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Given a set © of objects consisting of n high-dimensional vectors, the problem of approximate nearest neighbor
(ANN) search for a query vector q is crucial in many applications where objects are represented as feature
vectors in high-dimensional spaces. Each object in © often has attributes like popularity or price, which
influence the search. Practically, searching for the nearest neighbor to g might include a range filter specifying
the desired attribute values, e.g., within a specific price range. Existing solutions for range filtered ANN search
often face trade-offs among excessive storage, poor query performance, and limited support for updates. To
address this challenge, we propose RangePQ, a novel indexing scheme that supports efficient range filtered
ANN searches and updates, requiring only linear space. Our scheme integrates seamlessly with existing
PQ-based index—a widely recognized, scalable index type for ANN searches—to enhance range-filtered ANN
queries and update capabilities. Our indexing method, supporting arbitrary range filters, has a space complexity
of O(nlog K), where K is a parameter of the PQ-based index and log K scales with O(log n). To reduce the space
cost, we further present a hybrid two-layer structure to reduce space usage to O(n), preserving query efficiency
without additional update costs. Experimental results demonstrate that our indexing scheme significantly
improves query performance while maintaining competitive update performance and space efficiency.
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1 Introduction

In recent years, the rise of large language models [48] and advancements in machine learning [34]
have greatly increased the demand for managing high-dimensional data [52]. High-dimensional
data, or vectors, are crucial today as many machine learning models compress real-world objects
into feature vectors. These models transform various data types, such as images and graphs,
into vectors that encapsulate essential information in high-dimensional space [25, 26, 33, 41, 42,
46]. Consequently, vector queries have become vital for applications like online search [15] and
recommendation systems [35, 36, 57]. The expanding applications and data volumes have also
driven advancements in vector database management systems [52, 56, 59].

A vector database is a set O of n objects, each represented as a vector in R?. A fundamental
query is finding the nearest neighbor of a given query vector ¢ € R? [32]. Due to the curse of
dimensionality [39, 55], exact nearest neighbor search in high-dimensional space is difficult, and
thus the focus often shifts to approximate nearest neighbor (ANN) searches [3]. ANN algorithms
are essential tools for extracting relevant information from large vector databases and are used
in systems like Apache Lucene [12] and Milvus [52]. They support top-k queries, returning the
k vectors closest to the query vector q. Often, objects have additional attributes like popularity
or price that influence search outcomes. Applying attribute-based range filters during an ANN
search narrows the search to a subset of © meeting specific filtering criteria. For instance, Google
Multisearch integrates attribute filters with top-k searches based on image vectors. In e-commerce,
each item has a feature vector and an associated price. A typical query might seek the top-k
items closest to a querying item vector, with prices not more than a threshold t. Such range-
filtered ANN searches are common in vector databases, and many studies have addressed this topic
[44, 52, 56, 59, 60].

Limitations of existing solutions. In order to handle range-filtered ANN search, existing
solutions are categorized into the following types: ANN-first methods, range-first methods, and
range-index methods. Given a query, ANN-first methods search the well-constructed index for the
objects closest to the query vector q and then check each accessed object to see if it meets the filter
criteria [59]. When the number of accessed objects that satisfy the filter reaches a configurable
parameter, the nearest k objects are returned as the approximate answer. Range-first methods use a
pre-established index on attributes to select objects that satisfy the filter criteria and then perform a
linear scan on these objects [52]. These simple query strategies would scan many irrelevant objects,
resulting in inferior query performance.

Most recently, several graph-based indices have been specifically designed to support more
efficient range-filtered ANN search. One such method is SeRF [60], which utilizes the graph-based
ANN search index HNSW [38]. SeRF compresses indexes built for different ranges to avoid retrieving
objects that do not meet the filter criteria during the search. However, this approach faces several
challenges. First, due to the compression of graphs constructed within various attribute ranges, the
worst-case space overhead can reach O(n?Mp), where Mj; is the maximum out-degree of nodes in
the HNSW graph. For large datasets, this space cost is clearly unacceptable. To mitigate this, SeRF
employs a graph compression technique called MaxLeap, which results in significant information
loss, leading to sub-optimal query performance, as observed in experiments. Second, SeRF struggles
with dynamic updates, such as inserting or deleting objects. Its construction process requires
objects to be inserted in order of their attribute values, with newly inserted objects needing an

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 152. Publication date: June 2025.


https://doi.org/10.1145/3725401

Efficient Dynamic Indexing for Range Filtered Approximate Nearest Neighbor Search 152:3

attribute value larger than all existing objects in ©; otherwise, the index must be rebuilt. Similarly,
SeRF is inefficient in handling deletions, as it lacks a mechanism to update the index after object
removal. Another approach, proposed in [20], constructs separate graph indexes for multiple range
combinations. During the search, it selects a pre-built index to answer the query, but the index
may include objects outside the query range, requiring further filtering to ensure the results meet
the range criteria. This method incurs significant space overhead due to redundancy in building
multiple overlapping graph indexes. Besides, it is unclear how to efficiently update the index when
the dataset changes.

Product Quantization (PQ) is an effective indexing method that compresses high-dimensional
vectors into several low-dimensional subspaces. To accelerate the search process further, the
data points are grouped into coarse clusters [29]. PQ-index methods are generally more scalable
than graph-based indices. For example, they require only 30GB for a billion-entry dataset while
delivering millisecond query latencies and a recall@10 rate above 0.8, indicating good accuracy [9].
In many applications, this recall is already satisfactory [31]. When higher quality query results
are required, re-ranking techniques based on the original vectors can be employed to obtain more
accurate results [22]. Due to its impressive performance, PQ-indexes have been widely adopted in
real-world systems like Faiss [19, 30], ScaNN [27], Milvus [52], and AnalyticDB [56]. Yet, challenges
persist with PQ-based indices in range-filtered ANN search. Traditional ANN-first and range-first
approaches often yield sub-optimal results for previously discussed reasons.

Our solution. Addressing the shortcomings of existing techniques, we introduce RangePQ, an
indexing scheme tailored for efficient range-filtered ANN searches, which also facilitates efficient
updates within linear space. Recent methods, such as those used in graph indices [20, 60], often
build dedicated ANN indices—like multiple HNSW indices—for specific attribute. This approach,
however, is resource-intensive: for an attribute of interest, an ANN index of size O(nMpy log n)
must be created, where My is a parameter of the HNSW graph. For example, we may be interested
in products filtered by the price range, the sales, or the ratings of an online shop. It is evident that
these methods fail to leverage the existing ANNS index within the system, resulting in additional
time and space overhead.

RangePQ distinguishes itself by utilizing a common PQ index and introducing a lightweight
index that encodes coarse cluster information derived from this PQ-index for a given attribute
attr. Specifically, we construct a binary search tree (BST)  for the attribute attr to encode this
information. In the BST, the key at each node corresponds to the attribute value of an object, and
each node is associated with a range of attribute values. Each node records [p and rp indicating
the smallest and largest attribute value in the subtree within the node, respectively. The root node
r represents the entire attribute value range of the object set ©. This hierarchical partitioning
continues recursively, mapping each node u to a specific range [u.lp, u.rp]. At each node u in the
BST T associated with the range [u.lp, u.rp], we maintain a set u.SP of coarse cluster IDs. If a
coarse cluster with ID i contains any data point whose attribute attr falls within [u.lp, u.rp], we
include i in u.SP. As we will show, the space cost of this index design is O(n - log K), where n
is the number of nodes in the BST and K is the number of clusters. To reduce the space cost to
O(n), we introduce a hybrid two-layer structure called RangePQ+, significantly lowering the space
requirements compared to existing solutions.

Using the proposed index 7, we efficiently process a range filtered ANN query by identifying
the clusters containing objects within the specified range. This direct access to relevant clusters
enhances query performance without requiring additional indexing structures. Utilizing these
clusters and index 7, we further retrieve the top L relevant objects close to the query vector q
for subsequent search, based on the distances between the cluster centers and q. By leveraging
the encoded information in the BST, our method facilitates efficient data retrieval within specified
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ranges. RangePQ+ offers significant advantages: (i) Unlike ANN-first methods, it avoids computing

distances for irrelevant vectors; (ii) Compared to range-first methods, it does not require retrieving

all objects within the range; (iii) In contrast to existing graph-based indices [20, 60], it employs
lightweight BST for a range filtered ANN query and shares a common ANN index, thereby avoiding
the excessive space costs.

Despite having a lightweight and efficient index structure, updating the index when the dataset
changes remains a challenging problem. In our solution, at each node u of the BST J with range
[w.lp, u.rp], we maintain a set u.SP of coarse cluster IDs that contain data points whose attribute
attr falls within [u.lp, u.rp]. Efficiently maintaining this information during updates is non-trivial.
On the one hand, we need the BST to remain balanced to ensure a bounded depth for search
operations, thus avoiding a degraded O(n) search time. However, existing balanced BSTs such
as AVL trees and Red-Black trees complicate efficient updates in our index structure. These trees
perform rotations to re-balance their height, and a rotation at the root can affect the entire subtree.
Consequently, the sets u.SP at the affected nodes may need to be updated, potentially involving up
to O(K log n) coarse cluster IDs, where K is the number of coarse clusters. To address this issue, we
propose an efficient update strategy that reduces the update cost to O(log n). This strategy allows
us to maintain the balance of the BST and the correctness of the cluster ID sets u.SP efficiently
during dataset changes. To summarize, our main contributions are as follows.

e We propose an effective index to efficiently answer range filtered ANN search, which can be
seamlessly integrated with existing PQ-index schemes; We further prove that the query cost of
the proposed index is only related to the number of objects that fall into the range, thus avoiding
additional overhead.

e We further propose update algorithms to efficiently maintain indexes against dynamic object
sets and prove that our update algorithms have an amortized update cost of O(logn) time.

e We further reduce the space cost from O(nlogK) to O(n) with a hybrid two-layer index
RangePQ+, while achieving a comparable query cost and the same update cost.

o Experiments on real high-dimensional datasets show RangePQ+ improves query times tenfold
while maintaining accuracy and update efficiency comparable to existing PQ-based methods.

e We further demonstrate that compared to graph-based specialized methods for range-filtered
ANN search, the proposed method achieves an excellent trade-off among index size, query
performance, and update overhead.

2 Background
2.1 Preliminaries

Let © be a set of n objects {01, 02, . . ., 0, }, where each object is a vector in a d-dimensional Euclidean
space R?. For any two objects p, g € R?, we can measure their distance by using Euclidean distance

dis(p,q), i.e., dis(p,q) = \/Zf:l(p(") —q")2, where p? is the i-th coordinate of vector p. In
high-dimensional spaces, many applications in information retrieval and database management
are related to nearest neighbor search problems in high-dimensional spaces. The nearest neighbor
search problem is defined as follows:

Definition 2.1 (NN Search). Given an object set O, a query vector ¢, and a positive integer k, the
Nearest Neighbor (NN) search returns a set with k objects that has the top-k smallest distance to q.

The exact search of NN is expensive since it takes too much computation [54]. Therefore, an

approximate nearest neighbor (ANN) search is more popular in practice due to its good trade-off
between accuracy and efficiency. The definition is given as follows:
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Definition 2.2 (ANN search). Given an object set O, a query vector g, an approximation ratio
¢ > 1 and a positive integer k, an approximate nearest neighbor (ANN) search returns k objects
01,...,0f sorted in ascending order of their distances to q. If o} is the i-th nearest neighbor of q in

O, it satisfies that dis(q, 0;) < c - dis(q, 0}).

In practice, for ease of evaluation, we typically do not compute the exact approximation value
c. Instead, recall is often employed as a proxy metric. The popular metric Recall@k, is used to
measure the quality of the search [29]. It is defined as the fraction of query objects that the nearest
neighbor is contained in the top k results. In many applications [44, 52, 56, 59], each object in the
database © is associated with a specific attribute attr of interest. For the user, the goal is to filter
elements from the set © based on attributes within a given range. For example, in a scenario where
each object is a product vector, the "price" attribute might be particularly relevant for queries that
target products within a certain price range. We use attr (o) to denote the value for attribute attr
of object o, with each attr(o) falling into R. This is known as range filtered ANN search, a concept
introduced earlier, formally defined as follows:

Definition 2.3 (Range Filtered ANN Search). Given a query vector q, a range Q = [x,y] and a
positive integer k, a range filtered ANN search returns the ANN search result to query vector q on
the set Op = {olattr(o) € Q Ao € O}.

Example 2.4. Consider an object set © = {04, 04, ...,015} of n = 15 objects, as shown in Fig. 1.
Each pair in Fig. 1 indicates an object and its attribute value. Given a query vector g, depicted as a
circular point, the NN search with k = 1 would return o, as the nearest neighbor. When the query
vector q is associated with a range filter [4, 5] for attribute attr, the subset filtered by the range is
Op = {05, 06, 03, 011, 012 }. Therefore, o5 is the nearest neighbor satisfying the filter condition.

2.2 Product Quantization

Next, we provide a concise review of Product Quantization (PQ). PQ compresses high-dimensional
vectors into compact, memory-friendly codes. It enables the efficient approximation of the squared
Euclidean distance between an input vector and its compressed counterpart. In PQ, a d-dimensional
input row vector x € R is split into M-subvectors, where each sub-vector includes d’ = d/M
dimensions, assuming that d can be divided by M. The vector x can be represented as:

X = [xlers e X Xd 41, Xd 425 - - s X2d!s s Xd—d' 415 - - .,xd]

=[x, x@ . x™)],

where x(V € R? is the i-th sub-vector, for i € {1,2,..., M}. Define ©] as the set containing the
i-th sub-vector x(¥) from each vector x € ©. In PQ-based solution, for each set O/ (1<i<M),it
further identifies Z representative d’-dimensional data points as the surrogate for each of x!) €
©]. A classic solution to identify the representative surrogate is to apply a clustering algorithm,

say k-Means, on set O] to derive Z clusters and use the Z centroids, {b(i),bgi), .- ,b(Zi) }, as the
representative data points. The i-th sub-codebook, which is the set of centroids for ©;, contains the

Jj-th centroid b;i), referred to as the j-th sub-codeword.

Then, each sub-vector x?) is assigned to the closest centroid b'") and use bj.i) as its surrogate.
To reduce the space, PQ-based method further directly uses the identifier to represent its surrogate.
For instance, in case x(*) has a surrogate bﬁ.’), then we directly use an ID () = j to represent

sub-vector x(9). After this mapping, each vector x = [x(l), x@ x(M)] is encoded as:

X > X= [-’E(l)’x(Z)"" sx(i))“' >)E(M)] € {1’2"“ ’Z}M’
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Fig. 1. An example of an object set that is divided into five clusters {Cy,Ca,...,Cs}. Circular point: query
vector q. Square points: new objects added in latter examples.

where (9) is the ID of the closest centroid of x() from the i-th sub-codebook. We call x the PQ-code
of x. Given a query vector q, in the search phase, instead of using the original Euclidean distance,
an asymmetric distance is used as an approximation. A distance table A € RM*Z is computed on the
fly by searching the query vector q to m sub-codebooks. A value A(m, z) in the distance table is
the squared Euclidean distance between the m-th sub-vector of q and the z-th sub-codeword from
the m-th sub-codebook. The asymmetric distance is derived as:

M
dis(q,x) ~ da(q,x) = ZA(;',;A”).

i=1
It is an approximation of Euclidean distance between ¢q and x. The PQ index is typically constructed
using inverted file system (IVF) [29], which employs clustering algorithms to partition all n objects
into K coarse clusters to speed up the search efficiency. In particular, it first identifies K coarse
centers ¢, €y, . . ., ck by using the clustering algorithm on the n objects. In existing solutions, K
is generally set as @(4/n). After obtaining these coarse centers, we can divide the objects into K
coarse clusters. Then, for each coarse cluster i € {1,2,---,K}, we keep a set C; for the IDs of
objects falling into the cluster i. In the search phase, it first computes the distances between the
query vector and the K coarse centers. Next, it identifies the closest np,op. centers and merges
the object IDs in their clusters to obtain the set of candidate object IDs, where n,,op¢ is a tunable
parameter determined by the user. Then, it uses the distance table A to derive the approximate
distance between each object and the query vector q. Finally, it returns the nearest k vectors based
on the approximate distance. This significantly reduces the query time.

Example 2.5. With the same object set © in Example 2.4, we divide the object set into 5 coarse
clusters. For example, set Cs of coarse cluster with ID 5 contains three objects o, 0g, 012. If we want
to search the ANN of query vector g, we can retrieve the nearest coarse center c,. Next, the set C,
is scanned, and the asymmetric distance between each object and the query vector is computed
one by one. The k nearest objects are then returned.

2.3 Existing Solutions

Milvus. Milvus [52] employs several strategies for handling range-filtered ANN searches, each
tailored for specific use cases: Strategy (i), "Attribute-First-Vector-Full-Scan", utilizes attribute range
filters to locate relevant objects via binary search or B-tree indices, followed by a full scan to produce
the top-k results. This method is optimal under conditions of high selectivity, where only a limited
number of objects meet the criteria of the range filter. Strategy (ii), "Attribute-First-Vector-Search",
begins by filtering objects based on attribute range, creating a bitmap of object IDs. Subsequent
vector query processing checks if each encountered object is included in the bitmap. Strategy
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(iii), "Vector-First-Attribute-Full-Scan", starts with vector queries without range filtering to collect
objects, which are then evaluated against the range filter. This strategy targets to fetch 6 - k objects
initially, ensuring at least k objects satisfy the filter criteria with 6 > 1. With these strategies, they
develop mixed methods to achieve better performance for range filtered ANN search.

SeRF. SeRF [60] combines with HNSW graph [38] to compress O(n?) intervals into a single
ANN index. Each SeRF graph edge is annotated with four values, [, r, b, e, indicating its validity
based on query filters [x, y] where x € [I,r] and y € [b, e]. Objects are sorted by attribute value
and sequentially inserted into HNSW-based graph, creating My new edges per insertion. When an
object’s out-degree exceeds My, pruning reduces it to My and sets valid intervals for pruned edges.
Queries use standard ANN search, traversing only edges meeting range filters. The method has
O(n*Myy) space overhead in the worst case. Hence, they use a method called MaxLeap for further
compression, which reduces space by sacrificing query performance. Moreover, SeRF does not
support arbitrary insertion and deletion of objects. Therefore, SeRF will not be able to support large
and dynamically changing data volumes.

SuperPostfiltering. SuperPostfiltering pre-builds graph indexes for a specific range set [20].
Given a parameter f3, the set of ranges at level iis {[j- B+ 1,(j+2) - B | j = 0A (j+2)B < n}.
For a query range containing m elements, it can find a range that covers it, where i satisfies
Bt < m < B After finding such a range, it queries the index built for that range and then applies
filtering. SuperPostfilter demonstrates competitive query performance. However, due to the overlap
between internal ranges at each level and the creation of multiple search graph indexes across
different levels, it consumes a large amount of space. Besides, it does not support any form of
updates. Hence, it is ineffective when the dataset is large and dynamically changing.

VBase. VBase [59] is built on the iterator model [24], allowing objects in the index to be traversed
one by one using the Next interface. To process a range-filtered query, VBase first traverses objects
in the ANN index according to the standard ANN search process. Upon visiting a new object, it
checks for relaxed monotonicity to determine if the search is steadily deviating from the query
vector. It then applies the range filter to the traversed objects; if an object meets the filter criteria,
it is added to the result set. The search stops when relaxed monotonicity is met, returning top-k
nearest objects. Unlike other systems [52, 56, 58] that filter after a top-k search and struggle to
ensure exactly k results due to challenges in setting k’, VBase avoids performance issues caused
by trial-and-error. It achieves equivalent results with optimal k” and improves efficiency using
attribute indexes and cost-based query plan selection.

RIIL The Reconfigurable Inverted Index (RII) [40] was initially designed to manage ANN searches
with dynamically created subsets ©O; of © by using the set S, of object IDs of each object in O,
as input. Unlike traditional methods that assume a static input set ©, RII adjusts to changes by
managing and searching within these subsets. RII mainly utilizes a PQ-based index as its backbone.
Recap that PQ-based index divides the n objects in © into K clusters. During a search, RII first
derives the distance between the query vector q and each coarse center ¢y, ¢y, . . ., cx of the PQ
index. It then selects the top—[%] nearest coarse centers, choosing their cluster as candidate
clusters for subsequent searches. Here, L is a parameter to balance the trade-off between query time
and accuracy. RIl retrieves elements in S within these clusters. Once L IDs or all candidate lists are
processed, it sorts the IDs by distance and returns the top-k nearest elements based on approximate
distances from a precomputed table A. If fewer than 6 elements are found in S, RII performs a linear
scan over O, calculating distances directly to ensure k results. Index reconstruction is triggered
when substantial size changes occur to maintain query efficiency. For range-filtered queries, RII
retrieves IDs meeting the range criteria before applying its query algorithm to generate results.
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3 Our Solution

As outlined in Sec. 2.2, PQ-based indexing methods partition the dataset into K coarse clusters,
each represented by a centroid, enabling efficient ANN search by limiting computations to the
most relevant clusters. But when applied to range-filtered queries, existing PQ-based methods
suffer from efficiency issues. The primary issues include (i) Irrelevant cluster scanning: Clusters
closest to the query vector may not contain any objects satisfying the specified range, leading to
redundant computations. (ii) Unnecessary accesses of objects: Existing approaches further generate
unnecessary accesses when retrieving objects that satisfy the range filter in the order of the distance
from the cluster centers to the query vector q. Since objects in the corresponding clusters may not
meet the range filter, which also results in sub-optimal performance.

To address these limitations, we propose a new structure that efficiently returns relevant coarse
clusters and a specified number of relevant objects, sorted by distance from these coarse cluster
centers to the query vector g, and with attribute values within [¢, r]. We utilize a BST to encode
the range information linked to cluster IDs and propose a two-step query method. Step (i) Relevant
clusters identification: this step exclusively identifies coarse clusters containing objects within the
range [£,r]. Step (ii) Refined Retrieval: subsequently, we retrieve the top L relevant objects from
these clusters, ordered by the distance of query vector q to the coarse centers for the following
search ensuring that results meet both proximity and range criteria. Even with efficient query
processing algorithms, efficiently supporting updates remains a significant challenge. As mentioned
in Sec. 1, conventional update strategies can incur update overhead as high as O(K log n), where
K is typically set to ©(+/n). Therefore, we propose a weight-based amortized update algorithm
characterized by its ability to average the number of updates based on the number of nodes, ensuring
that the amortized cost for each update can be reduced to O(log n), independent of K, significantly
lowering the cost of updates. Finally, to make the index more lightweight, we employ a hybrid
two-layer structure that reduces the index size to linear while keeping high query and update
efficiency. Next, we present our indexing scheme RangePQ that supports efficient range-filtered
ANN searches and index updates.

3.1 Index Scheme

Next, we elaborate on how our structure addresses range filtered queries. The proposed index is to
use the BST to encode the range information and the coarse clustering information so that given
an arbitrary range [¢, r], we can easily retrieve the set of coarse clusters that include objects with
attr(-) falling into [¢, r]. To tackle this challenge, for each node u in the BST 7, we further map
it as a range. In particular, let u.lp (lowest point) and u.rp (highest point) be the minimum and
maximum attribute values of all nodes in the subtree rooted at u, respectively. We define the range
of node u as u.range = [u.lp, u.rp]. Then, given an arbitrary range [¢,r] at query time, we have
the following theorem.

THEOREM 3.1 ([50, 51]). For an arbitrary range [£,r] in a BST, where each node u is associated with
the range [u.lp, u.rp], we can find: (i) A set O; of O(log n) singleton nodes, where each nodev € O has
v.range not completely within [£,r] but attr(v.o) € [¢,r]. (ii) Another set O, also of O(log n) nodes,
where each node w € O, has w.range C [¢,r] and the subtrees rooted at nodes in O, are disjoint.
Let O,, denote the set of objects in the subtree rooted at w. Define O’ = | J,,c0, O+. The combined set
O = 01 U O’ exactly includes all objects whose attribute values fall within [£,r].

Using the theorem above, we can easily identify all objects in © with attribute values within
[£, r]. However, this does not improve ANN query performance as it lacks the PQ-index information
necessary for speeding up ANN query processing. To address this, we encode cluster IDs into the
BST. Specifically, each node u includes the set of all cluster IDs for objects in its subtree. This allows
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us to effectively identify clusters containing data points within [¢, r]. Maintaining additional cluster
ID information at each node poses challenges. Traditional height-balanced trees use rotation and
can result in O(K) changes in the nodes of the rotated subtree, significantly altering cluster IDs
and making updates prohibitively expensive. To tackle this issue, we will use a weight-balancing
strategy to avoid frequent rebalancing. We will show that with such a weight-balancing strategy,
the update costs for the tree index can be bounded in O(log n). Next, we explain the detailed index
structure, how queries are processed with the index, and how to update the index efficiently.

RangePQ index structure. Suppose we have already performed PQ index processing for the
entire object set © and have constructed K coarse clusters. The RangePQ index scheme integrates a
binary search tree (BST) with cluster IDs to enable efficient retrieval of clusters containing objects
that fall within a designated range. The proposed method is an independent component based on the
PQ index, which means that it will not modify its internal structure and affect other functionalities
of the systems.

Let T be the BST constructed from the set © of n objects, sorted ascendingly by the attribute
values of attr(-), with unique object IDs to distinguish objects with identical attributes. This means
that even if a lot of objects have the same attribute value, they will have no effect on the balance of the
tree. Therefore, the proposed scheme is insensitive to the distribution of the attributes of the objects.
Each node in 7 contains an object from © and maintains range information: u.range = [u.lp, u.rp],
covering the attribute ranges of its child nodes. Additionally, u.left and u.right represent the left
and right children of u, which can be null if no child exists.

Next, we associate each node u in the tree with its object u.o (we only keep the object ID) and the
corresponding cluster ID u.P. For each node u, we derive a union set of the cluster IDs of all nodes in
the subtree of u and save it as u.SP. We use u.num|i] to denote the number of objects in the subtree
of u that belong to cluster c;. These two auxiliary structures can be implemented using a hash table.
This will help subsequent algorithms quickly extract L objects correlated to the query range based
on the distance of the candidate coarse centers to the query vector q. The above structure can be
built bottom-up for the set © by modifying the standard method of building a binary search tree
using recursion. This is done by updating the auxiliary data structure of each node from the leaves
upward, and the process can be completed in O(nlogn) time. The pseudo-code for building the
index is omitted due to simplicity.

Example 3.2. With the object set from Example 2.4, the initial object setis © = {01,0;...,015}. To
construct a corresponding index 7, its construction process is similar to that of a standard BST. First,
we sort the objects according to their attribute values, and the sorted order is {03, 01, 02, 07, 05, 03, 011
, 06, 012, 04, 09, 019, 014, 013, 015 }. Then we select the median element og as the root node and proceed
recursively to create the left and right subtrees of the root node. The built structure is shown in Fig.
2 (a). When the tree structure of index J is created, we backtrack up from the leaf nodes, gradually
updating the auxiliary information of each node by aggregating the information of the child nodes
during the backtracking process. As an example, the SP set of the node 0y includes the cluster IDs
{1,4,5}. This is because the SP set of 04 includes {4, 5} (since 04 and 09 are in Cluster 4, and oy, is
in Cluster 5), and the SP set of 014 includes {1} (as 013, 014, 015 are all in Cluster 1). Therefore, by
merging the cluster IDs of the children and the cluster ID of 04, its SP set is derived as {1,4, 5}.

We first revisit weight-balanced BST and its key properties.

Definition 3.3 (Weight-Balancing Condition). Given a balancing parameter « € (0, 0.2], for any
node u, either min{size(u.left), size(u.right)} > « - size(u) or size(u) > 4 must hold.

If a node u does not satisfy the weight-balancing condition, we call it imbalanced. When all nodes
are balanced, we can bound the height of index 5 with the following lemma:
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Algorithm 1: RangePQ-Query(7, q, [£,r], k)

1 C«—0,R— O,NS «—0;

2 IndexSetUnion(root(J),¢,r,C,NS);

3 SearchByCCenters(q,C,t,r,R,NS);

4 return top-k nearest objects to q in R;

5 procedure IndexSetUnion(u, £, r, C, NS):

6 if attr(u.o) € [¢,r] then C «—C U {u.P}, NS < NS U {u};
7 if [w.lp,u.rp] N [£,r] = 0 then return;

8 if [u.lp,u.rp] C [¢,r] then

9 C «—CUuSP,NS «—NSU {u};

10 return;

1 if nodeu.left # () then

12 ‘ IndexSetUnion(u.left, ¢, r, NS);

13 if node u.right # 0 then

14 ‘ IndexSetUnion(u.right, ¢, r, NS);

LEMMA 3.4. The height of index I is O(log n).

This is obvious: size(u.left) > a-size(u) and size(u.right) > a-size(u). The size of each subtree
decreases exponentially. So the height of 7 is bounded by O(log n). The next lemma will be used
in the design and cost analysis of subsequent update algorithms.

LEmMA 3.5 ([14]). Whenever a node u becomes imbalanced, we can fix it in constant time by
performing constant rotations. After the fix, u can become imbalanced only after Q(size(u)) updates
have taken place in the subtree of node u.

Query with RangePQ index. Alg. 1 shows the pseudo-code of how to do a range filtered
ANN search query with the index 7. First, the algorithm takes as input a range [¢, r] on attr(-),
a query vector ¢, and a positive integer k. Then we initialize three sets: candidate set C, which
stores IDs of coarse clusters that contain objects in the query range [, r]; result set R for storing
the final query results; node set NS = O; U O to hold the set O; of roots of the O(logn) disjoint
subtrees and the set O; of O(logn) singleton nodes according to Theorem 3.1, which is further
needed for subsequent object retrieval (Line 1). Starting from the root node root(J), we obtain the
corresponding sets by calling IndexSetUnion (Line 2). Given the currently searched node u, if the
attribute value attr(u.o) of the object stored by u is within the query range, we would update set C
to CU{u.P} and NS to NSU {u} (Line 6). If the subtree rooted at the current node u being searched
has no intersection with the query range, the procedure returns directly (Line 7). If u.range is fully
contained by the query range, we update set C and NS and end the search process for nodes (Lines
8-10). Otherwise, we recursively search left and right children nodes of u to continue updating the
maintained sets (Lines 11-14). Through the above process, we can obtain the candidate cluster set
C and the node set NS.

Next, we can compute the final query result by invoking the SearchByCCenters procedure with
pseudo-code in Alg. 2. First, for each cluster ID i in the candidate set C, we compute the distance
between its coarse center ¢; and the query vector ¢ (Lines 1-2). After calculating the distances, all
the clusters are sorted in increasing order of distances (Line 3). Next, we traverse the clusters with
ID in C based on distance order. For each cluster, we perform the fetching and distance computation
of the relevant objects (Lines 4-10). In particular, for each traversed coarse cluster ID i, we first
record the size of the current result set R as cnt, 4. Then we extract a new object np from the set
NS that satisfies the query range and belongs to the cluster C; by calling FetchNewObject (Line 7).
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Algorithm 2: SearchByCCenters(q, C, [¢,r], R, NS)

1 for eachi € C do

2 ‘ Compute asymmetric distance between ¢ and coarse center c; by using distance table;
3 Sort cluster IDs in C in increasing order of distance to q;

4 for each i € C in increasing order of distance from c¢; to q do

5 cntorg < |RI;
6 while true do
7 np «— FetchNewObject(NS,i,j = |R| — cntyyg + 1,6,7)
8 if np == ( then break;
9 Append np into R and compute the asymmetric distance between np and q by using distance
table;
10 if |R| == L then return search results R;

11 return R;

12 procedure FetchNewObject(NS, i, cnt, {,r):
13 for nodeu € NS do

14 if [u.lp,u.rp] C [£,r] then

15 if cnt < u.num|i] then

16 ‘ return FindObjectFromNode(u, i, cnt) ;
17 cnt « cnt — u.num|il;

18 else

19 if u.P == ¢ then

20 if cnt == 1 then return u.o;

21 cnt «—cnt — 1;

22 return 0 ;

23 procedure FindObjectFromNode(u, i, cnt ):

24 ‘ Fetch the cnt-th object in cluster ID i from the subtree rooted at u using u.num|i], at node u.

Notice that at each node u, we have encoded the cluster ID information u.P for each object, and the
set of coarse clusters u.SP for all the subtree rooted at u. Then, we can take O(logn) time to go
through the nodes in NS one by one and fetch the j-th object in cluster ID i (assuming that the
objects are ordered based on nodes in NS) (Lines 13-21). As we have maintained the u.num|i] and
u.P, we can derive the j-th object by taking a prefix sum over the objects in NS using O(log n)
time. In case the j-th object falls into a singleton node u, we can immediately return u.o. In case u
represents a subtree, then we can further map the j-th object to the cnt-th object in cluster ID i
inside the subtree rooted at u (Line 17). Again, as we have recorded u.num[i] and u.P, we can easily
find the cnt-th object in cluster ID i using a recursive function FindObjectFromNode in Line 19
with O(log n) time. The recursion shares a similar idea as finding the k-th smallest element in BST
with minor modification and hence the detailed pseudo-code is omitted due to simplicity. After
fetching the j-th object np in cluster ID i, we then use the distance table to compute the distance
between np and q and add it to the set R (Line 9). When the size of set R reaches the set parameter
L, we return the set R directly (Line 10). Finally, the result set R is returned. We have the following
theorem for query time complexity of RangePQ. The omitted proofs can be found in our technical
report [1].

THEOREM 3.6. The RangePQ index J can answer a range filtered ANN search query in O(d - Z +
(Co+L)-(M+logn)) time, where Z and M are defined in PQ-index (Sec. 2.2), Cpis the number of
clusters that include objects in Og. The space cost of RangePQ is O(nlog K).
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Algorithm 3: RangePQ-Insertion(7, e)

1 Insert(root(T),e);
2 procedure Insert(u, e):
3 if u = () then

4 Replace node u with an node contains object e;

5 return;

6 Update auxiliary structures maintained by internal node u with the coarse cluster ID of e and

attr(e);

7 if attr(e) < attr(u.o) then Insert(u.left, e);

8 else Insert(u.right,e);

9 Maintain(u);
10 procedure Maintain(u):

1 if u is imbalanced then

12 Make u balanced by rotation [14];

13 Update the auxiliary structures of u based on the auxiliary structures of u.left and u.right;
14 else return;

Algorithm 4: RangePQ-Deletion(7, e)

1 u « root(J);
2 while u.0 # e do

3 Update auxiliary structures maintained by internal node u with the coarse cluster ID of e and
attr(e);

4 if attr(e) <attr(u.o) then u = u.left;

5 else u = u.right;

6 Mark u as invalid, inv += 1
7 if 2 - inv > size(root(J)) then Rebuild the entire index T ;

Example 3.7. Continuing with the object set from Example 2.4, we now construct the proposed
index for this set, with the completed index shown in Figure 2(a). Given a query vector q and a
range filter of [4, 7]. We first quickly identify the nodes as shown in gray color, where we have
two disjoint subtrees with nodes at og and 04 as the root. We further have a singleton node storing
object 0¢. The corresponding range of each of these three nodes is shown in Figure 2. The SP sets
maintained by the nodes containing 04 and og are {4, 5} and {3, 5}, respectively. The coarse cluster
ID P for in the node containing o4 is 5. Then we obtain the final candidate set of query coarse
cluster IDs, C = {3,4,5}. With the obtained candidate set C and the query range, we can further
obtain approximate nearest neighbor query results using the searchByCCenters.

The choice of L. The parameter L controls the number of objects accessed. A larger L increases
recall but also raises query time, while a smaller L reduces both time and recall. Typically, L is
set based on experimental results. Additionally, the ratio of L to the number of objects within the
query range impacts recall. For implementation, we use an adaptive mechanism to select L, based
on a predefined Lyqs and the number of elements covered by the query range rp. We define L
as max(Lpgse - r,,r% Lpase) where rpq. is the base parameter for the number of elements covered.
Experiments have validated the effectiveness of the proposed adaptive method.
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Fig. 2. An example of updates with BST (@ =0.2). In (a), the objects with attributes are

{(01,2), (02, 2), (03, 1), (04, 6), (05,4), (06, 5), (07, 3), (08, 4), (09, 7), (010, 8), (011, 4), (012, 5), (013, 8), (014,9)
, (015, 11)}, where the second value in each tuple is the attribute of the corresponding object. Then the set is
inserted with objects (016, 11), (017, 10), (018, 12).

3.2 Dynamic Updates

Insertion of RangePQ index. Alg. 3 shows the pseudo-code for dealing with insertions. Starting
from the root node root(7), we insert a new object e. The insertion process is performed through
recursive traversal. If the current node u is empty, it means we have found the position where the
new node is to be inserted. Then, we create a new node at the corresponding position of u on the
tree, which contains the newly inserted object e (Lines 3-5). We also update the link relationship
between node u and its parent. When the current node u is not empty, we first update the auxiliary
structures (u.SP, u.num, u.lp, and u.rp) maintained by u with the coarse cluster ID of the new
object e and the attribute value of the new object e (Line 6). The reason is that the new node will
be inserted into the subtree of u, so u.SP and u.num will change with the insertion of the new
node. Then, we compare the attribute value of the node to be inserted with the attribute value
of the current node u, to decide whether to search left or right for the position to insert the new
node (Lines 7-8). After inserting the node, it backtracks up to the root node level by level, and a
balance check is conducted on each backtracked node through the Maintain procedure (Line 9). If
node u violates the balance condition, we re-balance node u through rotation and update the data
maintained by u with the data maintained by two child nodes of u (Lines 11-14).

THEOREM 3.8. The RangePQ index I handles each insertion in O(logn) amortized expected time.

Deletion of RangePQ index. Alg. 4 shows the pseudo-code for deletion. When an object e is
removed from ©, we start from the root node to find the node containing e (Lines 1-5). During the
search process, it updates the coarse cluster set u.SP and u.num for each node u it visits. It searches
downward according to the key of u until it finds the corresponding node. Then, it marks u as
invalid but does not delete u (Line 6). At the same time, the number inv of invalid nodes v in the tree
is updated, and this value is set to 0 when the tree is first created. This deletion does not affect the
insertion process because it does not affect the actual size of the left and right subtree leaves of each
node. If the existing node containing e is marked as invalid at the time of insertion e, we simply
mark it as valid. Clearly, inv can be maintained within O(1) time. When 2 - inv > size(root(J)),
the entire tree is rebuilt and set inv to 0 (Line 8). Note that size(u) includes the number of all invalid
and valid nodes in the subtree of u. Also, the number of valid nodes is at least half of the total
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Algorithm 5: RangePQ+ Query(Jy, q, [£,r], k)

1 C«—0,R«— O,NS « 0

2 HybridIndexSetUnion(root(Ty), t,r,C,NS);

3 HybridEndPointUnion(root(Jg), ¢, t,r,C,NS);

4 HybridEndPointUnion(root(Jy),r, t,r,C,NS);

5 SearchByCCenters(q,C, ¢, r,R,NS);

6 return top-k nearest objects of R;

7 procedure HybridEndPointUnion(u, ep, £, r, C, NS):
8 if ep € [u.Clp,u.Crp] then

9 ‘ Update set C by scanning the objects saved by u with the range of [£,r], NS < NS U {u};
10 else if ep < u.Crp then
11 ‘ HybridEndPointUnion(u.left,ep, £, r,C);

12 else HybridEndPointUnion(u.right, ep, £,r,C);

13 procedure HybridlndexSetUnion(u, ¢, r, C, NS):

14 if [u.Clp,u.Crp] € [£,r] then C < CUu.PN,NS «— NS U {u};

15 Repeat the operations of Lines 7-14 in Algorithm 1 with replacing IndexSetUnion with
HybridIndexSetUnion;

number of objects in the tree, thus it does not affect the time complexity of insertion and query
algorithms.

The existing PQ-index can easily handle updates with the pre-built coarse clusters and sub-
codebooks. When an object is inserted, it is inserted by traversing all clusters, finding the nearest
one and coding it according to the existing codebooks. When deleting an object, we can use auxiliary
structures (e.g., a hash table) to directly locate the cluster where the object needs to be deleted.
When the number of updated objects exceeds ©(n), it is typically necessary to rebuild the entire
PQ-index to ensure query efficiency. The rebuild of the BST layer can be completed in O(nlogn)
time. Hence, the amortized update time can also be bounded by O(logn). Since the PQ index is
maintained globally in the vector database, it needs to be updated in the system. Consequently,
in our theoretical analysis, we do not charge the update cost of PQ-index in the update costs of
RangePQ. But in our experiment, we report the end-to-end update time, which includes the time to
update the PQ-index.

THEOREM 3.9. The RangePQ index J can handle each deletion in O(log n) amortized expected time.

Example 3.10. Continuing with the object set from Example 2.4 and the initial index J shown in
Fig. 2(a), only partial SP sets of nodes are displayed due to space constraints. First, 015 is inserted
into ©, it then searches on 7 and places it as the right child of the node containing 0;5. Then, we
update the SP set of the relevant nodes based on 043’s coarse cluster ID. All nodes remain balanced,
so the structure after insertion is shown in Fig. 2(b). Subsequent insertions of 056 and 047 proceed
similarly, with the index updated in Fig. 2(c). After inserting 0,7, the node containing 014 becomes
imbalance and it leads to a node re-balancing, with the corrected structure shown in Fig. 2(d).
The removal of 054 involves marking its node, updating u.num|i] if 014 belongs to cluster i, and
adjusting the SP set if u.num[i] drops to zero. Ancestor nodes are updated accordingly, but no
balancing is required due to the nature of the deletion. The final structure is as shown in Fig. 2(e).

3.3 Hybrid Two-Layer Index

The above index efficiently handles range-filtered ANN searches and index updates. However, its
space cost is not linear, making it impractical to store entirely in memory for large datasets. To
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Algorithm 6: RangePQ+ Insertion(Jy, e)

1 Hybrid-Insert(root(JTy), e);
2 procedure Hybrid-Insert(u, e):

3 if attr(e) < attr(u.o) thenv «—u.left;
4 else v —u.right;
5 if attr(e) € [u.Clp,u.Crp] orv = 0 then
6 Add object e into node u;
7 if u needs to split then
8 ‘ Split u into two nodes and insert the latter node as the right subtree of u
9 return;
10 Update auxiliary structures maintained by internal node u with the coarse cluster ID of e and
attr(e);
1 Hybrid-Insert (v, e);
12 Maintain(u);

address this, we introduce a hybrid two-layer structure, termed RangePQ+, which compresses the
original tree by having each node contain multiple objects. This new structure maintains the object
set © using a modified index that compresses the tree into two layers: the original tree structure as
the first layer and a second layer where each node, representing a compressed subtree, contains
multiple objects. These nodes are managed using linear space cost data structures, details of which
will be discussed shortly. This hybrid structure maintains query efficiency and the original time
complexity for insertions and deletions while reducing space costs.

RangePQ+ index structure. The proposed hybrid two-layer scheme RangePQ+ is implemented
by compressing consecutive objects into a reduced number of nodes. The main idea of the hybrid
two-layer compression technique is to first sort objects by attribute values, assuming that all
attribute values are unique. When attributes are the same, we can further deduplicate them by
key values. Then, we sequentially generate { = ©(n/K) nodes, each of which contains € = ©(K)
objects with consecutive attribute values, where € is a hyper-parameter set by the user. Next, for
the compressed nodes, we create a tree index Jy to support ANN search. Similarly, for each node
in Jy, we retain two values, Ip, and rp, to save the minimum and maximum attribute values in its
subtree. Additionally, each node also stores the minimum and maximum attribute values of the
objects held in the corresponding node, denoted as Clp and Crp. To support ANN search queries,
for PQ-index information, we also associate the union of coarse cluster IDs u.PN of all objects
stored in each node. Each node also maintains a set SP, which preserves the union set of coarse
cluster IDs of objects contained in all nodes within the subtree. Besides, we maintain a hash table
u.HT for each node to maintain all the objects within the node, indexed using the coarse cluster ID
of each object as the key. With this hash table, we can quickly extract objects from a given cluster
at each node, facilitating query processing.

Query with RangePQ+ index. The query algorithm for the RangePQ+ index is similar to that
of the original RangePQ. Overall, we perform efficient queries of the union of coarse cluster IDs
within a range, using the coarse cluster IDs maintained by nodes on the tree. Note that special
processing is required when a node is not completely contained within the range, i.e., when only
some of the objects in the node are contained within the range. Alg. 5 shows the pseudo-code
for performing range queries on index Jz. We initialize three sets C, R, and NS. Then, we obtain
the union of cluster IDs of nodes in Jy that are entirely contained within the range [I,r] by
calling the HybridIndexSetUnion algorithm. The HybridIndexSetUnion algorithm performs a
recursive process similar to the IndexSetUnion procedure. When the [u.Clp, u.Crp] of a node u is
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Algorithm 7: RangePQ+ Deletion(7y, e)

1 u <« root(Ty);
2 while attr(e) ¢ [u.Clp,u.Crp] do

3 Update auxiliary structures maintained by internal node u with the coarse cluster ID of e and
attr(e);

4 if attr(e) <u.Clp then u = u.left;

5 else u = u.right;

6 Delete e from node u and update inv according to the number of objects in node u;
7 if 2 - inv > size(root(JTy)) then Rebuild the index Ty;

completely contained within the range, we directly use u.PN to update set C, and update set NS
(Line 14). Otherwise, we repeat the process from Lines 7-14 of Alg. 1, replacing IndexSetUnion
with HybridIndexSetUnion (Line 15). Note that in Tz, some nodes may only have part of their
objects contained within the range [, r]. Fortunately, these cases only occur in nodes located at the
left and right endpoints of the range [I, r]. Therefore, we perform additional separate handling of
the left and right endpoints of the query range by invoking HybridEndPointUnion (Lines 3-4). It
conducts recursive searches based on the attribute values of objects maintained at each node (Lines
7-12). When a node containing the endpoint ep is found, the sets C and NS are accordingly updated
(Line 9). Finally, we use SearchByCCenters to conduct an approximate top-k nearest neighbor
query. Since index Ty is a hybrid two-layer structure, for the fetch object algorithm in the original
SearchByCCenters we first use a similar tree-based recursive approach to locate. For each node u,
we fetch the objects by the corresponding hash table u.HT.

THEOREM 3.11. The RangePQ+ index Jeo can answer a range filtered ANN search in O(d - Z +
Co(M+log ) +L(M+logk +log {) +€) time, where Cpis the number of coarse clusters that contains
objects in Og. The space cost of this index is O(n).

Example 3.12. We continue with the object set from Example 2.4. The original index structure is
shown in Figure 2 (a). When using the hybrid two-layer structure to compress the index, assume €
is set to 3. After sorting the original set, it becomes {03, 01, 02, 07, 05, 03, 011, 06, 012, 04, 09, 019, 013,
014, 015}, and we sequentially split them into five nodes {Ny, ..., N5}. Then, based on the new
nodes, we construct the corresponding index Jz and maintain the coarse cluster set information
for each node. The final structure is as shown in Figure 2 (f), with the SP set maintained by each
node attached.

Insertion of RangePQ+. Alg. 6 presents the pseudo-code for inserting a new object e into index
Tz To insert e, we start at the root node root(Jz) and find the right node u where e should be
inserted, and then add it to u (Line 6). If the number of objects contained in the node exceeds 2 - €,
we split this node and evenly divide the stored objects into two nodes, up,. and ug,y, in order. Then,
let u replace with u,., and insert ug, r into the right subtree of u (Line 7). For the visited node u,
we update auxiliary structures maintained by node u with the coarse cluster ID of e and attr(e)
(Line 9). Then, we continue to search for the node v that needs to be inserted recursively (Line 10).
Finally, during the backtracking phase, we use Maintain to keep the tree balanced (Line 11). We
have the following theorem for the time complexity of insertion.

THEOREM 3.13. The RangePQ+ index handles each insertion in O(log {) amortized expected time.

Deletion of RangePQ+ Index. Alg. 7 shows the pseudo-code for deleting an object e from
index Jy. To delete e, we start from the root node root(Jy) to find the node containing e. We
also update auxiliary structures maintained by node u with the coarse cluster ID of e and attr(e)
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for currently accessed node u (Line 3). Then, based on the attribute range maintained by u, we
determine the node for the next iteration (Lines 4-5). When we find the node containing object e,
we remove e from u. When the number of objects maintained in u is less than €/2, we increase inv
by one (Line 6). Note that when inserting, if the number of objects maintained by a node changes
from less than €/2 to more than €/2, we decrease inv by one. When 2 - inv exceeds the number of
nodes within the entire index, we directly reconstruct the entire index (Line 7).

THEOREM 3.14. The RangePQ+ index handles each deletion in O(log n) amortized expected time.

4 Related Work

The ANN search is a classic problem in databases and information retrieval, with over 30 years of
research [6]. Current ANN algorithms are categorized into four types:

Locality Sensitive Hashing (LSH). LSH [28] indexes high-dimensional data by hashing similar
items into the same buckets with high probability. Variants like E2LSH [17] and FALCONN [4] sup-
port approximate high-dimensional retrieval with tunable performance and theoretical guarantees
but incur significant redundancy and space overhead. The query and space costs of LSH are O(n”)
and O(n'*?), respectively. While providing strong theoretical guarantees, LSH has higher practical
space overhead compared to other methods [44]. Some studies focus on learning hash functions
based on data characteristics [15, 47].

Tree-based indexes. These indexes mainly consider the design of recursively splitting the
entire set © into subsets corresponding to the subtrees of the search tree. K-d tree [10], PKD-tree
[49], FLANN [43], RPTree [16], and ANNOY [11], are used for organizing data in a hierarchical
structure, allowing for logarithmic query times in lower dimensions. These structures vary in their
construction, from using principal component analysis to random projections for dividing the data
space. These types of methods are mainly used to design algorithms for exactly finding nearest
neighbors.

Graph-based indexes. Graph-based indexes [2] build a navigable graph, where nodes represent
objects and edges connect similar ones. Methods like k-nearest neighbor graphs [18], monotonic
search networks [21], and small world graphs [37, 38] start a query from a random node, traversing
on the graph to find the node closest to the query. They excel in high-dimensional spaces in practice
but often require high memory and preprocessing costs.

Vector Quantization (VQ). These methods compress vectors to enable approximate distance
computations in a reduced space, thus lowering storage costs and speeding up ANN searches [8, 29].
Product Quantization (PQ) is a leading technique, frequently combined with inverted file indexes
(e.g., IVFADC) for billion-scale search. PQ has also been applied in hardware acceleration [5, 13, 30].

5 Experiments

We compare the proposed RangePQ and RangePQ+ against the state-of-the-art solutions in various
aspects through experiments. We also conduct experiments to examine the impact of input parame-
ters. All experiments are conducted with a single thread on a Linux machine with an Intel Xeon(R)
CPU at 2.20GHz and 768GB of memory.

5.1 Experimental Settings

Datasets. We use the following three real-world datasets tested in related research [40, 59, 60]: (i)
SIFT, which consists of 128-dimensional feature vectors extracted from multiple images. It contains
up to one billion base vectors, and ten thousand query vectors. We use one million vectors from base
vectors as the object set. (i) GIST, which is composed of 960-dimensional feature vectors extracted
from images. It provides one million base vectors, ten thousand query vectors, and half a million
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training vectors. We used its one million base vectors as the object set. (iii) WIT, which consists
of 2048-dimensional embedding vectors generated using Wikipedia images through ResNet-50.
It contains more than six million vectors, and we randomly sample one million vectors as the
object set as the previous work [60]. Following the previous works [59, 60], for SIFT and GIST, we
uniformly generate a random integer key from range [1, 10*] for each object as its attribute value.
For WIT, we use the size of the image as the attribute value. Each dataset contains one attribute,
and we construct the index based on this attribute. To further test the query performance of the
proposed method under datasets with skewed attribute values, we generated attribute values for
SIFT using Zipfian distribution (shape parameter a = 2), denoted as SIFT-ZIP dataset.

Competitors and Evaluation Metrics. We include the following methods, all using PQ-index
as the backbone, in our experimental comparisons: (i) Milvus [52] with IVF_PQ as its built-in
index, (ii) RII [40], (iii) VBase [59], (iv) our proposed RangePQ with an O(nlogn) space index as
described in Section 3.1, and (v) RangePQ+, the hybrid two-layer index with linear space described
in Section 3.3. Following the line of previous PQ work [7, 9, 23, 29, 31], we use Recall@k to measure
the quality of range-filtered ANN search results. To provide a more comprehensive comparison, we
also include three recent graph-based indices designed for range filtering queries: (vi) SeRF [60],
(vii) SuperPostFiltering, dubbed as SuperPostFilter [20], and (viii) ACORN [45], a hybrid search
method that employs a predicate-agnostic compression technique. This method can be regarded
as a heuristic acceleration method based on post-filtering. Since graph-based methods maintain
the original vectors, they are typically used in scenarios where higher query quality is required.
These methods generally use recall to measure the quality of the results, which is defined as the
proportion of true k-nearest neighbors among the k query results. When comparing with these
methods, we follow this standard. It is important to note that SeRF and SuperPostFiltering do not
support dynamic updates. We will demonstrate that our proposed RangePQ+ achieves comparable
query performance to graph-based indices while also supporting dynamic updates and offering
better scalability. Our code and additional experimental details can be found in [1].

Parameters. For parameters, we set the size ¢ of objects accommodated per node in RangePQ+
to 10%. For the number L of objects computed, for SIFT and WIT (resp. GIST) datasets, we set the
base value Lpgs. to 10 (resp. 3 x 103). For the base parameter rp,se, we set it to 10°. For the number
M of subspaces in PQ-codes for all methods, we set it to d/4, where d is the number of dimensions
of the input dataset. For all indices, we set K to y/n. We also conduct experiments for parameters
Lpgse, M, and €, which will be elaborated on later. For k in range-filtered ANN query, we set it to 10.
For VBase and RII, we keep the common parameters the same and tune their additional parameters
so that queries across all tested coverage of ranges achieve the best practical query efficiency while
the quality of the returned results has a recall@10 over 0.8. For graph-based methods, all methods
use parameters as specified in their respective papers to gain a recall above 0.9.

5.2 Comparison with PQ-Index Methods

Exp 1: Query performance. In the first set of experiments, we test the range filtered ANN search
of all indices. Fig.s 3-5 show the query performance of all indices across all datasets. For the SIFT
and GIST datasets, we use their provided query vectors. For the WIT dataset, we randomly sample
1000 vectors not from the input data as query vectors. We test query results for different coverage
of query ranges Q, which include {0.1%, 0.5%, 1%, 5%, 10%, 20%, 40%, 60%, 80%}. The figures show
the queries per second (QPS) and the Recall@10 of the query results, with data points representing
the average of all tested query results. We can observe that the proposed RangePQ+ has a clear
advantage across all query ranges. Notably, our RangePQ+ is up to 20x faster than RII and up to two
orders of magnitude faster than VBase and Milvus, while always achieving the highest recall. For
VBase, it uses the built-in indexes for linear scanning when the query range coverage is less than a
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Fig. 4. Query performance on GIST dataset.

threshold. Clearly, scanning the vectors incurs a high running cost. When the range coverage is
high, it changes to use the ANN index and then post-prune the vectors violating the range filter.
By using the ANN index, the QPS is dramatically increased, which shows the importance of ANN
indexes. We also find that RangePQ+ outperforms RangePQ, due to better cache friendliness and
lower height of the BST in fetching objects within RangePQ+. Fig. 6 shows the query performance
on SIFT-ZIP, with skewed attribute values. Consistent with earlier results, RangePQ+ significantly
outperforms other methods and demonstrates robustness to the distribution of attribute values.

Exp 2: Update efficiency. Next, we test the update performance of all indices. We test the
average time it took to insert and delete 10* objects, where the objects were randomly selected
from the data set. Fig. 7 shows the time taken to insert data into all indices across all datasets. It
is observed that the time taken for insertion is almost the same for all methods except Milvus.
This is because the experiments show end-to-end time, where the main time cost of insertion is
spent on finding the coarse clusters to which the objects belong, which takes O(KM) time. For the
objects inserted, Milvus first places them into a segment. When the size of this segment reaches a
certain threshold, it creates a separate index for this segment. This means that during searches, it
has to traverse all objects in the unprocessed segment, leading to decreased query efficiency as
shown in our Exp 1. Fig. 8 shows the time taken to delete data from all indexes across all datasets.
RangePQ+ has a clear advantage over other methods. RangePQ+ is faster than RangePQ because it
requires updating fewer auxiliary structures and has smaller constants. RII takes more time because
it needs to update an external data frame, which is used for filtering on objects. Fig. 10 shows the
impact of dataset updates on the query performance of all methods. We report QPS for all methods
while achieving the same metric level of search results as in Exp. 1, across varying numbers of
object updates. The results show that RangePQ+ achieves stable query performance after updates,
verifying its ability to handle dynamic updates to the dataset effectively.

Exp 3: Index size and scalability test. Fig. 9 shows the index size of all methods across
all datasets. The index size of RangePQ+ is significantly less than that used by RangePQ and
comparable to that of RII and VBase, as these methods also use linear space indexes. Milvus
additionally constructs other indexes for different types of hybrid query processing, resulting in
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Fig. 6. Query performance on SIFT-ZIP dataset.

slightly higher space cost compared to other methods. All methods process range filtered ANN
search in small space by utilizing PQ. The index size of the common PQ index is around 10% of the
space of original vectors.

Then, we assess the scalability of these methods using SIFT datasets ranging from 1 million
to 100 million vectors. Fig.s 11(a) and (b) respectively show the queries per second (QPS) when
achieving the same required quality of search results and the index size for different methods as
the data size increases. For methods that cannot build an index within three days, we omit the
corresponding results. As shown in Fig. 11(a), RangePQ+ achieves a steady advantage. As the
dataset becomes larger, the advantage of RangePQ+ becomes more obvious. When the dataset size
reaches 100 million, RangePQ+ is more than an order of magnitude faster than VBase and RIL This
demonstrates the excellent scalability of RangePQ-+. Fig. 11(b) shows the index sizes of the different
methods when the size of the dataset increases. RangePQ+ has a comparable index size with other
methods while saving a lot of space than RangePQ.

5.3 Comparison with Graph-based Methods

Based on the previous experiments, we observe that our proposed method, RangePQ+, outperforms
existing quantization-based approaches. To further demonstrate its effectiveness, we compare
RangePQ+ with graph-based indices specifically designed for range-filtered ANN search. For a fair
comparison, we integrate key ideas of RangePQ+ with the state-of-the-art quantization method [22]
and employ reranking [53] and fastscan [5] techniques to enhance query performance. Fastscan
technology in PQ-index, akin to prefetching in graph-based ANNS [2], is a common technique
[22, 27]. The PQ-index is initially developed for scenarios with limited storage capacity. Since graph
indexes typically store original vectors for searching, they require a larger space overhead and
provide a high recall of query results. In scenarios requiring high recall, PQ indexes can employ the
exact distance of original vectors for re-ranking to enhance the quality of query results [22, 30].
Exp 4: Query efficiency. We evaluate the performance of our RangePQ+ against competitors
on GIST and WIT datasets using range filters with varying coverage. Fig. 12 and Fig. 13 shows the
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QPS and recall on GIST and WIT datasets, respectively. In Fig. 12, RangePQ+ shows a stable QPS
performance consistently maintaining a recall of query results above 0.9. In contrast, SeRF and
ACORN fail to return search results with recall higher than 0.9 within 100ms for certain queries with
less than 1% range coverage, due to the structure information loss in their pruning strategies. We
observed that SuperPostFilter failed to achieve a recall above 0.9 within 100ms for some small ranges,
e.g., ranges with 0.1% coverage, on the WIT dataset. This issue may stem from precision degradation
caused by its attribute value storage method, which uses floats, resulting in inaccuracies for small
ranges. Although SuperPostFilter exhibits certain advantages over RangePQ+, its efficiency gain
came at the cost of a significantly larger index size. Specifically, on the GIST (or WIT) dataset, the
index sizes for SeRF, SuperPostFilter, ACORN and RangePQ+ were 0.39GB (or 0.38GB), 10.6GB (or
15.2GB), 4.3GB (or 4.1GB) and 0.13GB (or 0.12GB), respectively. Notably, SuperPostFilter required
up to 100 times more index space than RangePQ+, highlighting the space efficiency of our approach.
We can find that RangePQ+ achieves stable performance, comparable to graph-based methods. It
can be further observed that graph-based methods are more sensitive to dataset characteristics, as
graph structures are significantly influenced by the dataset. For instance, the performance of graph-
based indices differs significantly on GIST and WIT datasets. In contrast, quantization methods like
RangePQ+ demonstrated greater stability across different datasets. Considering lightweight nature
of RangePQ+ and its ease of updates, it provides an excellent balance between index size, query
efficiency, and update capability. We further conducted experiments to examine the performance
of QPS versus recall when fixing the coverage percentage to different values. The conclusions
are similar to the above discussions. Due to limited space, these results are omitted here and are
included in our technical report [1].
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Exp 5. Impact of updates. Next, we examine the impact of updates on our RangePQ+ in-
dex compared to state-of-the-art graph-based indices. In this experiment, we report the QPS for
RangePQ+ at the same required recall level of search reu across varying numbers of updates. In
other words, we evaluate the cost of maintaining the same recall during dynamic updates. Fig.
14(a) and Fig. 14(b) show the QPS as we gradually insert and delete 5 x 10* records, respectively.
As we can observe, the QPS of RangePQ+ and ACORN are insensitive to dynamic updates since
both methods can support index updates to reflect the latest datasets. Yet, the other two will have
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degraded QPS with the increasing number of updated objects. The reason is that these methods are
static and cannot include the changes into their indexes. To reach the same level of recall, it hence
needs to visit more objects and hence a degration of the QPS. This again confirms our RangePQ+ is
a better choice for dynamic scenarios, especially when a light-weighted index is desired.

Exp. 6: Scalability test. Finally, we assess the scalability of the four algorithms in our experi-
ments. We sample datasets ranging from 1 million to 100 million vectors from the SIFT dataset to
examine their scalability. Similar to the previous experiments, Fig.s 15(a) and (b) show the QPS and
index sizes for which the different methods satisfy the recall requirement as the data size increases,
respectively. For methods that cannot build an index within three days, we omit the corresponding
results. Firstly, we observe that graph-based indices are generally less scalable compared to PQ-
based indices. Specifically, SeRF, Superposfiltering, and ACORN fail to complete index processing
within three days for dataset sizes of 100 million, 10 million, and 50 million, respectively. Besides, as
observed in Fig. 15(a), SuperPostFilter achieves high QPS but at the expense of a significantly larger
index size—over 70 times larger than our RangePQ+ when the data size is 5 million, as shown in Fig.
15(b). RangePQ+ and SeRF exhibit comparable QPS, but RangePQ+ consumes four times less index
space than SeRF. Besides, SeRF does not support dynamic updates. Additionally, RangePQ+ offers a
significant advantage over ACORN. When the dataset size reaches 10 million, RangePQ+ has three
times the QPS of ACORN and its index size is 7 times smaller than ACORN. This demonstrates that
RangePQ+ offers a superior trade-off between query efficiency and index size. Moreover, RangePQ+
shows remarkable efficiency in index construction time, building the index in under one minute
for all dataset sizes. In comparison, SeRF requires over 9,000 seconds to build the index when the
data size is 5 million, while SuperPostFilter (resp. ACORN) takes over 90,000 (resp. 16000) seconds
for the same dataset size. This substantial difference underscores the scalability and efficiency of
our method. Moreover, the ANN indices used by RangePQ+, such as the PQ-index and the one
described in [22], can be constructed in less than one day when the data size is 100 million, which
is faster than the construction time required by SeRF. Since these indices are necessary to support
basic ANN searches (excluding range-filtered queries), it is reasonable to assume that they are
already available. Besides, RangePQ+ achieves comparable query performance to SeRF while being
lightweight and supporting updates, a feature not available in SeRF and SuperPostFilter. While
ACORN supports dynamic updates, its QPS is far lower than that of our RangePQ+. These make
RangePQ+ a highly efficient and flexible solution for large-scale applications.

We have also conducted experiments for the parameter M, €, and adaptive L policy (as mentioned
in Sec. 3.1). Due to limited space, we refer interested readers to our technical report [1].

6 Future Work

In this section, we discuss potential future extensions, including multithreaded processing, handling
limited memory environments, and supporting more complex range filters.

Concurrent multithreaded processing. Currently, our solution works for single-core environ-
ment. To extend to multithreaded environments, our proposed method could employ fine-grained
locking (e.g., mutexes) at each node, allowing concurrent reads but risking contention at high con-
currency. For RangePQ+, a promising direction is to adopt a two-layer hierarchical locking scheme,
which introduces different levels of locks for upper-layer operations and lower-layer nodes to
balance contention and access control. Additionally, auxiliary structures—such as the SP sets—could
be transitioned to lock-free implementations using techniques like compare-and-swap operations.
Future research may explore more optimized concurrent update strategies, such as multi-layer
hierarchical locking to reduce conflicts and load balancing methods to ensure an even distribution
of workloads across the structure.
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Extension of external memory. For memory-limited scenarios, partitioning the dataset and
index is crucial. In this setting, vectors are stored on external storage, while in-memory BSTs
maintain cluster metadata to facilitate efficient lookups. The vectors are partitioned by clusters and
fetched on demand, minimizing I/O overhead. Caching strategies (e.g., LRU and prefetching) can be
explored to boost performance. Alternatively, disk-friendly structures (e.g., B-tree or B*-tree) may
replace BSTs, with dynamic updates handled via deferred updates or incremental rebalancing. Write-
optimized structures (e.g., append-only logs) could temporarily buffer changes before merging, and
adaptive caching coupled with parallel I/O offers additional opportunities for optimization.

More complicated range-filtered queries. RangePQ+ mainly focuses on continuous range
filters, but we plan to expand our approach to more complex scenarios, including unions and inter-
sections of multiple range filters as well as non-numeric attributes. For unions, we can merge sorted
ranges into non-overlapping segments; for intersections, we can similarly combine the relevant
portions. The resulting sets of coarse clusters can then be processed via our SearchByCCenters
method. In the case of non-numeric attributes (e.g., strings), we can map them (e.g., lexicographi-
cally) to numeric values to convert the problem into a range-filtered ANN search. These extensions
will be a key direction for future work. Additionally, exploring multi-attribute range-filtered ANN
search presents an interesting direction for future work.

7 Conclusions

In this paper, we study the range filtered ANN search problem and propose a lightweight RangePQ+
index, that efficiently supports range filtered ANN search and dynamic updates. Extensive experi-
ments show the effectiveness of our RangePQ+.
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