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A B S T R A C T

In the context of Industry 4.0, the precise location information of resources is fundamental for orchestrating 
myriad operations and processes. In outdoor environments, the Global Navigation Satellite System (GNSS) 
provides universal positioning, navigation, and timing services to users worldwide. Nevertheless, GNSS signals 
are severely obstructed and interfered with indoors, rendering the system ineffective in such environments. 
Notably, most Industry 4.0 settings, such as shopfloors, warehouses, and production sites, are in indoor or semi- 
indoor environments, where structures and means of production elements can obstruct or interfere with GNSS 
signals. Therefore, GNSS cannot fully meet the precise positioning requirements of Industry 4.0. Indoor Posi
tioning Systems (IPS) can effectively compensate for the limitations of GNSS to enable the identification and 
tracking of precise object position within indoor or semi-indoor environments. Over the past decade, substantial 
research on IPS has been conducted within the academic and industrial sectors, with findings disseminated across 
numerous academic journals. However, there remains a notable absence of comprehensive reviews on IPS from 
an Industry 4.0 perspective to date, as well as any distillation of the functionality of IPS in industrial scenarios. 
This paper offers an exhaustive review of state-of-the-art IPS research and categorizes IPS applications as 
resource management, production management, and safety management to bridge this gap. The goal is to assist 
researchers and industry stakeholders in recognizing current research gaps, grasping the content of IPS theory, 
appreciating its industrial applications, and charting paths for future scholarly inquiry. This work potentially 
provides an innovative spatial-temporal framework for the technology-centric focus of Industry 4.0 or even 
insights into the value-driven perspective of Industry 5.0.

1. Introduction

In the era of Industry 4.0, production operations must continue to 
improve efficiency, flexibility, and collaboration to drive mass custom
ization [1]. Enterprises need to have a higher degree of production 
automation and process flexibility to improve their internal product 
production capacity and ability to cope with external uncertainty to 
meet customer demand for high-quality and customized products. In the 
case of dynamic shop floor environments with many randomly fluctu
ating customer orders and resource availability, traditional scheduling 
rules and heuristic algorithms cannot solve the production planning and 
control problem well [2]. Acquiring real-time location information of 
production resources, which can realize the spatial-temporal traceability 

and visibility of objects, is foundational for enterprises to efficiently 
orchestrate different production processes and effectively improve dy
namic responsiveness. Spatial-temporal traceability allows for extract
ing valuable insights from historical trajectory data, facilitating more 
efficient resource allocation and bottleneck identification. 
Spatial-temporal visibility empowers enterprises to monitor the physical 
processes across various stages - planning, scheduling, and execution – 
and to make timely adjustments in response to dynamic demand and 
production status, which leads to more flexible, intelligent, and recon
figurable production processes. Such advancements are instrumental in 
achieving digitization, automation, and adaptability.

The physical and virtual worlds must be tightly integrated and syn
chronized to achieve visibility and traceability from a spatial-temporal 
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perspective. Digital twins (DTs), a key enabling technology for Industry 
4.0, are a core method for integrating the physical and virtual worlds 
[3]. In virtual space, based on the attributes of physical entities, the 
digital twin model can be expressed in four model dimensions: geo
metric, physical, behavioral, and rule [4]. DTs can iterate and evolve 
through seamless connection and fusion between virtual and physical 
spaces, and this consistency and synchronization can bring many ben
efits to a wide range of services, including real-time monitoring, dy
namic optimization, and accurate prediction [5,6]. Positioning systems, 
which accurately identify and track the location of an object in the 
physical world and project it into the virtual space, are the only way to 
realize DTs at the spatial-temporal level. Based on different techniques 
and methods, positioning systems can realize relative and absolute 
positioning of objects in two-dimensional or three-dimensional space. 
Relative positioning is suitable for application scenarios that require 
relative position information, while absolute positioning techniques can 
provide information about the position of an object in a global coordi
nate system. In addition, the positioning system has diversified posi
tioning accuracies, such as centimeter-level, meter-level, or 
ten-meter-level, which can meet the needs of different application sce
narios for positioning accuracies.

The mature outdoor positioning system, namely the Global Naviga
tion Satellite System (GNSS), has achieved sub-meter positioning accu
racy in outdoor environments [7]. GNSS, including various outdoor 
positioning systems such as GPS, GLONASS, Galileo, and BeiDou [8], 
provides users worldwide with universal positioning, navigation, and 
timing services. However, GNSS cannot provide services with high ac
curacy in the presence of GNSS signal occlusion in the environment. 
Coincidentally, most Industry 4.0 scenarios (e.g., workshops, ware
houses, and sites) are predominantly indoors or semi-indoor environ
ments, where a variety of buildings (e.g., walls, roofs, rebars) and 
production materials (e.g., people, equipment, materials) can poten
tially result in signal attenuation, multipath effects, and electromagnetic 
interferences. Consequently, GNSS cannot fully meet the positioning 
needs of Industry 4.0 contexts. With the improvement of wireless 
communication, sensor technology, and data processing capabilities, 
indoor positioning systems (IPS) have made remarkable progress. IPS 
can provide more accurate and reliable positioning services, effectively 
compensating for the shortcomings of GNSS, realizing the identification 
and tracking of object location, and providing technical support for in
door and semi-indoor scenes like construction sites to achieve seamless 
real-time positioning [7]. IPS need more attention to develop ubiqui
tous, integrated, and intelligent spatial-temporal frameworks suitable 
for Industry 4.0 environments.

The IPS-related research and applications help enterprises effectively 
monitor, predict, plan, and optimize production processes. First, IPS 
provides real-time monitoring and tracking capabilities, enabling orga
nizations to know the location and activities of their personnel, equip
ment, and materials to make timely adjustments and decisions. Second, 
IPS helps organizations eliminate uncertainties in the production pro
cess and improve the controllability and stability of the process. Third, 
location information from IPS can be used for data analysis and 
modeling to help companies forecast and plan, optimize resource allo
cation, and develop production schedules. Finally, integrating IPS with 
automation systems can realize intelligent production processes and 
equipment control to improve production automation. In addition, the 
concept of internet of everything was proposed in 2017 [9]. Location 
awareness is receiving increasing attention in the industry.

There are some review articles in the field of IPS. However, most 
indoor positioning research focuses on the indoor positioning technol
ogy itself [10–13]. Although there have been attempts to introduce IPS 
into industrial applications [14–16], they have focused more on locating 
targets in industrial scenarios but do not integrate IPS with real-time 
decision-making regarding resource management, production manage
ment, and safety management in industrial applications. Therefore, 
serious deficiencies in the mining, utilization, and integration of 

spatial-temporal information and the corresponding location-based 
services still need further development and improvement.

Therefore, this paper aims to provide a comprehensive literature 
review of the current applications of IPS across various aspects in the 
context of Industry 4.0. First, we synthesize the scholarly literature on 
indoor positioning technologies, techniques, machine learning applica
tions within IPS, and assessment metrics, published between 2014 and 
2023. Then, the applications of IPS in different industries are summa
rized and compared in the context of Industry 4.0. Subsequently, we 
identify prospective directions for applying indoor positioning systems 
to solve industrial problems. The review will serve to pinpoint potential 
avenues for future research. Furthermore, it will enable industrial 
practitioners to develop a more profound and nuanced understanding of 
the relationship between IPS and industry, thereby assisting them in 
devising more effective execution strategies leveraging IPS technologies. 
The significance of this work lies in its capacity to shed light on the 
evolving applications and development of IPS within the Industry 4.0 
landscape. The primary contributions of this paper are threefold. Firstly, 
it generates novel perspectives for scholars and practitioners engaged in 
the field of IPS research, furnishing them with fresh ideas and avenues 
for exploration. Secondly, the work offers practical guidelines to facili
tate the industrial application of IPS, providing actionable recommen
dations for professionals seeking to implement these technologies within 
their operational contexts. Thirdly, this review elucidates the evolving 
role of IPS within the broader framework of Industry 4.0, illuminating 
their integral contributions to the domains of resource management, 
production processes, and safety protocols. To this end, this paper 
identifies the following three research questions: 

(i) What are the proper technologies and techniques of IPS under 
various Industry 4.0 settings?

(ii) How can the realization of IPS contribute to the successful 
implementation of Industry 4.0?

(iii) What are the challenges and future directions for the IPS from 
Industry 4.0 to Industry 5.0 era?

The rest of the paper is structured as follows. Section 2 introduces the 
main research methodology and research framework. Section 3 sum
marizes the techniques, methods, and evaluation metrics related to in
door positioning and the application of machine learning in indoor 
positioning. Section 4 summarizes the application of indoor positioning 
systems in industry in the context of Industry 4.0. Section 5 presents the 
future work, and Section 6 concludes the full paper.

2. Research method

2.1. Selection and analysis of reviewed samples

A search based on “title/abstract/keywords” was performed to 
conduct a comprehensive literature search using prominent search en
gines such as Web of Science, Scopus, IEEE, EI, Elsevier, and Taylor & 
Francis databases. Technical keywords include but are not limited to 
“indoor positioning,” “indoor positioning system,” “real-time posi
tioning system,” “location system,” “location-based system,” “location- 
based system,” “location-based system,” “location-based system,” 
“location-based system,” “location-based system,” “location-based sys
tem,” “location-based system,” “location analytics,” “real-time tracking” 
and “traceability and visualization.” Application keywords include but 
are not limited to “manufacturing,” “logistics,” “construction,” “pro
duction,” “intra-enterprise logistics,” “warehousing,” “factory,” “shop 
floor” and “construction site.” The obtained search results were 
compiled into lists of papers for potential review.

However, upon closer examination of the extensive list, it became 
apparent that different journals often have specific publishing interests, 
and the choice of journal significantly influences the range of research 
topics covered. Consequently, the investigation was restarted and 
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narrowed down to research articles published in renowned and influ
ential journals. Referring to Xue et al. ’s selection criteria of journal 
selection [17], our journal selection criteria were as follows: (1) the 
journal was included in the citation database SCI-expanded database; 
and (2) the journal has a significant impact and is unanimously recog
nized in the field of construction, manufacturing, and logistics research. 
Therefore, we carefully selected 15 journals to capture the critical pa
pers in the chosen domain. The selected journals are Advanced Engi
neering Informatics, Journal of Computers in Civil Engineering, 
Automation in Construction, Journal of Construction Engineering and 
Management, Journal of Computer-Aided Civil and Infrastructure En
gineering, International Journal of Production Economics, Journal of 
Manufacturing Systems, Robotics and Computer-Integrated 
Manufacturing, Journal of Industrial Information Integration, Com
puters and Operations Research, Computers and Industrial Engineering, 
Advanced Engineering Informatics, Journal of Intelligent 
Manufacturing, International Journal of Production Research, and 
Safety Science, which are recognized by the research community as 
outstanding, high quality, and having a significant impact in the field.

To conduct a more focused and comprehensive search, the target 
journals were thoroughly explored using the Scopus/SCI search engine. 
This approach ensured a more extensive coverage of relevant research 
articles within the selected journals. Based on Gu et al.’s [18] survey, 
five IPS-related technologies were selected for review, including radio 
frequency identification (RFID), ultra-wideband (UWB), Bluetooth Low 
Energy (BLE), Wireless Fidelity (Wi-Fi), and ZigBee. The entire literature 
search methodology is shown in Fig. 1, where a combination of tech
nologies, industries, databases, and article content is used to finally 
select the literature that meets the objectives of the article.

This study identified and reviewed 849 relevant papers published 
between 2014 and 2023 through a systematic literature search. After 
careful selection, a sample of 175 articles highly relevant to the study 
objectives was identified in Table 1 for in-depth analysis.

In terms of the distribution of literature types, journal articles 
dominated the sample, with a high percentage of 69 %. Among them, 
articles from seven core journals such as Automation in Construction, 
Journal of Manufacturing Systems, Advanced Engineering Informatics, 
International Journal of Production Economics, Robotics and Computer- 
Integrated Manufacturing, Journal of Intelligent Manufacturing, and 
Computer & Industrial Engineering accounted for 28 %. This indicates 
that these journals have strong academic influence in the field and 

Fig. 1. Systematic literature review stages.

Table 1 
Analysis of IPS-related articles in the context of Industry 4.0 from 2014 to 2023.

Type Name Number of 
articles

% of 
175

Journal Automation in Construction 14 8 %
Journal of Manufacturing Systems 8 5 %
Advanced Engineering Informatics 7 4 %
International Journal of Production 
Economics

6 3 %

Robotics and Computer-Integrated 
Manufacturing

6 3 %

Journal of Intelligent Manufacturing 5 3 %
Computers & Industrial Engineering 4 2 %
Other 71 41 %

Conference / 54 31 %
Total 175 100 %
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become the preferred publication platforms for scholars. The remaining 
41 % of the journal articles show a high degree of dispersion, high
lighting the wide dissemination of knowledge in this research area. It is 
noteworthy that conference papers also account for a significant pro
portion of the total literature, as high as 31 %. This reflects that the 
academic community actively participates in academic exchanges and 
conducts extensive and in-depth discussions on related topics.

In general, this research area is characterized by the dominance of 
journal papers, the concentration of core journals, and the significant 
contribution of conference papers. This provides a rich knowledge base 
for subsequent research and demonstrates the positive attitude of 
scholars to continue to promote the development of this field.

2.2. Overview of IPS in Industry 4.0

Businesses today face a myriad of novel challenges amidst the 
backdrop of progressive globalization, mass customization, and inten
sified competition. The urgent demands for accelerated delivery, 
streamlined automated processes, superior product quality, and 
personalized offerings have propelled organizations to embrace the 
paradigm of Industry 4.0 [19]. Industry 4.0 is characterized by the 
strategic integration of emerging communication, information, and in
telligence technologies to enhance flexibility, efficiency, and produc
tivity in manufacturing processes [20]. Of paramount importance is the 
availability of spatial-temporal data pertaining to manufacturing re
sources, encompassing the physical movements of products, devices, 
materials, and personnel, as well as the precise timing and location of 
information generation and transactions. By obtaining this 
spatial-temporal data, manufacturers can establish accurate references 
to guide their planning, scheduling, and execution activities. Further
more, the adoption of a standardized representation of real-time 
resource status plays a pivotal role in facilitating intuitive visualiza
tion and promoting seamless compatibility among industry stake
holders. This standardization is essential for effective monitoring and 
swift intervention during emergencies, such as timely collision warn
ings, personnel anomaly detection and rescue, hazardous area identifi
cation, and urgent notifications. Spatial-temporal traceability also 
enables the examination of resource movement and interaction patterns 
over time, thereby empowering the identification of production bottle
necks. These bottlenecks may arise from factors such as inefficient 
process scheduling, suboptimal site layouts, inadequate staffing ar
rangements, and inefficient material flow routes. By promptly detecting 
such bottlenecks, traceability equips production control to implement 
necessary measures swiftly, including real-time resource scheduling to 
achieve maximum efficiency and minimal cost. Through effective 
traceability reasoning, resources can gain situational awareness and 
proactively respond to events, facilitating more rational inventory 
management and allocation. Moreover, logistics hubs, distribution 
centers, and assembly lines must establish buffer spaces during peak 
hours to accommodate resource complexity and unexpected disruptions, 
such as material shortages and urgent orders. The geographic distance 
between objects in these buffer spaces and their order of picking 
significantly impact both time and costs. Optimizing the coordination 
between the spatial and temporal dimensions of resources is crucial for 
realizing zero inventory [21] or even zero warehousing [22].

DTs, a core enabling technology for Industry 4.0, serve as a funda
mental methodology for seamlessly integrating the physical and virtual 
worlds [3]. The vision of DTs is to offer a comprehensive representation 
encompassing the physical and functional characteristics of a compo
nent, product, or system [23]. The initial and paramount step in this 
process involves the development of high-fidelity virtual models that 
accurately replicate the geometry, physical properties, behaviors, and 
governing principles of the physical world [24]. These virtual models 
exhibit a high level of consistency with physical components in terms of 
their geometry and possess the ability to simulate their spatial-temporal 
states, behaviors, functions, and other relevant characteristics [25]. 

Furthermore, models within digital environments can optimize opera
tions and directly adjust physical processes through real-time feedback 
mechanisms [26]. Through the utilization of bidirectional dynamic 
mapping, physical entities and virtual models undergo a process of 
co-evolution [27]. The virtual model integrates geometric, structural, 
behavioral, rule-based, and functional attributes to represent specific 
physical objects with high accuracy and fidelity. In this context, posi
tioning systems emerge as the critical enabler for realizing the 
spatial-temporal fidelity of DTs. By efficiently and accurately capturing 
the location information of resources in the physical world and projec
ting it into the virtual space, IPS play a pivotal role in establishing the 
necessary spatial-temporal linkages between the physical and digital 
domains in Industry 4.0 settings, as shown in Fig. 2. This integration is 
fundamental to realize the vision of DTs, as it allows for the seamless 
synchronization and co-evolution of the physical and virtual realms, 
unlocking the transformative potential of Industry 4.0.

Nonetheless, significant challenges remain in achieving a compre
hensive spatial-temporal framework within Industry 4.0 scenarios. 
Firstly, as most Industry 4.0 activities occur indoors, conventional out
door positioning systems are ill-suited for indoor use. The absence of 
widely adopted standards for expression, interoperability, and data 
sharing prevents the achievement of robust spatial-temporal traceability 
and visibility within indoor environments. Secondly, positioning accu
racy is severely compromised in industrial settings due to the prevalence 
of multipath effects and signal fading. Furthermore, changes in the 
environment over time lead to a decline in accuracy, necessitating labor- 
intensive and time-consuming recalibration whenever environmental 
conditions change. This makes the development of environment-specific 
localization models an arduous and ongoing challenge. Thirdly, while 
spatial-temporal information about manufacturing resources offers 
valuable insights for optimization and decision-making at the opera
tional level, the lack of comprehension regarding patterns and trends 
occurring in time and space hampers the development of genuinely 
informed and predictive decision-making processes. As a result, there is 
a pressing demand for focused research on IPS. This research should 
involve the systematic organization and evaluation of various IPS, as 
well as the selection of suitable positioning techniques and methods that 
can meet the accuracy requirements of real-world scenarios (such as 
area positioning, orientation positioning, and precise positioning). 
Simultaneously, the integration of robust data processing, analytical 
analysis, and advanced machine learning techniques is essential. This 
will enable the precise capture of spatial-temporal information related 
to manufacturing resources, the establishment of standardized spatial 
representation and temporal measurements for these resources, and the 
assurance of accurate and enduring indoor positioning capabilities. 
Moreover, the employment of spatial-temporal reasoning mechanisms 
can help mitigate the impact of resource complexity and unexpected 
disturbances that arise during operations within the context of Industry 
4.0. These spatial-temporal reasoning mechanisms can serve as a bridge, 
facilitating the transition from the technology-centric perspective of 
Industry 4.0 to the value-driven perspective of Industry 5.0 [28].

3. Overview of indoor positioning methodologies

The analysis of the 175 screened documents, as presented in Table 2, 
reveals the technological landscape of IPS research over the past decade. 
RFID technology stands out as the most widely studied, with 81 articles 
accounting for nearly 46 % of the total. This reflects the widespread 
application and central role of RFID in IPS. In contrast, ZigBee tech
nology has been relatively neglected, with only 3 articles, possibly due 
to its limitations in coverage and positioning accuracy in practical ap
plications. Beyond the individual technologies, the research landscape 
also includes 9 articles exploring hybrid positioning approaches and 18 
articles focusing on the overall framework and applications of IPS, 
indicating researchers’ efforts to develop more complex and compre
hensive solutions. Table 2 also highlights the temporal trajectory of IPS- 
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related research literature. Over the past 10 years, the number of articles 
has grown continuously, with the volume in 2023 already about eight 
times that of 2014. This trend suggests that the IPS field is attracting 
increasing attention and enthusiasm in the academic community, and 
the research is becoming more in-depth and mature. In terms of research 
methodology, more than half of the literature adopts an experimental 
validation approach, reflecting researchers’ emphasis on the feasibility 

and performance of IPS technology in practical application scenarios. 
This is further reinforced by studies ([29,30,31]), which have been 
tested and applied in real-world environments, enhancing the practi
cality and relevance of the research.

Notably, the IPS technology serves as the physical foundation for 
realizing positioning functionalities. It encompasses a range of wireless 
communication technologies, including RFID, BLE, UWB, Wi-Fi, and 
ZigBee. These technologies leverage the physical characteristics of 
wireless signals, such as signal strength, angle, and propagation time, to 
obtain the information required for positioning. Correspondingly, the 
IPS technique refers to the mathematical models and algorithms devel
oped based on the characteristics of these technologies. They encompass 
various positioning algorithms that utilize physical quantities like signal 
strength, angle, or time, including Received Signal Strength Indicator 
(RSSI), Angle of Arrival (AoA), Time of Arrival (ToA), and Time Dif
ference of Arrival (TDoA). These positioning techniques rely on math
ematical modeling and analysis of the physical properties of wireless 
communication technologies to estimate and project the target position. 
Fundamentally, the technology focuses on the physical implementation 
at the lower layer, while the technique focuses on the mathematical 
modeling at the upper layer. The technology provides the physical 
foundation for positioning, while the technique ensures the realization 

Fig. 2. The overview of IPS for applications in Industry 4.0.

Table 2 
Distribution of technology-based reviewed articles.

Year RFID BLE UWB Wi-Fi ZigBee Hybrid IPS Total

2014 4 – – – – – – 4
2015 7 – 1 – 1 – – 9
2016 7 2 1 – – – – 10
2017 10 – 1 – – 1 – 12
2018 10 3 1 2 1 – – 17
2019 13 1 1 – – 1 1 17
2020 14 2 1 – – 3 3 23
2021 5 7 7 1 – 1 4 25
2022 5 7 10 – 1 3 1 27
2023 6 8 5 3 – – 9 31
Total 81 30 28 6 3 9 18 175
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of positioning functionalities. The synergistic combination of technolo
gies and techniques facilitates the construction of more accurate and 
reliable IPS.

The subsequent sections will introduce the methods and technologies 
of indoor positioning, their integration with machine learning, and the 
evaluation metrics of IPS.

3.1. Technologies

In this paper, five technologies, including RFID, BLE, UWB, Wi-Fi, 
and ZigBee, are selected for the study. As detailed in Table 3, each 
technology exhibits varying levels of accuracy, energy, cost, and scal
ability. The following sections will provide a more in-depth discussion of 
the specifics of these technologies.

3.1.1. Radio frequency identification
RFID is an advanced technology that employs electromagnetic 

transmission and Radio Frequency (RF) compatible integrated circuits to 
store and retrieve data. An RFID system comprises essential components 
such as RFID readers, RFID tags, and the communication between them. 
RFID readers can read the data transmitted by RFID tags and enable 
bidirectional communication with the tags. This communication occurs 
through defined RF signals and protocols, allowing for the exchange of 
information between the readers and tags.

Passive tags and active tags represent the two primary categories of 
RFID tags. Passive RFID tags do not require batteries to operate; they 
extract energy from the RF signals emitted by the reader and transmit 
data back. These tags are mainly used as an alternative to traditional 
barcode technology and offer advantages such as small size and low cost. 
They add information by modulating the return signal and generally 
have a reading range of 1 to 2 m but are limited by their passive nature 
and relatively short reading distances. In contrast, active RFID tags have 
built-in batteries and can actively send signals, so they have a larger 
reading range and stronger signal transmission capabilities, but at a 
relatively high cost.

Despite not being the most accurate or the easiest IPS to implement, 
RFID has been extensively researched for its industrial applications. Our 
sample includes 86 studies on RFID positioning, encompassing 81 
positioning systems solely based on RFID technology and 5 hybrid 
positioning systems incorporating RFID technology. Montaser et al. [36] 
employed RFID technology to facilitate cost-effective indoor location 
identification and material tracking within construction projects. Uti
lizing RFID technology to achieve target tracking has also proved useful 
in other studies [37,38]. Based on the target location, RFID is further 
studied for resource stock-taking [39], resource allocation [40–43], 
process control [44–46], real-time scheduling [47–50], bottleneck 
identification [51,51,52], staff states monitoring [53], collision pre
vention [54], and hazard detection [55].

For two-dimensional (2D) localization, Montaser et al. [36] utilized a 
triangulation method to identify user locations and track materials, 
achieving an average error of 1.0 m and 1.9 m, respectively. Notably, 
their proposed method demonstrates complete accuracy in detecting 
worker and material locations. For three-dimensional (3D) localization, 
Cai et al. [38] introduced a novel algorithm called BConTri, which in
tegrates the boundary condition method and the three-coordinate 

concept to estimate the three-dimensional position of a tag in 
real-world coordinates. Experimental results indicate that the algorithm 
achieves a 3D position error of 1.43 m. In addition, several studies have 
improved the 3D position error by using various localization techniques. 
For example, Montaser et al. [36] conducted a comparative analysis of 
two localization techniques, namely triangulation and proximity. The 
findings of their study demonstrated that the triangulation method ex
hibits superior accuracy compared to the proximity technique.

3.1.2. Bluetooth low energy
The article identifies 33 articles related to BLE research, of which the 

articles that contain only the localization techniques of BLE technology 
are 30. BLE encompasses specifications for the physical and MAC layers, 
enabling the connectivity of various fixed or mobile wireless devices 
within a personal space. BLE signals are detected through BLE beacons, 
and the individual’s location is determined by combining the RSSI with 
the location of the beacon. The BLE protocol incorporates in-phase and 
quadrature sampling techniques, enabling the calculation of angles of 
arrival and departure using BLE. One of the key advantages of BLE is its 
extremely low power consumption, typically around 0.367 mW. This 
enables battery-powered devices to operate for extended periods of 
time, often lasting for years without requiring battery replacement [10]. 
However, there are certain drawbacks associated with BLE. One of the 
disadvantages is the potential for interference, which can affect the 
reliable detection of BLE signals through the beacons used for their 
detection. Additionally, the reliability of detecting BLE signals may be 
compromised, posing challenges in certain scenarios.

The accuracy of BLE in industrial applications has also been studied. 
For example, Wu et al. [56] designed an indoor tracking algorithm 
called GITA to localize product carts via BLE and applied UWB to sample 
tagging during the training phase to achieve a localization accuracy of 2 
m in industrial environments. Zhao et al. [57] developed a BLE-based 
multimodal bionic learning (MMBL) approach with a 95 % error 
within 3.41 m and remains effective after one year of use. Carrasco et al. 
[58] devised a system designed to locate the nearest machine to a user. 
This system collects the Received Signal Strength Indication (RSSI) data 
from low-cost BLE beacons installed on the machines and returns the 
name of the closest machine. The system achieves an approximate 
guessing rate of 89 % accuracy.

The main application of BLE in the industry is target tracking 
([59–62]). Based on target tracking, other scholars have applied BLE to 
collision prevention. For example, Huang et al. [63] devised a meth
odology for detecting proximity areas and delivering proximity safety 
alerts to workers at construction sites. Their approach utilizes BLE and 
has undergone multiple tests on construction sites. The results demon
strated that the system effectively detects proximity and promptly 
generates vibrotactile alerts that are easily noticeable by the workers. 
Arslan et al. [64] used a data collection and trajectory preprocessing 
subsystem based on real-time BLE beacons to extract multifaceted tra
jectory characteristics and workers’ stay areas and proposed a worker 
trajectory analysis system called WoTAS, which can help safety man
agers remotely monitor and control the construction activities in dy
namic environments to understand the workers’ activities and reduce 
the number of incidents on the construction sites.

3.1.3. Ultra-wideband
34 articles investigating ultra-wideband in industrial applications 

were identified, of which 28 were articles that included only UWB 
technology for localization. UWB is an especially appealing technology 
for indoor localization due to its inherent resistance to signal interfer
ence compared to other technologies. UWB signals possess a distinctive 
characteristic as they can penetrate various materials, including walls 
(although metals and liquids can interfere with UWB signals). Further
more, the extremely short duration of UWB pulses aids in mitigating 
multipath distortion commonly encountered in indoor environments. 
This characteristic of UWB enables more precise and accurate 

Table 3 
Comparisons of indoor positioning technologies.

Technology Accuracy (m) 
[32,33]

Energy (mW/ 
tag) [32,34]

Cost 
[14]

Scalability 
[34,35]

RFID (Active) ~1–3 ~250 Medium Medium
(Passive) ~0.15–0.5 <50 Low High

BLE ~2–5 ~25–50 Low High
UWB ~0.15 ~600 High Low
Wi-Fi ~1.7 ~100 Low High
ZigBee ~2.77 ~74.1–81 Low High
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localization results [65].
Scholars have applied UWB to industry and evaluated its accuracy in 

different environments. Pease et al. [66] implemented a UWB system 
within an operational indoor industrial facility and showcased ranging 
accuracy that is on par with existing systems tested in non-industrial 
environments. Moreover, UWB has been successfully integrated with 
other technologies to enhance the accuracy of localization algorithms. 
For example, Wu et al. [56] developed a GITA based on a long and 
short-term memory network. This innovative algorithm integrates UWB 
and BLE technologies and was assessed through a real-world case study 
conducted at a prominent computer manufacturing company. Despite 
the presence of various types of noises in the manufacturing scenario, 
the GITA showed superiority over the existing methods with an accuracy 
of 98.12 %.

The applications of UWB technology span various industrial do
mains. One prominent area of application is target tracking, as evi
denced by the extensive research conducted in this field ([67–69]). 
These studies have demonstrated the efficacy of UWB in accurately 
locating and monitoring the position of targets, making it a valuable tool 
for applications such as asset management, personnel tracking, and 
device monitoring. In addition to target tracking, scholars have also 
explored the application of UWB in the realm of security management. 
For example, Halawa et al. [70] combined UWB technology with a 
warehouse management system (WMS) and a forklift fleet management 
system (FFMS). They conducted an analysis of warehouse safety across 
seven dimensions, including factors such as braking roughness, adher
ence to routing strategies, driver behavior at intersections, congestion 
identification and prevention, speed control per zone, impact analysis, 
and failure analysis. The analysis was performed using relevant data to 
assess and improve warehouse safety. Maalek et al. [71] investigated the 
impact of variables such as speed and heading on the accuracy of esti
mating the location of dynamic tags. Their findings revealed an inverse 
relationship between accuracy and the speed of the tag, the number of 
tags being tracked, and the complexity of the tag’s path of travel. 
Additionally, the researchers proposed a novel method for defining 
hazardous areas in construction sites, showcasing the effectiveness of 
UWB in locating dynamic resources and enhancing safety management 
within construction sites.

The application of UWB to production process control is also a 
research direction. For example, Xia et al. [72] introduced a novel mo
bile production monitoring system equipped with human-in-the-loop 
control. This system utilizes UWB and inertial measurement unit 
(IMU) fusion indoor localization technology to deliver precise indoor 
localization information for the production elements within a factory 
setting. The proposed system was implemented in a hydraulic cylinder 
factory, significantly reducing physical and mental fatigue among pro
duction personnel.

3.1.4. Wireless fidelity
The article identifies 8 articles related to Wi-Fi research, of which 6 

articles include only Wi-Fi technology for localization. With the 
increasing prevalence of portable user devices, it is worth noting that 
many of these devices now come equipped with Wi-Fi capabilities. This 
widespread adoption of Wi-Fi technology renders it highly suitable for 
indoor localization purposes. Existing Wi-Fi access points can serve as 
valuable reference points for collecting signals in indoor localization 
systems [73]. It is possible to construct basic localization systems that 
can achieve reasonable positioning accuracy without the need for sup
plementary infrastructure. Nonetheless, conventional Wi-Fi networks 
are generally deployed for communication purposes, aiming to maxi
mize data throughput and network coverage rather than for positioning 
objectives. Therefore, innovative and efficient algorithms are necessary 
to enhance the positioning accuracy of these networks.

Scholars research the accuracy of Wi-Fi when applied in industry. For 
example, Ma et al. [74] designed a module called enhanced magnetic 
fingerprinting-based indoor localization (MaLoc), which provides 2D 

localization services with an accuracy of 1 to 2.8 m. Budak et al. [75] 
compared four solutions, namely, UWB, Wi-Fi, ultra-high frequency 
(UHF) RFID, and active RFID, and the optimal system was determined to 
be the Wi-Fi real-time locating system. Studies have also integrated 
Wi-Fi with other technologies, such as magnetic fields [74] and IMU 
[76]. Exploring location-based services is also a research direction for 
Wi-Fi. For example, Falkowski et al. [77] explored the standard indoor 
positioning solutions required for location-based services and used 
Wi-Fi-based geofencing as an example to demonstrate the need for 
employing feature models for an efficient design process.

3.1.5. ZigBee
ZigBee, a wireless communication standard developed by the ZigBee 

Alliance, was devised with the specific objective of addressing the de
mand for cost-effective implementation of ultra-low-power and low- 
data-rate wireless networks. ZigBee builds upon the IEEE 802.15.4 
standard, which focuses on the physical and MAC layers to facilitate the 
establishment of low-cost, low-data-rate, and energy-efficient personal 
area networks [78]. ZigBee standardizes the upper layers of the protocol 
stack, encompassing the network layer and the application layer. The 
network layer is responsible for organizing and enabling routing in 
multi-hop networks, while the application layer serves as a framework 
for facilitating distributed application development and 
communication.

Due to its low-cost and low-power characteristics, ZigBee has been 
utilized in the development of IPS. RSSI levels are easy to obtain because 
they are included in each packet without additional hardware. ZigBee- 
based IPS typically comprise sensor networks and wireless sensor 
network algorithms. These systems commonly employ algorithms that 
utilize RSSI values to estimate the location. Consequently, they rely on 
similar techniques as Wi-Fi and BLE, such as fingerprinting and propa
gation models. While ZigBee is advantageous for localizing sensors in 
wireless sensor networks, it poses challenges when it comes to its us
ability on most user devices. As a result, it is not well-suited for indoor 
localization of users [11].

Several scholars conduct research related to ZigBee. Zhao et al. [79] 
developed a comprehensive warehouse environment monitoring system 
using ZigBee technology. The system adopts a tree-like network topol
ogy comprising a ZigBee coordinator, multiple ZigBee routing nodes, 
and end devices. Additionally, they established an evaluation model 
based on activity-based costing to assess the level of warehouse logistics 
costs and analyzed the various factors influencing warehouse logistics 
costs. Cui et al. [80] introduced a ZigBee-based fingerprint positioning 
method for locating railroad tunnel staff. They proposed an improved 
K-means algorithm to cluster the location fingerprinting database, 
aiming to reduce the number of matches between online stages and 
reference nodes. This approach facilitated online positioning, enabling 
managers to accurately determine the location of tunnel staff in a timely 
manner. As a result, it facilitated the efficient deployment of staff and 
the effective utilization of fingerprinting techniques. Mardeni et al. [81] 
devised a tracking and localization system for mobile asset tracking and 
localization, leveraging ZigBee technology, RSSI, and the trilateral 
measurement method. This system was designed to be straightforward, 
cost-effective, and dependable, providing a solution for accurately 
tracking and localizing mobile assets.

3.2. Techniques

This study categorizes indoor positioning techniques into three 
broad classes: signal-based, angle-based, and time-based methods. 
Recognizing that the performance of a given indoor positioning tech
nique can vary across different environments, Table 4 provides a 
comparative overview of the characteristics of some commonly 
employed localization techniques for reference. The subsequent sections 
will introduce the distinctive characteristics, as well as the advantages 
and disadvantages, of each type of indoor positioning technique.
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3.2.1. Signal-based techniques
The approach based on received signal strength (RSS) is considered 

one of the simplest and extensively employed methods for indoor 
localization [82]. RSS refers to the actual strength of the received signal, 
typically measured in decibels milliwatts (dBm) or milliwatts (mW). It 
serves as a means to estimate the distance between the transmitter (Tx) 
and receiver (Rx) devices. A higher RSS value indicates a shorter dis
tance between the Tx and Rx. When the transmitted power or the power 
at the reference point is known, various signal path loss propagation 
models can be employed to estimate the absolute distance. It’s important 
to note that RSSI, often confused with RSS, is a relative measure of RSS 
and is characterized by arbitrary units defined by individual chip ven
dors. For instance, Atheros Wi-Fi chipsets employ RSSI values ranging 
from 0 to 60, whereas Cisco adopts a range between 0 and 100.

Multiple formulas have been developed to calculate distance using 
RSSI, establishing a relationship between signal power and distance. The 
widely used formula is the log-normal path loss, which represents a 
general form of the Friesian equation. Using RSSI and a straightforward 
path loss propagation model [83], the distance d between Tx and Rx can 
be estimated from 

RSSI = − 10nlog10(d) + A (1) 

where n is the path loss exponent, and A is the RSSI value at the refer
ence distance from the receiver. RSSI can be applied to trilateral mea
surements, fingerprinting, and proximity methods. Trilateral 
measurement methods leverage RSSI to estimate the distance between a 
reference node and a mobile node, enabling the determination of object 
locations associated with the reference node. Proximity-based methods 
utilize RSSI values to establish geofences, which detect when an object 
enters the vicinity of the geofenced area. Fingerprinting applies RSSI 
measurements to obtain features for each point on the map [84].

Fingerprinting methods are based on RSSI. The method is comprised 
of two distinct phases, namely offline and online. During the offline 
phase, the received RSSI signals are utilized to map all areas and stored 
in a database. In the online phase, the RSSI values measured in real-time 
are compared against the predefined values within the database, 
allowing for the identification of the closest point in the vicinity. Sub
sequently, the current position is mapped to the predefined points on the 
map.

Although RSS-based methods are simple and cost-effective, they 
often have limited localization accuracy, particularly in non-line-of- 
sight scenarios. This reduced accuracy can be attributed to additional 
signal attenuation caused by obstacles such as walls, multipath fading, 
and indoor noise, leading to significant fluctuations in RSS values. To 
address these challenges, various filtering techniques and averaging 
mechanisms can be employed to mitigate the effects of signal fluctua
tions. However, achieving high localization accuracy without using 
complex algorithms is unlikely.

3.2.2. Angle-based techniques
As shown in Fig. 3, AoA-based methods utilize an antenna array on 

the receiver side to estimate the angle at which the transmitted signal 
reaches the receiver. This is achieved by utilizing and calculating the 
difference in arrival times of individual elements of the antenna array 
and determining the intersection of multiple orientations based on the 
angle of the received signal.

The advantage of AoA-based techniques is that they do not require 

time synchronization and can provide an accurate estimation of the 
transmitter-receiver distance when the distance is relatively short. In a 
2D environment, the device/user position can be estimated using two 
anchor nodes, while three anchor nodes are required for a 3D 
environment.

However, this method necessitates defining the positions of the an
chor nodes, which must be equipped with directional antennas. This 
requirement can increase the overall cost of the system. Indeed, AoA- 
based techniques typically demand more complex hardware and 
meticulous calibration compared to RSS techniques. The accuracy of 
AoA estimation tends to decrease as the distance between the trans
mitter and receiver increases. This is because even a small error in the 
angle of arrival calculation can result in a significant error in the actual 
position estimation [73]. Moreover, acquiring the line-of-sight compo
nent of the approach angle proves challenging in indoor settings due to 
the presence of multipath phenomena. UWB emerges as a pivotal tech
nology for achieving accurate positioning through the utilization of the 
angle of approach method. Recently, Bluetooth 5.1 has made notable 
advancements in positioning services by incorporating improved tech
niques such as AoA and Angle of Departure (AoD) [85].

3.2.3. Time-based techniques
Time of Flight (ToF) or ToA methods utilize the propagation time of a 

signal to calculate the distance between a transmitter (Tx) and a receiver 
(Rx). This is achieved by multiplying the ToF value by the speed of light 
(c = 3 × 108m/s) to obtain the physical distance between Tx and Rx. 
In Fig. 4, the ToF data obtained from three reference nodes is employed 
to estimate the distance between the reference node and the device. By 
leveraging the underlying geometry, it becomes possible to calculate the 
position of the device in relation to the access point. It’s worth noting 
that ToF requires precise synchronization between the transmitter and 
receiver, and in many cases, a timestamp needs to be transmitted along 
with the signal, depending on the underlying communication protocol.

Table 4 
Comparisons of indoor positioning techniques.

Techniques Technology Computation Latency Synchronization

RSSI BLE Low Hard real-time No
AoA BLE 5.1 High Soft real-time No
ToA UWB Medium Hard real-time Yes
TDoA UWB Medium Hard real-time Yes

Fig. 3. AoA-based localization.

Fig. 4. ToF-based localization.
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The accuracy of Time of Flight (ToF) is influenced by two crucial 
factors: signal bandwidth and sampling rate. A lower sampling rate in 
time results in reduced ToF resolution since the signal may arrive be
tween sample intervals. In multipath indoor environments, a larger 
bandwidth leads to a higher resolution when estimating ToF. While 
employing a larger bandwidth and super-resolution techniques can 
enhance ToF performance, they do not entirely eliminate substantial 
localization errors in scenarios where there is no direct line-of-sight path 
between the transmitter and receiver. This is because obstacles deflect 
the transmitted signal, causing it to traverse a longer path, consequently 
increasing the propagation time from Tx to Rx.

Let t1 be the time when Tx i sends a message to Rx j and receives it at 
t2, where t2 = t1 + tp (tp is the time required for the signal to propagate 
from Tx to Rx). Therefore, the distance between i and j can be calculated 
using Eq. (2)

Dij = (t2 − t1) × v (2) 

where v is the signal speed.
TDoA is a technique that leverages the difference in signal propa

gation times from multiple transmitters as measured at the receiver. 
Unlike ToF which utilizes absolute signal propagation times, TDoA fo
cuses on the relative differences in arrival times. The TDoA measure
ments are converted to physical distance values. To compute the exact 
position of the receiver, TDoA measurements from at least three trans
mitters are necessary, as the receiver’s position corresponds to the 
intersection of three or more hyperbolic surfaces. Solving the hyperbolic 
system of equations can be achieved through methods such as linear 
regression or linearizing the equations using a Taylor series expansion. 
Similar to ToF, the accuracy of TDoA estimation depends on factors such 
as signal bandwidth, the sampling rate of the receivers, and the presence 
or absence of a direct line of sight between the transmitters and re
ceivers. TDoA only requires synchronization between the transmitters.

Ranging Time of Flight (RToF) is a technique that measures the 
round-trip signal propagation time between a transmitter (Tx) and a 
receiver (Rx) to estimate the distance between them. Similar to ToF, 
RToF relies on the measurement of signal propagation time, but it in
volves the complete round trip from the transmitter to the receiver and 
back. RToF offers an advantage over ToF in terms of clock synchroni
zation requirements between the Tx and Rx. The synchronization 
needed for RToF is relatively modest compared to the precise synchro
nization required for ToF. However, the accuracy of RToF estimation is 
affected by factors like ToF, such as the sampling rate and signal 
bandwidth. In the case of RToF, these factors have a greater impact 
because the signal is sent and received twice. Another essential 
consideration for RToF-based systems is the receiver response latency. 
This latency is influenced by the receiver electronics and any protocol 
overhead. Minimizing the receiver response latency is crucial to achieve 
accurate RToF measurements.

3.2.4. Integration with machine learning
Machine learning is a technique and methodology in artificial in

telligence that enables computer systems to learn and improve auto
matically without explicit programming instructions by utilizing large 
amounts of data and statistical principles. The fundamental concept 
behind machine learning is to enable intelligent decision-making and 
behaviors by extracting patterns and regularities from data, enabling the 
performance of tasks such as prediction, classification, and clustering. 
The proliferation of data and advancements in computing power have 
contributed to the significant rise of machine learning in recent years. It 
has been widely used in many fields, such as construction, logistics, and 
manufacturing [86–88], and has achieved remarkable results.

Machine learning can effectively improve the performance of IPS. 
First, machine learning can utilize a large amount of data for feature 
extraction, and it can automatically learn and discover patterns and 
regularities in the data to extract useful features related to indoor 

positioning. This automated feature extraction process is more efficient 
and accurate than manually designed feature extraction methods. Sec
ond, machine learning models have nonlinear entity modeling capabil
ities to better capture complex relationships and nonlinear features in 
IPS. This enables machine learning to predict and localize positions 
more accurately, improving the precision and accuracy of the posi
tioning system. In addition, machine learning is a data-driven approach 
that improves the adaptability and generalization of IPS through 
learning and optimization of large-scale data. Machine learning models 
can learn from data in multiple dimensions and from multiple sensors to 
model different environments and scenarios, thus providing more robust 
localization results. The machine learning techniques commonly used in 
IPS are described next.

In Support Vector Machine (SVM), each data point in a dataset is 
represented as a point in an N-dimensional space, where N corresponds 
to the number of features. The SVM algorithm aims to identify a hy
perplane or a set of hyperplanes that effectively separate different data 
classes by defining boundaries in this N-dimensional space. SVM can be 
utilized for localization tasks by leveraging both offline and online RSSI 
measurements [35]. These measurements can be used as features in the 
SVM algorithm to train a model that can accurately estimate the location 
of a target in a given environment. The trained SVM model can then be 
employed for online localization, where real-time RSSI measurements 
are used as input to predict the target’s position. Rezgui et al. [89] 
introduced a novel approach called the normalized rank classifier 
(NR-SVM) based on support vector machines (SVM). This method was 
specifically designed to address hardware variations and signal fluctu
ations encountered in Wi-Fi fingerprint-based localization. The pro
posed approach prioritizes the main features and considers the 
dimensionality of the feature vectors. Through experimental evalua
tions, the researchers demonstrated the robustness and effectiveness of 
the NR-SVM method in tackling the challenges associated with Wi-Fi 
fingerprint-based localization. Chriki et al. [90] skillfully combine 
SVM with RSSI to convert the problem of determining the precise 
location of a target into the problem of determining the region where the 
target location is located and to solve the problem that it is difficult to 
locate the target based on the RSSI measurements alone correctly.

K Nearest Neighbors (KNN) is a nonparametric machine learning 
algorithm used for classification and regression tasks. It does not make 
any assumptions about the underlying data distribution. The core 
principle of KNN is to determine the class of a test point by considering 
the majority vote of its K nearest neighbors, represented as a feature 
vector. The KNN algorithm is simple to implement and relies on two key 
parameters: the value of K (number of neighbors) and a distance func
tion (such as Euclidean, Minkowski, or Manhattan). However, as the 
dataset size increases, the computational time required to calculate 
distances between new and existing data points also grows. Conse
quently, the performance of KNN can degrade rapidly with larger 
datasets. Additionally, data imbalance issues can pose challenges for 
KNN, as the majority class may dominate the decision-making process, 
leading to biased results. Akré et al. [91] employed an ensemble func
tion that incorporates the RSSI values from all potential RFID readers 
that receive passive RFID signals. They proposed a location feature and 
compared it with other tags situated in known locations within the 
proximity. To enhance the accuracy of localization, they utilized a KNN 
algorithm-based approach to estimate the location of the target tag. This 
approach aimed to improve the precision of localization in their study. 
Kriz et al. [92] used BLE beacons and RSS of Wi-Fi and used weighted 
KNN to estimate the unknown location.

An Artificial Neural Network (ANN) is a computational system that is 
composed of interconnected nodes known as neurons. These neurons are 
linked together with weighted connections. An ANN typically comprises 
an input layer, an output layer, and one or more hidden layers in be
tween. During the training process of an ANN, input data is passed 
through the network, and the output is compared to the desired output 
using a loss function. The network then backpropagates the error, 
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updating the connections’ weights to minimize the loss. This adjustment 
of weights based on the backpropagation of errors allows the network to 
learn and improve its performance over time. The aim is to efficiently 
optimize the weights to make accurate predictions or classifications 
based on the given input data. Adege et al. [93] employed an ANN with 
the backpropagation algorithm to address a regression problem and 
enhance the accuracy of a localization system. Their experimentation 
demonstrated that the localization system achieved an accuracy of 50 % 
for errors less than 0.5 m and 100 % for errors less than 0.9 m. This 
indicates that the ANN-based approach significantly improved the pre
cision of the localization system and yielded favorable results in their 
evaluation. Anand et al. [94] investigated the application of ANN to 
enhance the accuracy of RSSI localization algorithms. They leveraged 
the parallel computation capabilities and non-linear characteristics of 
neural networks to improve the performance of localization. Their ex
periments and analysis demonstrated that the utilization of ANN 
significantly improved the localization performance.

An autoencoder is a type of unsupervised neural network architec
ture in which the target output is set to be the same as the input. The 
primary objective of an autoencoder is to reconstruct its input data at the 
output layer. It consists of an encoder network that maps the input data 
to a lower-dimensional latent space representation, and a decoder 
network that reconstructs the input data from the latent space repre
sentation. Autoencoders can be trained to learn compressed and robust 
representations of the input data by constraining the network with a 
limited number of neurons in the hidden layers. By doing so, the 
autoencoder is forced to capture the most salient features of the input 
data in a compact form. This compressed representation can be used for 
various purposes, such as data compression, denoising, or anomaly 
detection. Wang et al. [95] developed a feature extraction technique 
utilizing a stacked denoising autoencoder. The experimental findings 
demonstrate the efficacy of the proposed approach in addressing the 
temporal variations and sparsity inherent in Wi-Fi signals during the 
localization procedure. Zhang et al. [96] introduced a feature extraction 
algorithm named joint multi-task stacked denoising auto-encoder. This 
method was devised to tackle the instability of Wi-Fi signals and the 
high-dimensional sparsity observed in fingerprint data, with the objec
tive of enhancing the performance of IPS based on Wi-Fi technology.

3.3. IPS assessment evaluation

This section introduces the evaluation of IPS, which is distinct from 
the assessment of individual technologies. Evaluating an IPS for indus
trial environments primarily involves considering four key factors: cost, 
accuracy, robustness, and scalability. These factors must be tailored to 
the specific needs of each application.

3.3.1. Cost
When evaluating the overall cost of an IPS, a multifaceted approach 

is required, considering both monetary and non-monetary factors. On 
the monetary side, the costs associated with such systems can encompass 
a range of elements, including the acquisition of hardware equipment, 
software development and licensing fees, as well as the expenses 
incurred during system deployment and ongoing maintenance. How
ever, the assessment of IPS’s cost goes beyond mere financial consid
erations. A number of non-monetary factors must be considered to arrive 
at a comprehensive understanding of the true cost implications.

Time costs are an essential consideration. The time required to 
install, configure, and calibrate the positioning equipment and the 
ongoing time investment needed to maintain and update the system 
must be accounted for. Time costs also encompass the project manage
ment and coordination efforts, as deploying an indoor positioning sys
tem typically requires communication and collaboration with multiple 
stakeholders, such as the owner, IT department, and construction team. 
These time-related factors can impact the project plan and imple
mentation schedule.

Space cost is another factor to weigh. The physical space required for 
the equipment and the limitations of the equipment layout, as well as 
any necessary modifications to the building, must be considered. Posi
tioning technologies with a smaller footprint and that are easier to 
install should be preferred. Consideration should also be given to uti
lizing existing infrastructure, such as communication cables and power 
systems, to reduce the need for new investments. The planning, imple
mentation, and monitoring of the IPS require specialized knowledge and 
expertise, both during the initial design stages and for ongoing trou
bleshooting and technical support. Selecting a straightforward system 
can help minimize the labour costs associated with operation and 
maintenance.

Human resource costs are also an important consideration. The 
planning, implementation, and monitoring of IPS require human re
sources. This includes the specialized knowledge and experience 
required during the planning and design stages of the system, as well as 
the effort and expertise required for troubleshooting and technical 
support. Choosing a system that is easy to maintain can reduce the cost 
of operation and maintenance labour.

Energy cost is another crucial factor. The power requirements of the 
indoor positioning devices, including both electricity and battery power, 
must be carefully evaluated. Passive energy devices that rely on ambient 
energy sources may offer lower energy costs. Additionally, the input 
requirements for the power supply infrastructure should be considered, 
and alternative power supply options, such as decentralized or renew
able energy, can be explored to reduce energy costs. Effective energy 
consumption management is also essential to optimize the use of energy 
resources.

By considering these comprehensive factors like monetary costs, 
time, space, human resources, and energy, organizations can conduct a 
more thorough assessment and make informed decisions when devel
oping and deploying IPS. This holistic approach helps ensure that the 
selected system aligns with the organization’s needs and desired goals 
while also addressing sustainability concerns.

3.3.2. Accuracy
Accuracy is the most core index in the design of IPS. It directly de

termines the accuracy of the positioning results, thus affecting the per
formance and application value of the whole system. Usually, accuracy 
is evaluated by measuring the average distance error between the esti
mated position and the actual position. Higher accuracy means that the 
positioning result is closer to the actual position, which is crucial for 
many industrial application scenarios. However, companies often need 
to trade-off between accuracy and other system characteristics in pursuit 
of high accuracy.

Firstly, improving accuracy often requires increasing the number and 
density of localization devices or using more complex algorithms and 
techniques, which can significantly increase system cost, complexity, 
and energy consumption. In an industrial environment, these factors are 
often a significant concern. Therefore, companies must weigh accuracy 
against system cost, complexity, energy consumption, and feasibility of 
implementation and maintenance to find an optimal balance.

Secondly, the characteristics of the industrial environment itself can 
have a significant impact on positioning accuracy. Compared with or
dinary indoor environments, factories, warehouses, and other industrial 
sites are usually full of metal equipment, pipelines, and sources of 
electromagnetic interference. These factors will seriously affect the 
wireless signal-based positioning technology, reducing the positioning 
accuracy. Therefore, when choosing positioning technology, we need to 
fully consider the environmental characteristics and take corresponding 
optimization measures, such as choosing the technology solution with 
strong anti-interference ability, optimizing the antenna layout, 
enhancing the signal processing algorithms, etc., to improve the posi
tioning accuracy in the industrial environment.

In addition, different industrial application scenarios may have 
different requirements for positioning accuracy. Higher positioning 
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accuracy may be the key in some scenarios requiring fine material 
management, such as automatic robot pickup or unmanned automatic 
guided vehicle handling. However, in some scenarios of personnel 
localization or large-scale item tracking, relatively low accuracy re
quirements may be sufficient to meet the needs. Therefore, the system 
design should fully consider the specific application requirements and 
dynamically adjust the accuracy target and system configuration to 
maximize the satisfaction of the needs in different scenarios.

Finally, in the actual deployment process, it is essential to conduct 
field tests and performance verification to assess the real-world posi
tioning accuracy of the indoor positioning system within the specific 
industrial environment. This empirical evaluation allows for the 
continuous optimization of system parameters and deployment schemes 
based on the insights gained from the feedback. Only in this way can we 
ensure that the indoor positioning system really plays its due value in 
industrial scenarios.

In conclusion, accuracy is a complex multi-factor problem when 
applying indoor positioning technology in industrial environments. In 
the design and deployment of IPS for industrial applications, a 
comprehensive evaluation and optimization process is essential to strike 
the optimal balance between performance, cost, and complexity. This 
holistic approach must consider a range of technical characteristics, 
environmental conditions, application requirements, and other relevant 
factors. Only in this way can indoor positioning technology play its due 
role in the industrial field.

3.3.3. Robustness
The application of indoor localization techniques in industrial sce

narios requires a high degree of robustness. Factory environments usu
ally face challenges that can seriously affect the localization system’s 
performance, so improving the robustness of indoor positioning tech
niques is crucial.

Firstly, signal occlusion and multipath propagation problems that are 
common in industrial environments can lead to significant deviations in 
measurements. For example, machinery, metal structures, and human 
activities can cause signal interference and dramatic fluctuations in 
signal strength. To cope with this situation, several measures are needed 
to improve the robustness of the positioning system. First, in addition to 
utilizing standard technologies such as Wi-Fi, BLE, and inertial sensors, 
other positioning technologies such as RFID, UWB, and ultrasonic can be 
considered for integration to fully utilize the advantages of sensors with 
different physical principles. Multi-sensor fusion can improve the sys
tem’s ability to tolerate the failure of a single sensor and enhance the 
overall reliability. At the same time, the advantages of different sensors 
complement each other, which is conducive to improving the posi
tioning accuracy in complex industrial environments. In addition, it can 
be combined with machine vision, industrial cameras, and other visual 
sensors to further enhance the robustness of positioning by utilizing the 
rich environmental information.

Secondly, due to the harsh conditions in industrial environments, 
such as temperature, humidity, dust, etc., wireless signals are suscepti
ble to solid interference and attenuation, which may also cause perfor
mance degradation or even damage to the sensors themselves. This 
requires the positioning system to have the ability of self-diagnosis and 
fault tolerance, and to be able to make real-time adjustments for the 
dynamic signal environment. This includes adaptive filtering, gain 
control, spectrum analysis, and other techniques to improve the sup
pression of noise and interference. The system should be able to detect 
abnormal states of sensors and automatically adjust algorithm parame
ters or switch to alternate sensors to ensure that reliable localization 
results are still provided when some sensors fail. At the same time, 
machine learning technology can be used to continuously optimize the 
signal processing algorithm through training and online learning to 
adapt to the characteristics of different industrial scenarios.

Again, the design of positioning algorithms should also take into full 
consideration of various abnormal situations, such as sensor failure, data 

loss, measurement deviation, etc., and have the corresponding fault- 
tolerant mechanism. For example, robust geometric localization algo
rithms, probabilistic statistical models, Bayesian filtering, etc., can be 
used to improve the anti-jamming ability of outliers and missing data. At 
the same time, fault diagnosis and fault tolerance mechanisms can be 
introduced to quickly identify and isolate faulty sensors to maximize the 
use of adequate data to complete the positioning.

In addition, the dynamic changes in the industrial site also pose a 
challenge to the robustness of the indoor positioning system. The 
movement of equipment, the adjustment of process flow, and the change 
of environment layout may lead to the failure of the localization model 
and parameters. Therefore, the design of localization algorithms should 
consider the dynamic environment adaptability and be able to use on
line learning or incremental updating methods to automatically adjust 
the model to adapt to environmental changes to ensure long-term stable 
operation.

In conclusion, high robustness is an essential requirement when 
applying indoor positioning technology in industrial scenarios. Through 
the integration of multi-sensor fusion, fault tolerance mechanism, and 
dynamic environment adaptability, the performance and reliability of 
IPS can be significantly improved to meet the needs of practical appli
cations in complex industrial environments. The ideal IPS should possess 
the capacity for dynamic configuration and self-healing capabilities. 
Such a system must have the inherent ability to independently adjust its 
deployment scheme and parameter configurations in response to envi
ronmental changes, thereby maximizing the continuity and reliability of 
the positioning service.

3.3.4. Scalability
Scalability is a crucial consideration when deploying IPS in industrial 

environments. A critical aspect of scalability in IPS is the ability to 
maintain stable and reliable localization performance as the operational 
range expands and new devices or nodes are introduced into the system. 
The main factors affecting the scalability of IPS include the positioning 
range, signal transmission and data processing, and the dimensional 
space of the industrial environment.

Positioning range is the primary consideration for scalability. In
dustrial environments are typically large, and systems need to support a 
wider spatial range as positioning coverage is progressively expanded. 
However, a positioning range that is too large may lead to a degradation 
of positioning performance, and signal attenuation and occlusion 
problems will become more serious. Therefore, when expanding the 
positioning range, the system must take corresponding technical mea
sures to ensure the accuracy and stability of positioning. This may 
involve increasing the density of positioning nodes, optimizing the an
tenna layout, adopting higher sensitivity receiving equipment, etc.

Signal transmission and data processing capabilities are also vital to 
scalability. With the expansion of the positioning range and the increase 
in the number of device nodes, the system needs to process a large 
amount of real-time positioning data. This places higher demands on the 
bandwidth and latency of the communication network as well as the 
computational performance of the central server. If the underlying 
hardware and network infrastructure cannot support the efficient 
transmission and processing of massive data, the scalability of the sys
tem will be seriously constrained. Therefore, it is necessary to adopt 
high-performance computing platforms and communication solutions 
and optimize the collection, transmission, and analysis processes of 
positioning data to ensure that the system maintains good real-time 
responsiveness in the expansion process.

The dimensional space of the industrial environment is also an 
essential factor affecting scalability. This spatial complexity poses 
unique challenges for the effective deployment and utilization of IPS in 
these settings. The three-dimensional nature of many industrial and 
logistical facilities, with the presence of multi-level structures and varied 
obstructions, can significantly impact the performance and accuracy of 
traditional IPS technologies, which were primarily designed for planar 
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environments. For different dimensions of the space characteristics, the 
positioning system needs to use suitable technical solutions, such as 
combining inertial navigation, ultra-wideband, RFID, and other tech
nologies, and reasonable planning for the deployment of equipment. 
Only by fully considering the needs of the spatial dimension can we 
ensure that the scalability can be effectively utilized in different indus
trial environments.

To maintain the scalability of the indoor positioning system in in
dustrial environments, it is necessary to take corresponding measures 
from several aspects. Firstly, the system should adopt a modularized 
design architecture. By making each functional module relatively in
dependent, it is easy to add new positioning nodes and devices flexibly 
according to the demand. This modular design not only improves the 
flexibility and adaptability of the system but also facilitates future 
maintenance and upgrading, thus ensuring overall scalability. Secondly, 
choosing a high-performance hardware platform is also the key to 
ensure scalability. The hardware platform includes the use of a powerful 
central processing unit, high-capacity storage and memory, and a high- 
bandwidth network interface. Only with sufficient computing and 
communication capabilities the system can maintain good real-time 
responsiveness when increasing the number of device nodes and pro
cessing a large amount of positioning data. In addition, the use of dy
namic positioning algorithms and signal transmission techniques is also 
essential. To cope with the changes in different environmental condi
tions, the system should adopt adaptive positioning algorithms and use 
machine learning and other methods to dynamically optimize the al
gorithm parameters. At the same time, the use of advanced wireless 
communication technologies such as self-organizing network and fre
quency hopping can improve the system’s anti-interference ability and 
transmission stability. The application of these dynamic technologies 
helps to ensure that the positioning performance maintains a high level 
during the expansion process. Finally, before the system is deployed, 
comprehensive scalability and stress tests are required. This includes 
testing the system’s performance metrics at different scales and evalu
ating its stability during gradual expansion. The system can simulate 
large-scale operations through stress testing and other means to identify 
potential bottlenecks and weaknesses. Based on the test results, the 
system design is optimized to ensure that it can meet future changes in 
business requirements.

In summary, to realize the scalability of IPS, it is necessary to start 
from multiple angles, including the modular design, selection of high- 
performance hardware, use of dynamic technology, and system 
testing. Only through these comprehensive measures can it be ensured 
that the positioning system can be continuously and stably scaled up 
with changes in the industrial environment.

3.4. Summary

Overall, the surveyed articles show that researchers in industrial 
applications have so far reacted quickly to the newly introduced IPSs, 
which in addition to the five selected technologies contain several new 
IPS application concepts, such as IMU [37,72], magnetic fields [74], and 
location-based services [77].

This section summarizes the findings by technology. While RFID has 
attracted great interest in the last decade, positioning technologies such 
as BLE, UWB, Wi-Fi, and ZigBee in industrial applications have not yet 
been fully studied or reported. The status of the positioning systems that 
have been applied in the industry will be discussed in the next section.

4. IPS applications in Industry 4.0

As shown in Fig. 5, the number of articles examining the application 
of IPS in the context of Industry 4.0 shows an increasing trend with the 
number of years between 2014 and 2023. In this case, the number of 
articles is the same for 2018 and 2019.

As shown in Table 5, about 64 % of the articles examined the use of 

IPS in manufacturing, and about the same number of articles employed 
the use of IPS in logistics and construction, each accounting for about 18 
% of the articles. Most of the IPS research focused on resource man
agement (49 %) and production management (39 %), with a small 
number of studies focusing on safety management (12 %).

4.1. Resource management

4.1.1. Object tracking
Real-time target tracking is the most popular direction of IPS 

research in manufacturing. Many studies have focused on applying IPS 
to record real-time location information of various types of production 
factors in industrial applications, e.g., finished product [44,58,73,97,98,
83], work-in-process (WIP) [84], assets [85], components [39], and 
workers [67]. Based on the object of capturing spatial-temporal infor
mation of manufacturing resources, some studies proposed technical 
frameworks for applying IPS in the manufacturing industry for tracking 
various types of manufacturing factors in industrial scenarios. Several 
studies have utilized indoor positioning techniques for logistics opera
tions tools and used goods recovery [99]. All kinds of production re
sources are visualized and traceable through IPS, laying a solid 
foundation for further object-based local optimization and global 
collaboration. Besides, the effectiveness of indoor positioning applica
tions has also been the focus of research on IPS for commodity tracking. 
For example, Schroeer et al. [100] evaluate channel effects and impact 
on location accuracy in multipath and non-line-of-sight scenarios to 
improve the localization accuracy of UWBs in industrial environments. 
Beliatis et al. [101] compare different technologies and analyze their 
advantages and disadvantages to identify suitable technology solutions 
for product traceability in the metal manufacturing industry. solutions. 
Barbieri et al. [68] investigate the application of UWB in factory envi
ronments and propose an enhancement technique to mitigate the signal 
impairments that occur in this complex scenario.

Some studies conduct construction site tracking of moving targets. 

Fig. 5. Reviewed articles classification by years.

Table 5 
Reviewed articles classification by applications in different fields.

Real-time decision-making Manufacturing Construction Logistics Total

Resource management 59 7 20 86
Object tracking 28 5 16 49
Resource allocation 21 1 2 24
Resource stock-taking 10 1 2 13
Production management 48 10 10 68
Bottleneck identification 11 1 2 14
Process control 22 8 6 36
Real-time scheduling 15 1 2 18
Safety management 2 14 5 21
Collision prevention 1 3 – 4
Hazard detection 1 5 2 8
Staff states monitoring – 6 3 9
Total 109 31 35 175
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Wong et al. [76] developed a localization module including inertial 
sensing data, Wi-Fi signal, and barometer unit integration to achieve 
cross-floor location tracking, tracking the location of moving people 
promptly, and sharing the localization results with the relevant partic
ipants. Cai et al. [38] proposed BConTri, which combines the "boundary 
condition method" and the concept of trilateration, to estimate the lo
cations of tags in 3D real-world coordinates with GPS-equipped RFID 
readers. Montaser et al. [36] proposed a low-cost indoor location 
method using UHF RFID to track materials for construction projects. The 
proposed method can accurately detect the area of worker and material 
locations, and the results show that the average errors of this method are 
1.0 m and 1.9 m, respectively.

Target tracking is also a research topic in the field of intelligent lo
gistics. Hayward et al. [37] developed a low-cost, non-invasive method 
using passive RFID tags. In cases where magnetometers and 
zero-velocity updates cannot be used, drift is corrected by confirming 
the reference position to map the route taken by assets carried by 
personnel in indoor environments. A study [102] also explores the use of 
IPS systems to increase supply chain visibility to reduce costs, improve 
efficiency, prevent losses, and obtain competitive levels of customer 
satisfaction. The decision-making approach for selecting the most 
appropriate positioning technology is discussed in [75].

4.1.2. Resource stock-taking
In the manufacturing field, some studies [17,86] focusing on the 

framework of tracking services for manufacturing elements have 
compared the available methods to determine the applicability of 
tracking assets in indoor environments. In addition, some scholars have 
conducted inventory counting studies for different types of 
manufacturing resources. Kirch et al. [103] define smart logistics zones 
based on RFID, thus realizing the automatic identification and locali
zation of logistics objects and applying them to pallet management. 
Giordano et al. [104] present an innovative device for continuously 
evaluating the usage of handheld power tools and detecting construction 
tasks as well as potential misuse through an energy-efficient architec
tural design. Pichler et al. [105] describe standardizing the design and 
use of self-sufficient mobile workstations and utilizing IPS to provide 
up-to-date locations to maximize the functionality and versatility of 
individual mobile stations and the entire plant environment. There are 
also studies focusing on plant metal parts [39], generating product 
storage [106], raw material tracking [62], and asset tracking [66].

Some researchers are also applying IPS resource stock-taking to 
construction and warehousing. Ma et al. [74] designed an enhanced 
MaLoc that integrates magnetic field and Wi-Fi technologies to obtain 
the real-time location information of personnel and facilitate personnel 
to locate and inspect neighboring building elements to ensure a more 
effective and collaborative construction quality management process. 
Xu et al. [107] proposed an intelligent management system to monitor 
the quantity of goods in a small-scale warehouse. This system collects 
and analyzes location data and real-time feedback information accord
ing to the relationship between goods quantity and digital signals. 
Mostafa et al. [108] proposed a new RFID-based warehouse manage
ment approach that enables the connection of multiple objects. This 
approach can help provide spatial-temporal visibility of all items in the 
warehouse, increasing efficiency and preventing inventory 
counterfeiting.

4.1.3. Resource allocation
Manufacturing resource allocation has also been the focus of 

research [109,106,110,52,111]. Effective resource allocation can pro
vide the efficiency of enterprise resource utilization, reduce enterprise 
production costs, and thus improve enterprise competitiveness. Wang 
et al. [112] presented an active material handling method that applies 
cyber-physical systems technology on the shop floor. This method aims 
to make manufacturing resources like machines and carts intelligent so 
that they can sense, act, interact, and behave. Based on intelligent 

resources, they proposed a multivariate linear regression method that 
considered time weighting to predict the remaining processing time for 
the WIP. The method innovatively transforms the material handling 
strategy from a traditional reactive mode to an intelligent and proactive 
mode, which optimizes the allocation of smart trolleys, reduces the total 
non-value-added energy consumption of manufacturing resources, and 
optimizes the routing of smart trolleys. Zhao et al. [113] established a 
dynamic spatial-temporal knowledge graph model to represent digital 
twin copies with spatial-temporal consistency, and then performed 
relational reasoning based on task information of production logistics. A 
directed weighted graph algorithm is introduced to solve the production 
logistics resource allocation problem, which provides a new idea for 
solving the spatial disorder and temporal asynchrony problem of pro
duction resources. Lee et al. [43] proposed an intelligent system to 
realize data-driven resource allocation. The system consists of product 
material, people, information, control, and productivity functions with 
the aim of providing effective and timely support for enterprise resource 
allocation decisions. RFID is introduced to validate the effectiveness of 
allocation decisions. By refining the rules for RFID-collected data, 
resource allocation results are better adapted to the production situa
tion. Wu et al. [56] designed a system architecture utilizing IPS to 
achieve spatial-temporal traceability and visibility of finished goods 
logistics on the factory floor and seamless cyber-physical synchroniza
tion. Production decisions are made with the help of spatial-temporal 
data, thus contributing to operational efficiency.

Several resource allocation-related studies focused on logistics and 
construction. Some studies related to resource allocation focus on lo
gistics and buildings. Dzeng et al. [114] utilized RFID technology to 
track occupants and record movement data so as to design a model for 
the optimization of function-space assignment. Trab et al. [115] defined 
a negotiation mechanism for achieving sustainability that relies on 
Internet of Things (IoT) infrastructures and multi-agent systems to 
achieve optimal placement of products and people in a sustainable 
system and ensure safe product allocation operations. Trebuňa et al. 
[116] describe a step-by-step process for implementing a localization 
system that analyzes the movement of people, materials, and various 
tools to optimize the material flow and create virtual safety zones.

4.2. Production management

4.2.1. Process control
Many studies [112,96,37] carry out process control of manufacturing 

based on spatial-temporal information of objects. Zhong et al. [117] use 
production logic and timestamps to concatenate RFID data and propose 
an RFID-based cuboid model to interpret the information. In the real 
case study, the practicability of the proposed model is demonstrated and 
verified, which helps to simplify the daily operations of different end 
users. Guo et al. [118] designed a platform called a digital twin-enabled 
graduation intelligent manufacturing system for fixed-position assembly 
islands by integrating positioning technology with other technologies. 
The overall platform is divided into physical, digital, and service layers. 
Real-time integration and synchronization between the different layers 
guarantee that the resources are allocated accurately and used for 
suitable activities at the right time. Managers are eager to make de
cisions, and field workers can conduct duties efficiently. Wu et al. [29] 
developed a location-based logistics platform to track finished goods, by 
which location-based operation is activated to improve operational ef
ficiency. The platform is validated in a real case. Overall productivity 
has also increased, with significant reductions in product pickup and 
emergency order inspection times, shorter order lead times, and 
improved service levels.

The process control function of IPS in the construction domain has 
also been studied by scholars. Ding et al. [119] described the graduation 
intelligent manufacturing system, which utilizes IoT-enabled pre
fabricated production for real-time spatial-temporal visibility and 
traceability and develops a multistage self-adaptive decision-making 
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mechanism to improve the performance level of planning, scheduling, 
and execution in the presence of fluctuating runtimes. The proposed 
platform results in more than 70 % reduction in delayed operations 
compared to the traditional approach, and the mold table Idle time was 
reduced by 16.1 % on average. Li et al. [44] utilize RFID technology to 
capture real-time location information throughout the on-site assembly 
of modular integrated construction. The data captured is sent to the 
cloud for real-time processing and analysis. This helps on-site managers 
and staff make better decisions, enhance operational efficiency, and 
improve collaboration and supervision during the assembly of pre
fabricated buildings. Xue et al. [45] examine the existing patterns and 
trends in RFID-enabled building information modeling systems. They 
also provide guidelines for choosing suitable solutions in various 
building project management scenarios and in different construction 
project management scenarios.

In the field of logistics, Zadgaonkar et al. [120] employ 
machine-learning algorithms to enhance the precision of BLE beacon 
localization. The study’s findings offer valuable data support for 
resource discovery, order acceptance, and enhancing the inventory 
process in warehouse management. Zhao et al. [79] employ ZigBee 
technology to design an intricate storage environment monitoring sys
tem. The aim is to decrease the development cost and energy con
sumption associated with storage environment monitoring while 
simultaneously enhancing the efficiency of the monitoring process. Zhao 
et al. [121] suggest the combined utilization of RFID and UWB tech
nologies in an intelligent warehousing management system. This system 
leverages UWB technology to determine the location of forklift trucks 
and utilizes RFID technology to ascertain the status of goods during 
loading and unloading operations.

4.2.2. Real-time scheduling
Multiple studies have concentrated on implementing IPS in 

manufacturing to enable real-time resource scheduling. These studies 
approach the topic from three distinct perspectives: single object, single 
enterprise, and multiple inter-enterprise. At the single object level, 
Zhang et al. [122] designed a dynamic optimization of the shopfloor 
material handling model, where each trolley is an active agent 
requesting a transportation task compared to traditional material 
handling methods. Then, the optimal transportation task is allocated to 
the optimal trolley according to the real-time state. Carrasco et al. [58] 
introduced a system designed to locate the nearest machine in proximity 
to the user, which utilizes low-cost BLE beacons and signal strength 
indicators to achieve machine location acquisition. Zhao et al. [61] 
devised an architecture for collaborative tracking enabled by IoT edge 
computing. They also proposed a supervised learning genetic tracking 
methodology. This architecture and methodology were effectively 
deployed and implemented in real-life manufacturing industrial parks. 
As a result, managers were able to gain a comprehensive real-time view 
of manufacturing resources and accomplish task matching with the 
closest available resources. At the individual enterprise level, Zhou et al. 
[50] employ RFID technology to store and transmit the attributes of 
processing operations. This approach enables online scheduling of 
multi-variety orders. The proposed methodology is implemented in a 
smart factory setting and is evaluated through a real case study. The 
experimental results demonstrate that the smart factory’s new archi
tecture enhances the efficiency of multiple schedulers in terms of 
learning and scheduling. Additionally, it effectively handles unforeseen 
events, such as emergency orders and machine failures. Chen et al. [123] 
propose a cost-effective method to reconfigure the production logic. 
They accomplish this by constructing a discrete event-driven model 
predictive control, which optimizes real-time WIP to facilitate timely 
production decision-making. The aim is to prevent any backlog of WIP 
and ensure smooth production operations. Guo et al. [124] introduce an 
intelligent decision support system architecture that utilizes RFID 
technology for production monitoring and scheduling in a distributed 
manufacturing environment. The proposed architecture has been 

successfully implemented in a pilot project within an apparel 
manufacturing environment. It demonstrates good scalability and 
extensibility, allowing for seamless integration with production 
decision-making, as well as production and logistics operations within 
the supply chain. At multiple enterprise levels, Zhang et al. [48] present 
an architecture for real-time information capturing and integration in 
the context of the Internet of Manufacturing Things. This architecture 
enables embedding sensors in various manufacturing resources such as 
operators, machines, pallets, and materials. The real-time 
manufacturing information integration service is a crucial architecture 
component, which facilitates seamless two-way connectivity and inter
operability between different enterprises. Ding et al. [125] introduce a 
social manufacturing system that utilizes RFID technology to enable 
real-time monitoring and dispatching across multiple enterprises. This 
system aims to address sudden disruptions by dynamically scheduling 
production and transportation tasks among enterprises. Additionally, it 
enhances the transparency of inter-enterprise production, particularly in 
the context of large-scale personalization.

Studies also focus on the application of IPS for real-time scheduling 
in construction and logistics. Altaf et al. [126] applied RFID technology, 
data mining techniques, and simulation-based optimization to create a 
production planning and control system for a panelized home prefab
rication facility. This system enables managers to capture assembly line 
production data in nearly real-time and automatically optimize the 
production schedule, leading to improved efficiency and effectiveness in 
the facility’s operations. Zhao et al. [60] employ iBeacon technology for 
warehouse management. Their proposed scheme demonstrates the po
tential to significantly enhance the performance of order picking and 
inventory processes within warehouse management.

4.2.3. Bottleneck identification
Some studies [83,127,87,105] focus on mechanisms for processing 

IPS-related data in the manufacturing domain, and some scholars focus 
on how to implement IPS within factories. Wolf et al. [128] present an 
innovative framework for IPS in industrial environments. This frame
work enables continuous monitoring of the current location and pa
rameters (such as speed and direction) of process resources, including 
operators, equipment, and products. It also collects shop floor data and 
configures the production system to provide real-time feedback to 
blue-collar workers. Aydos et al. [129] developed a manufacturing 
monitoring system that combines RFID, wireless, and plug-and-play 
technologies. This system collects data on time and WIP to facilitate 
the identification of process wastage, enable production based on job 
times, achieve activity balancing, and assess capacity within the 
manufacturing process. Cao et al. [130] explored the state characteris
tics of production logistics from the perspective of multi-attributes such 
as time, place, quantity, sequence, and path, and established a compu
tational model to process RFID data and then discover abnormalities in 
production logistics. Zhou et al. [131] put forward a comprehensive 
framework for knowledge-driven digital twin manufacturing cells in the 
context of intelligent manufacturing. This generic framework facilitates 
autonomous manufacturing by incorporating intelligent sensing, simu
lation, understanding, prediction, optimization, and control strategies. 
It can be applied to various aspects of intelligent manufacturing, 
including intelligent process planning, intelligent production sched
uling, and production process partitioning.

Several studies in construction and logistics apply IPS to bottleneck 
identification. Li et al. [132] developed an RFID-enabled building in
formation modeling platform. This platform integrates multiple stake
holders, information flows, offshore prefabrication processes, and 
advanced construction technologies. Its purpose is to streamline oper
ations across the three echelons of prefabrication, logistics, and on-site 
assembly of the building. The platform utilizes real-time data capture 
to establish a closed-loop visibility and traceability model, enabling 
different end users to monitor construction status and progress in 
real-time. This real-time monitoring capability helps mitigate critical 
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schedule risks. Zhao et al. [133] introduce a proactive tracking system 
architecture that utilizes iBeacon technology and distributed gateway 
concepts. This architecture incorporates location-based service triggers 
and seamlessly integrates location information with warehouse work
flows. It aims to reduce time wastage in the order picking and inventory 
processes. The system also enables the dynamic location information of 
products to be known and updated, enhancing overall efficiency in 
warehouse operations. Kong et al. [134] presented a cloud platform that 
supports a multi-layer physical internet concept. This platform enables 
virtualization and real-time control of logistics assets, facilitating 
reconfigurable task coordination and execution. It also allows for 
simultaneous on-time process synchronization. By leveraging this cloud 
platform, logistics operations can be optimized for efficiency and 
responsiveness.

4.3. Safety management

4.3.1. Staff states monitoring
Ongoing research efforts have been made to leverage this technology 

for staff state monitoring on construction sites. Gómez-de-Gabriel et al. 
[98] introduced an innovative approach to actively regulate the power 
of a tool based on the worker’s distance from it. This solution serves the 
dual purpose of detecting hazardous situations resulting from improper 
use of personal protective equipment or incorrect tool proximity and 
promptly and effectively intervening to mitigate safety risks. Conse
quently, it effectively addresses safety concerns in construction projects 
involving the utilization of power tools. Kanan et al. [135] proposed an 
innovative design for an autonomous system. This system is designed to 
actively monitor, identify whereabouts, and issue warnings to con
struction workers operating in high-risk zones. Its primary objective is to 
ensure the safety of construction workers and prevent accidents at 
construction sites. Chen et al. [136] recognized the significance of po
sition and posture as crucial quantitative indicators. They introduced 
the concept of fusing position and posture to evaluate the behavioral 
safety risks of construction workers. The fusion principle combines 
posture, position, and the fusion of posture and position to determine the 
level of risk for individuals involved. Zhang et al. [55] employed an 
RFID system to efficiently detect the entry and exit actions of workers 
carrying tags upon entering the construction site. Additionally, they 
utilized virtual zones of different sizes and shapes, created in a flexible 
manner, to identify intruders and issue timely warnings. This approach 
effectively contributes to accident prevention at construction sites. 
Maalek et al. [71] conducted a study examining the feasibility of UWB 
technology for resource localization in construction sites. They further 
integrated this technology with managing hazardous areas on con
struction sites, aiming to enhance existing safety monitoring practices. 
Their research highlights the potential of UWB as a valuable tool for 
improving safety measures in construction environments.

The logistics industry has been at the forefront of exploring the 
application of IPS for staff states monitoring. Halawa et al. [70] 
employed IPS to track and locate forklifts and other mobile entities 
within a warehouse setting. They established a connection between this 
information and the warehouse and forklift fleet management systems. 
Through this integration, they could analyze routing strategies, oper
ating speeds, congestion identification, intersection driver patterns, and 
fault analysis. Their approach aimed to enhance both the safety and 
operational efficiency of the warehouse environment. Zhao et al. [137] 
presented a safety management tracking solution that leverages the IoT 
and digital twins. Their approach involves the establishment of an in
door safety tracking mechanism, which enables the detection of sta
tionary behaviors. Additionally, they employed self-learning genetic 
localization techniques to identify personnel anomalies and obtain 
precise real-time location information. By combining IoT and digital 
twin technologies, their solution aims to enhance safety management 
practices by enabling accurate tracking and anomaly detection in indoor 
environments. Zhan et al. [138] introduce an intelligent system 

framework that utilizes industrial IoT and DT technologies. Their 
framework aims to enable real-time monitoring of occupational safety in 
warehouse environments. By leveraging industrial IoT and DT, the 
system ensures that the physical space and corresponding information 
are synchronized, allowing for traceability and visibility of operations. 
This integrated approach enhances safety monitoring practices and 
promotes efficient management in warehouse settings. Wu et al. [139] 
presented a cyber-physical platform framework that leverages the 
internet of everything and DT technologies. This framework aims to 
enable seamless information integration and deliver intelligent services 
to various stakeholders in the cold chain logistics domain. The proposed 
platform facilitates real-time supervision of personnel safety in cold 
storage facilities, enables paperless transportation operations, allows for 
remote monitoring of temperature and humidity, detects anomalies, and 
provides alerts. Additionally, it supports customer interactions, 
enhancing overall operational efficiency and safety in the cold chain 
logistics industry.

4.3.2. Collision prevention
Some studies have introduced IPS to prevent collisions. In the field of 

manufacturing, Neal et al. [54] examine the potential of recyclable 
transportation objects as intelligent containers within the context of 
cyber-physical manufacturing services. They explore how these con
tainers can interact with components, machines, and other elements of 
the manufacturing system. Additionally, they focus on the identification 
of intelligent components and the monitoring of the logistic handling 
process. This includes the detection of collisions, lifting actions, and 
turning movements. The research sheds light on the role of intelligent 
containers in enhancing efficiency and safety in manufacturing 
operations.

In addition, applying collision prevention of IPS in construction is 
another domain. Ventura et al. [140] devised an affordable proximity 
detection system utilizing UWB technology. This system can operate 
with or without fixed anchors and gathers real-time data directly from 
the construction site. Its primary function is to alert workers to potential 
collision hazards, ensuring their safety on the job.

4.3.3. Hazard detection
Emerging research has explored the application of IPS for hazard 

detection. In the field of manufacturing, Sellak et al. [141] introduced a 
system that combines UWB positioning technology with vibrating un
dershirts to offer tactile proximity warnings to workers. By continuously 
monitoring the workers’ location in relation to hazardous areas, the 
system effectively alerts them to potential dangers. This innovative 
approach has the potential to enhance both the safety and productivity 
of the industrial workforce by reducing workplace accidents, injuries, 
and fatalities.

In addition to industrial applications, the integration of IPS for 
hazard detection has also gained traction within the construction in
dustry. Arslan et al. [64] proposed WoTAS, which enables safety man
agers to remotely monitor and control construction activities in a 
dynamic environment. By tracking and analyzing the trajectory of 
workers, WoTAS facilitates a better understanding of their activities. 
Consequently, it enhances safety management in day-to-day construc
tion operations, enabling proactive measures to be taken to ensure 
worker safety. Huang et al. [63] devised a method using BLE to detect 
proximity areas and deliver proximity safety alerts to workers on con
struction sites. This method employs BLE technology to accurately 
identify proximity and promptly generate vibrotactile alerts. These 
alerts are designed to be easily perceived by workers, ensuring timely 
warnings and promoting safety awareness in construction 
environments.

4.4. Summary of previous work

Although this topic has been extensively researched over the past 10 
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years, several aspects have received little or no attention to date. Cost 
and latency are important factors affecting the choice of indoor posi
tioning technology for industrial applications, but few studies have 
considered the deployment cost, maintenance cost, and latency of IPS 
for large-scale, long-duration applications in the industry. In addition, 
indoor positioning system robustness is also a consideration for indus
trial applications of IPS, yet only a few studies [125,77,97] have 
considered system robustness. In industrial environments, indoor 
localization systems are bound to receive a variety of noises. Although 
some studies [43,142] consider noises in production environments, the 
diversity and randomness of noises in real production situations need to 
be further explored. The above limitations can make it difficult for the 
industry to adopt IPS directly.

The accuracy of IPS in different studies also varies greatly, which is 
closely related to the choice of technology and algorithm, the testing 
environment, and the deployment environment. However, some studies 
do not disclose detailed information about the setups used to test the 
positioning systems, and there is no common test standard that can be 
used for reference to specify the testing requirements in detail to make 
the accuracy of the tested systems replicable and migratable. For 
example, Ma et al. [74] designed the enhanced MaLoc module using 
indoor positioning with magnetic fields and Wi-Fi signals, which pro
vides 2D positioning services with an accuracy of 1–2.8 m without 
mentioning any obstacles or any other factors that may affect the ac
curacy of the system. Carrasco et al. [58] used a BLE beacon for each 
machine, and with the help of the localization system, the guessing rate 
of the machine was about 89 % correct but they did not analyze the 
factors affecting the rate or how to improve the rate of guessing and its 
correctness.

5. Directions for future work

Summarizing the research priorities and research content based on 
the analysis of currently available articles is particularly beneficial in 
identifying important aspects that have not yet been adequately inves
tigated, as well as the main areas for future research. This section 
summarizes these aspects in terms of recent developments in IPS, the use 
of spatial-temporal data, and the conjunction of indoor positioning and 
machine learning.

5.1. Potential value of spatial-temporal data

In the era of Industry 4.0, making full use of spatial and temporal 
data to drive industrial transformation and upgrading has become an 
imperative trend. As the indoor positioning system of Industry 4.0 
spatial and temporal infrastructure, it provides key positioning infor
mation for various industrial scenarios, bringing many application 
values.

First, IPS can track the location of production equipment, materials, 
and personnel in real-time, providing data support for production pro
cess management and logistics optimization. For example, real-time 
monitoring of the location and use of key equipment can help com
panies identify bottlenecks in the production line in a timely manner and 
take measures to optimize. At the same time, through the real-time 
positioning of raw materials and finished products, enterprises can 
optimize warehousing and transportation paths, improve inventory 
turnover efficiency, and significantly reduce logistics costs. In addition, 
safety management based on personnel positioning is also a major 
application value of IPS. Through real-time tracking of the location of 
the operating personnel, enterprises can find abnormalities in a timely 
manner and take appropriate emergency measures to avoid the occur
rence of safety accidents effectively. For example, regional control in 
hazardous areas should be implemented to limit the entry of unautho
rized personnel and minimize potential safety hazards. At the same time, 
companies can also use positioning data to analyze the employee’s work 
behavior, optimize the workflow, and further enhance the safety of the 

production environment. Overall, IPS for production process manage
ment and safety production provides a new solution through real-time 
mastery of equipment, materials, and personnel location information. 
Companies can gain insight into the production line operating condi
tions and optimize logistics and safety management, thus significantly 
improving production efficiency and safety levels.

Secondly, spatial-temporal data can also be used to enhance the 
intelligent management and maintenance of equipment. By monitoring 
the operating status and utilization of key equipment, enterprises can 
discover the first signs of equipment failure and take timely maintenance 
or adjustment measures. At the same time, based on the analysis of the 
frequency of use of equipment and environmental conditions, enter
prises can optimize the maintenance plan and rational arrangement of 
maintenance cycles to extend the service life of equipment. For example, 
companies can increase the maintenance frequency for high-frequency 
use or harsh environment equipment. For less use of the equipment, 
companies can extend the maintenance cycle. This intelligent operation 
and maintenance mode based on spatial-temporal data not only can 
minimize the equipment failure rate and reduce production interruption 
but also effectively improve the overall reliability and utilization of 
equipment, thus creating more economic value for the enterprise. 
Overall, the application of spatial-temporal data can not only optimize 
production and logistics management but also realize the intelligent 
maintenance of equipment for the digital transformation of enterprises 
to inject new momentum.

In addition, the IPS, which collect personnel and material flow data, 
can also be used to optimize the layout of the factory and the design of 
the line. Combined with the process flow and production demand, en
terprises can analyze the actual movement of materials and personnel 
trajectory to identify the production line of the blockage and inefficient 
areas. Based on this, enterprises can adjust the layout of workstations 
and shorten the distance of material and personnel movement, thereby 
reducing production costs and time loss. At the same time, these spatial 
and temporal data can also be used to provide data support for new or 
modified production lines. Enterprises can utilize simulation technology 
to assess the efficiency of personnel and material flow according to 
different production line planning schemes. In addition, enterprises can 
also compare the production indicators under various programs to 
provide a scientific basis for the final layout decisions and ensure the 
rationality and reliability of the factory layout. Overall, the spatial- 
temporal data collected by IPS can not only be applied to production 
process management and equipment maintenance but also provide 
essential support for the optimization of the factory layout and the 
design of the moving line, maximizing the efficiency and flexibility of 
the entire production system.

Further, based on the real-time positioning of human-machine 
collaboration, companies will significantly enhance the level of factory 
intelligence. For example, through the personnel location-aware 
equipment remote control, the operator does not need to arrive at the 
location of the equipment personally, and the equipment can be oper
ated and adjusted, significantly improving work efficiency. At the same 
time, according to the environmental conditions of the area where 
different operators are located, the system can automatically adjust the 
temperature and humidity, lighting, and other parameters to create a 
more comfortable working environment for the operators and further 
improve work efficiency and safety. In addition, with the use of posi
tioning data, the enterprise can optimize the autonomous decision- 
making ability of the equipment so that it can be operated based on 
the location and status of the operator. In general, based on spatial- 
temporal data, human-machine collaboration will become one of the 
core technologies for the construction of future smart factories. The 
realization of personnel, equipment, environment, comprehensive 
perception, and intelligent interconnection not only can improve pro
duction efficiency and reduce operating costs but also inject new mo
mentum for intelligent manufacturing of the Industry 4.0 era.

Finally, the spatial and temporal data provided by the indoor 
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positioning system can also be used to build a digital twin model, real
izing a high degree of integration between the virtual factory and the 
physical factory. By importing the real-time operation data of equip
ment, process, personnel, and other elements of the actual factory into 
the virtual model, enterprises can conduct simulation and analysis in the 
digital twin system to optimize production planning, logistics and dis
tribution, equipment maintenance, and other aspects, and feedback the 
optimization scheme to the physical world in a timely manner to 
improve the overall operational efficiency. At the same time, combined 
with augmented reality technology, enterprises can also provide oper
ators with digital twin system visualization guidelines to help them more 
intuitively grasp the equipment operation process, production process 
points, etc., to improve the quality of operations and safety. Overall, the 
digital twin model based on spatial-temporal data not only realizes the 
deep integration of the virtual and physical world but also lays the 
foundation for the development of Industry 5.0. Through continuous 
optimization of the virtual model, enterprises can continue to improve 
the intelligent level of production and operation and ultimately realize 
the digital transformation of the entire value chain of the factory.

In short, IPS, as the infrastructure of spatial-temporal data, are 
helping the industry to achieve intelligent transformation in the era of 
Industry 4.0. By improving production efficiency, enhancing equipment 
management, optimizing factory layout, promoting human-computer 
interaction, as well as the realization of digital twins and other inno
vative applications, IPS are becoming an essential driving force for the 
transformation of Industry 4.0 to Industry 5.0, helping the industry to 
achieve the entire value chain of intelligence and digitalization.

5.2. Enhancement of suitability

Eliminating multipath effects and noise interference is a critical 
technical bottleneck that needs to be addressed when applying IPS in 
industrial environments. The multipath effect arises due to the reflec
tion, refraction, and diffraction of signals on obstacles such as walls, 
metals, and human bodies, which seriously affects the propagation 
behavior of signals. Future research directions can be approached from 
some perspectives.

First, multipath compensation algorithms based on environmental 
awareness can be explored. The key of this method is to utilize various 
kinds of sensing devices that already exist inside the factory, such as 
cameras and radars, to obtain real-time environmental information. 
Through these environmental data, companies can establish the elec
tromagnetic propagation model inside the factory and predict the 
multipath propagation characteristics of the signal under different 
environmental conditions. For example, based on the distribution of 
walls, equipment, personnel, etc., the model can predict the paths in 
which signals will be reflected and diffracted, resulting in multipath 
effects. With this prediction information, companies can incorporate it 
into the positioning algorithm to compensate and correct the measure
ment data, and ultimately improve the positioning accuracy of the 
positioning system. This environment-aware multipath compensation 
algorithm can fully utilize the factory’s existing infrastructure without 
additional deployment costs, which is a promising technology direction 
for solving multipath interference.

Secondly, new positioning technologies for industrial environments 
are also worthy of attention. Compared with general consumer appli
cations, industrial environments have their own unique characteristics, 
requiring targeted technical solutions. A feasible idea is to use the 
wireless communication module that comes with the industrial equip
ment, such as industrial control gateway, industrial robots, etc., as a 
positioning node to build a positioning network specifically for the in
dustrial scene. This approach can fully utilize the existing industrial 
equipment resources without additional deployment costs. At the same 
time, researchers can explore the use of UWB, millimeter waves, and 
other new wireless technologies for the complex electromagnetic envi
ronment in the industrial environment. These techniques are highly 

resistant to multipath and are more suitable for use in factories and other 
complex indoor environments. In addition to innovation at the hardware 
level, researchers also need to develop intelligent cooperative posi
tioning algorithms for Industry 4.0. Combined with the intelligent 
control system of industrial equipment, the positioning algorithms can 
realize the collaborative sensing and linkage between the equipment to 
improve positioning performance and reliability further. In general, 
these new positioning technologies for industrial environments will help 
to solve the thorny problems of multipath interference and provide 
strong support for factory automation and intelligent manufacturing.

Finally, the use of machine learning techniques to optimize posi
tioning performance is also a research area with great potential. 
Compared with traditional localization algorithms, machine learning 
methods can be better adapted to the complex and changing factory 
environment. One feasible idea is the adaptive localization algorithm 
based on environment modeling. Companies can utilize machine 
learning techniques to build a detailed environment model from all 
kinds of factory environment data, such as floor plans, equipment dis
tribution, personnel activities, etc. With such an environment model, the 
localization algorithm can automatically adjust the parameters and 
strategies according to the changes in the real-time environment and 
improve adaptability to multipath and interference. In addition, the use 
of deep learning to mine hidden patterns and knowledge from massive 
positioning data is also a direction worthy of attention. Deep learning 
algorithms can automatically extract the complex features contained in 
the positioning data and then build accurate positioning models. This 
data-driven localization method has good mobility and generalization 
ability in complex industrial environments, which helps to further 
improve the performance and reliability of the localization system. In 
conclusion, the application of machine learning techniques to the opti
mization of IPS is a research field full of imagination and development 
potential.

In conclusion, solving the problems of multipath effect and noise 
interference is the key to realize the high reliability and high accuracy of 
IPS in the industrial environment. The above research directions are 
expected to provide adequate technical support for this.

5.3. Privacy and security

When applying IPS in industrial environments, privacy and security 
factors need to be emphasized. Employee location information is private 
data. If this data is not effectively protected, it can lead to privacy 
leakage and affect the trust of employees. At the same time, the factory’s 
positioning system is connected to various industrial networks, which 
makes the positioning system susceptible to cyber-attacks and malicious 
tampering, threatening the security and reliability of the positioning 
system. In addition, as privacy regulations become increasingly strin
gent, factories must ensure privacy compliance with their positioning 
systems or face regulatory risks. In summary, companies can only 
facilitate the successful implementation of positioning-based applica
tions in Industry 4.0 by adequately addressing privacy and security is
sues. In response to this demand, researchers can conduct research and 
exploration from various aspects.

First, effective privacy protection techniques are needed to minimize 
the risk of privacy leakage while preserving the positioning function. 
Differential privacy techniques can be used to enhance the privacy of 
employees’ location data and reduce the risk of privacy leakage by 
introducing random noise to blur the real location information. Feder
ated learning technology can avoid centralized storage of employee 
location data and perform distributed machine learning model training 
without sharing the original data, which reduces the potential risk of 
data leakage from the root. We can also study the data aggregation 
method for privacy protection and utilize homomorphic encryption, 
secure multi-party computation, and other technologies to realize 
location data aggregation and statistical analysis without disclosing 
personal privacy. At the same time, the system design should fully 
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consider the privacy feelings of employees and provide privacy prefer
ences and other humanized functions to enhance the trust of employees. 
Finally, ensuring that the design of the positioning system complies with 
the latest privacy protection regulations, such as the general data pro
tection regulation and the personal information protection act, is also an 
important direction that deserves attention.

Secondly, the cryptographic security authentication mechanism is an 
important direction worthy of in-depth study. Enterprises can consider 
using public key infrastructure technology to establish a trusted identity 
authentication system, ensuring the identity legitimacy of each subject 
in the system (such as employees, equipment, etc.) through digital cer
tificates, digital signatures, and other means. By studying the identity 
authentication scheme based on zero-knowledge proof, safe and reliable 
identity authentication can be realized without disclosing personal pri
vacy information. In addition, combined with attribute-based encryp
tion, selective disclosure, and other cryptographic techniques, fine- 
grained access control to system resources is realized. According to 
the roles and permissions of different subjects, the access and operation 
of sensitive information, such as positioning data and system configu
ration, can be flexibly controlled to prevent illegal leakage and 
tampering of information. At the same time, advanced symmetric 
encryption, public key encryption and other algorithms are used to 
encrypt the end-to-end transmission and storage of positioning data to 
ensure the confidentiality and integrity of the data in the process of 
network transmission and internal system flow. Moreover, the distrib
uted ledger and consensus mechanism of blockchain are utilized to 
establish a credible data-sharing model, and the rules of data access and 
use are stipulated through smart contracts to realize safe and reliable 
data exchange across subjects. Finally, the cryptography-based system 
log and auditing procedures are studied to ensure the traceability and 
non-repudiation of the system operation activities and provide a reliable 
basis for after-action analysis and traceability.

The network security protection technology in IPS is also a vital di
rection worthy of in-depth research. First, the programmable charac
teristics of network security protection based on software-defined 
networks can be combined with machine learning technology to achieve 
real-time monitoring and intelligent analysis of indoor positioning 
network traffic. With the help of this process, various network attacks, 
such as illegal access and data theft, can be discovered and prevented in 
time. In addition, the sensing and computing capabilities of indoor 
positioning sensing devices can be fully utilized to establish a distributed 
security monitoring system to realize IoT network security monitoring. 
Studying the decentralized security monitoring mechanism based on 
blockchain is also a worthwhile research topic, as it can effectively 
improve the trustworthiness and risk resistance of the monitoring sys
tem. Again, the security isolation protection based on an indoor posi
tioning gateway is also a worthy research direction. By deploying secure 
and trustworthy gateway devices in key areas, external network attacks 
can be effectively blocked to protect data security inside the IPS. Be
sides, security reinforcement based on indoor positioning communica
tion protocols can be considered. Digital signatures and message 
authentication codes are added to the positioning data communication 
to ensure the integrity and authenticity of the data. Alternatively, an 
attribute-based access control mechanism can be introduced to restrict 
illegal access to critical functions. Finally, based on security reinforce
ment, combined research on intelligent vulnerability scanning and 
patching technology based on machine learning can effectively improve 
the self-healing ability of the system. The research of these network 
security protection technologies will provide an effective guarantee for 
the safe and reliable operation of IPS.

In addition to network security protection, privacy compliance is 
also a key concern when positioning systems are applied in industrial 
scenarios. First, data anonymization techniques, such as data desensi
tization, forgery, aggregation, and other means, can be used to protect 
the privacy of the collected positioning data to ensure that the in
dividual’s private information will not be leaked while maintaining the 

validity and usability of the data. Secondly, differentiated positioning 
services can be designed to allow users to independently choose the level 
of privacy to improve the user’s perception of privacy and trust. In 
addition, a clear privacy policy should be formulated to regulate data 
collection, storage, use, and sharing. A third-party monitoring mecha
nism and a credible privacy data management platform should be 
established by utilizing blockchain and other distributed ledger tech
nologies. At the same time, privacy enhancement technologies such as 
differential privacy, homomorphic encryption and secure multi-party 
computation are integrated into the key aspects of the positioning sys
tem to further improve the privacy protection capability of the system. 
Finally, users are empowered to make decisions on their own private 
data, and a flexible data-sharing authorization mechanism is established 
to allow users to independently control the scope of use and authority of 
their personal information. In conclusion, privacy compliance is an 
important design goal in the application of industrial positioning sys
tems. In-depth research and innovation from multiple dimensions, such 
as technology, management, and service, are of great significance in 
enhancing user trust and promoting the healthy development of the 
industry.

By adopting these adequate privacy protection and security mea
sures, the industrial positioning system can not only meet the actual 
application requirements but also maximize the protection of em
ployees’ personal privacy and provide reliable technical support for the 
intelligent transformation of industries.

5.4. Energy efficiency

Energy efficiency is a very important consideration when applying 
IPS in industrial environments. First, IPS usually involves many hard
ware devices and complex software systems, with a large scale of overall 
energy consumption. If the energy consumption of an IPS is not appro
priately managed, this will result in a colossal waste of energy. Second, 
IPSs need to run for a long time to meet production demands, so the 
energy consumption problem will persist and cannot be ignored. In 
addition, the improvement of industrial energy efficiency is crucial to 
promote the current green transformation in the industrial sector, and 
the IPS, as an important part of the industrial IoT, has a direct impact on 
the energy consumption of the whole factory. Therefore, when deploy
ing the IPS indoor positioning system, full attention should be paid to the 
energy efficiency issue, and effective optimization measures should be 
taken. Optimization measures can not only reduce the operation cost of 
the system itself but also contribute to the energy saving and emission 
reduction of the whole enterprise, industry, country, and even the earth. 
The following section describes the relevant research directions.

Firstly, low-power positioning solutions based on emerging wireless 
technologies such as BLE and UWB can be explored at the wireless 
communication technology level. These technologies have lower power 
consumption characteristics compared to traditional Wi-Fi, RFID, etc. 
The operating current of BLE chips can reach the microamp level, and 
UWB has higher time resolution and better multipath suppression, 
which can minimize the energy consumption of positioning devices. At 
the same time, based on these emerging wireless technologies, further 
optimization of positioning algorithms and communication protocols is 
needed to improve their positioning accuracy and energy efficiency. For 
example, efficient positioning algorithms based on RSSI, TDoA, AoA, 
and other technologies can be studied and combined with machine 
learning and compressed sensing to improve the computational effi
ciency of the algorithms. At the communication protocol level, it is 
necessary to optimize the data transmission mechanism for different 
application scenarios and reduce unnecessary communication overhead, 
thus further improving the system’s energy efficiency.

Secondly, the working mode and power output of the positioning 
equipment can be dynamically adjusted according to the actual process 
flow, operating time, and other demand characteristics. Different pro
duction environments and work tasks on the performance requirements 
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of the positioning system are different, so companies need to flexibly 
adjust the positioning equipment according to the specific circumstances 
of the working state. For example, in idle or non-critical time, companies 
can turn the positioning equipment into low-power mode, turn off un
necessary sensors and communication modules, and reduce power 
output, thereby reducing unnecessary energy consumption. In critical 
production processes, equipment can be switched to high-performance 
mode to ensure positioning accuracy and real-time. By dynamically 
adjusting the working mode, the overall energy consumption can be 
minimized while meeting the business requirements. In addition, re
searchers can study the hybrid power supply scheme based on energy 
harvesting technology, utilizing solar energy, vibration energy, thermal 
energy, and other environmental energy sources to supply power for 
positioning equipment. This approach can reduce the dependence on the 
power grid and improve the overall energy utilization efficiency. 
Moreover, the use of efficient energy management and storage tech
nologies, such as supercapacitors, secondary batteries, etc., can ensure 
that the equipment can continue to work stably even when the envi
ronmental energy is insufficient.

In addition, the use of distributed positioning architecture is also a 
feasible direction. The traditional centralized positioning system con
centrates all the computation and communication tasks on the central 
server, which increases the energy consumption overhead of the system 
to a certain extent. In contrast, a distributed localization architecture 
can reasonably share the localization task with each node. With the 
technology of edge computing and inter-device collaboration, posi
tioning algorithms and communication processing can be completed on 
edge devices close to the data source, which reduces the transmission of 
data in the network and the computational and communication load of 
the central server. For example, intelligent sensor nodes can be used to 
perform preliminary positioning calculations and only upload the final 
positioning results to the central server. Alternatively, a distributed 
positioning network can be formed through mutual positioning and 
collaboration among devices to achieve load balancing and energy 
consumption optimization. At the same time, this distributed architec
ture can also improve the robustness and scalability of the system, which 
is more conducive to large-scale deployment. By adopting a distributed 
positioning architecture, companies cannot only reduce the energy 
consumption overhead of the whole system but also improve positioning 
performance and reliability.

At the same time, it is also essential to establish a mechanism for 
monitoring and analyzing the energy consumption of the whole life 
cycle of the positioning system. In the industrial IoT environment, the 
positioning system involves many hardware devices and software sys
tems, and it is necessary to control the energy consumption of the whole 
system comprehensively. Through real-time monitoring of the power 
consumption of each device, abnormal power behavior can be found in a 
timely manner, such as excessive power consumption of specific devices 
or abnormal work mode. Based on these monitoring data combined with 
big data analysis technology, the key factors affecting system energy 
consumption can be explored in-depth, and targeted optimization stra
tegies can be proposed. For example, the power of the equipment can be 
dynamically adjusted according to different operating hours, or the 
positioning algorithm and communication protocol can be optimized to 
further reduce the overall energy consumption of the system. At the 
same time, machine learning and other methods can be used to build 
energy consumption prediction models to provide decision support for 
system operation and maintenance and realize adaptive energy 
management.

Finally, the deep integration of the positioning system and the energy 
management system of the factory is also a direction worthy of atten
tion. Industrial production process, equipment location information, 
and energy consumption data are closely related. Through the syner
gistic analysis of these two types of data, companies can tap into more 
optimization potential. For example, by combining the real-time loca
tion information of the equipment, companies can accurately identify 

the energy hotspots on the production line and find out which areas or 
equipment have higher energy consumption. Based on such a nuanced 
picture of energy consumption, the factory’s energy management sys
tem can automatically schedule the energy supply and put more re
sources into key equipment and processes, thus optimizing the overall 
energy efficiency. At the same time, the positioning system can also 
provide a more auxiliary decision-making basis for energy management. 
For example, according to the trajectory of the equipment, companies 
can predict future changes in energy demand, so energy can be deployed 
in advance. Enterprises also coordinate the peak energy consumption of 
different processes in conjunction with the process flow, thereby real
izing peak and valley load balancing. This location-based energy man
agement can realize the deep integration of energy supply and 
production processes, significantly improving the overall energy utili
zation level of the factory.

In conclusion, energy saving is also an important design goal in the 
application of IPS. Enterprises can carry out in-depth research and 
practice in technological innovation, intelligent management, distrib
uted architecture, etc., which is of great significance for reducing their 
operating costs and realizing green production.

6. Conclusion

This paper provides a comprehensive review of the use of different 
IPS in industrial applications within the context of Industry 4.0 from 
2014 to 2023, based on an analysis of 175 relevant journal articles. The 
leading indoor positioning technologies covered include RFID, UWB, 
BLE, Wi-Fi, and ZigBee, and the researchers have explored their appli
cations in various industry-related use cases such as position detection, 
collision avoidance, process control, and resource allocation. Indoor 
positioning can track all production resources, including hand tools, 
personnel, materials, and work-in-progress. Most of the considered ap
plications occur in the production, logistics, quality control, and as
sembly phases, with fewer in the maintenance and disassembly phases. 
This article also discusses and summarizes the advantages, limitations, 
costs, and features of different IPSs. In addition, the article innovatively 
categorizes the application of IPS in Industry 4.0 into three main cate
gories and nine subcategories of scenarios. This is the first systematic 
summary of the role of IPS in enabling industrial scenarios in the In
dustry 4.0 context. While the method used to select the sample data 
introduces some bias, as it does not include unpublished conference 
papers, the study provides a valuable synthesis of the available infor
mation from both academia and industry.

Future research can further explore the wide range of applications of 
IPS in Industry 4.0 to fully realize its potential value. This includes 
studying hybrid positioning technologies that combine the strengths of 
different systems, such as RFID, UWB, BLE, Wi-Fi, and ZigBee, to achieve 
more accurate and reliable indoor positioning. Integrating these locali
zation technologies with IMU, machine vision, simultaneous localiza
tion and mapping (SLAM), and other sensing modalities could further 
improve positioning performance. Machine vision and SLAM technolo
gies can enhance the accuracy and robustness of localization. By fusing 
vision information and environment modeling, the positioning system 
compensates for the limitations of a single positioning technology and 
provides a more comprehensive positioning solution. Additionally, re
searchers should investigate indoor/outdoor fusion positioning systems 
to enable seamless switching and continuous positioning as users tran
sition between indoor and outdoor environments. This could involve 
integrating outdoor positioning technologies like satellite-based and 
mobile network-based solutions with the indoor positioning system to 
meet the complex localization requirements of industrial scenarios. 
Beyond just improving the positioning capabilities, researchers should 
also explore how indoor positioning can be integrated with spatial and 
temporal information about the production processes. IPS can generate 
valuable insights to optimize critical functions such as production, lo
gistics, and quality control by analyzing the relationship between 
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location, time, and various operational metrics. Furthermore, the ap
plications of IPS should be expanded into emerging fields such as low- 
carbon management, dynamic optimization, and resource protection 
within the Industry 4.0 context. This would help unlock the full potential 
of IPS in supporting the complex and evolving needs of modern indus
trial environments. Overall, future research should focus on innovating 
hybrid and fusion positioning technologies while also broadening the 
breadth and depth of IPS applications to stay ahead of the changing 
requirements in the Industry 4.0 era.
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