑜𝑜𝑡 (TH), ℓ, ℓ, 𝑟 ,𝐶, 𝑁𝑆);
4 𝐻𝑦𝑏𝑟𝑖𝑑𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑖𝑜𝑛(𝑟𝑜𝑜𝑡 (TH), 𝑟 , ℓ, 𝑟,𝐶, 𝑁𝑆);
5 𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 (𝒒,𝐶, ℓ, 𝑟, 𝑅, 𝑁𝑆);
6 return top-𝑘 nearest objects of 𝑅;

7 procedure HybridEndPointUnion(𝑢, 𝑒𝑝 , ℓ , 𝑟 , 𝐶 , 𝑁𝑆):
8 if 𝑒𝑝 ∈ [𝑢.𝐶𝑙𝑝,𝑢.𝐶𝑟𝑝] then
9 Update set 𝐶 by scanning the objects saved by 𝑢 with the range of [ℓ, 𝑟 ], 𝑁𝑆 ←− 𝑁𝑆 ∪ {𝑢};

10 else if 𝑒𝑝 < 𝑢.𝐶𝑟𝑝 then
11 𝐻𝑦𝑏𝑟𝑖𝑑𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑖𝑜𝑛(𝑢.𝑙𝑒 𝑓 𝑡, 𝑒𝑝, ℓ, 𝑟,𝐶);
12 else 𝐻𝑦𝑏𝑟𝑖𝑑𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑖𝑜𝑛(𝑢.𝑟𝑖𝑔ℎ𝑡, 𝑒𝑝, ℓ, 𝑟,𝐶);
13 procedure HybridIndexSetUnion(𝑢, ℓ , 𝑟 , 𝐶 , 𝑁𝑆):
14 if [𝑢.𝐶𝑙𝑝,𝑢.𝐶𝑟𝑝] ∈ [ℓ, 𝑟 ] then 𝐶 ←− 𝐶 ∪ 𝑢.𝑃𝑁, 𝑁𝑆 ←− 𝑁𝑆 ∪ {𝑢};
15 Repeat the operations of Lines 7-14 in Algorithm 1 with replacing 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 with

𝐻𝑦𝑏𝑟𝑖𝑑𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛;

number of objects in the tree, thus it does not affect the time complexity of insertion and query

algorithms.

The existing PQ-index can easily handle updates with the pre-built coarse clusters and sub-

codebooks. When an object is inserted, it is inserted by traversing all clusters, finding the nearest

one and coding it according to the existing codebooks. When deleting an object, we can use auxiliary

structures (e.g., a hash table) to directly locate the cluster where the object needs to be deleted.

When the number of updated objects exceeds Θ(𝑛), it is typically necessary to rebuild the entire

PQ-index to ensure query efficiency. The rebuild of the BST layer can be completed in 𝑂 (𝑛 log𝑛)
time. Hence, the amortized update time can also be bounded by 𝑂 (log𝑛). Since the PQ index is

maintained globally in the vector database, it needs to be updated in the system. Consequently,

in our theoretical analysis, we do not charge the update cost of PQ-index in the update costs of

RangePQ. But in our experiment, we report the end-to-end update time, which includes the time to

update the PQ-index.

Theorem 3.9. The RangePQ indexT can handle each deletion in𝑂 (log𝑛) amortized expected time.

Example 3.10. Continuing with the object set from Example 2.4 and the initial index T shown in

Fig. 2(a), only partial 𝑆𝑃 sets of nodes are displayed due to space constraints. First, 𝒐18 is inserted

into O, it then searches on T and places it as the right child of the node containing 𝒐15. Then, we

update the 𝑆𝑃 set of the relevant nodes based on 𝒐18’s coarse cluster ID. All nodes remain balanced,

so the structure after insertion is shown in Fig. 2(b). Subsequent insertions of 𝒐16 and 𝒐17 proceed
similarly, with the index updated in Fig. 2(c). After inserting 𝒐17, the node containing 𝒐14 becomes

imbalance and it leads to a node re-balancing, with the corrected structure shown in Fig. 2(d).

The removal of 𝒐16 involves marking its node, updating 𝑢.𝑛𝑢𝑚[𝑖] if 𝒐16 belongs to cluster 𝑖 , and

adjusting the 𝑆𝑃 set if 𝑢.𝑛𝑢𝑚[𝑖] drops to zero. Ancestor nodes are updated accordingly, but no

balancing is required due to the nature of the deletion. The final structure is as shown in Fig. 2(e).

3.3 Hybrid Two-Layer Index
The above index efficiently handles range-filtered ANN searches and index updates. However, its

space cost is not linear, making it impractical to store entirely in memory for large datasets. To
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Algorithm 6: RangePQ+ Insertion(TH, 𝒆)

1 𝐻𝑦𝑏𝑟𝑖𝑑-𝐼𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑜𝑡 (TH), 𝒆);
2 procedure Hybrid-Insert(𝑢, 𝒆):
3 if 𝑎𝑡𝑡𝑟 (𝒆) < 𝑎𝑡𝑡𝑟 (𝑢.𝒐) then 𝑣 ←− 𝑢.𝑙𝑒 𝑓 𝑡 ;
4 else 𝑣 ←− 𝑢.𝑟𝑖𝑔ℎ𝑡 ;
5 if 𝑎𝑡𝑡𝑟 (𝒆) ∈ [𝑢.𝐶𝑙𝑝,𝑢.𝐶𝑟𝑝] or 𝑣 = ∅ then
6 Add object 𝒆 into node 𝑢;

7 if 𝑢 needs to split then
8 Split 𝑢 into two nodes and insert the latter node as the right subtree of 𝑢

9 return;
10 Update auxiliary structures maintained by internal node 𝑢 with the coarse cluster ID of 𝒆 and

𝑎𝑡𝑡𝑟 (𝒆);
11 𝐻𝑦𝑏𝑟𝑖𝑑-𝐼𝑛𝑠𝑒𝑟𝑡 (𝑣, 𝒆);
12 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑢);

address this, we introduce a hybrid two-layer structure, termed RangePQ+, which compresses the

original tree by having each node contain multiple objects. This new structure maintains the object

set O using a modified index that compresses the tree into two layers: the original tree structure as

the first layer and a second layer where each node, representing a compressed subtree, contains

multiple objects. These nodes are managed using linear space cost data structures, details of which

will be discussed shortly. This hybrid structure maintains query efficiency and the original time

complexity for insertions and deletions while reducing space costs.

RangePQ+ index structure. The proposed hybrid two-layer scheme RangePQ+ is implemented

by compressing consecutive objects into a reduced number of nodes. The main idea of the hybrid

two-layer compression technique is to first sort objects by attribute values, assuming that all

attribute values are unique. When attributes are the same, we can further deduplicate them by

key values. Then, we sequentially generate 𝜁 = Θ(𝑛/𝐾) nodes, each of which contains 𝜖 = Θ(𝐾)
objects with consecutive attribute values, where 𝜖 is a hyper-parameter set by the user. Next, for

the compressed nodes, we create a tree index TH to support ANN search. Similarly, for each node

in TH, we retain two values, 𝑙𝑝 , and 𝑟𝑝 , to save the minimum and maximum attribute values in its

subtree. Additionally, each node also stores the minimum and maximum attribute values of the

objects held in the corresponding node, denoted as 𝐶𝑙𝑝 and 𝐶𝑟𝑝 . To support ANN search queries,

for PQ-index information, we also associate the union of coarse cluster IDs 𝑢.𝑃𝑁 of all objects

stored in each node. Each node also maintains a set 𝑆𝑃 , which preserves the union set of coarse

cluster IDs of objects contained in all nodes within the subtree. Besides, we maintain a hash table

𝑢.𝐻𝑇 for each node to maintain all the objects within the node, indexed using the coarse cluster ID

of each object as the key. With this hash table, we can quickly extract objects from a given cluster

at each node, facilitating query processing.

Query with RangePQ+ index. The query algorithm for the RangePQ+ index is similar to that

of the original RangePQ. Overall, we perform efficient queries of the union of coarse cluster IDs

within a range, using the coarse cluster IDs maintained by nodes on the tree. Note that special

processing is required when a node is not completely contained within the range, i.e., when only

some of the objects in the node are contained within the range. Alg. 5 shows the pseudo-code

for performing range queries on index TH. We initialize three sets 𝐶 , 𝑅, and 𝑁𝑆 . Then, we obtain

the union of cluster IDs of nodes in TH that are entirely contained within the range [𝑙, 𝑟 ] by
calling the 𝐻𝑦𝑏𝑟𝑖𝑑𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 algorithm. The 𝐻𝑦𝑏𝑟𝑖𝑑𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 algorithm performs a

recursive process similar to the 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 procedure. When the [𝑢.𝐶𝑙𝑝,𝑢.𝐶𝑟𝑝] of a node 𝑢 is
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Algorithm 7: RangePQ+ Deletion(TH, 𝒆)

1 𝑢 ← 𝑟𝑜𝑜𝑡 (TH);
2 while 𝑎𝑡𝑡𝑟 (𝑒) ∉ [𝑢.𝐶𝑙𝑝,𝑢.𝐶𝑟𝑝] do
3 Update auxiliary structures maintained by internal node 𝑢 with the coarse cluster ID of 𝒆 and

𝑎𝑡𝑡𝑟 (𝒆);
4 if 𝑎𝑡𝑡𝑟 (𝑒) < 𝑢.𝐶𝑙𝑝 then 𝑢 = 𝑢.𝑙𝑒 𝑓 𝑡 ;

5 else 𝑢 = 𝑢.𝑟𝑖𝑔ℎ𝑡 ;

6 Delete 𝒆 from node 𝑢 and update 𝑖𝑛𝑣 according to the number of objects in node 𝑢;

7 if 2 · 𝑖𝑛𝑣 > 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡 (TH)) then Rebuild the index TH;

completely contained within the range, we directly use 𝑢.𝑃𝑁 to update set 𝐶 , and update set 𝑁𝑆

(Line 14). Otherwise, we repeat the process from Lines 7-14 of Alg. 1, replacing 𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛

with 𝐻𝑦𝑏𝑟𝑖𝑑𝐼𝑛𝑑𝑒𝑥𝑆𝑒𝑡𝑈𝑛𝑖𝑜𝑛 (Line 15). Note that in TH, some nodes may only have part of their

objects contained within the range [𝑙, 𝑟 ]. Fortunately, these cases only occur in nodes located at the

left and right endpoints of the range [𝑙, 𝑟 ]. Therefore, we perform additional separate handling of

the left and right endpoints of the query range by invoking 𝐻𝑦𝑏𝑟𝑖𝑑𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑈𝑛𝑖𝑜𝑛 (Lines 3-4). It

conducts recursive searches based on the attribute values of objects maintained at each node (Lines

7-12). When a node containing the endpoint 𝑒𝑝 is found, the sets𝐶 and 𝑁𝑆 are accordingly updated

(Line 9). Finally, we use 𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 to conduct an approximate top-𝑘 nearest neighbor

query. Since index TH is a hybrid two-layer structure, for the fetch object algorithm in the original

𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐶𝐶𝑒𝑛𝑡𝑒𝑟𝑠 we first use a similar tree-based recursive approach to locate. For each node 𝑢,

we fetch the objects by the corresponding hash table 𝑢.𝐻𝑇 .

Theorem 3.11. The RangePQ+ index TC can answer a range filtered ANN search in 𝑂 (𝑑 · 𝑍 +
𝐶𝑄 (𝑀 + log 𝜁 ) +𝐿(𝑀 + log𝑘 + log 𝜁 ) +𝜖) time, where𝐶𝑄 is the number of coarse clusters that contains
objects in O𝑄 . The space cost of this index is 𝑂 (𝑛).

Example 3.12. We continue with the object set from Example 2.4. The original index structure is

shown in Figure 2 (a). When using the hybrid two-layer structure to compress the index, assume 𝜖

is set to 3. After sorting the original set, it becomes {𝒐3, 𝒐1, 𝒐2, 𝒐7, 𝒐5, 𝒐8, 𝒐11, 𝒐6, 𝒐12, 𝒐4, 𝒐9, 𝒐10, 𝒐13,
𝒐14, 𝒐15}, and we sequentially split them into five nodes {𝑁1, . . . , 𝑁5}. Then, based on the new

nodes, we construct the corresponding index TH and maintain the coarse cluster set information

for each node. The final structure is as shown in Figure 2 (f), with the 𝑆𝑃 set maintained by each

node attached.

Insertion of RangePQ+. Alg. 6 presents the pseudo-code for inserting a new object 𝒆 into index
TH. To insert 𝒆, we start at the root node 𝑟𝑜𝑜𝑡 (TH) and find the right node 𝑢 where 𝒆 should be

inserted, and then add it to 𝑢 (Line 6). If the number of objects contained in the node exceeds 2 · 𝜖 ,
we split this node and evenly divide the stored objects into two nodes, 𝑢𝑝𝑟𝑒 and 𝑢𝑠𝑢𝑓 , in order. Then,

let 𝑢 replace with 𝑢𝑝𝑟𝑒 , and insert 𝑢𝑠𝑢𝑓 into the right subtree of 𝑢 (Line 7). For the visited node 𝑢,

we update auxiliary structures maintained by node 𝑢 with the coarse cluster ID of 𝒆 and 𝑎𝑡𝑡𝑟 (𝒆)
(Line 9). Then, we continue to search for the node 𝑣 that needs to be inserted recursively (Line 10).

Finally, during the backtracking phase, we use𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 to keep the tree balanced (Line 11). We

have the following theorem for the time complexity of insertion.

Theorem 3.13. The RangePQ+ index handles each insertion in 𝑂 (log 𝜁 ) amortized expected time.

Deletion of RangePQ+ Index. Alg. 7 shows the pseudo-code for deleting an object 𝒆 from
index TH. To delete 𝒆, we start from the root node 𝑟𝑜𝑜𝑡 (TH) to find the node containing 𝒆. We

also update auxiliary structures maintained by node 𝑢 with the coarse cluster ID of 𝒆 and 𝑎𝑡𝑡𝑟 (𝒆)
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for currently accessed node 𝑢 (Line 3). Then, based on the attribute range maintained by 𝑢, we

determine the node for the next iteration (Lines 4-5). When we find the node containing object 𝒆,
we remove 𝒆 from 𝑢. When the number of objects maintained in 𝑢 is less than 𝜖/2, we increase 𝑖𝑛𝑣
by one (Line 6). Note that when inserting, if the number of objects maintained by a node changes

from less than 𝜖/2 to more than 𝜖/2, we decrease 𝑖𝑛𝑣 by one. When 2 · 𝑖𝑛𝑣 exceeds the number of

nodes within the entire index, we directly reconstruct the entire index (Line 7).

Theorem 3.14. The RangePQ+ index handles each deletion in 𝑂 (log𝑛) amortized expected time.

4 Related Work
The ANN search is a classic problem in databases and information retrieval, with over 30 years of

research [6]. Current ANN algorithms are categorized into four types:

Locality Sensitive Hashing (LSH). LSH [28] indexes high-dimensional data by hashing similar

items into the same buckets with high probability. Variants like E2LSH [17] and FALCONN [4] sup-

port approximate high-dimensional retrieval with tunable performance and theoretical guarantees

but incur significant redundancy and space overhead. The query and space costs of LSH are 𝑂 (𝑛𝜌 )
and 𝑂 (𝑛1+𝜌 ), respectively. While providing strong theoretical guarantees, LSH has higher practical

space overhead compared to other methods [44]. Some studies focus on learning hash functions

based on data characteristics [15, 47].

Tree-based indexes. These indexes mainly consider the design of recursively splitting the

entire set O into subsets corresponding to the subtrees of the search tree. K-d tree [10], PKD-tree

[49], FLANN [43], RPTree [16], and ANNOY [11], are used for organizing data in a hierarchical

structure, allowing for logarithmic query times in lower dimensions. These structures vary in their

construction, from using principal component analysis to random projections for dividing the data

space. These types of methods are mainly used to design algorithms for exactly finding nearest

neighbors.

Graph-based indexes. Graph-based indexes [2] build a navigable graph, where nodes represent
objects and edges connect similar ones. Methods like 𝑘-nearest neighbor graphs [18], monotonic

search networks [21], and small world graphs [37, 38] start a query from a random node, traversing

on the graph to find the node closest to the query. They excel in high-dimensional spaces in practice

but often require high memory and preprocessing costs.

Vector Quantization (VQ). These methods compress vectors to enable approximate distance

computations in a reduced space, thus lowering storage costs and speeding up ANN searches [8, 29].

Product Quantization (PQ) is a leading technique, frequently combined with inverted file indexes

(e.g., IVFADC) for billion-scale search. PQ has also been applied in hardware acceleration [5, 13, 30].

5 Experiments
We compare the proposed RangePQ and RangePQ+ against the state-of-the-art solutions in various

aspects through experiments. We also conduct experiments to examine the impact of input parame-

ters. All experiments are conducted with a single thread on a Linux machine with an Intel Xeon(R)

CPU at 2.20GHz and 768GB of memory.

5.1 Experimental Settings
Datasets. We use the following three real-world datasets tested in related research [40, 59, 60]: (i)

SIFT, which consists of 128-dimensional feature vectors extracted from multiple images. It contains

up to one billion base vectors, and ten thousand query vectors. We use one million vectors from base

vectors as the object set. (ii) GIST, which is composed of 960-dimensional feature vectors extracted

from images. It provides one million base vectors, ten thousand query vectors, and half a million
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training vectors. We used its one million base vectors as the object set. (iii) WIT, which consists

of 2048-dimensional embedding vectors generated using Wikipedia images through ResNet-50.

It contains more than six million vectors, and we randomly sample one million vectors as the

object set as the previous work [60]. Following the previous works [59, 60], for SIFT and GIST, we

uniformly generate a random integer key from range [1, 10
4] for each object as its attribute value.

For WIT, we use the size of the image as the attribute value. Each dataset contains one attribute,

and we construct the index based on this attribute. To further test the query performance of the

proposed method under datasets with skewed attribute values, we generated attribute values for

SIFT using Zipfian distribution (shape parameter 𝑎 = 2), denoted as SIFT-ZIP dataset.

Competitors and Evaluation Metrics. We include the following methods, all using PQ-index

as the backbone, in our experimental comparisons: (i) Milvus [52] with IVF_PQ as its built-in

index, (ii) RII [40], (iii) VBase [59], (iv) our proposed RangePQ with an 𝑂 (𝑛 log𝑛) space index as
described in Section 3.1, and (v) RangePQ+, the hybrid two-layer index with linear space described

in Section 3.3. Following the line of previous PQ work [7, 9, 23, 29, 31], we use 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 to measure

the quality of range-filtered ANN search results. To provide a more comprehensive comparison, we

also include three recent graph-based indices designed for range filtering queries: (vi) SeRF [60],

(vii) SuperPostFiltering, dubbed as SuperPostFilter [20], and (viii) ACORN [45], a hybrid search

method that employs a predicate-agnostic compression technique. This method can be regarded

as a heuristic acceleration method based on post-filtering. Since graph-based methods maintain

the original vectors, they are typically used in scenarios where higher query quality is required.

These methods generally use recall to measure the quality of the results, which is defined as the

proportion of true 𝑘-nearest neighbors among the 𝑘 query results. When comparing with these

methods, we follow this standard. It is important to note that SeRF and SuperPostFiltering do not

support dynamic updates. We will demonstrate that our proposed RangePQ+ achieves comparable

query performance to graph-based indices while also supporting dynamic updates and offering

better scalability. Our code and additional experimental details can be found in [1].

Parameters. For parameters, we set the size 𝜖 of objects accommodated per node in RangePQ+

to 10
4
. For the number 𝐿 of objects computed, for SIFT and WIT (resp. GIST) datasets, we set the

base value 𝐿𝑏𝑎𝑠𝑒 to 10
3
(resp. 3 × 10

3
). For the base parameter 𝑟𝑏𝑎𝑠𝑒 , we set it to 10

5
. For the number

𝑀 of subspaces in PQ-codes for all methods, we set it to 𝑑/4, where 𝑑 is the number of dimensions

of the input dataset. For all indices, we set 𝐾 to

√
𝑛. We also conduct experiments for parameters

𝐿𝑏𝑎𝑠𝑒 ,𝑀 , and 𝜖 , which will be elaborated on later. For 𝑘 in range-filtered ANN query, we set it to 10.

For VBase and RII, we keep the common parameters the same and tune their additional parameters

so that queries across all tested coverage of ranges achieve the best practical query efficiency while

the quality of the returned results has a recall@10 over 0.8. For graph-based methods, all methods

use parameters as specified in their respective papers to gain a recall above 0.9.

5.2 Comparison with PQ-Index Methods
Exp 1: Query performance. In the first set of experiments, we test the range filtered ANN search

of all indices. Fig.s 3-5 show the query performance of all indices across all datasets. For the SIFT

and GIST datasets, we use their provided query vectors. For the WIT dataset, we randomly sample

1000 vectors not from the input data as query vectors. We test query results for different coverage

of query ranges 𝑄 , which include {0.1%, 0.5%, 1%, 5%, 10%, 20%, 40%, 60%, 80%}. The figures show
the queries per second (QPS) and the Recall@10 of the query results, with data points representing

the average of all tested query results. We can observe that the proposed RangePQ+ has a clear

advantage across all query ranges. Notably, our RangePQ+ is up to 20x faster than RII and up to two

orders of magnitude faster than VBase and Milvus, while always achieving the highest recall. For

VBase, it uses the built-in indexes for linear scanning when the query range coverage is less than a

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 152. Publication date: June 2025.



Efficient Dynamic Indexing for Range Filtered Approximate Nearest Neighbor Search 152:19

VBase RangePQ RangePQ+Milvus RII

1

10

10
2

10
3

10
4

0.1 0.5 1 5 10 20 40 60 80

Queries Per Second

Coverage percentage (%)

0.2

0.4

0.6

0.8

1.0

0.1 0.5 1 5 10 20 40 60 80

Metric

Coverage percentage (%)

(a) Queries per second (b) Recall@10

Fig. 3. Query performance on SIFT dataset.
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Fig. 4. Query performance on GIST dataset.

threshold. Clearly, scanning the vectors incurs a high running cost. When the range coverage is

high, it changes to use the ANN index and then post-prune the vectors violating the range filter.

By using the ANN index, the QPS is dramatically increased, which shows the importance of ANN

indexes. We also find that RangePQ+ outperforms RangePQ, due to better cache friendliness and

lower height of the BST in fetching objects within RangePQ+. Fig. 6 shows the query performance

on SIFT-ZIP, with skewed attribute values. Consistent with earlier results, RangePQ+ significantly

outperforms other methods and demonstrates robustness to the distribution of attribute values.

Exp 2: Update efficiency. Next, we test the update performance of all indices. We test the

average time it took to insert and delete 10
4
objects, where the objects were randomly selected

from the data set. Fig. 7 shows the time taken to insert data into all indices across all datasets. It

is observed that the time taken for insertion is almost the same for all methods except Milvus.

This is because the experiments show end-to-end time, where the main time cost of insertion is

spent on finding the coarse clusters to which the objects belong, which takes 𝑂 (𝐾𝑀) time. For the

objects inserted, Milvus first places them into a segment. When the size of this segment reaches a

certain threshold, it creates a separate index for this segment. This means that during searches, it

has to traverse all objects in the unprocessed segment, leading to decreased query efficiency as

shown in our Exp 1. Fig. 8 shows the time taken to delete data from all indexes across all datasets.

RangePQ+ has a clear advantage over other methods. RangePQ+ is faster than RangePQ because it

requires updating fewer auxiliary structures and has smaller constants. RII takes more time because

it needs to update an external data frame, which is used for filtering on objects. Fig. 10 shows the

impact of dataset updates on the query performance of all methods. We report QPS for all methods

while achieving the same metric level of search results as in Exp. 1, across varying numbers of

object updates. The results show that RangePQ+ achieves stable query performance after updates,

verifying its ability to handle dynamic updates to the dataset effectively.

Exp 3: Index size and scalability test. Fig. 9 shows the index size of all methods across

all datasets. The index size of RangePQ+ is significantly less than that used by RangePQ and

comparable to that of RII and VBase, as these methods also use linear space indexes. Milvus

additionally constructs other indexes for different types of hybrid query processing, resulting in
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Fig. 5. Query performance on WIT dataset.
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Fig. 6. Query performance on SIFT-ZIP dataset.

slightly higher space cost compared to other methods. All methods process range filtered ANN

search in small space by utilizing PQ. The index size of the common PQ index is around 10% of the

space of original vectors.

Then, we assess the scalability of these methods using SIFT datasets ranging from 1 million

to 100 million vectors. Fig.s 11(a) and (b) respectively show the queries per second (QPS) when

achieving the same required quality of search results and the index size for different methods as

the data size increases. For methods that cannot build an index within three days, we omit the

corresponding results. As shown in Fig. 11(a), RangePQ+ achieves a steady advantage. As the

dataset becomes larger, the advantage of RangePQ+ becomes more obvious. When the dataset size

reaches 100 million, RangePQ+ is more than an order of magnitude faster than VBase and RII. This

demonstrates the excellent scalability of RangePQ+. Fig. 11(b) shows the index sizes of the different

methods when the size of the dataset increases. RangePQ+ has a comparable index size with other

methods while saving a lot of space than RangePQ.

5.3 Comparison with Graph-based Methods
Based on the previous experiments, we observe that our proposed method, RangePQ+, outperforms

existing quantization-based approaches. To further demonstrate its effectiveness, we compare

RangePQ+ with graph-based indices specifically designed for range-filtered ANN search. For a fair

comparison, we integrate key ideas of RangePQ+ with the state-of-the-art quantization method [22]

and employ reranking [53] and fastscan [5] techniques to enhance query performance. Fastscan

technology in PQ-index, akin to prefetching in graph-based ANNS [2], is a common technique

[22, 27]. The PQ-index is initially developed for scenarios with limited storage capacity. Since graph

indexes typically store original vectors for searching, they require a larger space overhead and

provide a high recall of query results. In scenarios requiring high recall, PQ indexes can employ the

exact distance of original vectors for re-ranking to enhance the quality of query results [22, 30].

Exp 4: Query efficiency. We evaluate the performance of our RangePQ+ against competitors

on GIST and WIT datasets using range filters with varying coverage. Fig. 12 and Fig. 13 shows the
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QPS and recall on GIST and WIT datasets, respectively. In Fig. 12, RangePQ+ shows a stable QPS

performance consistently maintaining a recall of query results above 0.9. In contrast, SeRF and

ACORN fail to return search results with recall higher than 0.9 within 100ms for certain queries with

less than 1% range coverage, due to the structure information loss in their pruning strategies. We

observed that SuperPostFilter failed to achieve a recall above 0.9 within 100ms for some small ranges,

e.g., ranges with 0.1% coverage, on theWIT dataset. This issue may stem from precision degradation

caused by its attribute value storage method, which uses floats, resulting in inaccuracies for small

ranges. Although SuperPostFilter exhibits certain advantages over RangePQ+, its efficiency gain

came at the cost of a significantly larger index size. Specifically, on the GIST (or WIT) dataset, the

index sizes for SeRF, SuperPostFilter, ACORN and RangePQ+ were 0.39GB (or 0.38GB), 10.6GB (or

15.2GB), 4.3GB (or 4.1GB) and 0.13GB (or 0.12GB), respectively. Notably, SuperPostFilter required

up to 100 times more index space than RangePQ+, highlighting the space efficiency of our approach.

We can find that RangePQ+ achieves stable performance, comparable to graph-based methods. It

can be further observed that graph-based methods are more sensitive to dataset characteristics, as

graph structures are significantly influenced by the dataset. For instance, the performance of graph-

based indices differs significantly on GIST and WIT datasets. In contrast, quantization methods like

RangePQ+ demonstrated greater stability across different datasets. Considering lightweight nature

of RangePQ+ and its ease of updates, it provides an excellent balance between index size, query

efficiency, and update capability. We further conducted experiments to examine the performance

of QPS versus recall when fixing the coverage percentage to different values. The conclusions

are similar to the above discussions. Due to limited space, these results are omitted here and are

included in our technical report [1].
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Fig. 10. Impact of updates to query performance on SIFT.
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Fig. 11. Varying the size of the SIFT dataset.
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Fig. 12. Query performance on the GIST dataset.
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Fig. 13. Query performance on the WIT dataset.

Exp 5. Impact of updates. Next, we examine the impact of updates on our RangePQ+ in-

dex compared to state-of-the-art graph-based indices. In this experiment, we report the QPS for

RangePQ+ at the same required recall level of search reu across varying numbers of updates. In

other words, we evaluate the cost of maintaining the same recall during dynamic updates. Fig.

14(a) and Fig. 14(b) show the QPS as we gradually insert and delete 5 × 10
4
records, respectively.

As we can observe, the QPS of RangePQ+ and ACORN are insensitive to dynamic updates since

both methods can support index updates to reflect the latest datasets. Yet, the other two will have
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degraded QPS with the increasing number of updated objects. The reason is that these methods are

static and cannot include the changes into their indexes. To reach the same level of recall, it hence

needs to visit more objects and hence a degration of the QPS. This again confirms our RangePQ+ is

a better choice for dynamic scenarios, especially when a light-weighted index is desired.

Exp. 6: Scalability test. Finally, we assess the scalability of the four algorithms in our experi-

ments. We sample datasets ranging from 1 million to 100 million vectors from the SIFT dataset to

examine their scalability. Similar to the previous experiments, Fig.s 15(a) and (b) show the QPS and

index sizes for which the different methods satisfy the recall requirement as the data size increases,

respectively. For methods that cannot build an index within three days, we omit the corresponding

results. Firstly, we observe that graph-based indices are generally less scalable compared to PQ-

based indices. Specifically, SeRF, Superposfiltering, and ACORN fail to complete index processing

within three days for dataset sizes of 100 million, 10 million, and 50 million, respectively. Besides, as

observed in Fig. 15(a), SuperPostFilter achieves high QPS but at the expense of a significantly larger

index size—over 70 times larger than our RangePQ+ when the data size is 5 million, as shown in Fig.

15(b). RangePQ+ and SeRF exhibit comparable QPS, but RangePQ+ consumes four times less index

space than SeRF. Besides, SeRF does not support dynamic updates. Additionally, RangePQ+ offers a

significant advantage over ACORN. When the dataset size reaches 10 million, RangePQ+ has three

times the QPS of ACORN and its index size is 7 times smaller than ACORN. This demonstrates that

RangePQ+ offers a superior trade-off between query efficiency and index size. Moreover, RangePQ+

shows remarkable efficiency in index construction time, building the index in under one minute

for all dataset sizes. In comparison, SeRF requires over 9,000 seconds to build the index when the

data size is 5 million, while SuperPostFilter (resp. ACORN) takes over 90,000 (resp. 16000) seconds

for the same dataset size. This substantial difference underscores the scalability and efficiency of

our method. Moreover, the ANN indices used by RangePQ+, such as the PQ-index and the one

described in [22], can be constructed in less than one day when the data size is 100 million, which

is faster than the construction time required by SeRF. Since these indices are necessary to support

basic ANN searches (excluding range-filtered queries), it is reasonable to assume that they are

already available. Besides, RangePQ+ achieves comparable query performance to SeRF while being

lightweight and supporting updates, a feature not available in SeRF and SuperPostFilter. While

ACORN supports dynamic updates, its QPS is far lower than that of our RangePQ+. These make

RangePQ+ a highly efficient and flexible solution for large-scale applications.

We have also conducted experiments for the parameter𝑀 , 𝜖 , and adaptive 𝐿 policy (as mentioned

in Sec. 3.1). Due to limited space, we refer interested readers to our technical report [1].

6 Future Work
In this section, we discuss potential future extensions, including multithreaded processing, handling

limited memory environments, and supporting more complex range filters.

Concurrent multithreaded processing. Currently, our solution works for single-core environ-

ment. To extend to multithreaded environments, our proposed method could employ fine-grained

locking (e.g., mutexes) at each node, allowing concurrent reads but risking contention at high con-

currency. For RangePQ+, a promising direction is to adopt a two-layer hierarchical locking scheme,

which introduces different levels of locks for upper-layer operations and lower-layer nodes to

balance contention and access control. Additionally, auxiliary structures—such as the 𝑆𝑃 sets—could

be transitioned to lock-free implementations using techniques like compare-and-swap operations.

Future research may explore more optimized concurrent update strategies, such as multi-layer

hierarchical locking to reduce conflicts and load balancing methods to ensure an even distribution

of workloads across the structure.
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Extension of external memory. For memory-limited scenarios, partitioning the dataset and

index is crucial. In this setting, vectors are stored on external storage, while in-memory BSTs

maintain cluster metadata to facilitate efficient lookups. The vectors are partitioned by clusters and

fetched on demand, minimizing I/O overhead. Caching strategies (e.g., LRU and prefetching) can be

explored to boost performance. Alternatively, disk-friendly structures (e.g., B-tree or B
+
-tree) may

replace BSTs, with dynamic updates handled via deferred updates or incremental rebalancing. Write-

optimized structures (e.g., append-only logs) could temporarily buffer changes before merging, and

adaptive caching coupled with parallel I/O offers additional opportunities for optimization.

More complicated range-filtered queries. RangePQ+ mainly focuses on continuous range

filters, but we plan to expand our approach to more complex scenarios, including unions and inter-

sections of multiple range filters as well as non-numeric attributes. For unions, we can merge sorted

ranges into non-overlapping segments; for intersections, we can similarly combine the relevant

portions. The resulting sets of coarse clusters can then be processed via our SearchByCCenters
method. In the case of non-numeric attributes (e.g., strings), we can map them (e.g., lexicographi-

cally) to numeric values to convert the problem into a range-filtered ANN search. These extensions

will be a key direction for future work. Additionally, exploring multi-attribute range-filtered ANN

search presents an interesting direction for future work.

7 Conclusions
In this paper, we study the range filtered ANN search problem and propose a lightweight RangePQ+

index, that efficiently supports range filtered ANN search and dynamic updates. Extensive experi-

ments show the effectiveness of our RangePQ+.
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