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In the context of Industry 4.0, the precise location information of resources is fundamental for orchestrating
myriad operations and processes. In outdoor environments, the Global Navigation Satellite System (GNSS)
provides universal positioning, navigation, and timing services to users worldwide. Nevertheless, GNSS signals
are severely obstructed and interfered with indoors, rendering the system ineffective in such environments.
Notably, most Industry 4.0 settings, such as shopfloors, warehouses, and production sites, are in indoor or semi-
indoor environments, where structures and means of production elements can obstruct or interfere with GNSS
signals. Therefore, GNSS cannot fully meet the precise positioning requirements of Industry 4.0. Indoor Posi-
tioning Systems (IPS) can effectively compensate for the limitations of GNSS to enable the identification and
tracking of precise object position within indoor or semi-indoor environments. Over the past decade, substantial
research on IPS has been conducted within the academic and industrial sectors, with findings disseminated across
numerous academic journals. However, there remains a notable absence of comprehensive reviews on IPS from
an Industry 4.0 perspective to date, as well as any distillation of the functionality of IPS in industrial scenarios.
This paper offers an exhaustive review of state-of-the-art IPS research and categorizes IPS applications as
resource management, production management, and safety management to bridge this gap. The goal is to assist
researchers and industry stakeholders in recognizing current research gaps, grasping the content of IPS theory,
appreciating its industrial applications, and charting paths for future scholarly inquiry. This work potentially
provides an innovative spatial-temporal framework for the technology-centric focus of Industry 4.0 or even
insights into the value-driven perspective of Industry 5.0.

1. Introduction

In the era of Industry 4.0, production operations must continue to
improve efficiency, flexibility, and collaboration to drive mass custom-
ization [1]. Enterprises need to have a higher degree of production
automation and process flexibility to improve their internal product
production capacity and ability to cope with external uncertainty to
meet customer demand for high-quality and customized products. In the
case of dynamic shop floor environments with many randomly fluctu-
ating customer orders and resource availability, traditional scheduling
rules and heuristic algorithms cannot solve the production planning and
control problem well [2]. Acquiring real-time location information of
production resources, which can realize the spatial-temporal traceability
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and visibility of objects, is foundational for enterprises to efficiently
orchestrate different production processes and effectively improve dy-
namic responsiveness. Spatial-temporal traceability allows for extract-
ing valuable insights from historical trajectory data, facilitating more
efficient resource allocation and bottleneck identification.
Spatial-temporal visibility empowers enterprises to monitor the physical
processes across various stages - planning, scheduling, and execution —
and to make timely adjustments in response to dynamic demand and
production status, which leads to more flexible, intelligent, and recon-
figurable production processes. Such advancements are instrumental in
achieving digitization, automation, and adaptability.

The physical and virtual worlds must be tightly integrated and syn-
chronized to achieve visibility and traceability from a spatial-temporal
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perspective. Digital twins (DTs), a key enabling technology for Industry
4.0, are a core method for integrating the physical and virtual worlds
[3]. In virtual space, based on the attributes of physical entities, the
digital twin model can be expressed in four model dimensions: geo-
metric, physical, behavioral, and rule [4]. DTs can iterate and evolve
through seamless connection and fusion between virtual and physical
spaces, and this consistency and synchronization can bring many ben-
efits to a wide range of services, including real-time monitoring, dy-
namic optimization, and accurate prediction [5,6]. Positioning systems,
which accurately identify and track the location of an object in the
physical world and project it into the virtual space, are the only way to
realize DTs at the spatial-temporal level. Based on different techniques
and methods, positioning systems can realize relative and absolute
positioning of objects in two-dimensional or three-dimensional space.
Relative positioning is suitable for application scenarios that require
relative position information, while absolute positioning techniques can
provide information about the position of an object in a global coordi-
nate system. In addition, the positioning system has diversified posi-
tioning accuracies, such as centimeter-level, meter-level, or
ten-meter-level, which can meet the needs of different application sce-
narios for positioning accuracies.

The mature outdoor positioning system, namely the Global Naviga-
tion Satellite System (GNSS), has achieved sub-meter positioning accu-
racy in outdoor environments [7]. GNSS, including various outdoor
positioning systems such as GPS, GLONASS, Galileo, and BeiDou [8],
provides users worldwide with universal positioning, navigation, and
timing services. However, GNSS cannot provide services with high ac-
curacy in the presence of GNSS signal occlusion in the environment.
Coincidentally, most Industry 4.0 scenarios (e.g., workshops, ware-
houses, and sites) are predominantly indoors or semi-indoor environ-
ments, where a variety of buildings (e.g., walls, roofs, rebars) and
production materials (e.g., people, equipment, materials) can poten-
tially result in signal attenuation, multipath effects, and electromagnetic
interferences. Consequently, GNSS cannot fully meet the positioning
needs of Industry 4.0 contexts. With the improvement of wireless
communication, sensor technology, and data processing capabilities,
indoor positioning systems (IPS) have made remarkable progress. IPS
can provide more accurate and reliable positioning services, effectively
compensating for the shortcomings of GNSS, realizing the identification
and tracking of object location, and providing technical support for in-
door and semi-indoor scenes like construction sites to achieve seamless
real-time positioning [7]. IPS need more attention to develop ubiqui-
tous, integrated, and intelligent spatial-temporal frameworks suitable
for Industry 4.0 environments.

The IPS-related research and applications help enterprises effectively
monitor, predict, plan, and optimize production processes. First, IPS
provides real-time monitoring and tracking capabilities, enabling orga-
nizations to know the location and activities of their personnel, equip-
ment, and materials to make timely adjustments and decisions. Second,
IPS helps organizations eliminate uncertainties in the production pro-
cess and improve the controllability and stability of the process. Third,
location information from IPS can be used for data analysis and
modeling to help companies forecast and plan, optimize resource allo-
cation, and develop production schedules. Finally, integrating IPS with
automation systems can realize intelligent production processes and
equipment control to improve production automation. In addition, the
concept of internet of everything was proposed in 2017 [9]. Location
awareness is receiving increasing attention in the industry.

There are some review articles in the field of IPS. However, most
indoor positioning research focuses on the indoor positioning technol-
ogy itself [10-13]. Although there have been attempts to introduce IPS
into industrial applications [14-16], they have focused more on locating
targets in industrial scenarios but do not integrate IPS with real-time
decision-making regarding resource management, production manage-
ment, and safety management in industrial applications. Therefore,
serious deficiencies in the mining, utilization, and integration of
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spatial-temporal information and the corresponding location-based
services still need further development and improvement.

Therefore, this paper aims to provide a comprehensive literature
review of the current applications of IPS across various aspects in the
context of Industry 4.0. First, we synthesize the scholarly literature on
indoor positioning technologies, techniques, machine learning applica-
tions within IPS, and assessment metrics, published between 2014 and
2023. Then, the applications of IPS in different industries are summa-
rized and compared in the context of Industry 4.0. Subsequently, we
identify prospective directions for applying indoor positioning systems
to solve industrial problems. The review will serve to pinpoint potential
avenues for future research. Furthermore, it will enable industrial
practitioners to develop a more profound and nuanced understanding of
the relationship between IPS and industry, thereby assisting them in
devising more effective execution strategies leveraging IPS technologies.
The significance of this work lies in its capacity to shed light on the
evolving applications and development of IPS within the Industry 4.0
landscape. The primary contributions of this paper are threefold. Firstly,
it generates novel perspectives for scholars and practitioners engaged in
the field of IPS research, furnishing them with fresh ideas and avenues
for exploration. Secondly, the work offers practical guidelines to facili-
tate the industrial application of IPS, providing actionable recommen-
dations for professionals seeking to implement these technologies within
their operational contexts. Thirdly, this review elucidates the evolving
role of IPS within the broader framework of Industry 4.0, illuminating
their integral contributions to the domains of resource management,
production processes, and safety protocols. To this end, this paper
identifies the following three research questions:

(i) What are the proper technologies and techniques of IPS under
various Industry 4.0 settings?
(i) How can the realization of IPS contribute to the successful
implementation of Industry 4.0?
(iii) What are the challenges and future directions for the IPS from
Industry 4.0 to Industry 5.0 era?

The rest of the paper is structured as follows. Section 2 introduces the
main research methodology and research framework. Section 3 sum-
marizes the techniques, methods, and evaluation metrics related to in-
door positioning and the application of machine learning in indoor
positioning. Section 4 summarizes the application of indoor positioning
systems in industry in the context of Industry 4.0. Section 5 presents the
future work, and Section 6 concludes the full paper.

2. Research method
2.1. Selection and analysis of reviewed samples

A search based on “title/abstract/keywords” was performed to
conduct a comprehensive literature search using prominent search en-
gines such as Web of Science, Scopus, IEEE, EI, Elsevier, and Taylor &
Francis databases. Technical keywords include but are not limited to
“indoor positioning,” “indoor positioning system,” “real-time posi-
tioning system,” “location system,” “location-based system,” “location-
based system,” “location-based system,” “location-based system,”
“location-based system,” “location-based system,” “location-based sys-
tem,” “location-based system,” “location analytics,” “real-time tracking”
and “traceability and visualization.” Application keywords include but
are not limited to “manufacturing,” “logistics,” “construction,” “pro-
duction,” “intra-enterprise logistics,” “warehousing,” “factory,” “shop
floor” and “construction site.” The obtained search results were
compiled into lists of papers for potential review.

However, upon closer examination of the extensive list, it became
apparent that different journals often have specific publishing interests,
and the choice of journal significantly influences the range of research
topics covered. Consequently, the investigation was restarted and
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narrowed down to research articles published in renowned and influ-
ential journals. Referring to Xue et al. ’s selection criteria of journal
selection [17], our journal selection criteria were as follows: (1) the
journal was included in the citation database SCI-expanded database;
and (2) the journal has a significant impact and is unanimously recog-
nized in the field of construction, manufacturing, and logistics research.
Therefore, we carefully selected 15 journals to capture the critical pa-
pers in the chosen domain. The selected journals are Advanced Engi-
neering Informatics, Journal of Computers in Civil Engineering,
Automation in Construction, Journal of Construction Engineering and
Management, Journal of Computer-Aided Civil and Infrastructure En-
gineering, International Journal of Production Economics, Journal of
Manufacturing  Systems, Robotics and Computer-Integrated
Manufacturing, Journal of Industrial Information Integration, Com-
puters and Operations Research, Computers and Industrial Engineering,
Advanced Engineering Informatics, Journal of Intelligent
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This study identified and reviewed 849 relevant papers published
between 2014 and 2023 through a systematic literature search. After
careful selection, a sample of 175 articles highly relevant to the study
objectives was identified in Table 1 for in-depth analysis.

In terms of the distribution of literature types, journal articles
dominated the sample, with a high percentage of 69 %. Among them,
articles from seven core journals such as Automation in Construction,
Journal of Manufacturing Systems, Advanced Engineering Informatics,
International Journal of Production Economics, Robotics and Computer-
Integrated Manufacturing, Journal of Intelligent Manufacturing, and
Computer & Industrial Engineering accounted for 28 %. This indicates
that these journals have strong academic influence in the field and

Table 1
Analysis of IPS-related articles in the context of Industry 4.0 from 2014 to 2023.

| Search Result: 849

Manufacturing, International Journal of Production Research, and Type Name Number of % of
Safety Science, which are recognized by the research community as articles 175
outstanding, high quality, and having a significant impact in the field. Journal Automation in Construction 14 8%
To conduct a more focused and comprehensive search, the target Journal of Manufacturing Systems 8 5%
journals were thoroughly explored using the Scopus/SCI search engine. Advanced Engineering Informatics 7 4%
. . i i 9
This approach ensured a more extensive coverage of relevant research glt:miﬂ::al Journal of Production 6 3%
. . . . 5 NO!
articles within the selected journals. Based on Gu et al.’s [18] survey, Robotics and Gomputer-Integrated 6 39
five IPS-related technologies were selected for review, including radio Manufacturing
frequency identification (RFID), ultra-wideband (UWB), Bluetooth Low Journal of Intelligent Manufacturing 5 3%
Energy (BLE), Wireless Fidelity (Wi-Fi), and ZigBee. The entire literature Computers & Industrial Engineering 4 2%
h methodology is shown in Fig. 1, where a combination of tech- Other & A
searc K A . 8y & b X K . Conference  / 54 31 %
nologies, industries, databases, and article content is used to finally Total 175 100 %
select the literature that meets the objectives of the article.
5 1
1 I
' | Search Words ‘ :
: [ i
| v v :
| .. . . . . |
: | Indoor positioning systems-related | | Applications in Industry 4.0 !
: I | :
1 I
Search ' Indoor positioning Manufacturing |
o . . |
process ] Indoor positioning system Logistics !
1 . . .
! Real-time locating system Construction :
| Location system Warehousing i
| . . .
! Location analysis Production :
! Real-time tracking Intralogistics |
.o D I
| Traceability and visibility Factory !
1 . .
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! Web of Science !
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Fig. 1. Systematic literature review stages.
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become the preferred publication platforms for scholars. The remaining
41 % of the journal articles show a high degree of dispersion, high-
lighting the wide dissemination of knowledge in this research area. It is
noteworthy that conference papers also account for a significant pro-
portion of the total literature, as high as 31 %. This reflects that the
academic community actively participates in academic exchanges and
conducts extensive and in-depth discussions on related topics.

In general, this research area is characterized by the dominance of
journal papers, the concentration of core journals, and the significant
contribution of conference papers. This provides a rich knowledge base
for subsequent research and demonstrates the positive attitude of
scholars to continue to promote the development of this field.

2.2. Overview of IPS in Industry 4.0

Businesses today face a myriad of novel challenges amidst the
backdrop of progressive globalization, mass customization, and inten-
sified competition. The urgent demands for accelerated delivery,
streamlined automated processes, superior product quality, and
personalized offerings have propelled organizations to embrace the
paradigm of Industry 4.0 [19]. Industry 4.0 is characterized by the
strategic integration of emerging communication, information, and in-
telligence technologies to enhance flexibility, efficiency, and produc-
tivity in manufacturing processes [20]. Of paramount importance is the
availability of spatial-temporal data pertaining to manufacturing re-
sources, encompassing the physical movements of products, devices,
materials, and personnel, as well as the precise timing and location of
information generation and transactions. By obtaining this
spatial-temporal data, manufacturers can establish accurate references
to guide their planning, scheduling, and execution activities. Further-
more, the adoption of a standardized representation of real-time
resource status plays a pivotal role in facilitating intuitive visualiza-
tion and promoting seamless compatibility among industry stake-
holders. This standardization is essential for effective monitoring and
swift intervention during emergencies, such as timely collision warn-
ings, personnel anomaly detection and rescue, hazardous area identifi-
cation, and urgent notifications. Spatial-temporal traceability also
enables the examination of resource movement and interaction patterns
over time, thereby empowering the identification of production bottle-
necks. These bottlenecks may arise from factors such as inefficient
process scheduling, suboptimal site layouts, inadequate staffing ar-
rangements, and inefficient material flow routes. By promptly detecting
such bottlenecks, traceability equips production control to implement
necessary measures swiftly, including real-time resource scheduling to
achieve maximum efficiency and minimal cost. Through effective
traceability reasoning, resources can gain situational awareness and
proactively respond to events, facilitating more rational inventory
management and allocation. Moreover, logistics hubs, distribution
centers, and assembly lines must establish buffer spaces during peak
hours to accommodate resource complexity and unexpected disruptions,
such as material shortages and urgent orders. The geographic distance
between objects in these buffer spaces and their order of picking
significantly impact both time and costs. Optimizing the coordination
between the spatial and temporal dimensions of resources is crucial for
realizing zero inventory [21] or even zero warehousing [22].

DTs, a core enabling technology for Industry 4.0, serve as a funda-
mental methodology for seamlessly integrating the physical and virtual
worlds [3]. The vision of DTs is to offer a comprehensive representation
encompassing the physical and functional characteristics of a compo-
nent, product, or system [23]. The initial and paramount step in this
process involves the development of high-fidelity virtual models that
accurately replicate the geometry, physical properties, behaviors, and
governing principles of the physical world [24]. These virtual models
exhibit a high level of consistency with physical components in terms of
their geometry and possess the ability to simulate their spatial-temporal
states, behaviors, functions, and other relevant characteristics [25].
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Furthermore, models within digital environments can optimize opera-
tions and directly adjust physical processes through real-time feedback
mechanisms [26]. Through the utilization of bidirectional dynamic
mapping, physical entities and virtual models undergo a process of
co-evolution [27]. The virtual model integrates geometric, structural,
behavioral, rule-based, and functional attributes to represent specific
physical objects with high accuracy and fidelity. In this context, posi-
tioning systems emerge as the critical enabler for realizing the
spatial-temporal fidelity of DTs. By efficiently and accurately capturing
the location information of resources in the physical world and projec-
ting it into the virtual space, IPS play a pivotal role in establishing the
necessary spatial-temporal linkages between the physical and digital
domains in Industry 4.0 settings, as shown in Fig. 2. This integration is
fundamental to realize the vision of DTs, as it allows for the seamless
synchronization and co-evolution of the physical and virtual realms,
unlocking the transformative potential of Industry 4.0.

Nonetheless, significant challenges remain in achieving a compre-
hensive spatial-temporal framework within Industry 4.0 scenarios.
Firstly, as most Industry 4.0 activities occur indoors, conventional out-
door positioning systems are ill-suited for indoor use. The absence of
widely adopted standards for expression, interoperability, and data
sharing prevents the achievement of robust spatial-temporal traceability
and visibility within indoor environments. Secondly, positioning accu-
racy is severely compromised in industrial settings due to the prevalence
of multipath effects and signal fading. Furthermore, changes in the
environment over time lead to a decline in accuracy, necessitating labor-
intensive and time-consuming recalibration whenever environmental
conditions change. This makes the development of environment-specific
localization models an arduous and ongoing challenge. Thirdly, while
spatial-temporal information about manufacturing resources offers
valuable insights for optimization and decision-making at the opera-
tional level, the lack of comprehension regarding patterns and trends
occurring in time and space hampers the development of genuinely
informed and predictive decision-making processes. As a result, there is
a pressing demand for focused research on IPS. This research should
involve the systematic organization and evaluation of various IPS, as
well as the selection of suitable positioning techniques and methods that
can meet the accuracy requirements of real-world scenarios (such as
area positioning, orientation positioning, and precise positioning).
Simultaneously, the integration of robust data processing, analytical
analysis, and advanced machine learning techniques is essential. This
will enable the precise capture of spatial-temporal information related
to manufacturing resources, the establishment of standardized spatial
representation and temporal measurements for these resources, and the
assurance of accurate and enduring indoor positioning capabilities.
Moreover, the employment of spatial-temporal reasoning mechanisms
can help mitigate the impact of resource complexity and unexpected
disturbances that arise during operations within the context of Industry
4.0. These spatial-temporal reasoning mechanisms can serve as a bridge,
facilitating the transition from the technology-centric perspective of
Industry 4.0 to the value-driven perspective of Industry 5.0 [28].

3. Overview of indoor positioning methodologies

The analysis of the 175 screened documents, as presented in Table 2,
reveals the technological landscape of IPS research over the past decade.
RFID technology stands out as the most widely studied, with 81 articles
accounting for nearly 46 % of the total. This reflects the widespread
application and central role of RFID in IPS. In contrast, ZigBee tech-
nology has been relatively neglected, with only 3 articles, possibly due
to its limitations in coverage and positioning accuracy in practical ap-
plications. Beyond the individual technologies, the research landscape
also includes 9 articles exploring hybrid positioning approaches and 18
articles focusing on the overall framework and applications of IPS,
indicating researchers’ efforts to develop more complex and compre-
hensive solutions. Table 2 also highlights the temporal trajectory of IPS-
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Fig. 2. The overview of IPS for applications in Industry 4.0.

Table 2

Distribution of technology-based reviewed articles.
Year RFID BLE UWB Wi-Fi ZigBee Hybrid 1PS Total
2014 4 - - - - - - 4
2015 7 - 1 - - - 9
2016 7 2 1 - - - - 10
2017 10 - 1 - - 1 - 12
2018 10 3 1 2 - - 17
2019 13 1 1 - - 1 1 17
2020 14 2 1 - - 3 3 23
2021 5 7 7 1 - 1 4 25
2022 5 7 10 - 1 3 1 27
2023 6 8 5 3 - - 9 31
Total 81 30 28 6 3 9 18 175

related research literature. Over the past 10 years, the number of articles
has grown continuously, with the volume in 2023 already about eight
times that of 2014. This trend suggests that the IPS field is attracting
increasing attention and enthusiasm in the academic community, and
the research is becoming more in-depth and mature. In terms of research
methodology, more than half of the literature adopts an experimental
validation approach, reflecting researchers’ emphasis on the feasibility

and performance of IPS technology in practical application scenarios.
This is further reinforced by studies ([29,30,31]), which have been
tested and applied in real-world environments, enhancing the practi-
cality and relevance of the research.

Notably, the IPS technology serves as the physical foundation for
realizing positioning functionalities. It encompasses a range of wireless
communication technologies, including RFID, BLE, UWB, Wi-Fi, and
ZigBee. These technologies leverage the physical characteristics of
wireless signals, such as signal strength, angle, and propagation time, to
obtain the information required for positioning. Correspondingly, the
IPS technique refers to the mathematical models and algorithms devel-
oped based on the characteristics of these technologies. They encompass
various positioning algorithms that utilize physical quantities like signal
strength, angle, or time, including Received Signal Strength Indicator
(RSSI), Angle of Arrival (AoA), Time of Arrival (ToA), and Time Dif-
ference of Arrival (TDoA). These positioning techniques rely on math-
ematical modeling and analysis of the physical properties of wireless
communication technologies to estimate and project the target position.
Fundamentally, the technology focuses on the physical implementation
at the lower layer, while the technique focuses on the mathematical
modeling at the upper layer. The technology provides the physical
foundation for positioning, while the technique ensures the realization
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of positioning functionalities. The synergistic combination of technolo-
gies and techniques facilitates the construction of more accurate and
reliable IPS.

The subsequent sections will introduce the methods and technologies
of indoor positioning, their integration with machine learning, and the
evaluation metrics of IPS.

3.1. Technologies

In this paper, five technologies, including RFID, BLE, UWB, Wi-Fi,
and ZigBee, are selected for the study. As detailed in Table 3, each
technology exhibits varying levels of accuracy, energy, cost, and scal-
ability. The following sections will provide a more in-depth discussion of
the specifics of these technologies.

3.1.1. Radio frequency identification

RFID is an advanced technology that employs electromagnetic
transmission and Radio Frequency (RF) compatible integrated circuits to
store and retrieve data. An RFID system comprises essential components
such as RFID readers, RFID tags, and the communication between them.
RFID readers can read the data transmitted by RFID tags and enable
bidirectional communication with the tags. This communication occurs
through defined RF signals and protocols, allowing for the exchange of
information between the readers and tags.

Passive tags and active tags represent the two primary categories of
RFID tags. Passive RFID tags do not require batteries to operate; they
extract energy from the RF signals emitted by the reader and transmit
data back. These tags are mainly used as an alternative to traditional
barcode technology and offer advantages such as small size and low cost.
They add information by modulating the return signal and generally
have a reading range of 1 to 2 m but are limited by their passive nature
and relatively short reading distances. In contrast, active RFID tags have
built-in batteries and can actively send signals, so they have a larger
reading range and stronger signal transmission capabilities, but at a
relatively high cost.

Despite not being the most accurate or the easiest IPS to implement,
RFID has been extensively researched for its industrial applications. Our
sample includes 86 studies on RFID positioning, encompassing 81
positioning systems solely based on RFID technology and 5 hybrid
positioning systems incorporating RFID technology. Montaser et al. [36]
employed RFID technology to facilitate cost-effective indoor location
identification and material tracking within construction projects. Uti-
lizing RFID technology to achieve target tracking has also proved useful
in other studies [37,38]. Based on the target location, RFID is further
studied for resource stock-taking [39], resource allocation [40-43],
process control [44-46], real-time scheduling [47-50], bottleneck
identification [51,51,52], staff states monitoring [53], collision pre-
vention [54], and hazard detection [55].

For two-dimensional (2D) localization, Montaser et al. [36] utilized a
triangulation method to identify user locations and track materials,
achieving an average error of 1.0 m and 1.9 m, respectively. Notably,
their proposed method demonstrates complete accuracy in detecting
worker and material locations. For three-dimensional (3D) localization,
Cai et al. [38] introduced a novel algorithm called BConTri, which in-
tegrates the boundary condition method and the three-coordinate

Table 3
Comparisons of indoor positioning technologies.
Technology Accuracy (m) Energy (mW/ Cost Scalability
[32,33] tag) [32,34] [14] [34,35]
RFID  (Active) ~1-3 ~250 Medium  Medium
(Passive)  ~0.15-0.5 <50 Low High
BLE ~2-5 ~25-50 Low High
UWB ~0.15 ~600 High Low
Wi-Fi ~1.7 ~100 Low High
ZigBee ~2.77 ~74.1-81 Low High
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concept to estimate the three-dimensional position of a tag in
real-world coordinates. Experimental results indicate that the algorithm
achieves a 3D position error of 1.43 m. In addition, several studies have
improved the 3D position error by using various localization techniques.
For example, Montaser et al. [36] conducted a comparative analysis of
two localization techniques, namely triangulation and proximity. The
findings of their study demonstrated that the triangulation method ex-
hibits superior accuracy compared to the proximity technique.

3.1.2. Bluetooth low energy

The article identifies 33 articles related to BLE research, of which the
articles that contain only the localization techniques of BLE technology
are 30. BLE encompasses specifications for the physical and MAC layers,
enabling the connectivity of various fixed or mobile wireless devices
within a personal space. BLE signals are detected through BLE beacons,
and the individual’s location is determined by combining the RSSI with
the location of the beacon. The BLE protocol incorporates in-phase and
quadrature sampling techniques, enabling the calculation of angles of
arrival and departure using BLE. One of the key advantages of BLE is its
extremely low power consumption, typically around 0.367 mW. This
enables battery-powered devices to operate for extended periods of
time, often lasting for years without requiring battery replacement [10].
However, there are certain drawbacks associated with BLE. One of the
disadvantages is the potential for interference, which can affect the
reliable detection of BLE signals through the beacons used for their
detection. Additionally, the reliability of detecting BLE signals may be
compromised, posing challenges in certain scenarios.

The accuracy of BLE in industrial applications has also been studied.
For example, Wu et al. [56] designed an indoor tracking algorithm
called GITA to localize product carts via BLE and applied UWB to sample
tagging during the training phase to achieve a localization accuracy of 2
m in industrial environments. Zhao et al. [57] developed a BLE-based
multimodal bionic learning (MMBL) approach with a 95 % error
within 3.41 m and remains effective after one year of use. Carrasco et al.
[58] devised a system designed to locate the nearest machine to a user.
This system collects the Received Signal Strength Indication (RSSI) data
from low-cost BLE beacons installed on the machines and returns the
name of the closest machine. The system achieves an approximate
guessing rate of 89 % accuracy.

The main application of BLE in the industry is target tracking
([59-62]). Based on target tracking, other scholars have applied BLE to
collision prevention. For example, Huang et al. [63] devised a meth-
odology for detecting proximity areas and delivering proximity safety
alerts to workers at construction sites. Their approach utilizes BLE and
has undergone multiple tests on construction sites. The results demon-
strated that the system effectively detects proximity and promptly
generates vibrotactile alerts that are easily noticeable by the workers.
Arslan et al. [64] used a data collection and trajectory preprocessing
subsystem based on real-time BLE beacons to extract multifaceted tra-
jectory characteristics and workers’ stay areas and proposed a worker
trajectory analysis system called WoTAS, which can help safety man-
agers remotely monitor and control the construction activities in dy-
namic environments to understand the workers’ activities and reduce
the number of incidents on the construction sites.

3.1.3. Ultra-wideband

34 articles investigating ultra-wideband in industrial applications
were identified, of which 28 were articles that included only UWB
technology for localization. UWB is an especially appealing technology
for indoor localization due to its inherent resistance to signal interfer-
ence compared to other technologies. UWB signals possess a distinctive
characteristic as they can penetrate various materials, including walls
(although metals and liquids can interfere with UWB signals). Further-
more, the extremely short duration of UWB pulses aids in mitigating
multipath distortion commonly encountered in indoor environments.
This characteristic of UWB enables more precise and accurate
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localization results [65].

Scholars have applied UWB to industry and evaluated its accuracy in
different environments. Pease et al. [66] implemented a UWB system
within an operational indoor industrial facility and showcased ranging
accuracy that is on par with existing systems tested in non-industrial
environments. Moreover, UWB has been successfully integrated with
other technologies to enhance the accuracy of localization algorithms.
For example, Wu et al. [56] developed a GITA based on a long and
short-term memory network. This innovative algorithm integrates UWB
and BLE technologies and was assessed through a real-world case study
conducted at a prominent computer manufacturing company. Despite
the presence of various types of noises in the manufacturing scenario,
the GITA showed superiority over the existing methods with an accuracy
of 98.12 %.

The applications of UWB technology span various industrial do-
mains. One prominent area of application is target tracking, as evi-
denced by the extensive research conducted in this field ([67-69]).
These studies have demonstrated the efficacy of UWB in accurately
locating and monitoring the position of targets, making it a valuable tool
for applications such as asset management, personnel tracking, and
device monitoring. In addition to target tracking, scholars have also
explored the application of UWB in the realm of security management.
For example, Halawa et al. [70] combined UWB technology with a
warehouse management system (WMS) and a forklift fleet management
system (FFMS). They conducted an analysis of warehouse safety across
seven dimensions, including factors such as braking roughness, adher-
ence to routing strategies, driver behavior at intersections, congestion
identification and prevention, speed control per zone, impact analysis,
and failure analysis. The analysis was performed using relevant data to
assess and improve warehouse safety. Maalek et al. [71] investigated the
impact of variables such as speed and heading on the accuracy of esti-
mating the location of dynamic tags. Their findings revealed an inverse
relationship between accuracy and the speed of the tag, the number of
tags being tracked, and the complexity of the tag’s path of travel.
Additionally, the researchers proposed a novel method for defining
hazardous areas in construction sites, showcasing the effectiveness of
UWSB in locating dynamic resources and enhancing safety management
within construction sites.

The application of UWB to production process control is also a
research direction. For example, Xia et al. [72] introduced a novel mo-
bile production monitoring system equipped with human-in-the-loop
control. This system utilizes UWB and inertial measurement unit
(IMU) fusion indoor localization technology to deliver precise indoor
localization information for the production elements within a factory
setting. The proposed system was implemented in a hydraulic cylinder
factory, significantly reducing physical and mental fatigue among pro-
duction personnel.

3.1.4. Wireless fidelity

The article identifies 8 articles related to Wi-Fi research, of which 6
articles include only Wi-Fi technology for localization. With the
increasing prevalence of portable user devices, it is worth noting that
many of these devices now come equipped with Wi-Fi capabilities. This
widespread adoption of Wi-Fi technology renders it highly suitable for
indoor localization purposes. Existing Wi-Fi access points can serve as
valuable reference points for collecting signals in indoor localization
systems [73]. It is possible to construct basic localization systems that
can achieve reasonable positioning accuracy without the need for sup-
plementary infrastructure. Nonetheless, conventional Wi-Fi networks
are generally deployed for communication purposes, aiming to maxi-
mize data throughput and network coverage rather than for positioning
objectives. Therefore, innovative and efficient algorithms are necessary
to enhance the positioning accuracy of these networks.

Scholars research the accuracy of Wi-Fi when applied in industry. For
example, Ma et al. [74] designed a module called enhanced magnetic
fingerprinting-based indoor localization (MaLoc), which provides 2D
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localization services with an accuracy of 1 to 2.8 m. Budak et al. [75]
compared four solutions, namely, UWB, Wi-Fi, ultra-high frequency
(UHF) RFID, and active RFID, and the optimal system was determined to
be the Wi-Fi real-time locating system. Studies have also integrated
Wi-Fi with other technologies, such as magnetic fields [74] and IMU
[76]. Exploring location-based services is also a research direction for
Wi-Fi. For example, Falkowski et al. [77] explored the standard indoor
positioning solutions required for location-based services and used
Wi-Fi-based geofencing as an example to demonstrate the need for
employing feature models for an efficient design process.

3.1.5. ZigBee

ZigBee, a wireless communication standard developed by the ZigBee
Alliance, was devised with the specific objective of addressing the de-
mand for cost-effective implementation of ultra-low-power and low-
data-rate wireless networks. ZigBee builds upon the IEEE 802.15.4
standard, which focuses on the physical and MAC layers to facilitate the
establishment of low-cost, low-data-rate, and energy-efficient personal
area networks [78]. ZigBee standardizes the upper layers of the protocol
stack, encompassing the network layer and the application layer. The
network layer is responsible for organizing and enabling routing in
multi-hop networks, while the application layer serves as a framework
for facilitating  distributed application = development and
communication.

Due to its low-cost and low-power characteristics, ZigBee has been
utilized in the development of IPS. RSSI levels are easy to obtain because
they are included in each packet without additional hardware. ZigBee-
based IPS typically comprise sensor networks and wireless sensor
network algorithms. These systems commonly employ algorithms that
utilize RSSI values to estimate the location. Consequently, they rely on
similar techniques as Wi-Fi and BLE, such as fingerprinting and propa-
gation models. While ZigBee is advantageous for localizing sensors in
wireless sensor networks, it poses challenges when it comes to its us-
ability on most user devices. As a result, it is not well-suited for indoor
localization of users [11].

Several scholars conduct research related to ZigBee. Zhao et al. [79]
developed a comprehensive warehouse environment monitoring system
using ZigBee technology. The system adopts a tree-like network topol-
ogy comprising a ZigBee coordinator, multiple ZigBee routing nodes,
and end devices. Additionally, they established an evaluation model
based on activity-based costing to assess the level of warehouse logistics
costs and analyzed the various factors influencing warehouse logistics
costs. Cui et al. [80] introduced a ZigBee-based fingerprint positioning
method for locating railroad tunnel staff. They proposed an improved
K-means algorithm to cluster the location fingerprinting database,
aiming to reduce the number of matches between online stages and
reference nodes. This approach facilitated online positioning, enabling
managers to accurately determine the location of tunnel staff in a timely
manner. As a result, it facilitated the efficient deployment of staff and
the effective utilization of fingerprinting techniques. Mardeni et al. [81]
devised a tracking and localization system for mobile asset tracking and
localization, leveraging ZigBee technology, RSSI, and the trilateral
measurement method. This system was designed to be straightforward,
cost-effective, and dependable, providing a solution for accurately
tracking and localizing mobile assets.

3.2. Techniques

This study categorizes indoor positioning techniques into three
broad classes: signal-based, angle-based, and time-based methods.
Recognizing that the performance of a given indoor positioning tech-
nique can vary across different environments, Table 4 provides a
comparative overview of the characteristics of some commonly
employed localization techniques for reference. The subsequent sections
will introduce the distinctive characteristics, as well as the advantages
and disadvantages, of each type of indoor positioning technique.
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Table 4
Comparisons of indoor positioning techniques.
Techniques Technology Computation Latency Synchronization
RSSI BLE Low Hard real-time No
AoA BLE 5.1 High Soft real-time No
ToA UWB Medium Hard real-time Yes
TDoA UWB Medium Hard real-time Yes

3.2.1. Signal-based techniques

The approach based on received signal strength (RSS) is considered
one of the simplest and extensively employed methods for indoor
localization [82]. RSS refers to the actual strength of the received signal,
typically measured in decibels milliwatts (dBm) or milliwatts (mW). It
serves as a means to estimate the distance between the transmitter (Tx)
and receiver (Rx) devices. A higher RSS value indicates a shorter dis-
tance between the Tx and Rx. When the transmitted power or the power
at the reference point is known, various signal path loss propagation
models can be employed to estimate the absolute distance. It’s important
to note that RSSI, often confused with RSS, is a relative measure of RSS
and is characterized by arbitrary units defined by individual chip ven-
dors. For instance, Atheros Wi-Fi chipsets employ RSSI values ranging
from 0 to 60, whereas Cisco adopts a range between 0 and 100.

Multiple formulas have been developed to calculate distance using
RSSI, establishing a relationship between signal power and distance. The
widely used formula is the log-normal path loss, which represents a
general form of the Friesian equation. Using RSSI and a straightforward
path loss propagation model [83], the distance d between Tx and Rx can
be estimated from

RSSI = —10nlog,,(d) + A @

where n is the path loss exponent, and A is the RSSI value at the refer-
ence distance from the receiver. RSSI can be applied to trilateral mea-
surements, fingerprinting, and proximity methods. Trilateral
measurement methods leverage RSSI to estimate the distance between a
reference node and a mobile node, enabling the determination of object
locations associated with the reference node. Proximity-based methods
utilize RSSI values to establish geofences, which detect when an object
enters the vicinity of the geofenced area. Fingerprinting applies RSSI
measurements to obtain features for each point on the map [84].

Fingerprinting methods are based on RSSI. The method is comprised
of two distinct phases, namely offline and online. During the offline
phase, the received RSSI signals are utilized to map all areas and stored
in a database. In the online phase, the RSSI values measured in real-time
are compared against the predefined values within the database,
allowing for the identification of the closest point in the vicinity. Sub-
sequently, the current position is mapped to the predefined points on the
map.

Although RSS-based methods are simple and cost-effective, they
often have limited localization accuracy, particularly in non-line-of-
sight scenarios. This reduced accuracy can be attributed to additional
signal attenuation caused by obstacles such as walls, multipath fading,
and indoor noise, leading to significant fluctuations in RSS values. To
address these challenges, various filtering techniques and averaging
mechanisms can be employed to mitigate the effects of signal fluctua-
tions. However, achieving high localization accuracy without using
complex algorithms is unlikely.

3.2.2. Angle-based techniques

As shown in Fig. 3, AoA-based methods utilize an antenna array on
the receiver side to estimate the angle at which the transmitted signal
reaches the receiver. This is achieved by utilizing and calculating the
difference in arrival times of individual elements of the antenna array
and determining the intersection of multiple orientations based on the
angle of the received signal.

The advantage of AoA-based techniques is that they do not require
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Fig. 3. AoA-based localization.

time synchronization and can provide an accurate estimation of the
transmitter-receiver distance when the distance is relatively short. In a
2D environment, the device/user position can be estimated using two
anchor nodes, while three anchor nodes are required for a 3D
environment.

However, this method necessitates defining the positions of the an-
chor nodes, which must be equipped with directional antennas. This
requirement can increase the overall cost of the system. Indeed, AoA-
based techniques typically demand more complex hardware and
meticulous calibration compared to RSS techniques. The accuracy of
AoA estimation tends to decrease as the distance between the trans-
mitter and receiver increases. This is because even a small error in the
angle of arrival calculation can result in a significant error in the actual
position estimation [73]. Moreover, acquiring the line-of-sight compo-
nent of the approach angle proves challenging in indoor settings due to
the presence of multipath phenomena. UWB emerges as a pivotal tech-
nology for achieving accurate positioning through the utilization of the
angle of approach method. Recently, Bluetooth 5.1 has made notable
advancements in positioning services by incorporating improved tech-
niques such as AoA and Angle of Departure (AoD) [85].

3.2.3. Time-based techniques

Time of Flight (ToF) or ToA methods utilize the propagation time of a
signal to calculate the distance between a transmitter (Tx) and a receiver
(Rx). This is achieved by multiplying the ToF value by the speed of light
(¢ = 3 x 10%m/s) to obtain the physical distance between Tx and Rx.
In Fig. 4, the ToF data obtained from three reference nodes is employed
to estimate the distance between the reference node and the device. By
leveraging the underlying geometry, it becomes possible to calculate the
position of the device in relation to the access point. It’s worth noting
that ToF requires precise synchronization between the transmitter and
receiver, and in many cases, a timestamp needs to be transmitted along
with the signal, depending on the underlying communication protocol.

Reference node_3

Fig. 4. ToF-based localization.
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The accuracy of Time of Flight (ToF) is influenced by two crucial
factors: signal bandwidth and sampling rate. A lower sampling rate in
time results in reduced ToF resolution since the signal may arrive be-
tween sample intervals. In multipath indoor environments, a larger
bandwidth leads to a higher resolution when estimating ToF. While
employing a larger bandwidth and super-resolution techniques can
enhance ToF performance, they do not entirely eliminate substantial
localization errors in scenarios where there is no direct line-of-sight path
between the transmitter and receiver. This is because obstacles deflect
the transmitted signal, causing it to traverse a longer path, consequently
increasing the propagation time from Tx to Rx.

Let t; be the time when Tx i sends a message to Rx j and receives it at
t2, where t; = t; + t, (t, is the time required for the signal to propagate
from Tx to Rx). Therefore, the distance between i and j can be calculated
using Eq. (2)

Dij = (2 — 1) x v )

where v is the signal speed.

TDoA is a technique that leverages the difference in signal propa-
gation times from multiple transmitters as measured at the receiver.
Unlike ToF which utilizes absolute signal propagation times, TDoA fo-
cuses on the relative differences in arrival times. The TDoA measure-
ments are converted to physical distance values. To compute the exact
position of the receiver, TDoA measurements from at least three trans-
mitters are necessary, as the receiver’s position corresponds to the
intersection of three or more hyperbolic surfaces. Solving the hyperbolic
system of equations can be achieved through methods such as linear
regression or linearizing the equations using a Taylor series expansion.
Similar to ToF, the accuracy of TDoA estimation depends on factors such
as signal bandwidth, the sampling rate of the receivers, and the presence
or absence of a direct line of sight between the transmitters and re-
ceivers. TDoA only requires synchronization between the transmitters.

Ranging Time of Flight (RToF) is a technique that measures the
round-trip signal propagation time between a transmitter (Tx) and a
receiver (Rx) to estimate the distance between them. Similar to ToF,
RTOF relies on the measurement of signal propagation time, but it in-
volves the complete round trip from the transmitter to the receiver and
back. RToF offers an advantage over ToF in terms of clock synchroni-
zation requirements between the Tx and Rx. The synchronization
needed for RTOF is relatively modest compared to the precise synchro-
nization required for ToF. However, the accuracy of RToF estimation is
affected by factors like ToF, such as the sampling rate and signal
bandwidth. In the case of RToF, these factors have a greater impact
because the signal is sent and received twice. Another essential
consideration for RToF-based systems is the receiver response latency.
This latency is influenced by the receiver electronics and any protocol
overhead. Minimizing the receiver response latency is crucial to achieve
accurate RToF measurements.

3.2.4. Integration with machine learning

Machine learning is a technique and methodology in artificial in-
telligence that enables computer systems to learn and improve auto-
matically without explicit programming instructions by utilizing large
amounts of data and statistical principles. The fundamental concept
behind machine learning is to enable intelligent decision-making and
behaviors by extracting patterns and regularities from data, enabling the
performance of tasks such as prediction, classification, and clustering.
The proliferation of data and advancements in computing power have
contributed to the significant rise of machine learning in recent years. It
has been widely used in many fields, such as construction, logistics, and
manufacturing [86-88], and has achieved remarkable results.

Machine learning can effectively improve the performance of IPS.
First, machine learning can utilize a large amount of data for feature
extraction, and it can automatically learn and discover patterns and
regularities in the data to extract useful features related to indoor
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positioning. This automated feature extraction process is more efficient
and accurate than manually designed feature extraction methods. Sec-
ond, machine learning models have nonlinear entity modeling capabil-
ities to better capture complex relationships and nonlinear features in
IPS. This enables machine learning to predict and localize positions
more accurately, improving the precision and accuracy of the posi-
tioning system. In addition, machine learning is a data-driven approach
that improves the adaptability and generalization of IPS through
learning and optimization of large-scale data. Machine learning models
can learn from data in multiple dimensions and from multiple sensors to
model different environments and scenarios, thus providing more robust
localization results. The machine learning techniques commonly used in
IPS are described next.

In Support Vector Machine (SVM), each data point in a dataset is
represented as a point in an N-dimensional space, where N corresponds
to the number of features. The SVM algorithm aims to identify a hy-
perplane or a set of hyperplanes that effectively separate different data
classes by defining boundaries in this N-dimensional space. SVM can be
utilized for localization tasks by leveraging both offline and online RSSI
measurements [35]. These measurements can be used as features in the
SVM algorithm to train a model that can accurately estimate the location
of a target in a given environment. The trained SVM model can then be
employed for online localization, where real-time RSSI measurements
are used as input to predict the target’s position. Rezgui et al. [89]
introduced a novel approach called the normalized rank classifier
(NR-SVM) based on support vector machines (SVM). This method was
specifically designed to address hardware variations and signal fluctu-
ations encountered in Wi-Fi fingerprint-based localization. The pro-
posed approach prioritizes the main features and considers the
dimensionality of the feature vectors. Through experimental evalua-
tions, the researchers demonstrated the robustness and effectiveness of
the NR-SVM method in tackling the challenges associated with Wi-Fi
fingerprint-based localization. Chriki et al. [90] skillfully combine
SVM with RSSI to convert the problem of determining the precise
location of a target into the problem of determining the region where the
target location is located and to solve the problem that it is difficult to
locate the target based on the RSSI measurements alone correctly.

K Nearest Neighbors (KNN) is a nonparametric machine learning
algorithm used for classification and regression tasks. It does not make
any assumptions about the underlying data distribution. The core
principle of KNN is to determine the class of a test point by considering
the majority vote of its K nearest neighbors, represented as a feature
vector. The KNN algorithm is simple to implement and relies on two key
parameters: the value of K (number of neighbors) and a distance func-
tion (such as Euclidean, Minkowski, or Manhattan). However, as the
dataset size increases, the computational time required to calculate
distances between new and existing data points also grows. Conse-
quently, the performance of KNN can degrade rapidly with larger
datasets. Additionally, data imbalance issues can pose challenges for
KNN, as the majority class may dominate the decision-making process,
leading to biased results. Akré et al. [91] employed an ensemble func-
tion that incorporates the RSSI values from all potential RFID readers
that receive passive RFID signals. They proposed a location feature and
compared it with other tags situated in known locations within the
proximity. To enhance the accuracy of localization, they utilized a KNN
algorithm-based approach to estimate the location of the target tag. This
approach aimed to improve the precision of localization in their study.
Kriz et al. [92] used BLE beacons and RSS of Wi-Fi and used weighted
KNN to estimate the unknown location.

An Artificial Neural Network (ANN) is a computational system that is
composed of interconnected nodes known as neurons. These neurons are
linked together with weighted connections. An ANN typically comprises
an input layer, an output layer, and one or more hidden layers in be-
tween. During the training process of an ANN, input data is passed
through the network, and the output is compared to the desired output
using a loss function. The network then backpropagates the error,
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updating the connections’ weights to minimize the loss. This adjustment
of weights based on the backpropagation of errors allows the network to
learn and improve its performance over time. The aim is to efficiently
optimize the weights to make accurate predictions or classifications
based on the given input data. Adege et al. [93] employed an ANN with
the backpropagation algorithm to address a regression problem and
enhance the accuracy of a localization system. Their experimentation
demonstrated that the localization system achieved an accuracy of 50 %
for errors less than 0.5 m and 100 % for errors less than 0.9 m. This
indicates that the ANN-based approach significantly improved the pre-
cision of the localization system and yielded favorable results in their
evaluation. Anand et al. [94] investigated the application of ANN to
enhance the accuracy of RSSI localization algorithms. They leveraged
the parallel computation capabilities and non-linear characteristics of
neural networks to improve the performance of localization. Their ex-
periments and analysis demonstrated that the utilization of ANN
significantly improved the localization performance.

An autoencoder is a type of unsupervised neural network architec-
ture in which the target output is set to be the same as the input. The
primary objective of an autoencoder is to reconstruct its input data at the
output layer. It consists of an encoder network that maps the input data
to a lower-dimensional latent space representation, and a decoder
network that reconstructs the input data from the latent space repre-
sentation. Autoencoders can be trained to learn compressed and robust
representations of the input data by constraining the network with a
limited number of neurons in the hidden layers. By doing so, the
autoencoder is forced to capture the most salient features of the input
data in a compact form. This compressed representation can be used for
various purposes, such as data compression, denoising, or anomaly
detection. Wang et al. [95] developed a feature extraction technique
utilizing a stacked denoising autoencoder. The experimental findings
demonstrate the efficacy of the proposed approach in addressing the
temporal variations and sparsity inherent in Wi-Fi signals during the
localization procedure. Zhang et al. [96] introduced a feature extraction
algorithm named joint multi-task stacked denoising auto-encoder. This
method was devised to tackle the instability of Wi-Fi signals and the
high-dimensional sparsity observed in fingerprint data, with the objec-
tive of enhancing the performance of IPS based on Wi-Fi technology.

3.3. IPS assessment evaluation

This section introduces the evaluation of IPS, which is distinct from
the assessment of individual technologies. Evaluating an IPS for indus-
trial environments primarily involves considering four key factors: cost,
accuracy, robustness, and scalability. These factors must be tailored to
the specific needs of each application.

3.3.1. Cost

When evaluating the overall cost of an IPS, a multifaceted approach
is required, considering both monetary and non-monetary factors. On
the monetary side, the costs associated with such systems can encompass
a range of elements, including the acquisition of hardware equipment,
software development and licensing fees, as well as the expenses
incurred during system deployment and ongoing maintenance. How-
ever, the assessment of IPS’s cost goes beyond mere financial consid-
erations. A number of non-monetary factors must be considered to arrive
at a comprehensive understanding of the true cost implications.

Time costs are an essential consideration. The time required to
install, configure, and calibrate the positioning equipment and the
ongoing time investment needed to maintain and update the system
must be accounted for. Time costs also encompass the project manage-
ment and coordination efforts, as deploying an indoor positioning sys-
tem typically requires communication and collaboration with multiple
stakeholders, such as the owner, IT department, and construction team.
These time-related factors can impact the project plan and imple-
mentation schedule.
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Space cost is another factor to weigh. The physical space required for
the equipment and the limitations of the equipment layout, as well as
any necessary modifications to the building, must be considered. Posi-
tioning technologies with a smaller footprint and that are easier to
install should be preferred. Consideration should also be given to uti-
lizing existing infrastructure, such as communication cables and power
systems, to reduce the need for new investments. The planning, imple-
mentation, and monitoring of the IPS require specialized knowledge and
expertise, both during the initial design stages and for ongoing trou-
bleshooting and technical support. Selecting a straightforward system
can help minimize the labour costs associated with operation and
maintenance.

Human resource costs are also an important consideration. The
planning, implementation, and monitoring of IPS require human re-
sources. This includes the specialized knowledge and experience
required during the planning and design stages of the system, as well as
the effort and expertise required for troubleshooting and technical
support. Choosing a system that is easy to maintain can reduce the cost
of operation and maintenance labour.

Energy cost is another crucial factor. The power requirements of the
indoor positioning devices, including both electricity and battery power,
must be carefully evaluated. Passive energy devices that rely on ambient
energy sources may offer lower energy costs. Additionally, the input
requirements for the power supply infrastructure should be considered,
and alternative power supply options, such as decentralized or renew-
able energy, can be explored to reduce energy costs. Effective energy
consumption management is also essential to optimize the use of energy
resources.

By considering these comprehensive factors like monetary costs,
time, space, human resources, and energy, organizations can conduct a
more thorough assessment and make informed decisions when devel-
oping and deploying IPS. This holistic approach helps ensure that the
selected system aligns with the organization’s needs and desired goals
while also addressing sustainability concerns.

3.3.2. Accuracy

Accuracy is the most core index in the design of IPS. It directly de-
termines the accuracy of the positioning results, thus affecting the per-
formance and application value of the whole system. Usually, accuracy
is evaluated by measuring the average distance error between the esti-
mated position and the actual position. Higher accuracy means that the
positioning result is closer to the actual position, which is crucial for
many industrial application scenarios. However, companies often need
to trade-off between accuracy and other system characteristics in pursuit
of high accuracy.

Firstly, improving accuracy often requires increasing the number and
density of localization devices or using more complex algorithms and
techniques, which can significantly increase system cost, complexity,
and energy consumption. In an industrial environment, these factors are
often a significant concern. Therefore, companies must weigh accuracy
against system cost, complexity, energy consumption, and feasibility of
implementation and maintenance to find an optimal balance.

Secondly, the characteristics of the industrial environment itself can
have a significant impact on positioning accuracy. Compared with or-
dinary indoor environments, factories, warehouses, and other industrial
sites are usually full of metal equipment, pipelines, and sources of
electromagnetic interference. These factors will seriously affect the
wireless signal-based positioning technology, reducing the positioning
accuracy. Therefore, when choosing positioning technology, we need to
fully consider the environmental characteristics and take corresponding
optimization measures, such as choosing the technology solution with
strong anti-interference ability, optimizing the antenna layout,
enhancing the signal processing algorithms, etc., to improve the posi-
tioning accuracy in the industrial environment.

In addition, different industrial application scenarios may have
different requirements for positioning accuracy. Higher positioning
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accuracy may be the key in some scenarios requiring fine material
management, such as automatic robot pickup or unmanned automatic
guided vehicle handling. However, in some scenarios of personnel
localization or large-scale item tracking, relatively low accuracy re-
quirements may be sufficient to meet the needs. Therefore, the system
design should fully consider the specific application requirements and
dynamically adjust the accuracy target and system configuration to
maximize the satisfaction of the needs in different scenarios.

Finally, in the actual deployment process, it is essential to conduct
field tests and performance verification to assess the real-world posi-
tioning accuracy of the indoor positioning system within the specific
industrial environment. This empirical evaluation allows for the
continuous optimization of system parameters and deployment schemes
based on the insights gained from the feedback. Only in this way can we
ensure that the indoor positioning system really plays its due value in
industrial scenarios.

In conclusion, accuracy is a complex multi-factor problem when
applying indoor positioning technology in industrial environments. In
the design and deployment of IPS for industrial applications, a
comprehensive evaluation and optimization process is essential to strike
the optimal balance between performance, cost, and complexity. This
holistic approach must consider a range of technical characteristics,
environmental conditions, application requirements, and other relevant
factors. Only in this way can indoor positioning technology play its due
role in the industrial field.

3.3.3. Robustness

The application of indoor localization techniques in industrial sce-
narios requires a high degree of robustness. Factory environments usu-
ally face challenges that can seriously affect the localization system’s
performance, so improving the robustness of indoor positioning tech-
niques is crucial.

Firstly, signal occlusion and multipath propagation problems that are
common in industrial environments can lead to significant deviations in
measurements. For example, machinery, metal structures, and human
activities can cause signal interference and dramatic fluctuations in
signal strength. To cope with this situation, several measures are needed
to improve the robustness of the positioning system. First, in addition to
utilizing standard technologies such as Wi-Fi, BLE, and inertial sensors,
other positioning technologies such as RFID, UWB, and ultrasonic can be
considered for integration to fully utilize the advantages of sensors with
different physical principles. Multi-sensor fusion can improve the sys-
tem’s ability to tolerate the failure of a single sensor and enhance the
overall reliability. At the same time, the advantages of different sensors
complement each other, which is conducive to improving the posi-
tioning accuracy in complex industrial environments. In addition, it can
be combined with machine vision, industrial cameras, and other visual
sensors to further enhance the robustness of positioning by utilizing the
rich environmental information.

Secondly, due to the harsh conditions in industrial environments,
such as temperature, humidity, dust, etc., wireless signals are suscepti-
ble to solid interference and attenuation, which may also cause perfor-
mance degradation or even damage to the sensors themselves. This
requires the positioning system to have the ability of self-diagnosis and
fault tolerance, and to be able to make real-time adjustments for the
dynamic signal environment. This includes adaptive filtering, gain
control, spectrum analysis, and other techniques to improve the sup-
pression of noise and interference. The system should be able to detect
abnormal states of sensors and automatically adjust algorithm parame-
ters or switch to alternate sensors to ensure that reliable localization
results are still provided when some sensors fail. At the same time,
machine learning technology can be used to continuously optimize the
signal processing algorithm through training and online learning to
adapt to the characteristics of different industrial scenarios.

Again, the design of positioning algorithms should also take into full
consideration of various abnormal situations, such as sensor failure, data
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loss, measurement deviation, etc., and have the corresponding fault-
tolerant mechanism. For example, robust geometric localization algo-
rithms, probabilistic statistical models, Bayesian filtering, etc., can be
used to improve the anti-jamming ability of outliers and missing data. At
the same time, fault diagnosis and fault tolerance mechanisms can be
introduced to quickly identify and isolate faulty sensors to maximize the
use of adequate data to complete the positioning.

In addition, the dynamic changes in the industrial site also pose a
challenge to the robustness of the indoor positioning system. The
movement of equipment, the adjustment of process flow, and the change
of environment layout may lead to the failure of the localization model
and parameters. Therefore, the design of localization algorithms should
consider the dynamic environment adaptability and be able to use on-
line learning or incremental updating methods to automatically adjust
the model to adapt to environmental changes to ensure long-term stable
operation.

In conclusion, high robustness is an essential requirement when
applying indoor positioning technology in industrial scenarios. Through
the integration of multi-sensor fusion, fault tolerance mechanism, and
dynamic environment adaptability, the performance and reliability of
IPS can be significantly improved to meet the needs of practical appli-
cations in complex industrial environments. The ideal IPS should possess
the capacity for dynamic configuration and self-healing capabilities.
Such a system must have the inherent ability to independently adjust its
deployment scheme and parameter configurations in response to envi-
ronmental changes, thereby maximizing the continuity and reliability of
the positioning service.

3.3.4. Scalability

Scalability is a crucial consideration when deploying IPS in industrial
environments. A critical aspect of scalability in IPS is the ability to
maintain stable and reliable localization performance as the operational
range expands and new devices or nodes are introduced into the system.
The main factors affecting the scalability of IPS include the positioning
range, signal transmission and data processing, and the dimensional
space of the industrial environment.

Positioning range is the primary consideration for scalability. In-
dustrial environments are typically large, and systems need to support a
wider spatial range as positioning coverage is progressively expanded.
However, a positioning range that is too large may lead to a degradation
of positioning performance, and signal attenuation and occlusion
problems will become more serious. Therefore, when expanding the
positioning range, the system must take corresponding technical mea-
sures to ensure the accuracy and stability of positioning. This may
involve increasing the density of positioning nodes, optimizing the an-
tenna layout, adopting higher sensitivity receiving equipment, etc.

Signal transmission and data processing capabilities are also vital to
scalability. With the expansion of the positioning range and the increase
in the number of device nodes, the system needs to process a large
amount of real-time positioning data. This places higher demands on the
bandwidth and latency of the communication network as well as the
computational performance of the central server. If the underlying
hardware and network infrastructure cannot support the efficient
transmission and processing of massive data, the scalability of the sys-
tem will be seriously constrained. Therefore, it is necessary to adopt
high-performance computing platforms and communication solutions
and optimize the collection, transmission, and analysis processes of
positioning data to ensure that the system maintains good real-time
responsiveness in the expansion process.

The dimensional space of the industrial environment is also an
essential factor affecting scalability. This spatial complexity poses
unique challenges for the effective deployment and utilization of IPS in
these settings. The three-dimensional nature of many industrial and
logistical facilities, with the presence of multi-level structures and varied
obstructions, can significantly impact the performance and accuracy of
traditional IPS technologies, which were primarily designed for planar
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environments. For different dimensions of the space characteristics, the
positioning system needs to use suitable technical solutions, such as
combining inertial navigation, ultra-wideband, RFID, and other tech-
nologies, and reasonable planning for the deployment of equipment.
Only by fully considering the needs of the spatial dimension can we
ensure that the scalability can be effectively utilized in different indus-
trial environments.

To maintain the scalability of the indoor positioning system in in-
dustrial environments, it is necessary to take corresponding measures
from several aspects. Firstly, the system should adopt a modularized
design architecture. By making each functional module relatively in-
dependent, it is easy to add new positioning nodes and devices flexibly
according to the demand. This modular design not only improves the
flexibility and adaptability of the system but also facilitates future
maintenance and upgrading, thus ensuring overall scalability. Secondly,
choosing a high-performance hardware platform is also the key to
ensure scalability. The hardware platform includes the use of a powerful
central processing unit, high-capacity storage and memory, and a high-
bandwidth network interface. Only with sufficient computing and
communication capabilities the system can maintain good real-time
responsiveness when increasing the number of device nodes and pro-
cessing a large amount of positioning data. In addition, the use of dy-
namic positioning algorithms and signal transmission techniques is also
essential. To cope with the changes in different environmental condi-
tions, the system should adopt adaptive positioning algorithms and use
machine learning and other methods to dynamically optimize the al-
gorithm parameters. At the same time, the use of advanced wireless
communication technologies such as self-organizing network and fre-
quency hopping can improve the system’s anti-interference ability and
transmission stability. The application of these dynamic technologies
helps to ensure that the positioning performance maintains a high level
during the expansion process. Finally, before the system is deployed,
comprehensive scalability and stress tests are required. This includes
testing the system’s performance metrics at different scales and evalu-
ating its stability during gradual expansion. The system can simulate
large-scale operations through stress testing and other means to identify
potential bottlenecks and weaknesses. Based on the test results, the
system design is optimized to ensure that it can meet future changes in
business requirements.

In summary, to realize the scalability of IPS, it is necessary to start
from multiple angles, including the modular design, selection of high-
performance hardware, use of dynamic technology, and system
testing. Only through these comprehensive measures can it be ensured
that the positioning system can be continuously and stably scaled up
with changes in the industrial environment.

3.4. Summary

Overall, the surveyed articles show that researchers in industrial
applications have so far reacted quickly to the newly introduced IPSs,
which in addition to the five selected technologies contain several new
IPS application concepts, such as IMU [37,72], magnetic fields [74], and
location-based services [77].

This section summarizes the findings by technology. While RFID has
attracted great interest in the last decade, positioning technologies such
as BLE, UWB, Wi-Fi, and ZigBee in industrial applications have not yet
been fully studied or reported. The status of the positioning systems that
have been applied in the industry will be discussed in the next section.

4. IPS applications in Industry 4.0

As shown in Fig. 5, the number of articles examining the application
of IPS in the context of Industry 4.0 shows an increasing trend with the
number of years between 2014 and 2023. In this case, the number of
articles is the same for 2018 and 2019.

As shown in Table 5, about 64 % of the articles examined the use of
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Fig. 5. Reviewed articles classification by years.
Table 5
Reviewed articles classification by applications in different fields.
Real-time decision-making =~ Manufacturing  Construction  Logistics  Total
Resource management 59 7 20 86
Object tracking 28 5 16 49
Resource allocation 21 1 2 24
Resource stock-taking 10 1 2 13
Production management 48 10 10 68
Bottleneck identification 11 1 2 14
Process control 22 8 6 36
Real-time scheduling 15 1 2 18
Safety management 2 14 5 21
Collision prevention 1 3 - 4
Hazard detection 1 5 2 8
Staff states monitoring - 6 3 9
Total 109 31 35 175

IPS in manufacturing, and about the same number of articles employed
the use of IPS in logistics and construction, each accounting for about 18
% of the articles. Most of the IPS research focused on resource man-
agement (49 %) and production management (39 %), with a small
number of studies focusing on safety management (12 %).

4.1. Resource management

4.1.1. Object tracking

Real-time target tracking is the most popular direction of IPS
research in manufacturing. Many studies have focused on applying IPS
to record real-time location information of various types of production
factors in industrial applications, e.g., finished product [44,58,73,97,98,
83], work-in-process (WIP) [84], assets [85], components [39], and
workers [67]. Based on the object of capturing spatial-temporal infor-
mation of manufacturing resources, some studies proposed technical
frameworks for applying IPS in the manufacturing industry for tracking
various types of manufacturing factors in industrial scenarios. Several
studies have utilized indoor positioning techniques for logistics opera-
tions tools and used goods recovery [99]. All kinds of production re-
sources are visualized and traceable through IPS, laying a solid
foundation for further object-based local optimization and global
collaboration. Besides, the effectiveness of indoor positioning applica-
tions has also been the focus of research on IPS for commodity tracking.
For example, Schroeer et al. [100] evaluate channel effects and impact
on location accuracy in multipath and non-line-of-sight scenarios to
improve the localization accuracy of UWBs in industrial environments.
Beliatis et al. [101] compare different technologies and analyze their
advantages and disadvantages to identify suitable technology solutions
for product traceability in the metal manufacturing industry. solutions.
Barbieri et al. [68] investigate the application of UWB in factory envi-
ronments and propose an enhancement technique to mitigate the signal
impairments that occur in this complex scenario.

Some studies conduct construction site tracking of moving targets.
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Wong et al. [76] developed a localization module including inertial
sensing data, Wi-Fi signal, and barometer unit integration to achieve
cross-floor location tracking, tracking the location of moving people
promptly, and sharing the localization results with the relevant partic-
ipants. Cai et al. [38] proposed BConTri, which combines the "boundary
condition method" and the concept of trilateration, to estimate the lo-
cations of tags in 3D real-world coordinates with GPS-equipped RFID
readers. Montaser et al. [36] proposed a low-cost indoor location
method using UHF RFID to track materials for construction projects. The
proposed method can accurately detect the area of worker and material
locations, and the results show that the average errors of this method are
1.0 m and 1.9 m, respectively.

Target tracking is also a research topic in the field of intelligent lo-
gistics. Hayward et al. [37] developed a low-cost, non-invasive method
using passive RFID tags. In cases where magnetometers and
zero-velocity updates cannot be used, drift is corrected by confirming
the reference position to map the route taken by assets carried by
personnel in indoor environments. A study [102] also explores the use of
IPS systems to increase supply chain visibility to reduce costs, improve
efficiency, prevent losses, and obtain competitive levels of customer
satisfaction. The decision-making approach for selecting the most
appropriate positioning technology is discussed in [75].

4.1.2. Resource stock-taking

In the manufacturing field, some studies [17,86] focusing on the
framework of tracking services for manufacturing elements have
compared the available methods to determine the applicability of
tracking assets in indoor environments. In addition, some scholars have
conducted inventory counting studies for different types of
manufacturing resources. Kirch et al. [103] define smart logistics zones
based on RFID, thus realizing the automatic identification and locali-
zation of logistics objects and applying them to pallet management.
Giordano et al. [104] present an innovative device for continuously
evaluating the usage of handheld power tools and detecting construction
tasks as well as potential misuse through an energy-efficient architec-
tural design. Pichler et al. [105] describe standardizing the design and
use of self-sufficient mobile workstations and utilizing IPS to provide
up-to-date locations to maximize the functionality and versatility of
individual mobile stations and the entire plant environment. There are
also studies focusing on plant metal parts [39], generating product
storage [106], raw material tracking [62], and asset tracking [66].

Some researchers are also applying IPS resource stock-taking to
construction and warehousing. Ma et al. [74] designed an enhanced
MaLoc that integrates magnetic field and Wi-Fi technologies to obtain
the real-time location information of personnel and facilitate personnel
to locate and inspect neighboring building elements to ensure a more
effective and collaborative construction quality management process.
Xu et al. [107] proposed an intelligent management system to monitor
the quantity of goods in a small-scale warehouse. This system collects
and analyzes location data and real-time feedback information accord-
ing to the relationship between goods quantity and digital signals.
Mostafa et al. [108] proposed a new RFID-based warehouse manage-
ment approach that enables the connection of multiple objects. This
approach can help provide spatial-temporal visibility of all items in the
warehouse, increasing efficiency and preventing inventory
counterfeiting.

4.1.3. Resource allocation

Manufacturing resource allocation has also been the focus of
research [109,106,110,52,111]. Effective resource allocation can pro-
vide the efficiency of enterprise resource utilization, reduce enterprise
production costs, and thus improve enterprise competitiveness. Wang
et al. [112] presented an active material handling method that applies
cyber-physical systems technology on the shop floor. This method aims
to make manufacturing resources like machines and carts intelligent so
that they can sense, act, interact, and behave. Based on intelligent
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resources, they proposed a multivariate linear regression method that
considered time weighting to predict the remaining processing time for
the WIP. The method innovatively transforms the material handling
strategy from a traditional reactive mode to an intelligent and proactive
mode, which optimizes the allocation of smart trolleys, reduces the total
non-value-added energy consumption of manufacturing resources, and
optimizes the routing of smart trolleys. Zhao et al. [113] established a
dynamic spatial-temporal knowledge graph model to represent digital
twin copies with spatial-temporal consistency, and then performed
relational reasoning based on task information of production logistics. A
directed weighted graph algorithm is introduced to solve the production
logistics resource allocation problem, which provides a new idea for
solving the spatial disorder and temporal asynchrony problem of pro-
duction resources. Lee et al. [43] proposed an intelligent system to
realize data-driven resource allocation. The system consists of product
material, people, information, control, and productivity functions with
the aim of providing effective and timely support for enterprise resource
allocation decisions. RFID is introduced to validate the effectiveness of
allocation decisions. By refining the rules for RFID-collected data,
resource allocation results are better adapted to the production situa-
tion. Wu et al. [56] designed a system architecture utilizing IPS to
achieve spatial-temporal traceability and visibility of finished goods
logistics on the factory floor and seamless cyber-physical synchroniza-
tion. Production decisions are made with the help of spatial-temporal
data, thus contributing to operational efficiency.

Several resource allocation-related studies focused on logistics and
construction. Some studies related to resource allocation focus on lo-
gistics and buildings. Dzeng et al. [114] utilized RFID technology to
track occupants and record movement data so as to design a model for
the optimization of function-space assignment. Trab et al. [115] defined
a negotiation mechanism for achieving sustainability that relies on
Internet of Things (IoT) infrastructures and multi-agent systems to
achieve optimal placement of products and people in a sustainable
system and ensure safe product allocation operations. Trebuna et al.
[116] describe a step-by-step process for implementing a localization
system that analyzes the movement of people, materials, and various
tools to optimize the material flow and create virtual safety zones.

4.2. Production management

4.2.1. Process control

Many studies [112,96,37] carry out process control of manufacturing
based on spatial-temporal information of objects. Zhong et al. [117] use
production logic and timestamps to concatenate RFID data and propose
an RFID-based cuboid model to interpret the information. In the real
case study, the practicability of the proposed model is demonstrated and
verified, which helps to simplify the daily operations of different end
users. Guo et al. [118] designed a platform called a digital twin-enabled
graduation intelligent manufacturing system for fixed-position assembly
islands by integrating positioning technology with other technologies.
The overall platform is divided into physical, digital, and service layers.
Real-time integration and synchronization between the different layers
guarantee that the resources are allocated accurately and used for
suitable activities at the right time. Managers are eager to make de-
cisions, and field workers can conduct duties efficiently. Wu et al. [29]
developed a location-based logistics platform to track finished goods, by
which location-based operation is activated to improve operational ef-
ficiency. The platform is validated in a real case. Overall productivity
has also increased, with significant reductions in product pickup and
emergency order inspection times, shorter order lead times, and
improved service levels.

The process control function of IPS in the construction domain has
also been studied by scholars. Ding et al. [119] described the graduation
intelligent manufacturing system, which utilizes IoT-enabled pre-
fabricated production for real-time spatial-temporal visibility and
traceability and develops a multistage self-adaptive decision-making
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mechanism to improve the performance level of planning, scheduling,
and execution in the presence of fluctuating runtimes. The proposed
platform results in more than 70 % reduction in delayed operations
compared to the traditional approach, and the mold table Idle time was
reduced by 16.1 % on average. Li et al. [44] utilize RFID technology to
capture real-time location information throughout the on-site assembly
of modular integrated construction. The data captured is sent to the
cloud for real-time processing and analysis. This helps on-site managers
and staff make better decisions, enhance operational efficiency, and
improve collaboration and supervision during the assembly of pre-
fabricated buildings. Xue et al. [45] examine the existing patterns and
trends in RFID-enabled building information modeling systems. They
also provide guidelines for choosing suitable solutions in various
building project management scenarios and in different construction
project management scenarios.

In the field of logistics, Zadgaonkar et al. [120] employ
machine-learning algorithms to enhance the precision of BLE beacon
localization. The study’s findings offer valuable data support for
resource discovery, order acceptance, and enhancing the inventory
process in warehouse management. Zhao et al. [79] employ ZigBee
technology to design an intricate storage environment monitoring sys-
tem. The aim is to decrease the development cost and energy con-
sumption associated with storage environment monitoring while
simultaneously enhancing the efficiency of the monitoring process. Zhao
et al. [121] suggest the combined utilization of RFID and UWB tech-
nologies in an intelligent warehousing management system. This system
leverages UWB technology to determine the location of forklift trucks
and utilizes RFID technology to ascertain the status of goods during
loading and unloading operations.

4.2.2. Real-time scheduling

Multiple studies have concentrated on implementing IPS in
manufacturing to enable real-time resource scheduling. These studies
approach the topic from three distinct perspectives: single object, single
enterprise, and multiple inter-enterprise. At the single object level,
Zhang et al. [122] designed a dynamic optimization of the shopfloor
material handling model, where each trolley is an active agent
requesting a transportation task compared to traditional material
handling methods. Then, the optimal transportation task is allocated to
the optimal trolley according to the real-time state. Carrasco et al. [58]
introduced a system designed to locate the nearest machine in proximity
to the user, which utilizes low-cost BLE beacons and signal strength
indicators to achieve machine location acquisition. Zhao et al. [61]
devised an architecture for collaborative tracking enabled by IoT edge
computing. They also proposed a supervised learning genetic tracking
methodology. This architecture and methodology were effectively
deployed and implemented in real-life manufacturing industrial parks.
As a result, managers were able to gain a comprehensive real-time view
of manufacturing resources and accomplish task matching with the
closest available resources. At the individual enterprise level, Zhou et al.
[50] employ RFID technology to store and transmit the attributes of
processing operations. This approach enables online scheduling of
multi-variety orders. The proposed methodology is implemented in a
smart factory setting and is evaluated through a real case study. The
experimental results demonstrate that the smart factory’s new archi-
tecture enhances the efficiency of multiple schedulers in terms of
learning and scheduling. Additionally, it effectively handles unforeseen
events, such as emergency orders and machine failures. Chen et al. [123]
propose a cost-effective method to reconfigure the production logic.
They accomplish this by constructing a discrete event-driven model
predictive control, which optimizes real-time WIP to facilitate timely
production decision-making. The aim is to prevent any backlog of WIP
and ensure smooth production operations. Guo et al. [124] introduce an
intelligent decision support system architecture that utilizes RFID
technology for production monitoring and scheduling in a distributed
manufacturing environment. The proposed architecture has been
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successfully implemented in a pilot project within an apparel
manufacturing environment. It demonstrates good scalability and
extensibility, allowing for seamless integration with production
decision-making, as well as production and logistics operations within
the supply chain. At multiple enterprise levels, Zhang et al. [48] present
an architecture for real-time information capturing and integration in
the context of the Internet of Manufacturing Things. This architecture
enables embedding sensors in various manufacturing resources such as
operators, machines, pallets, and materials. The real-time
manufacturing information integration service is a crucial architecture
component, which facilitates seamless two-way connectivity and inter-
operability between different enterprises. Ding et al. [125] introduce a
social manufacturing system that utilizes RFID technology to enable
real-time monitoring and dispatching across multiple enterprises. This
system aims to address sudden disruptions by dynamically scheduling
production and transportation tasks among enterprises. Additionally, it
enhances the transparency of inter-enterprise production, particularly in
the context of large-scale personalization.

Studies also focus on the application of IPS for real-time scheduling
in construction and logistics. Altaf et al. [126] applied RFID technology,
data mining techniques, and simulation-based optimization to create a
production planning and control system for a panelized home prefab-
rication facility. This system enables managers to capture assembly line
production data in nearly real-time and automatically optimize the
production schedule, leading to improved efficiency and effectiveness in
the facility’s operations. Zhao et al. [60] employ iBeacon technology for
warehouse management. Their proposed scheme demonstrates the po-
tential to significantly enhance the performance of order picking and
inventory processes within warehouse management.

4.2.3. Bottleneck identification

Some studies [83,127,87,105] focus on mechanisms for processing
IPS-related data in the manufacturing domain, and some scholars focus
on how to implement IPS within factories. Wolf et al. [128] present an
innovative framework for IPS in industrial environments. This frame-
work enables continuous monitoring of the current location and pa-
rameters (such as speed and direction) of process resources, including
operators, equipment, and products. It also collects shop floor data and
configures the production system to provide real-time feedback to
blue-collar workers. Aydos et al. [129] developed a manufacturing
monitoring system that combines RFID, wireless, and plug-and-play
technologies. This system collects data on time and WIP to facilitate
the identification of process wastage, enable production based on job
times, achieve activity balancing, and assess capacity within the
manufacturing process. Cao et al. [130] explored the state characteris-
tics of production logistics from the perspective of multi-attributes such
as time, place, quantity, sequence, and path, and established a compu-
tational model to process RFID data and then discover abnormalities in
production logistics. Zhou et al. [131] put forward a comprehensive
framework for knowledge-driven digital twin manufacturing cells in the
context of intelligent manufacturing. This generic framework facilitates
autonomous manufacturing by incorporating intelligent sensing, simu-
lation, understanding, prediction, optimization, and control strategies.
It can be applied to various aspects of intelligent manufacturing,
including intelligent process planning, intelligent production sched-
uling, and production process partitioning.

Several studies in construction and logistics apply IPS to bottleneck
identification. Li et al. [132] developed an RFID-enabled building in-
formation modeling platform. This platform integrates multiple stake-
holders, information flows, offshore prefabrication processes, and
advanced construction technologies. Its purpose is to streamline oper-
ations across the three echelons of prefabrication, logistics, and on-site
assembly of the building. The platform utilizes real-time data capture
to establish a closed-loop visibility and traceability model, enabling
different end users to monitor construction status and progress in
real-time. This real-time monitoring capability helps mitigate critical
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schedule risks. Zhao et al. [133] introduce a proactive tracking system
architecture that utilizes iBeacon technology and distributed gateway
concepts. This architecture incorporates location-based service triggers
and seamlessly integrates location information with warehouse work-
flows. It aims to reduce time wastage in the order picking and inventory
processes. The system also enables the dynamic location information of
products to be known and updated, enhancing overall efficiency in
warehouse operations. Kong et al. [134] presented a cloud platform that
supports a multi-layer physical internet concept. This platform enables
virtualization and real-time control of logistics assets, facilitating
reconfigurable task coordination and execution. It also allows for
simultaneous on-time process synchronization. By leveraging this cloud
platform, logistics operations can be optimized for efficiency and
responsiveness.

4.3. Safety management

4.3.1. Staff states monitoring

Ongoing research efforts have been made to leverage this technology
for staff state monitoring on construction sites. Gomez-de-Gabriel et al.
[98] introduced an innovative approach to actively regulate the power
of a tool based on the worker’s distance from it. This solution serves the
dual purpose of detecting hazardous situations resulting from improper
use of personal protective equipment or incorrect tool proximity and
promptly and effectively intervening to mitigate safety risks. Conse-
quently, it effectively addresses safety concerns in construction projects
involving the utilization of power tools. Kanan et al. [135] proposed an
innovative design for an autonomous system. This system is designed to
actively monitor, identify whereabouts, and issue warnings to con-
struction workers operating in high-risk zones. Its primary objective is to
ensure the safety of construction workers and prevent accidents at
construction sites. Chen et al. [136] recognized the significance of po-
sition and posture as crucial quantitative indicators. They introduced
the concept of fusing position and posture to evaluate the behavioral
safety risks of construction workers. The fusion principle combines
posture, position, and the fusion of posture and position to determine the
level of risk for individuals involved. Zhang et al. [55] employed an
RFID system to efficiently detect the entry and exit actions of workers
carrying tags upon entering the construction site. Additionally, they
utilized virtual zones of different sizes and shapes, created in a flexible
manner, to identify intruders and issue timely warnings. This approach
effectively contributes to accident prevention at construction sites.
Maalek et al. [71] conducted a study examining the feasibility of UWB
technology for resource localization in construction sites. They further
integrated this technology with managing hazardous areas on con-
struction sites, aiming to enhance existing safety monitoring practices.
Their research highlights the potential of UWB as a valuable tool for
improving safety measures in construction environments.

The logistics industry has been at the forefront of exploring the
application of IPS for staff states monitoring. Halawa et al. [70]
employed IPS to track and locate forklifts and other mobile entities
within a warehouse setting. They established a connection between this
information and the warehouse and forklift fleet management systems.
Through this integration, they could analyze routing strategies, oper-
ating speeds, congestion identification, intersection driver patterns, and
fault analysis. Their approach aimed to enhance both the safety and
operational efficiency of the warehouse environment. Zhao et al. [137]
presented a safety management tracking solution that leverages the IoT
and digital twins. Their approach involves the establishment of an in-
door safety tracking mechanism, which enables the detection of sta-
tionary behaviors. Additionally, they employed self-learning genetic
localization techniques to identify personnel anomalies and obtain
precise real-time location information. By combining IoT and digital
twin technologies, their solution aims to enhance safety management
practices by enabling accurate tracking and anomaly detection in indoor
environments. Zhan et al. [138] introduce an intelligent system
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framework that utilizes industrial IoT and DT technologies. Their
framework aims to enable real-time monitoring of occupational safety in
warehouse environments. By leveraging industrial IoT and DT, the
system ensures that the physical space and corresponding information
are synchronized, allowing for traceability and visibility of operations.
This integrated approach enhances safety monitoring practices and
promotes efficient management in warehouse settings. Wu et al. [139]
presented a cyber-physical platform framework that leverages the
internet of everything and DT technologies. This framework aims to
enable seamless information integration and deliver intelligent services
to various stakeholders in the cold chain logistics domain. The proposed
platform facilitates real-time supervision of personnel safety in cold
storage facilities, enables paperless transportation operations, allows for
remote monitoring of temperature and humidity, detects anomalies, and
provides alerts. Additionally, it supports customer interactions,
enhancing overall operational efficiency and safety in the cold chain
logistics industry.

4.3.2. Collision prevention

Some studies have introduced IPS to prevent collisions. In the field of
manufacturing, Neal et al. [54] examine the potential of recyclable
transportation objects as intelligent containers within the context of
cyber-physical manufacturing services. They explore how these con-
tainers can interact with components, machines, and other elements of
the manufacturing system. Additionally, they focus on the identification
of intelligent components and the monitoring of the logistic handling
process. This includes the detection of collisions, lifting actions, and
turning movements. The research sheds light on the role of intelligent
containers in enhancing efficiency and safety in manufacturing
operations.

In addition, applying collision prevention of IPS in construction is
another domain. Ventura et al. [140] devised an affordable proximity
detection system utilizing UWB technology. This system can operate
with or without fixed anchors and gathers real-time data directly from
the construction site. Its primary function is to alert workers to potential
collision hazards, ensuring their safety on the job.

4.3.3. Hazard detection

Emerging research has explored the application of IPS for hazard
detection. In the field of manufacturing, Sellak et al. [141] introduced a
system that combines UWB positioning technology with vibrating un-
dershirts to offer tactile proximity warnings to workers. By continuously
monitoring the workers’ location in relation to hazardous areas, the
system effectively alerts them to potential dangers. This innovative
approach has the potential to enhance both the safety and productivity
of the industrial workforce by reducing workplace accidents, injuries,
and fatalities.

In addition to industrial applications, the integration of IPS for
hazard detection has also gained traction within the construction in-
dustry. Arslan et al. [64] proposed WoTAS, which enables safety man-
agers to remotely monitor and control construction activities in a
dynamic environment. By tracking and analyzing the trajectory of
workers, WoTAS facilitates a better understanding of their activities.
Consequently, it enhances safety management in day-to-day construc-
tion operations, enabling proactive measures to be taken to ensure
worker safety. Huang et al. [63] devised a method using BLE to detect
proximity areas and deliver proximity safety alerts to workers on con-
struction sites. This method employs BLE technology to accurately
identify proximity and promptly generate vibrotactile alerts. These
alerts are designed to be easily perceived by workers, ensuring timely
warnings and promoting safety awareness in construction
environments.

4.4. Summary of previous work

Although this topic has been extensively researched over the past 10
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years, several aspects have received little or no attention to date. Cost
and latency are important factors affecting the choice of indoor posi-
tioning technology for industrial applications, but few studies have
considered the deployment cost, maintenance cost, and latency of IPS
for large-scale, long-duration applications in the industry. In addition,
indoor positioning system robustness is also a consideration for indus-
trial applications of IPS, yet only a few studies [125,77,97] have
considered system robustness. In industrial environments, indoor
localization systems are bound to receive a variety of noises. Although
some studies [43,142] consider noises in production environments, the
diversity and randomness of noises in real production situations need to
be further explored. The above limitations can make it difficult for the
industry to adopt IPS directly.

The accuracy of IPS in different studies also varies greatly, which is
closely related to the choice of technology and algorithm, the testing
environment, and the deployment environment. However, some studies
do not disclose detailed information about the setups used to test the
positioning systems, and there is no common test standard that can be
used for reference to specify the testing requirements in detail to make
the accuracy of the tested systems replicable and migratable. For
example, Ma et al. [74] designed the enhanced MaLoc module using
indoor positioning with magnetic fields and Wi-Fi signals, which pro-
vides 2D positioning services with an accuracy of 1-2.8 m without
mentioning any obstacles or any other factors that may affect the ac-
curacy of the system. Carrasco et al. [58] used a BLE beacon for each
machine, and with the help of the localization system, the guessing rate
of the machine was about 89 % correct but they did not analyze the
factors affecting the rate or how to improve the rate of guessing and its
correctness.

5. Directions for future work

Summarizing the research priorities and research content based on
the analysis of currently available articles is particularly beneficial in
identifying important aspects that have not yet been adequately inves-
tigated, as well as the main areas for future research. This section
summarizes these aspects in terms of recent developments in IPS, the use
of spatial-temporal data, and the conjunction of indoor positioning and
machine learning.

5.1. Potential value of spatial-temporal data

In the era of Industry 4.0, making full use of spatial and temporal
data to drive industrial transformation and upgrading has become an
imperative trend. As the indoor positioning system of Industry 4.0
spatial and temporal infrastructure, it provides key positioning infor-
mation for various industrial scenarios, bringing many application
values.

First, IPS can track the location of production equipment, materials,
and personnel in real-time, providing data support for production pro-
cess management and logistics optimization. For example, real-time
monitoring of the location and use of key equipment can help com-
panies identify bottlenecks in the production line in a timely manner and
take measures to optimize. At the same time, through the real-time
positioning of raw materials and finished products, enterprises can
optimize warehousing and transportation paths, improve inventory
turnover efficiency, and significantly reduce logistics costs. In addition,
safety management based on personnel positioning is also a major
application value of IPS. Through real-time tracking of the location of
the operating personnel, enterprises can find abnormalities in a timely
manner and take appropriate emergency measures to avoid the occur-
rence of safety accidents effectively. For example, regional control in
hazardous areas should be implemented to limit the entry of unautho-
rized personnel and minimize potential safety hazards. At the same time,
companies can also use positioning data to analyze the employee’s work
behavior, optimize the workflow, and further enhance the safety of the
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production environment. Overall, IPS for production process manage-
ment and safety production provides a new solution through real-time
mastery of equipment, materials, and personnel location information.
Companies can gain insight into the production line operating condi-
tions and optimize logistics and safety management, thus significantly
improving production efficiency and safety levels.

Secondly, spatial-temporal data can also be used to enhance the
intelligent management and maintenance of equipment. By monitoring
the operating status and utilization of key equipment, enterprises can
discover the first signs of equipment failure and take timely maintenance
or adjustment measures. At the same time, based on the analysis of the
frequency of use of equipment and environmental conditions, enter-
prises can optimize the maintenance plan and rational arrangement of
maintenance cycles to extend the service life of equipment. For example,
companies can increase the maintenance frequency for high-frequency
use or harsh environment equipment. For less use of the equipment,
companies can extend the maintenance cycle. This intelligent operation
and maintenance mode based on spatial-temporal data not only can
minimize the equipment failure rate and reduce production interruption
but also effectively improve the overall reliability and utilization of
equipment, thus creating more economic value for the enterprise.
Overall, the application of spatial-temporal data can not only optimize
production and logistics management but also realize the intelligent
maintenance of equipment for the digital transformation of enterprises
to inject new momentum.

In addition, the IPS, which collect personnel and material flow data,
can also be used to optimize the layout of the factory and the design of
the line. Combined with the process flow and production demand, en-
terprises can analyze the actual movement of materials and personnel
trajectory to identify the production line of the blockage and inefficient
areas. Based on this, enterprises can adjust the layout of workstations
and shorten the distance of material and personnel movement, thereby
reducing production costs and time loss. At the same time, these spatial
and temporal data can also be used to provide data support for new or
modified production lines. Enterprises can utilize simulation technology
to assess the efficiency of personnel and material flow according to
different production line planning schemes. In addition, enterprises can
also compare the production indicators under various programs to
provide a scientific basis for the final layout decisions and ensure the
rationality and reliability of the factory layout. Overall, the spatial-
temporal data collected by IPS can not only be applied to production
process management and equipment maintenance but also provide
essential support for the optimization of the factory layout and the
design of the moving line, maximizing the efficiency and flexibility of
the entire production system.

Further, based on the real-time positioning of human-machine
collaboration, companies will significantly enhance the level of factory
intelligence. For example, through the personnel location-aware
equipment remote control, the operator does not need to arrive at the
location of the equipment personally, and the equipment can be oper-
ated and adjusted, significantly improving work efficiency. At the same
time, according to the environmental conditions of the area where
different operators are located, the system can automatically adjust the
temperature and humidity, lighting, and other parameters to create a
more comfortable working environment for the operators and further
improve work efficiency and safety. In addition, with the use of posi-
tioning data, the enterprise can optimize the autonomous decision-
making ability of the equipment so that it can be operated based on
the location and status of the operator. In general, based on spatial-
temporal data, human-machine collaboration will become one of the
core technologies for the construction of future smart factories. The
realization of personnel, equipment, environment, comprehensive
perception, and intelligent interconnection not only can improve pro-
duction efficiency and reduce operating costs but also inject new mo-
mentum for intelligent manufacturing of the Industry 4.0 era.

Finally, the spatial and temporal data provided by the indoor
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positioning system can also be used to build a digital twin model, real-
izing a high degree of integration between the virtual factory and the
physical factory. By importing the real-time operation data of equip-
ment, process, personnel, and other elements of the actual factory into
the virtual model, enterprises can conduct simulation and analysis in the
digital twin system to optimize production planning, logistics and dis-
tribution, equipment maintenance, and other aspects, and feedback the
optimization scheme to the physical world in a timely manner to
improve the overall operational efficiency. At the same time, combined
with augmented reality technology, enterprises can also provide oper-
ators with digital twin system visualization guidelines to help them more
intuitively grasp the equipment operation process, production process
points, etc., to improve the quality of operations and safety. Overall, the
digital twin model based on spatial-temporal data not only realizes the
deep integration of the virtual and physical world but also lays the
foundation for the development of Industry 5.0. Through continuous
optimization of the virtual model, enterprises can continue to improve
the intelligent level of production and operation and ultimately realize
the digital transformation of the entire value chain of the factory.

In short, IPS, as the infrastructure of spatial-temporal data, are
helping the industry to achieve intelligent transformation in the era of
Industry 4.0. By improving production efficiency, enhancing equipment
management, optimizing factory layout, promoting human-computer
interaction, as well as the realization of digital twins and other inno-
vative applications, IPS are becoming an essential driving force for the
transformation of Industry 4.0 to Industry 5.0, helping the industry to
achieve the entire value chain of intelligence and digitalization.

5.2. Enhancement of suitability

Eliminating multipath effects and noise interference is a critical
technical bottleneck that needs to be addressed when applying IPS in
industrial environments. The multipath effect arises due to the reflec-
tion, refraction, and diffraction of signals on obstacles such as walls,
metals, and human bodies, which seriously affects the propagation
behavior of signals. Future research directions can be approached from
some perspectives.

First, multipath compensation algorithms based on environmental
awareness can be explored. The key of this method is to utilize various
kinds of sensing devices that already exist inside the factory, such as
cameras and radars, to obtain real-time environmental information.
Through these environmental data, companies can establish the elec-
tromagnetic propagation model inside the factory and predict the
multipath propagation characteristics of the signal under different
environmental conditions. For example, based on the distribution of
walls, equipment, personnel, etc., the model can predict the paths in
which signals will be reflected and diffracted, resulting in multipath
effects. With this prediction information, companies can incorporate it
into the positioning algorithm to compensate and correct the measure-
ment data, and ultimately improve the positioning accuracy of the
positioning system. This environment-aware multipath compensation
algorithm can fully utilize the factory’s existing infrastructure without
additional deployment costs, which is a promising technology direction
for solving multipath interference.

Secondly, new positioning technologies for industrial environments
are also worthy of attention. Compared with general consumer appli-
cations, industrial environments have their own unique characteristics,
requiring targeted technical solutions. A feasible idea is to use the
wireless communication module that comes with the industrial equip-
ment, such as industrial control gateway, industrial robots, etc., as a
positioning node to build a positioning network specifically for the in-
dustrial scene. This approach can fully utilize the existing industrial
equipment resources without additional deployment costs. At the same
time, researchers can explore the use of UWB, millimeter waves, and
other new wireless technologies for the complex electromagnetic envi-
ronment in the industrial environment. These techniques are highly
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resistant to multipath and are more suitable for use in factories and other
complex indoor environments. In addition to innovation at the hardware
level, researchers also need to develop intelligent cooperative posi-
tioning algorithms for Industry 4.0. Combined with the intelligent
control system of industrial equipment, the positioning algorithms can
realize the collaborative sensing and linkage between the equipment to
improve positioning performance and reliability further. In general,
these new positioning technologies for industrial environments will help
to solve the thorny problems of multipath interference and provide
strong support for factory automation and intelligent manufacturing.

Finally, the use of machine learning techniques to optimize posi-
tioning performance is also a research area with great potential.
Compared with traditional localization algorithms, machine learning
methods can be better adapted to the complex and changing factory
environment. One feasible idea is the adaptive localization algorithm
based on environment modeling. Companies can utilize machine
learning techniques to build a detailed environment model from all
kinds of factory environment data, such as floor plans, equipment dis-
tribution, personnel activities, etc. With such an environment model, the
localization algorithm can automatically adjust the parameters and
strategies according to the changes in the real-time environment and
improve adaptability to multipath and interference. In addition, the use
of deep learning to mine hidden patterns and knowledge from massive
positioning data is also a direction worthy of attention. Deep learning
algorithms can automatically extract the complex features contained in
the positioning data and then build accurate positioning models. This
data-driven localization method has good mobility and generalization
ability in complex industrial environments, which helps to further
improve the performance and reliability of the localization system. In
conclusion, the application of machine learning techniques to the opti-
mization of IPS is a research field full of imagination and development
potential.

In conclusion, solving the problems of multipath effect and noise
interference is the key to realize the high reliability and high accuracy of
IPS in the industrial environment. The above research directions are
expected to provide adequate technical support for this.

5.3. Privacy and security

When applying IPS in industrial environments, privacy and security
factors need to be emphasized. Employee location information is private
data. If this data is not effectively protected, it can lead to privacy
leakage and affect the trust of employees. At the same time, the factory’s
positioning system is connected to various industrial networks, which
makes the positioning system susceptible to cyber-attacks and malicious
tampering, threatening the security and reliability of the positioning
system. In addition, as privacy regulations become increasingly strin-
gent, factories must ensure privacy compliance with their positioning
systems or face regulatory risks. In summary, companies can only
facilitate the successful implementation of positioning-based applica-
tions in Industry 4.0 by adequately addressing privacy and security is-
sues. In response to this demand, researchers can conduct research and
exploration from various aspects.

First, effective privacy protection techniques are needed to minimize
the risk of privacy leakage while preserving the positioning function.
Differential privacy techniques can be used to enhance the privacy of
employees’ location data and reduce the risk of privacy leakage by
introducing random noise to blur the real location information. Feder-
ated learning technology can avoid centralized storage of employee
location data and perform distributed machine learning model training
without sharing the original data, which reduces the potential risk of
data leakage from the root. We can also study the data aggregation
method for privacy protection and utilize homomorphic encryption,
secure multi-party computation, and other technologies to realize
location data aggregation and statistical analysis without disclosing
personal privacy. At the same time, the system design should fully
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consider the privacy feelings of employees and provide privacy prefer-
ences and other humanized functions to enhance the trust of employees.
Finally, ensuring that the design of the positioning system complies with
the latest privacy protection regulations, such as the general data pro-
tection regulation and the personal information protection act, is also an
important direction that deserves attention.

Secondly, the cryptographic security authentication mechanism is an
important direction worthy of in-depth study. Enterprises can consider
using public key infrastructure technology to establish a trusted identity
authentication system, ensuring the identity legitimacy of each subject
in the system (such as employees, equipment, etc.) through digital cer-
tificates, digital signatures, and other means. By studying the identity
authentication scheme based on zero-knowledge proof, safe and reliable
identity authentication can be realized without disclosing personal pri-
vacy information. In addition, combined with attribute-based encryp-
tion, selective disclosure, and other cryptographic techniques, fine-
grained access control to system resources is realized. According to
the roles and permissions of different subjects, the access and operation
of sensitive information, such as positioning data and system configu-
ration, can be flexibly controlled to prevent illegal leakage and
tampering of information. At the same time, advanced symmetric
encryption, public key encryption and other algorithms are used to
encrypt the end-to-end transmission and storage of positioning data to
ensure the confidentiality and integrity of the data in the process of
network transmission and internal system flow. Moreover, the distrib-
uted ledger and consensus mechanism of blockchain are utilized to
establish a credible data-sharing model, and the rules of data access and
use are stipulated through smart contracts to realize safe and reliable
data exchange across subjects. Finally, the cryptography-based system
log and auditing procedures are studied to ensure the traceability and
non-repudiation of the system operation activities and provide a reliable
basis for after-action analysis and traceability.

The network security protection technology in IPS is also a vital di-
rection worthy of in-depth research. First, the programmable charac-
teristics of network security protection based on software-defined
networks can be combined with machine learning technology to achieve
real-time monitoring and intelligent analysis of indoor positioning
network traffic. With the help of this process, various network attacks,
such as illegal access and data theft, can be discovered and prevented in
time. In addition, the sensing and computing capabilities of indoor
positioning sensing devices can be fully utilized to establish a distributed
security monitoring system to realize [oT network security monitoring.
Studying the decentralized security monitoring mechanism based on
blockchain is also a worthwhile research topic, as it can effectively
improve the trustworthiness and risk resistance of the monitoring sys-
tem. Again, the security isolation protection based on an indoor posi-
tioning gateway is also a worthy research direction. By deploying secure
and trustworthy gateway devices in key areas, external network attacks
can be effectively blocked to protect data security inside the IPS. Be-
sides, security reinforcement based on indoor positioning communica-
tion protocols can be considered. Digital signatures and message
authentication codes are added to the positioning data communication
to ensure the integrity and authenticity of the data. Alternatively, an
attribute-based access control mechanism can be introduced to restrict
illegal access to critical functions. Finally, based on security reinforce-
ment, combined research on intelligent vulnerability scanning and
patching technology based on machine learning can effectively improve
the self-healing ability of the system. The research of these network
security protection technologies will provide an effective guarantee for
the safe and reliable operation of IPS.

In addition to network security protection, privacy compliance is
also a key concern when positioning systems are applied in industrial
scenarios. First, data anonymization techniques, such as data desensi-
tization, forgery, aggregation, and other means, can be used to protect
the privacy of the collected positioning data to ensure that the in-
dividual’s private information will not be leaked while maintaining the
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validity and usability of the data. Secondly, differentiated positioning
services can be designed to allow users to independently choose the level
of privacy to improve the user’s perception of privacy and trust. In
addition, a clear privacy policy should be formulated to regulate data
collection, storage, use, and sharing. A third-party monitoring mecha-
nism and a credible privacy data management platform should be
established by utilizing blockchain and other distributed ledger tech-
nologies. At the same time, privacy enhancement technologies such as
differential privacy, homomorphic encryption and secure multi-party
computation are integrated into the key aspects of the positioning sys-
tem to further improve the privacy protection capability of the system.
Finally, users are empowered to make decisions on their own private
data, and a flexible data-sharing authorization mechanism is established
to allow users to independently control the scope of use and authority of
their personal information. In conclusion, privacy compliance is an
important design goal in the application of industrial positioning sys-
tems. In-depth research and innovation from multiple dimensions, such
as technology, management, and service, are of great significance in
enhancing user trust and promoting the healthy development of the
industry.

By adopting these adequate privacy protection and security mea-
sures, the industrial positioning system can not only meet the actual
application requirements but also maximize the protection of em-
ployees’ personal privacy and provide reliable technical support for the
intelligent transformation of industries.

5.4. Energy efficiency

Energy efficiency is a very important consideration when applying
IPS in industrial environments. First, IPS usually involves many hard-
ware devices and complex software systems, with a large scale of overall
energy consumption. If the energy consumption of an IPS is not appro-
priately managed, this will result in a colossal waste of energy. Second,
IPSs need to run for a long time to meet production demands, so the
energy consumption problem will persist and cannot be ignored. In
addition, the improvement of industrial energy efficiency is crucial to
promote the current green transformation in the industrial sector, and
the IPS, as an important part of the industrial IoT, has a direct impact on
the energy consumption of the whole factory. Therefore, when deploy-
ing the IPS indoor positioning system, full attention should be paid to the
energy efficiency issue, and effective optimization measures should be
taken. Optimization measures can not only reduce the operation cost of
the system itself but also contribute to the energy saving and emission
reduction of the whole enterprise, industry, country, and even the earth.
The following section describes the relevant research directions.

Firstly, low-power positioning solutions based on emerging wireless
technologies such as BLE and UWB can be explored at the wireless
communication technology level. These technologies have lower power
consumption characteristics compared to traditional Wi-Fi, RFID, etc.
The operating current of BLE chips can reach the microamp level, and
UWB has higher time resolution and better multipath suppression,
which can minimize the energy consumption of positioning devices. At
the same time, based on these emerging wireless technologies, further
optimization of positioning algorithms and communication protocols is
needed to improve their positioning accuracy and energy efficiency. For
example, efficient positioning algorithms based on RSSI, TDoA, AoA,
and other technologies can be studied and combined with machine
learning and compressed sensing to improve the computational effi-
ciency of the algorithms. At the communication protocol level, it is
necessary to optimize the data transmission mechanism for different
application scenarios and reduce unnecessary communication overhead,
thus further improving the system’s energy efficiency.

Secondly, the working mode and power output of the positioning
equipment can be dynamically adjusted according to the actual process
flow, operating time, and other demand characteristics. Different pro-
duction environments and work tasks on the performance requirements
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of the positioning system are different, so companies need to flexibly
adjust the positioning equipment according to the specific circumstances
of the working state. For example, in idle or non-critical time, companies
can turn the positioning equipment into low-power mode, turn off un-
necessary sensors and communication modules, and reduce power
output, thereby reducing unnecessary energy consumption. In critical
production processes, equipment can be switched to high-performance
mode to ensure positioning accuracy and real-time. By dynamically
adjusting the working mode, the overall energy consumption can be
minimized while meeting the business requirements. In addition, re-
searchers can study the hybrid power supply scheme based on energy
harvesting technology, utilizing solar energy, vibration energy, thermal
energy, and other environmental energy sources to supply power for
positioning equipment. This approach can reduce the dependence on the
power grid and improve the overall energy utilization efficiency.
Moreover, the use of efficient energy management and storage tech-
nologies, such as supercapacitors, secondary batteries, etc., can ensure
that the equipment can continue to work stably even when the envi-
ronmental energy is insufficient.

In addition, the use of distributed positioning architecture is also a
feasible direction. The traditional centralized positioning system con-
centrates all the computation and communication tasks on the central
server, which increases the energy consumption overhead of the system
to a certain extent. In contrast, a distributed localization architecture
can reasonably share the localization task with each node. With the
technology of edge computing and inter-device collaboration, posi-
tioning algorithms and communication processing can be completed on
edge devices close to the data source, which reduces the transmission of
data in the network and the computational and communication load of
the central server. For example, intelligent sensor nodes can be used to
perform preliminary positioning calculations and only upload the final
positioning results to the central server. Alternatively, a distributed
positioning network can be formed through mutual positioning and
collaboration among devices to achieve load balancing and energy
consumption optimization. At the same time, this distributed architec-
ture can also improve the robustness and scalability of the system, which
is more conducive to large-scale deployment. By adopting a distributed
positioning architecture, companies cannot only reduce the energy
consumption overhead of the whole system but also improve positioning
performance and reliability.

At the same time, it is also essential to establish a mechanism for
monitoring and analyzing the energy consumption of the whole life
cycle of the positioning system. In the industrial IoT environment, the
positioning system involves many hardware devices and software sys-
tems, and it is necessary to control the energy consumption of the whole
system comprehensively. Through real-time monitoring of the power
consumption of each device, abnormal power behavior can be found in a
timely manner, such as excessive power consumption of specific devices
or abnormal work mode. Based on these monitoring data combined with
big data analysis technology, the key factors affecting system energy
consumption can be explored in-depth, and targeted optimization stra-
tegies can be proposed. For example, the power of the equipment can be
dynamically adjusted according to different operating hours, or the
positioning algorithm and communication protocol can be optimized to
further reduce the overall energy consumption of the system. At the
same time, machine learning and other methods can be used to build
energy consumption prediction models to provide decision support for
system operation and maintenance and realize adaptive energy
management.

Finally, the deep integration of the positioning system and the energy
management system of the factory is also a direction worthy of atten-
tion. Industrial production process, equipment location information,
and energy consumption data are closely related. Through the syner-
gistic analysis of these two types of data, companies can tap into more
optimization potential. For example, by combining the real-time loca-
tion information of the equipment, companies can accurately identify
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the energy hotspots on the production line and find out which areas or
equipment have higher energy consumption. Based on such a nuanced
picture of energy consumption, the factory’s energy management sys-
tem can automatically schedule the energy supply and put more re-
sources into key equipment and processes, thus optimizing the overall
energy efficiency. At the same time, the positioning system can also
provide a more auxiliary decision-making basis for energy management.
For example, according to the trajectory of the equipment, companies
can predict future changes in energy demand, so energy can be deployed
in advance. Enterprises also coordinate the peak energy consumption of
different processes in conjunction with the process flow, thereby real-
izing peak and valley load balancing. This location-based energy man-
agement can realize the deep integration of energy supply and
production processes, significantly improving the overall energy utili-
zation level of the factory.

In conclusion, energy saving is also an important design goal in the
application of IPS. Enterprises can carry out in-depth research and
practice in technological innovation, intelligent management, distrib-
uted architecture, etc., which is of great significance for reducing their
operating costs and realizing green production.

6. Conclusion

This paper provides a comprehensive review of the use of different
IPS in industrial applications within the context of Industry 4.0 from
2014 to 2023, based on an analysis of 175 relevant journal articles. The
leading indoor positioning technologies covered include RFID, UWB,
BLE, Wi-Fi, and ZigBee, and the researchers have explored their appli-
cations in various industry-related use cases such as position detection,
collision avoidance, process control, and resource allocation. Indoor
positioning can track all production resources, including hand tools,
personnel, materials, and work-in-progress. Most of the considered ap-
plications occur in the production, logistics, quality control, and as-
sembly phases, with fewer in the maintenance and disassembly phases.
This article also discusses and summarizes the advantages, limitations,
costs, and features of different IPSs. In addition, the article innovatively
categorizes the application of IPS in Industry 4.0 into three main cate-
gories and nine subcategories of scenarios. This is the first systematic
summary of the role of IPS in enabling industrial scenarios in the In-
dustry 4.0 context. While the method used to select the sample data
introduces some bias, as it does not include unpublished conference
papers, the study provides a valuable synthesis of the available infor-
mation from both academia and industry.

Future research can further explore the wide range of applications of
IPS in Industry 4.0 to fully realize its potential value. This includes
studying hybrid positioning technologies that combine the strengths of
different systems, such as RFID, UWB, BLE, Wi-Fi, and ZigBee, to achieve
more accurate and reliable indoor positioning. Integrating these locali-
zation technologies with IMU, machine vision, simultaneous localiza-
tion and mapping (SLAM), and other sensing modalities could further
improve positioning performance. Machine vision and SLAM technolo-
gies can enhance the accuracy and robustness of localization. By fusing
vision information and environment modeling, the positioning system
compensates for the limitations of a single positioning technology and
provides a more comprehensive positioning solution. Additionally, re-
searchers should investigate indoor/outdoor fusion positioning systems
to enable seamless switching and continuous positioning as users tran-
sition between indoor and outdoor environments. This could involve
integrating outdoor positioning technologies like satellite-based and
mobile network-based solutions with the indoor positioning system to
meet the complex localization requirements of industrial scenarios.
Beyond just improving the positioning capabilities, researchers should
also explore how indoor positioning can be integrated with spatial and
temporal information about the production processes. IPS can generate
valuable insights to optimize critical functions such as production, lo-
gistics, and quality control by analyzing the relationship between
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location, time, and various operational metrics. Furthermore, the ap-
plications of IPS should be expanded into emerging fields such as low-
carbon management, dynamic optimization, and resource protection
within the Industry 4.0 context. This would help unlock the full potential
of IPS in supporting the complex and evolving needs of modern indus-
trial environments. Overall, future research should focus on innovating
hybrid and fusion positioning technologies while also broadening the
breadth and depth of IPS applications to stay ahead of the changing
requirements in the Industry 4.0 era.

CRediT authorship contribution statement

Peisen Li: Writing — original draft, Investigation, Data curation. Wei
Wu: Writing — review & editing, Methodology. Zhiheng Zhao: Writing —
review & editing, Supervision, Funding acquisition, Conceptualization.
George Q. Huang: Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is supported by Natural Science Foundation of China (No.
52305557), Innovation and Technology Fund (PRP/038/24LI), Guang-
dong Basic and Applied Basic Research Foundation (No.
2024A1515011930), Hong Kong RGC TRS Project (T32-707/22-N),
Research Impact Fund (R7036-22), Open Fund of State Key Laboratory
of Intelligent Manufacturing Equipment and Technology (No.
IMETKF2024022), China Postdoctoral Science Foundation (Grant No.
2022M712394, No 2023M730406).

Editorial disclaimer

Given his role as Editorial Board Member of this journal, George Q.
Huang had no involvement in the peer-review procedures of this article
and had no access to information regarding its peer-review. Full re-
sponsibility for the editorial process for this article was delegated to Li Yi
(liyibuaa@buaa.edu.cn) at Digital Engineering Editorial Office.

Data availability
No data was used for the research described in the article.

References

[1] R.Y. Zhong, X. Xu, E. Klotz, S.T. Newman, Intelligent Manufacturing in the
Context of Industry 4.0: a Review, Engineering 3 (5) (2017) 616-630, https://doi.
org/10.1016/J.ENG.2017.05.015. Oct.

Y. Zhang, H. Zhu, D. Tang, T. Zhou, Y. Gui, Dynamic job shop scheduling based
on deep reinforcement learning for multi-agent manufacturing systems, Robot.
Comput.-Integr. Manuf. 78 (2022) 102412, https://doi.org/10.1016/j.
rcim.2022.102412. Dec.

F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, Digital Twin in Industry: state-of-the-Art,
IEEE Trans. Ind. Inform. 15 (4) (2019) 2405-2415, https://doi.org/10.1109/
TI.2018.2873186. Apr.

F. Tao, B. Xiao, Q. Qi, J. Cheng, P. Ji, Digital twin modeling, J. Manuf. Syst. 64
(2022) 372-389, https://doi.org/10.1016/j.jmsy.2022.06.015. Jul.

F. Tao, Q. Qi, Make more digital twins, Nature 573 (7775) (2019) 490-491,
https://doi.org/10.1038/d41586-019-02849-1. Sep.

F. Tao, H. Zhang, C. Zhang, Advancements and challenges of digital twins in
industry, Nat. Comput. Sci. 4 (3) (2024) 169-177, https://doi.org/10.1038/
543588-024-00603-w. Mar.

C.T. Li, J.C.P. Cheng, K. Chen, Top 10 technologies for indoor positioning on
construction sites, Autom. Constr. 118 (2020) 103309, https://doi.org/10.1016/
j.autcon.2020.103309. Oct.

X. Li, et al., Accuracy and reliability of multi-GNSS real-time precise positioning:
GPS, GLONASS, BeiDou, and Galileo, J. Geod. 89 (6) (2015) 607-635, https://
doi.org/10.1007/s00190-015-0802-8. Jun.

[2]

[3]

[4]
[5]

[6]

[71

[8]

20

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Digital Engineering 3 (2024) 100020

J. Rezazadeh, K. Sandrasegaran, X. Kong, A location-based smart shopping
system with IoT technology, in: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), IEEE, Singapore, 2018, pp. 748-753, https://doi.org/10.1109/WF-
10T.2018.8355175. Feb.

T. Kim Geok, et al., Review of Indoor Positioning: radio Wave Technology, Appl.
Sci. 11 (1) (2020) 279, https://doi.org/10.3390/app11010279. Dec.

F. Zafari, A. Gkelias, K.K. Leung, A Survey of Indoor Localization Systems and
Technologies, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2568-2599, https://doi.
org/10.1109/COMST.2019.2911558.

A. Alarifi, et al., Ultra Wideband Indoor Positioning Technologies: analysis and
Recent Advances, Sensors 16 (5) (2016) 707, https://doi.org/10.3390/
s16050707. May.

D. Dardari, P. Closas, P.M. Djuric, Indoor Tracking: theory, Methods, and
Technologies, IEEE Trans. Veh. Technol. 64 (4) (2015) 1263-1278, https://doi.
org/10.1109/TVT.2015.2403868. Apr.

P.S. Farahsari, A. Farahzadi, J. Rezazadeh, A. Bagheri, A Survey on Indoor
Positioning Systems for IoT-Based Applications, IEEE Internet Things J 9 (10)
(2022) 7680-7699, https://doi.org/10.1109/J10T.2022.3149048. May.

S.J. Hayward, K. Van Lopik, C. Hinde, A.A. West, A Survey of Indoor Location
Technologies, Techniques and Applications in Industry, Internet Things 20 (2022)
100608, https://doi.org/10.1016/].i0t.2022.100608. Nov.

A. Yassin, et al., Recent Advances in Indoor Localization: a Survey on Theoretical
Approaches and Applications, IEEE Commun. Surv. Tutor. 19 (2) (2017)
1327-1346, https://doi.org/10.1109/COMST.2016.2632427.

X. Xue, Q. Shen, H. Fan, H. Li, S. Fan, IT supported collaborative work in A/E/C
projects: a ten-year review, Autom. Constr. 21 (2012) 1-9, https://doi.org/
10.1016/j.autcon.2011.05.016. Jan.

Y. Gu, A. Lo, I. Niemegeers, A survey of indoor positioning systems for wireless
personal networks, IEEE Commun. Surv. Tutor. 11 (1) (2009) 13-32, https://doi.
org/10.1109/SURV.2009.090103.

T. Zheng, M. Ardolino, A. Bacchetti, M. Perona, The applications of Industry 4.0
technologies in manufacturing context: a systematic literature review, Int. J.
Prod. Res. 59 (6) (2021) 1922-1954, https://doi.org/10.1080/
00207543.2020.1824085. Mar.

V. Roblek, M. Mesko, A. Krapez, A Complex View of Industry 4.0, SAGE Open 6
(2) (2016) 215824401665398, https://doi.org/10.1177/2158244016653987.
Apr.

H.J. Griinwald, L. Fortuin, Many steps towards zero inventory, Eur. J. Oper. Res.
59 (3) (1992) 359-369, https://doi.org/10.1016/0377-2217(92)90193-D. Jun.
Z. Lyu, P. Lin, D. Guo, G.Q. Huang, Towards Zero-Warehousing Smart
Manufacturing from Zero-Inventory Just-In-Time production, Robot. Comput.-
Integr. Manuf. 64 (2020) 101932, https://doi.org/10.1016/j.rcim.2020.101932.
Aug.

R. Soderberg, K. Warmefjord, J.S. Carlson, L. Lindkvist, Toward a Digital Twin for
real-time geometry assurance in individualized production, CIRP Ann 66 (1)
(2017) 137-140, https://doi.org/10.1016/j.cirp.2017.04.038.

F. Tao, M. Zhang, Digital Twin Shop-Floor: a New Shop-Floor Paradigm Towards
Smart Manufacturing, IEEE Access 5 (2017) 20418-20427, https://doi.org/
10.1109/ACCESS.2017.2756069.

B. Schleich, N. Anwer, L. Mathieu, S. Wartzack, Shaping the digital twin for
design and production engineering, CIRP Ann 66 (1) (2017) 141-144, https://
doi.org/10.1016/j.cirp.2017.04.040.

J. Vachalek, L. Bartalsky, O. Rovny, D. Sismisova, M. Morhac, M. Loksik, The
digital twin of an industrial production line within the industry 4.0 concept, in:
2017 21st International Conference on Process Control (PC), IEEE, Strbske Pleso,
Slovakia, 2017, pp. 258-262, https://doi.org/10.1109/PC.2017.7976223. Jun.
E. Glaessgen, D. Stargel, The Digital Twin Paradigm for Future NASA and U.S. Air
Force Vehicles, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference&lIt;BR&gt;20th AIAA/ASME/AHS Adaptive
Structures Conference&lt;BR&gt;14th AIAA, American Institute of Aeronautics
and Astronautics, Honolulu, Hawaii, 2012, https://doi.org/10.2514/6.2012-
1818. Apr.

X. Xu, Y. Lu, B. Vogel-Heuser, L. Wang, Industry 4.0 and Industry 5.0—Inception,
conception and perception, J. Manuf. Syst. 61 (2021) 530-535, https://doi.org/
10.1016/j.jmsy.2021.10.006. Oct.

W. Wu, et al., Just Trolley: implementation of industrial IoT and digital twin-
enabled spatial-temporal traceability and visibility for finished goods logistics,
Adv. Eng. Inform. 52 (2022) 101571, https://doi.org/10.1016/j.
2ei.2022.101571. Apr.

Y.P. Tsang, et al., An IoT-based Occupational Safety Management System in Cold
Storage Facilities, in: Proceedings of the 6th International Workshop of Advanced
Manufacturing and Automation, Atlantis Press, Manchester, UK, 2016, https://
doi.org/10.2991/iwama-16.2016.2.

A. Daranyi, G. Dorg6, T. Ruppert, J. Abonyi, Processing indoor positioning data
by goal-oriented supervised fuzzy clustering for tool management, J. Manuf. Syst.
63 (2022) 15-22, https://doi.org/10.1016/]j.jmsy.2022.02.010. Apr.

A. Basiri, et al., Indoor location based services challenges, requirements and
usability of current solutions, Comput. Sci. Rev. 24 (2017) 1-12, https://doi.org/
10.1016/j.cosrev.2017.03.002. May.

J. Larranaga, L. Muguira, J.-M. Lopez-Garde, J.-I. Vazquez, An environment
adaptive ZigBee-based indoor positioning algorithm, in: 2010 International
Conference on Indoor Positioning and Indoor Navigation, IEEE, Zurich,
Switzerland, 2010, pp. 1-8, https://doi.org/10.1109/IPIN.2010.5647828. Sep.
J.-S. Lee, Y.-W. Su, C.-C. Shen, A Comparative Study of Wireless Protocols:
bluetooth, UWB, ZigBee, and Wi-Fi, in: IECON 2007 - 33rd Annual Conference of


mailto:liyibuaa@buaa.edu.cn
https://doi.org/10.1016/J.ENG.2017.05.015
https://doi.org/10.1016/J.ENG.2017.05.015
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.1038/d41586-019-02849-1
https://doi.org/10.1038/s43588-024-00603-w
https://doi.org/10.1038/s43588-024-00603-w
https://doi.org/10.1016/j.autcon.2020.103309
https://doi.org/10.1016/j.autcon.2020.103309
https://doi.org/10.1007/s00190-015-0802-8
https://doi.org/10.1007/s00190-015-0802-8
https://doi.org/10.1109/WF-IoT.2018.8355175
https://doi.org/10.1109/WF-IoT.2018.8355175
https://doi.org/10.3390/app11010279
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.3390/s16050707
https://doi.org/10.3390/s16050707
https://doi.org/10.1109/TVT.2015.2403868
https://doi.org/10.1109/TVT.2015.2403868
https://doi.org/10.1109/JIOT.2022.3149048
https://doi.org/10.1016/j.iot.2022.100608
https://doi.org/10.1109/COMST.2016.2632427
https://doi.org/10.1016/j.autcon.2011.05.016
https://doi.org/10.1016/j.autcon.2011.05.016
https://doi.org/10.1109/SURV.2009.090103
https://doi.org/10.1109/SURV.2009.090103
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/10.1080/00207543.2020.1824085
https://doi.org/10.1177/2158244016653987
https://doi.org/10.1016/0377-2217(92)90193-D
https://doi.org/10.1016/j.rcim.2020.101932
https://doi.org/10.1016/j.cirp.2017.04.038
https://doi.org/10.1109/ACCESS.2017.2756069
https://doi.org/10.1109/ACCESS.2017.2756069
https://doi.org/10.1016/j.cirp.2017.04.040
https://doi.org/10.1016/j.cirp.2017.04.040
https://doi.org/10.1109/PC.2017.7976223
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1016/j.aei.2022.101571
https://doi.org/10.1016/j.aei.2022.101571
https://doi.org/10.2991/iwama-16.2016.2
https://doi.org/10.2991/iwama-16.2016.2
https://doi.org/10.1016/j.jmsy.2022.02.010
https://doi.org/10.1016/j.cosrev.2017.03.002
https://doi.org/10.1016/j.cosrev.2017.03.002
https://doi.org/10.1109/IPIN.2010.5647828

P. Lietal

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

the IEEE Industrial Electronics Society, IEEE, Taipei, Taiwan, 2007, pp. 46-51,
https://doi.org/10.1109/IECON.2007.4460126.

H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of Wireless Indoor Positioning
Techniques and Systems, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37 (6)
(2007) 1067-1080, https://doi.org/10.1109/TSMCC.2007.905750. Nov.

A. Montaser, O. Moselhi, RFID indoor location identification for construction
projects, Autom. Constr. 39 (2014) 167-179, https://doi.org/10.1016/j.
autcon.2013.06.012. Apr.

S.J. Hayward, J. Earps, R. Sharpe, K. Van Lopik, J. Tribe, A.A. West, A novel
inertial positioning update method, using passive RFID tags, for indoor asset
localisation, CIRP J. Manuf. Sci. Technol. 35 (2021) 968-982, https://doi.org/
10.1016/j.cirpj.2021.10.006. Nov.

H. Cai, A.R. Andoh, X. Su, S. Li, A boundary condition based algorithm for
locating construction site objects using RFID and GPS, Adv. Eng. Inform. 28 (4)
(2014) 455-468, https://doi.org/10.1016/j.a€i.2014.07.002. Oct.

K. Ghadge, T. Achar, A. Bhatt, B. Gurumoorthy, A. Chakrabarti, Indoor
positioning of metal parts by fingerprinting using passive RFID, Procedia CIRP 88
(2020) 60-63, https://doi.org/10.1016/].procir.2020.05.011.

Y. Zheng, S. Qiu, F. Shen, C. He, RFID-based material delivery method for mixed-
model automobile assembly, Comput. Ind. Eng. 139 (2020) 106023, https://doi.
org/10.1016/j.cie.2019.106023. Jan.

K.L. Choy, G.T.S. Ho, C.K.H. Lee, A RFID-based storage assignment system for
enhancing the efficiency of order picking, J. Intell. Manuf. 28 (1) (2017)
111-129, https://doi.org/10.1007/510845-014-0965-9. Jan.

G. Zhang, X. Shang, F. Alawneh, Y. Yang, T. Nishi, Integrated production planning
and warehouse storage assignment problem: an IoT assisted case, Int. J. Prod.
Econ. 234 (2021) 108058, https://doi.org/10.1016/j.ijpe.2021.108058. Apr.
C.K.H. Lee, K.L. Choy, K.M.Y. Law, G.T.S. Ho, Application of intelligent data
management in resource allocation for effective operation of manufacturing
systems, J. Manuf. Syst. 33 (3) (2014) 412-422, https://doi.org/10.1016/j.
jmsy.2014.02.002. Jul.

C.Z. Li, F. Xue, X. Li, J. Hong, G.Q. Shen, An Internet of Things-enabled BIM
platform for on-site assembly services in prefabricated construction, Autom.
Constr. 89 (2018) 146-161, https://doi.org/10.1016/j.autcon.2018.01.001. May.
F. Xue, K. Chen, W. Lu, Y. Niu, G.Q. Huang, Linking radio-frequency
identification to Building Information Modeling: status quo, development
trajectory and guidelines for practitioners, Autom. Constr. 93 (2018) 241-251,
https://doi.org/10.1016/j.autcon.2018.05.023. Sep.

B. Liu, Y. Zhang, J. Lv, A. Majeed, C.-H. Chen, D. Zhang, A cost-effective
manufacturing process recognition approach based on deep transfer learning for
CPS enabled shop-floor, Robot. Comput.-Integr. Manuf. 70 (2021) 102128,
https://doi.org/10.1016/j.rcim.2021.102128. Aug.

R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, T. Zhang, C. Xu, A two-level advanced
production planning and scheduling model for RFID-enabled ubiquitous
manufacturing, Adv. Eng. Inform. 29 (4) (2015) 799-812, https://doi.org/
10.1016/j.2€i.2015.01.002. Oct.

Y. Zhang, G. Zhang, J. Wang, S. Sun, S. Si, T. Yang, Real-time information
capturing and integration framework of the internet of manufacturing things, Int.
J. Comput. Integr. Manuf. 28 (8) (2015) 811-822, https://doi.org/10.1080/
0951192X.2014.900874. Aug.

C. Wang, P. Jiang, Manifold learning based rescheduling decision mechanism for
recessive disturbances in RFID-driven job shops, J. Intell. Manuf. 29 (7) (2018)
1485-1500, https://doi.org/10.1007/s10845-016-1194-1. Oct.

T. Zhou, D. Tang, H. Zhu, Z. Zhang, Multi-agent reinforcement learning for online
scheduling in smart factories, Robot. Comput.-Integr. Manuf. 72 (2021) 102202,
https://doi.org/10.1016/j.rcim.2021.102202. Dec.

K. Kang, R.Y. Zhong, A methodology for production analysis based on the RFID-
collected manufacturing big data, J. Manuf. Syst. 68 (2023) 628-634, https://doi.
org/10.1016/j.jmsy.2023.05.014. Jun.

H. Luo, J. Fang, G.Q. Huang, Real-time scheduling for hybrid flowshop in
ubiquitous manufacturing environment, Comput. Ind. Eng. 84 (2015) 12-23,
https://doi.org/10.1016/j.cie.2014.09.019. Jun.

H. Zhang, X. Yan, H. Li, R. Jin, H. Fu, Real-Time Alarming, Monitoring, and
Locating for Non-Hard-Hat Use in Construction, J. Constr. Eng. Manag. 145 (3)
(2019) 04019006, https://doi.org/10.1061/(ASCE)C0.1943-7862.0001629.
Mar.

A.D. Neal, R.G. Sharpe, P.P. Conway, A.A. West, smaRTI—A cyber-physical
intelligent container for industry 4.0 manufacturing, J. Manuf. Syst. 52 (2019)
63-75, https://doi.org/10.1016/j.jmsy.2019.04.011. Jul.

M. Zhang, N. Ghodrati, M. Poshdar, B.-C. Seet, S. Yongchareon, A construction
accident prevention system based on the Internet of Things (IoT), Saf. Sci. 159
(2023) 106012, https://doi.org/10.1016/j.s5¢i.2022.106012. Mar.

W. Wu, L. Shen, Z. Zhao, M. Li, G.Q. Huang, Industrial IoT and long short-term
memory network-enabled genetic indoor-tracking for factory logistics, IEEE
Trans. Ind. Inform. 18 (11) (2022) 7537-7548, https://doi.org/10.1109/
TIL.2022.3146598.

Z.Zhao, M. Zhang, W. Wu, G.Q. Huang, L. Wang, Spatial-temporal traceability for
cyber-physical industry 4.0 systems, J. Manuf. Syst. 74 (2024) 16-29, https://doi.
0rg/10.1016/j.jmsy.2024.02.017. Jun.

U. Carrasco, P.D.U. Coronado, M. Parto, T. Kurfess, Indoor location service in
support of a smart manufacturing facility, Comput. Ind. 103 (2018) 132-140,
https://doi.org/10.1016/j.compind.2018.09.009.

Z. Zhao, M. Zhang, C. Yang, J. Fang, G.Q. Huang, Distributed and collaborative
proactive tandem location tracking of vehicle products for warehouse operations,
Comput. Ind. Eng. 125 (2018) 637-648, https://doi.org/10.1016/].
cie.2018.05.005. Nov.

21

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Digital Engineering 3 (2024) 100020

Z. Zhao, J. Fang, G.Q. Huang, M. Zhang, ‘iBeacon enabled indoor positioning for
warehouse management, in: 2016 4th International Symposium on
Computational and Business Intelligence (ISCBI), IEEE, Olten, Switzerland, 2016,
pp. 21-26, https://doi.org/10.1109/ISCBI.2016.7743254. Sep.

Z. Zhao, P. Lin, L. Shen, M. Zhang, G.Q. Huang, IoT edge computing-enabled
collaborative tracking system for manufacturing resources in industrial park, Adv.
Eng. Inform. 43 (2020) 101044, https://doi.org/10.1016/j.2e1.2020.101044.
Jan.

S.G. Kumar, S. Prince, B.M. Shankar, Smart Tracking and Monitoring in Supply
Chain Systems using RFID and BLE, in: 2021 3rd International Conference on
Signal Processing and Communication (ICPSC), IEEE, Coimbatore, India, 2021,
pp. 757-760, https://doi.org/10.1109/ICSPC51351.2021.9451700. May.

Y. Huang, A. Hammad, Z. Zhu, Providing proximity alerts to workers on
construction sites using Bluetooth Low Energy RTLS, Autom. Constr. 132 (2021)
103928, https://doi.org/10.1016/j.autcon.2021.103928.

M. Arslan, C. Cruz, D. Ginhac, Semantic trajectory insights for worker safety in
dynamic environments, Autom. Constr. 106 (2019) 102854, https://doi.org/
10.1016/j.autcon.2019.102854. Oct.

S.J. Ingram, D. Harmer, M. Quinlan, UltraWideBand indoor positioning systems
and their use in emergencies, in: PLANS 2004. Position Location and Navigation
Symposium (IEEE Cat. No.04CH37556), 2004, pp. 706-715, https://doi.org/
10.1109/PLANS.2004.1309063. Apr.

S.G. Pease, P.P. Conway, A.A. West, Hybrid ToF and RSSI real-time semantic
tracking with an adaptive industrial internet of things architecture, J. Netw.
Comput. Appl. 99 (2017) 98-109, https://doi.org/10.1016/j.jnca.2017.10.010.
Dec.

F. Pilati, A. Sbaragli, Learning human-process interaction in manual
manufacturing job shops through indoor positioning systems, Comput. Ind. 151
(2023) 103984, https://doi.org/10.1016/j.compind.2023.103984. Oct.

L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic, M. Nicoli, UWB Localization in
a Smart Factory: augmentation Methods and Experimental Assessment, IEEE
Trans. Instrum. Meas. 70 (2021) 1-18, https://doi.org/10.1109/
TIM.2021.3074403.

P. Mayer, M. Magno, L. Benini, Self-Sustaining Ultrawideband Positioning System
for Event-Driven Indoor Localization, IEEE Internet Things J 11 (1) (2024)
1272-1284, https://doi.org/10.1109/J10T.2023.3289568. Jan.

F. Halawa, H. Dauod, I.G. Lee, Y. Li, S.W. Yoon, S.H. Chung, Introduction of a real
time location system to enhance the warehouse safety and operational efficiency,
Int. J. Prod. Econ. 224 (2020) 107541, https://doi.org/10.1016/j.
ijpe.2019.107541. Jun.

R. Maalek, F. Sadeghpour, Accuracy assessment of ultra-wide band technology in
locating dynamic resources in indoor scenarios, Autom. Constr. 63 (2016) 12-26,
https://doi.org/10.1016/j.autcon.2015.11.009. Mar.

L. Xia, J. Ly, Y. Lu, H. Zhang, Y. Fan, Z. Zhang, Augmented reality and indoor
positioning based mobile production monitoring system to support workers with
human-in-the-loop, Robot. Comput.-Integr. Manuf. 86 (2024) 102664, https://
doi.org/10.1016/j.rcim.2023.102664. Apr.

S. Kumar, S. Gil, D. Katabi, D. Rus, Accurate indoor localization with zero start-up
cost, in: Proceedings of the 20th annual international conference on Mobile
computing and networking, ACM, Maui Hawaii USA, 2014, pp. 483-494, https://
doi.org/10.1145/2639108.2639142. Sep.

Z. Ma, S. Cai, N. Mao, Q. Yang, J. Feng, P. Wang, Construction quality
management based on a collaborative system using BIM and indoor positioning,
Autom. Constr. 92 (2018) 35-45, https://doi.org/10.1016/j.autcon.2018.03.027.
Aug.

A. Budak, 1. Kaya, A. Karasan, M. Erdogan, Real-time location systems selection
by using a fuzzy MCDM approach: an application in humanitarian relief logistics,
Appl. Soft Comput. 92 (2020) 106322, https://doi.org/10.1016/j.
as0¢.2020.106322. Jul.

M.O. Wong, S. Lee, Indoor navigation and information sharing for collaborative
fire emergency response with BIM and multi-user networking, Autom. Constr.
148 (2023) 104781, https://doi.org/10.1016/j.autcon.2023.104781. Apr.

T. Falkowski, C. Jiirgenhake, H. Anacker, R. Dumitrescu, Feature model for the
specification of industrial indoor location-based services, Procedia Manuf. 24
(2018) 141-146, https://doi.org/10.1016/j.promfg.2018.06.048.

P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, Y.F. Hu, Wireless sensor
networks: a survey on the state of the art and the 802.15.4 and ZigBee standards,
Comput. Commun. 30 (7) (2007) 1655-1695, https://doi.org/10.1016/j.
comcom.2006.12.020. May.

L. Zhao, Y. Xu, Artificial Intelligence Monitoring System Using ZigBee Wireless
Network Technology in Warehousing and Logistics Innovation and Economic Cost
Management, Wirel. Commun. Mob. Comput. 2022 (2022) 1-11, https://doi.org/
10.1155/2022/4793654. Mar.

Y. Cui, S. Gao, Y. Zheng, Application of ZigBee Location Fingerprint Method in
Positioning of Railway Tunnel Staff, in: 2018 Chinese Automation Congress
(CAQ), IEEE, Xi’an, China, 2018, pp. 3283-3287, https://doi.org/10.1109/
CAC.2018.8623304. Nov.

R. Mardeni, S.N. Othman, Efficient Mobile Asset Tracking and Localization in
ZigBee Wireless Network, J. Adv. Comput. Netw. 3 (1) (2015) 1-6, https://doi.
org/10.7763/JACN.2015.V3.132.

P. Krishnan, A.S. Krishnakumar, W.-H. Ju, C. Mallows, S. Gamt, A system for
LEASE: location estimation assisted by stationary emitters for indoor RF wireless
networks, in: IEEE INFOCOM 2004 2, IEEE, Hong Kong, 2004, pp. 1001-1011,
https://doi.org/10.1109/INFCOM.2004.1356987.

P. Kumar, L. Reddy, S. Varma, Distance measurement and error estimation
scheme for RSSI based localization in Wireless Sensor Networks, in: 2009 Fifth


https://doi.org/10.1109/IECON.2007.4460126
https://doi.org/10.1109/TSMCC.2007.905750
https://doi.org/10.1016/j.autcon.2013.06.012
https://doi.org/10.1016/j.autcon.2013.06.012
https://doi.org/10.1016/j.cirpj.2021.10.006
https://doi.org/10.1016/j.cirpj.2021.10.006
https://doi.org/10.1016/j.aei.2014.07.002
https://doi.org/10.1016/j.procir.2020.05.011
https://doi.org/10.1016/j.cie.2019.106023
https://doi.org/10.1016/j.cie.2019.106023
https://doi.org/10.1007/s10845-014-0965-9
https://doi.org/10.1016/j.ijpe.2021.108058
https://doi.org/10.1016/j.jmsy.2014.02.002
https://doi.org/10.1016/j.jmsy.2014.02.002
https://doi.org/10.1016/j.autcon.2018.01.001
https://doi.org/10.1016/j.autcon.2018.05.023
https://doi.org/10.1016/j.rcim.2021.102128
https://doi.org/10.1016/j.aei.2015.01.002
https://doi.org/10.1016/j.aei.2015.01.002
https://doi.org/10.1080/0951192X.2014.900874
https://doi.org/10.1080/0951192X.2014.900874
https://doi.org/10.1007/s10845-016-1194-1
https://doi.org/10.1016/j.rcim.2021.102202
https://doi.org/10.1016/j.jmsy.2023.05.014
https://doi.org/10.1016/j.jmsy.2023.05.014
https://doi.org/10.1016/j.cie.2014.09.019
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001629
https://doi.org/10.1016/j.jmsy.2019.04.011
https://doi.org/10.1016/j.ssci.2022.106012
https://doi.org/10.1109/TII.2022.3146598
https://doi.org/10.1109/TII.2022.3146598
https://doi.org/10.1016/j.jmsy.2024.02.017
https://doi.org/10.1016/j.jmsy.2024.02.017
https://doi.org/10.1016/j.compind.2018.09.009
https://doi.org/10.1016/j.cie.2018.05.005
https://doi.org/10.1016/j.cie.2018.05.005
https://doi.org/10.1109/ISCBI.2016.7743254
https://doi.org/10.1016/j.aei.2020.101044
https://doi.org/10.1109/ICSPC51351.2021.9451700
https://doi.org/10.1016/j.autcon.2021.103928
https://doi.org/10.1016/j.autcon.2019.102854
https://doi.org/10.1016/j.autcon.2019.102854
https://doi.org/10.1109/PLANS.2004.1309063
https://doi.org/10.1109/PLANS.2004.1309063
https://doi.org/10.1016/j.jnca.2017.10.010
https://doi.org/10.1016/j.compind.2023.103984
https://doi.org/10.1109/TIM.2021.3074403
https://doi.org/10.1109/TIM.2021.3074403
https://doi.org/10.1109/JIOT.2023.3289568
https://doi.org/10.1016/j.ijpe.2019.107541
https://doi.org/10.1016/j.ijpe.2019.107541
https://doi.org/10.1016/j.autcon.2015.11.009
https://doi.org/10.1016/j.rcim.2023.102664
https://doi.org/10.1016/j.rcim.2023.102664
https://doi.org/10.1145/2639108.2639142
https://doi.org/10.1145/2639108.2639142
https://doi.org/10.1016/j.autcon.2018.03.027
https://doi.org/10.1016/j.asoc.2020.106322
https://doi.org/10.1016/j.asoc.2020.106322
https://doi.org/10.1016/j.autcon.2023.104781
https://doi.org/10.1016/j.promfg.2018.06.048
https://doi.org/10.1016/j.comcom.2006.12.020
https://doi.org/10.1016/j.comcom.2006.12.020
https://doi.org/10.1155/2022/4793654
https://doi.org/10.1155/2022/4793654
https://doi.org/10.1109/CAC.2018.8623304
https://doi.org/10.1109/CAC.2018.8623304
https://doi.org/10.7763/JACN.2015.V3.132
https://doi.org/10.7763/JACN.2015.V3.132
https://doi.org/10.1109/INFCOM.2004.1356987

P. Lietal

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

International Conference on Wireless Communication and Sensor Networks
(WCSN), IEEE, Allahabad, India, 2009, pp. 1-4, https://doi.org/10.1109/
WCSN.2009.5434802. Dec.

W. Xue, W. Qiu, X. Hua, K. Yu, Improved Wi-Fi RSSI Measurement for Indoor
Localization, IEEE Sens. J. 17 (7) (2017) 2224-2230, https://doi.org/10.1109/
JSEN.2017.2660522. Apr.

R.F. Brena, J.P. Garcia-Vazquez, C.E. Galvan-Tejada, D. Munoz-Rodriguez,

C. Vargas-Rosales, J. Fangmeyer, Evolution of Indoor Positioning Technologies: a
Survey, J. Sens. 2017 (2017) 1-21, https://doi.org/10.1155/2017/2630413.

A. Darko, A.P.C. Chan, M.A. Adabre, D.J. Edwards, M.R. Hosseini, E.E. Ameyaw,
Artificial intelligence in the AEC industry: scientometric analysis and
visualization of research activities, Autom. Constr. 112 (2020) 103081, https://
doi.org/10.1016/j.autcon.2020.103081.

A. Dogan, D. Birant, Machine learning and data mining in manufacturing, Expert
Syst. Appl. 166 (2021) 114060, https://doi.org/10.1016/j.eswa.2020.114060.
Mar.

Z. Kang, C. Catal, B. Tekinerdogan, Machine learning applications in production
lines: a systematic literature review, Comput. Ind. Eng. 149 (2020) 106773,
https://doi.org/10.1016/j.cie.2020.106773. Nov.

Y. Rezgui, L. Pei, X. Chen, F. Wen, C. Han, An Efficient Normalized Rank Based
SVM for Room Level Indoor WiFi Localization with Diverse Devices, Mob. Inf.
Syst. 2017 (2017) 1-19, https://doi.org/10.1155/2017/6268797.

A. Chriki, H. Touati, H. Snoussi, SVM-based indoor localization in Wireless Sensor
Networks, in: 2017 13th International Wireless Communications and Mobile
Computing Conference (IWCMC), IEEE, Valencia, Spain, 2017, pp. 1144-1149,
https://doi.org/10.1109/IWCMC.2017.7986446. Jun.

J.-M. Akre, et al., Accurate 2-D localization of RFID tags using antenna
transmission power control, in: 2014 IFIP Wireless Days (WD), IEEE, Rio de
Janeiro, Brazil, 2014, pp. 1-6, https://doi.org/10.1109/WD.2014.7020802. Nov.
P. Kriz, F. Maly, T. Kozel, Improving Indoor Localization Using Bluetooth Low
Energy Beacons, Mob. Inf. Syst. 2016 (2016) 1-11, https://doi.org/10.1155/
2016/2083094.

A. Belay Adege, Y. Yayeh, G. Berie, H. Lin, L. Yen, Y.R. Li, Indoor localization
using K-nearest neighbor and artificial neural network back propagation
algorithms, in: 2018 27th Wireless and Optical Communication Conference
(WOCQ), IEEE, Hualien, 2018, pp. 1-2, https://doi.org/10.1109/
WOCC.2018.8372704. Apr.

G. Anand, V. Thanikaiselvan, Improving the Performance of RSSI Based Indoor
Localization Techniques Using Neural Networks, in: 2018 Second International
Conference on Electronics, Communication and Aerospace Technology (ICECA),
IEEE, Coimbatore, 2018, pp. 249-253, https://doi.org/10.1109/
ICECA.2018.8474717. Mar.

R. Wang, Z. Li, H. Luo, F. Zhao, W. Shao, Q. Wang, A Robust Wi-Fi Fingerprint
Positioning Algorithm Using Stacked Denoising Autoencoder and Multi-Layer
Perceptron, Remote Sens. 11 (11) (2019) 1293, https://doi.org/10.3390/
rs11111293. May.

H. Zhang, B. Hu, S. Xu, B. Chen, M. Li, B. Jiang, Feature Fusion Using Stacked
Denoising Auto-Encoder and GBDT for Wi-Fi Fingerprint-Based Indoor
Positioning, IEEE Access 8 (2020) 114741-114751, https://doi.org/10.1109/
ACCESS.2020.3004039.

AK. Sansyah, S.0. Ngesthi, B.S.P.P. Ardany, G. Dewantoro, Wi-Fi Enabled Asset
Surveillance System using Internet of Things, in: 2021 2nd International
Conference on Innovative and Creative Information Technology (ICITech), IEEE,
Salatiga, Indonesia, 2021, pp. 206-211, https://doi.org/10.1109/
ICITech50181.2021.9590129. Sep.

J.M. Gémez-de-Gabriel, J.-A. Fernandez-Madrigal, M.D.C. Rey-Merchan,

A. Lopez-Arquillos, A Safety System based on Bluetooth Low Energy (BLE) to
prevent the misuse of Personal Protection Equipment (PPE) in construction, Saf.
Sci. 158 (2023) 105995, https://doi.org/10.1016/].55¢i.2022.105995. Feb.

M. Ullah, B. Sarkar, Recovery-channel selection in a hybrid manufacturing-
remanufacturing production model with RFID and product quality, Int. J. Prod.
Econ. 219 (2020) 360-374, https://doi.org/10.1016/j.ijpe.2019.07.017. Jan.

G. Schroeer, A Real-Time UWB Multi-Channel Indoor Positioning System for
Industrial Scenarios, in: 2018 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), IEEE, Nantes, 2018, pp. 1-5, https://doi.org/10.1109/
IPIN.2018.8533792. Sep.

M.J. Beliatis, K. Jensen, L. Ellegaard, A. Aagaard, M. Presser, Next Generation
Industrial IoT Digitalization for Traceability in Metal Manufacturing Industry: a
Case Study of Industry 4.0, Electronics (Basel) 10 (5) (2021) 628, https://doi.org/
10.3390/electronics10050628. Mar.

A.K. Pundir, J.D. Jagannath, L. Ganapathy, Improving supply chain visibility
using IoT-Internet of Things, in: 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), IEEE, Las Vegas, NV, USA,
2019, pp. 0156-0162, https://doi.org/10.1109/CCWC.2019.8666480. Jan.

M. Kirch, O. Poenicke, K. Richter, RFID in Logistics and Production —-Applications,
Research and Visions for Smart Logistics Zones, Procedia Eng 178 (2017)
526-533, https://doi.org/10.1016/j.proeng.2017.01.101.

M. Giordano, N. Baumann, M. Crabolu, R. Fischer, G. Bellusci, M. Magno, Design
and Performance Evaluation of an Ultralow-Power Smart IoT Device With
Embedded TinyML for Asset Activity Monitoring, IEEE Trans. Instrum. Meas. 71
(2022) 1-11, https://doi.org/10.1109/TIM.2022.3165816.

R. Pichler, D. Strametz, M. Hoffernig, Enhanced Agility for Assembly Tasks via
Self-Sufficient Mobile Working Stations, Procedia Comput. Sci. 180 (2021) 60-68,
https://doi.org/10.1016/j.procs.2021.01.129.

A. Provotorov, D. Privezentsev, A. Astafiev, Development of Methods for
Determining the Locations of Large Industrial Goods During Transportation on

22

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Digital Engineering 3 (2024) 100020

the Basis of RFID, Procedia Eng. 129 (2015) 1005-1009, https://doi.org/
10.1016/j.proeng.2015.12.163.

S. Xu, F. Xiao, N. Si, L. Sun, W. Wu, V.H.C. De Albuquerque, GQM: autonomous
goods quantity monitoring in IIoT based on battery-free RFID, Mech. Syst. Signal
Process. 136 (2020) 106411, https://doi.org/10.1016/j.ymssp.2019.106411.
Feb.

N. Mostafa, W. Hamdy, H. Alawady, Impacts of Internet of Things on Supply
Chains: a Framework for Warehousing, Soc. Sci. 8 (3) (2019) 84, https://doi.org/
10.3390/s0csci8030084. Mar.

Z. Yang, P. Zhang, L. Chen, RFID-enabled indoor positioning method for a real-
time manufacturing execution system using OS-ELM, Neurocomputing 174
(2016) 121-133, https://doi.org/10.1016/j.neucom.2015.05.120. Jan.

J. Bergmann, D. Gyulai, D. Morassi, J. Vancza, A stochastic approach to calculate
assembly cycle times based on spatial shop-floor data stream, Procedia CIRP 93
(2020) 1164-1169, https://doi.org/10.1016/].procir.2020.03.052.

M. Volk, C. Mieth, Offline segmentation of spatio-temporal order trajectories by
mixed-integer linear programming for determining process times in production
systems, Procedia CIRP 107 (2022) 712-717, https://doi.org/10.1016/j.
procir.2022.05.050.

W. Wang, Y. Zhang, R.Y. Zhong, A proactive material handling method for CPS
enabled shop-floor, Robot. Comput.-Integr. Manuf. 61 (2020) 101849, https://
doi.org/10.1016/j.rcim.2019.101849. Feb.

Z. Zhao, M. Zhang, J. Chen, T. Qu, G.Q. Huang, Digital twin-enabled dynamic
spatial-temporal knowledge graph for production logistics resource allocation,
Comput. Ind. Eng. 171 (2022) 108454, https://doi.org/10.1016/j.
cie.2022.108454. Sep.

R.-J. Dzeng, C.-W. Lin, F.-Y. Hsiao, Application of RFID tracking to the
optimization of function-space assignment in buildings, Autom. Constr. 40 (2014)
68-83, https://doi.org/10.1016/j.autcon.2013.12.011. Apr.

S. Trab, E. Bajic, A. Zouinkhi, M.N. Abdelkrim, H. Chekir, R.H. Ltaief, Product
Allocation Planning with Safety Compatibility Constraints in IoT-based
Warehouse, Procedia Comput. Sci. 73 (2015) 290-297, https://doi.org/10.1016/
j-procs.2015.12.033.

P. Trebuna, M. Mizerak, T. Svantner, Implementation of the RTLS Localization
System in the Micro Logistics Laboratory, in: M. Balog, A. Iakovets, S. Hrehova
(Eds.), EAI International Conference on Automation and Control in Theory and
Practice, Springer Nature Switzerland, Cham, 2023, pp. 129-138, https://doi.
org/10.1007/978-3-031-31967-9_10. EAl/Springer Innovations in
Communication and Computing.

R.Y. Zhong, S. Lan, C. Xu, Q. Dai, G.Q. Huang, Visualization of RFID-enabled
shopfloor logistics Big Data in Cloud Manufacturing, Int. J. Adv. Manuf. Technol.
84 (1-4) (2016) 5-16, https://doi.org/10.1007/s00170-015-7702-1. Apr.

D. Guo, R.Y. Zhong, P. Lin, Z. Lyu, Y. Rong, G.Q. Huang, Digital twin-enabled
Graduation Intelligent Manufacturing System for fixed-position assembly islands,
Robot. Comput.-Integr. Manuf. 63 (2020) 101917, https://doi.org/10.1016/j.
rcim.2019.101917. Jun.

H. Ding, M. Li, R.Y. Zhong, G.Q. Huang, Multistage self-adaptive decision-making
mechanism for prefabricated building modules with IoT-enabled graduation
manufacturing system, Autom. Constr. 148 (2023) 104755, https://doi.org/
10.1016/j.autcon.2023.104755. Apr.

H. Zadgaonkar, M. Chandak, Locating Objects in Warehouses Using BLE Beacons
& Machine Learning, IEEE Access 9 (2021) 153116-153125, https://doi.org/
10.1109/ACCESS.2021.3127908.

K. Zhao, M. Zhu, B. Xiao, X. Yang, C. Gong, J. Wu, Joint RFID and UWB
Technologies in Intelligent Warehousing Management System, IEEE Internet
Things J 7 (12) (2020) 11640-11655, https://doi.org/10.1109/
JIOT.2020.2998484. Dec.

Y. Zhang, G. Zhang, W. Du, J. Wang, E. Ali, S. Sun, An optimization method for
shopfloor material handling based on real-time and multi-source manufacturing
data, Int. J. Prod. Econ. 165 (2015) 282-292, https://doi.org/10.1016/j.
ijpe.2014.12.029. Jul.

W. Chen, H. Liu, E. Qi, Discrete event-driven model predictive control for real-
time work-in-process optimization in serial production systems, J. Manuf. Syst. 55
(2020) 132-142, https://doi.org/10.1016/j.jmsy.2020.03.002. Apr.

Z.X. Guo, E.W.T. Ngai, C. Yang, X. Liang, An RFID-based intelligent decision
support system architecture for production monitoring and scheduling in a
distributed manufacturing environment, Int. J. Prod. Econ. 159 (2015) 16-28,
https://doi.org/10.1016/j.ijpe.2014.09.004. Jan.

K. Ding, P. Jiang, S. Su, RFID-enabled social manufacturing system for inter-
enterprise monitoring and dispatching of integrated production and
transportation tasks, Robot. Comput.-Integr. Manuf. 49 (2018) 120-133, https://
doi.org/10.1016/j.rcim.2017.06.009. Feb.

M.S. Altaf, A. Bouferguene, H. Liu, M. Al-Hussein, H. Yu, Integrated production
planning and control system for a panelized home prefabrication facility using
simulation and RFID, Autom. Constr. 85 (2018) 369-383, https://doi.org/
10.1016/j.autcon.2017.09.009. Jan.

L. Ragazzini, E. Negri, L. Fumagalli, M. Macchi, Digital Twin-based bottleneck
prediction for improved production control, Comput. Ind. Eng. 192 (2024)
110231, https://doi.org/10.1016/j.cie.2024.110231. Jun.

M. Wolf, et al., Real time locating systems for human centered production
planning and monitoring, IFAC-Pap. 55 (2) (2022) 366-371, https://doi.org/
10.1016/j.ifacol.2022.04.221.

T.F. Aydos, J.C.E. Ferreira, RFID-based system for Lean Manufacturing in the
context of Internet of Things, in: 2016 IEEE International Conference on
Automation Science and Engineering (CASE), IEEE, Fort Worth, TX, USA, 2016,
pp. 1140-1145, https://doi.org/10.1109/COASE.2016.7743533. Aug.


https://doi.org/10.1109/WCSN.2009.5434802
https://doi.org/10.1109/WCSN.2009.5434802
https://doi.org/10.1109/JSEN.2017.2660522
https://doi.org/10.1109/JSEN.2017.2660522
https://doi.org/10.1155/2017/2630413
https://doi.org/10.1016/j.autcon.2020.103081
https://doi.org/10.1016/j.autcon.2020.103081
https://doi.org/10.1016/j.eswa.2020.114060
https://doi.org/10.1016/j.cie.2020.106773
https://doi.org/10.1155/2017/6268797
https://doi.org/10.1109/IWCMC.2017.7986446
https://doi.org/10.1109/WD.2014.7020802
https://doi.org/10.1155/2016/2083094
https://doi.org/10.1155/2016/2083094
https://doi.org/10.1109/WOCC.2018.8372704
https://doi.org/10.1109/WOCC.2018.8372704
https://doi.org/10.1109/ICECA.2018.8474717
https://doi.org/10.1109/ICECA.2018.8474717
https://doi.org/10.3390/rs11111293
https://doi.org/10.3390/rs11111293
https://doi.org/10.1109/ACCESS.2020.3004039
https://doi.org/10.1109/ACCESS.2020.3004039
https://doi.org/10.1109/ICITech50181.2021.9590129
https://doi.org/10.1109/ICITech50181.2021.9590129
https://doi.org/10.1016/j.ssci.2022.105995
https://doi.org/10.1016/j.ijpe.2019.07.017
https://doi.org/10.1109/IPIN.2018.8533792
https://doi.org/10.1109/IPIN.2018.8533792
https://doi.org/10.3390/electronics10050628
https://doi.org/10.3390/electronics10050628
https://doi.org/10.1109/CCWC.2019.8666480
https://doi.org/10.1016/j.proeng.2017.01.101
https://doi.org/10.1109/TIM.2022.3165816
https://doi.org/10.1016/j.procs.2021.01.129
https://doi.org/10.1016/j.proeng.2015.12.163
https://doi.org/10.1016/j.proeng.2015.12.163
https://doi.org/10.1016/j.ymssp.2019.106411
https://doi.org/10.3390/socsci8030084
https://doi.org/10.3390/socsci8030084
https://doi.org/10.1016/j.neucom.2015.05.120
https://doi.org/10.1016/j.procir.2020.03.052
https://doi.org/10.1016/j.procir.2022.05.050
https://doi.org/10.1016/j.procir.2022.05.050
https://doi.org/10.1016/j.rcim.2019.101849
https://doi.org/10.1016/j.rcim.2019.101849
https://doi.org/10.1016/j.cie.2022.108454
https://doi.org/10.1016/j.cie.2022.108454
https://doi.org/10.1016/j.autcon.2013.12.011
https://doi.org/10.1016/j.procs.2015.12.033
https://doi.org/10.1016/j.procs.2015.12.033
https://doi.org/10.1007/978-3-031-31967-9_10
https://doi.org/10.1007/978-3-031-31967-9_10
https://doi.org/10.1007/s00170-015-7702-1
https://doi.org/10.1016/j.rcim.2019.101917
https://doi.org/10.1016/j.rcim.2019.101917
https://doi.org/10.1016/j.autcon.2023.104755
https://doi.org/10.1016/j.autcon.2023.104755
https://doi.org/10.1109/ACCESS.2021.3127908
https://doi.org/10.1109/ACCESS.2021.3127908
https://doi.org/10.1109/JIOT.2020.2998484
https://doi.org/10.1109/JIOT.2020.2998484
https://doi.org/10.1016/j.ijpe.2014.12.029
https://doi.org/10.1016/j.ijpe.2014.12.029
https://doi.org/10.1016/j.jmsy.2020.03.002
https://doi.org/10.1016/j.ijpe.2014.09.004
https://doi.org/10.1016/j.rcim.2017.06.009
https://doi.org/10.1016/j.rcim.2017.06.009
https://doi.org/10.1016/j.autcon.2017.09.009
https://doi.org/10.1016/j.autcon.2017.09.009
https://doi.org/10.1016/j.cie.2024.110231
https://doi.org/10.1016/j.ifacol.2022.04.221
https://doi.org/10.1016/j.ifacol.2022.04.221
https://doi.org/10.1109/COASE.2016.7743533

P. Lietal

[130]

[131]

[132]

[133]

[134]

[135]

[136]

X. Cao, T. Li, Q. Wang, RFID-based multi-attribute logistics information
processing and anomaly mining in production logistics, Int. J. Prod. Res. 57 (17)
(2019) 5453-5466, https://doi.org/10.1080/00207543.2018.1526421. Sep.

G. Zhou, C. Zhang, Z. Li, K. Ding, C. Wang, Knowledge-driven digital twin
manufacturing cell towards intelligent manufacturing, Int. J. Prod. Res. 58 (4)
(2020) 1034-1051, https://doi.org/10.1080/00207543.2019.1607978. Feb.

C.Z. Li, et al., Integrating RFID and BIM technologies for mitigating risks and
improving schedule performance of prefabricated house construction, J. Clean.
Prod. 165 (2017) 1048-1062, https://doi.org/10.1016/j.jclepro.2017.07.156.
Nov.

Z. Zhao, M. Zhang, C. Yang, J. Fang, G.Q. Huang, Distributed and collaborative
proactive tandem location tracking of vehicle products for warehouse operations,
Comput. Ind. Eng. 125 (2018) 637-648, https://doi.org/10.1016/j.
cie.2018.05.005. Nov.

X.T.R. Kong, M. Li, Y. Yu, Z. Zhao, G.Q. Huang, Physical internet-enabled E-
commerce logistics park platform, in: 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), 2017, pp. 406-411, https://doi.org/10.1109/
COASE.2017.8256138. Aug.

R. Kanan, O. Elhassan, R. Bensalem, An IoT-based autonomous system for
workers’ safety in construction sites with real-time alarming, monitoring, and
positioning strategies, Autom. Constr. 88 (2018) 73-86, https://doi.org/10.1016/
j-autcon.2017.12.033. Apr.

H. Chen, X. Luo, Z. Zheng, J. Ke, A proactive workers’ safety risk evaluation
framework based on position and posture data fusion, Autom. Constr. 98 (2019)
275-288, https://doi.org/10.1016/j.autcon.2018.11.026. Feb.

23

[137]

[138]

[139]

[140]

[141]

[142]

Digital Engineering 3 (2024) 100020

Z. Zhao, L. Shen, C. Yang, W. Wu, M. Zhang, G.Q. Huang, IoT and digital twin
enabled smart tracking for safety management, Comput. Oper. Res. 128 (2021)
105183, https://doi.org/10.1016/j.cor.2020.105183. Apr.

X. Zhan, W. Wu, L. Shen, W. Liao, Z. Zhao, J. Xia, Industrial internet of things and
unsupervised deep learning enabled real-time occupational safety monitoring in
cold storage warehouse, Saf. Sci. 152 (2022) 105766, https://doi.org/10.1016/j.
s5¢1.2022.105766. Aug.

W. Wu, L. Shen, Z. Zhao, A.R. Harish, R.Y. Zhong, G.Q. Huang, Internet of
Everything and Digital Twin enabled Service Platform for Cold Chain Logistics,
J. Ind. Inf. Integr. 33 (2023) 100443, https://doi.org/10.1016/].jii.2023.100443.
Jun.

S. Mastrolembo Ventura, P. Bellagente, S. Rinaldi, A. Flammini, A.L.C. Ciribini,
Enhancing Safety on Construction Sites: a UWB-Based Proximity Warning System
Ensuring GDPR Compliance to Prevent Collision Hazards, Sensors 23 (24) (2023)
9770, https://doi.org/10.3390/523249770. Dec.

S. Sellak, O. Haberchad, S. Ibenyahia, Y. Salih-Alj, Safety Management System for
Factory Workers using UWB Indoor Positioning and Wearable Vibrotactile
Guidance: Morocco Case Study, in: 2023 IEEE International Conference on
Mechatronics and Automation (ICMA), IEEE, Harbin, Heilongjiang, China, 2023,
pp. 1509-1514, https://doi.org/10.1109/ICMA57826.2023.10215963. Aug.

Z. Zhao, J. Fang, G.Q. Huang, M. Zhang, Location Management of Cloud Forklifts
in Finished Product Warehouse: LOCATION MANAGEMENT OF CLOUD
FORKLIFTS, Int. J. Intell. Syst. 32 (4) (2017) 342-370, https://doi.org/10.1002/
int.21864. Apr.


https://doi.org/10.1080/00207543.2018.1526421
https://doi.org/10.1080/00207543.2019.1607978
https://doi.org/10.1016/j.jclepro.2017.07.156
https://doi.org/10.1016/j.cie.2018.05.005
https://doi.org/10.1016/j.cie.2018.05.005
https://doi.org/10.1109/COASE.2017.8256138
https://doi.org/10.1109/COASE.2017.8256138
https://doi.org/10.1016/j.autcon.2017.12.033
https://doi.org/10.1016/j.autcon.2017.12.033
https://doi.org/10.1016/j.autcon.2018.11.026
https://doi.org/10.1016/j.cor.2020.105183
https://doi.org/10.1016/j.ssci.2022.105766
https://doi.org/10.1016/j.ssci.2022.105766
https://doi.org/10.1016/j.jii.2023.100443
https://doi.org/10.3390/s23249770
https://doi.org/10.1109/ICMA57826.2023.10215963
https://doi.org/10.1002/int.21864
https://doi.org/10.1002/int.21864

	Indoor positioning systems in industry 4.0 applications: Current status, opportunities, and future trends
	1 Introduction
	2 Research method
	2.1 Selection and analysis of reviewed samples
	2.2 Overview of IPS in Industry 4.0

	3 Overview of indoor positioning methodologies
	3.1 Technologies
	3.1.1 Radio frequency identification
	3.1.2 Bluetooth low energy
	3.1.3 Ultra-wideband
	3.1.4 Wireless fidelity
	3.1.5 ZigBee

	3.2 Techniques
	3.2.1 Signal-based techniques
	3.2.2 Angle-based techniques
	3.2.3 Time-based techniques
	3.2.4 Integration with machine learning

	3.3 IPS assessment evaluation
	3.3.1 Cost
	3.3.2 Accuracy
	3.3.3 Robustness
	3.3.4 Scalability

	3.4 Summary

	4 IPS applications in Industry 4.0
	4.1 Resource management
	4.1.1 Object tracking
	4.1.2 Resource stock-taking
	4.1.3 Resource allocation

	4.2 Production management
	4.2.1 Process control
	4.2.2 Real-time scheduling
	4.2.3 Bottleneck identification

	4.3 Safety management
	4.3.1 Staff states monitoring
	4.3.2 Collision prevention
	4.3.3 Hazard detection

	4.4 Summary of previous work

	5 Directions for future work
	5.1 Potential value of spatial-temporal data
	5.2 Enhancement of suitability
	5.3 Privacy and security
	5.4 Energy efficiency

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Editorial disclaimer
	datalink4
	References


