nature computational science

Article

https://doi.org/10.1038/s43588-025-00863-0

Increasing alignment oflargelanguage
models with language processinginthe

humanbrain

Received: 20 September 2024

Shujian Huang?®
Accepted: 7 August 2025

Published online: 16 September 2025

Changjiang Gao ®'*4, Zhengwu Ma® "4, Jiajun Chen?, Ping L3,
& Jixing Li®"*°

W Check for updates

Transformer-based large language models (LLMs) have considerably
advanced our understanding of how meaningis represented in the human

brain; however, the validity of increasingly large LLMs is being questioned
dueto their extensive training data and their ability to access context
thousands of words long. In this study we investigated whether instruction
tuning—another core technique in recent LLMs that goes beyond mere
scaling—can enhance models’ ability to capture linguistic information

inthe human brain. We compared base and instruction-tuned LLMs of
varying sizes against human behavioral and brain activity measured with
eye-tracking and functional magnetic resonance imaging during naturalistic
reading. We show that simply making LLMs larger leads to a closer match
with the human brain than fine-tuning them with instructions. These finding
have substantial implications for understanding the cognitive plausibility of
LLMs and their role in studying naturalistic language comprehension.

Autoregressive transformers are increasingly used in cognitive neu-
roscience for language processing studies, enhancing our under-
standing of meaning representation and composition in the human
language system' . For instance, Goldstein et al.”found that the prob-
ability of words given a context significantly correlates with human
brainactivity during naturalistic listening, suggesting thatlanguage
models and the human brain share some computational principles
for language processing, such as the ‘next-word prediction’ mecha-
nism (see also refs. 7,8). Furthermore, pre-trained transformers are
essential for decoding speech or text from neuroimaging data®°. They
provide embeddings for training encoding models that map words
toneural dataand generate continuations as decoding candidates’.
However, those studies mostly adopted smaller pre-trained language
models such GPT-2 (ref. 11) and BERT (ref. 12), whereas recent large
language models (LLMs) such as GPT-4 (ref. 13) and LLaMA (ref. 14)
are significantly larger in terms of parameter size and training data.

Ithas been demonstrated that as the modelsize, training dataset and
computational resources increase, so does performance on bench-
mark natural language processing (NLP) tasks, following a power-law
scaling® V. These newer LLMs have already been adopted in recent
studies to understand language processing in the human brain'®"?,
but whether they better resemble human language processing is
still an ongoing debate. On the one hand, it has been demonstrated
that larger models exhibit a stronger correlation with the human
brain?>? during language comprehension, mirroring the scaling law
in other deep learning contexts. On the other hand, the validity of
larger models as cognitive models has been questioned due to their
extensive training data and their ability to access context thousands
of words long, which far exceeds human capabilities. Research has
shown that surprisal values from larger transformer-based language
models align less well with human reading times??, and that language
model with the lowest perplexity may not result in the best model
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Fig. 1| Experimental procedure of the dataset and the analyses pipeline.

a, Experiment procedure. Participants read five English articles sentence-by-
sentence while inside the fMRI scanner with concurrent eye-tracking. b, LLMs of
different sizes with and without fine-tuning are employed in the study. ¢, Analysis

pipeline. The attention matrices of each layer of the LLMs for each sentence in the
experimental stimuli were averaged over attention heads and aligned with eye
movement and fMRI activity patterns for each sentence using ridge regression.

fits>>**, Furthermore, limiting the context access of language models
canimprove their simulation of language processing in humans®?.

Inaddition toscaling, fine-tuning LLMs has been shown toimprove
performance on NLP tasks and enhance generalization to new tasks? 2.
Forinstance, Ouyang et al.” fine-tuned GPT-3 models of varying sizes
using reinforcement learning from human feedback®***, and showed
thatthefine-tuned models with only 1.3B parameters were more aligned
with human preferences than the 175B base GPT-3. Recent reasoning
LLMs such as DeepSeek-R1 (ref. 32)—which integrates chain-of-thought
reasoning with reinforcement learning during fine-tuning—achieve
state-of-the-art performance while using similar or fewer activated
parameters than existing open-source LLMs. The superior perfor-
mance of these fine-tuned LLMs over base LLMs on NLP tasks raises the
question of whether scaling or fine-tuning has a greater impact on the
models’ brain-encoding performance.

In this work we systematically compared the self-attention of base
and fine-tuned LLMs of varying sizes against human eye movement and
functional magnetic resonanceimaging (fMRI) activity patterns during
naturalistic reading®. We show that as the model size increases from
774Mto 65B, the alignment with human eye movement and fMRI acti-
vity patterns also significantly improves, adhering to a scaling law*>*".
By contrast, instruction tuning does not affect this alignment, consist-
entwith past findings**. Model analyses show that base and fine-tuned
LLMs diverged the most when instructions were added to the stimuli
sentences, suggesting that fine-tuned LLMs are sensitive to instruc-
tionsinways that naturalistichuman language processing may not be.

Results

Model performance on the text stimuli

We used the publicly available Reading Brain dataset® from OpenNeuro
toinvestigate theimpact of scaling and instruction tuning on the align-
mentbetweenLLMsandhumaneye movementandneural data. Thedata-
setincludes concurrent eye-tracking and fMRI data collected from 50
native Englishspeakers (25females, 25 males; meanage = 22.5 + 4.1years)

as they read five English STEM articles inside an fMRI scanner. Each
article contains an average of 29.6 + 0.68 sentences, with each sen-
tence comprising approximately 10.33 + 0.15words. Participants read
each article sentence-by-sentence in a self-paced manner, pressing a
response button to advance to the next sentence. We regressed the
self-attention of base and fine-tuned LLMs of varying sizes against the
eye movement and functional fMRIactivity patterns of each sentence
(refer to Fig. 1 for the experimental procedure and the analyses pipe-
line). The LLMs employed for our study include all GPT-2 models (base,
medium, large, xlarge), four different sizes of LLaMA (7B, 13B,30B and
65B), two fine-tuned versions of LLaMA (Alpacaand Vicuna) in 7B and
13B configurations, and two other fine-tuned models Gemma-Instruct
7B and Mistral-Instruct 7B (refer to Table 1 for the detailed configura-
tions of the LLMs).

Before comparing LLMs with human behavioral and neural pat-
terns, we first evaluated their performance on the experimental stimuli
independently. Totesthow much the LLMs vary in predicting the next
word, we calculated the averaged next-word prediction (NWP) loss of
allofthe LLMs onevery sentence of our stimuli. The NWP loss exhibited
atrend where, for the base models, an increase in model size corre-
spondedtoadecreasein mean NWP loss; however, fine-tuned models
did not improve performance on NWP for our test stimuli (see Fig. 2a
and Supplementary Table 1for the mean NWP loss for each model; Sup-
plementary Table 2shows the t-test statistics between all model pairs).

Comparison of model attentions

To examine the effect of scaling and instruction tuning on LLMs’ atten-
tion matrices, we calculated the mean Jensen-Shannon (J-S) diver-
gence (D)) for each pair of LLM’s attention matrices over all attention
heads at each model layer. We compared only the LLaMA models and
their fine-tuned variants to control for potentially confounding fac-
tors such as variations in model architecture and training data. For
LLMswith the same number of layers, we computed the Dj.layerwise.
For LLMs with different numbers of layers, we averaged the attention
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Table 1| Configurations of the LLMs evaluated in the study

Model Size Layers Attention Training Fine-tuning
heads  datasize
GPT-2 base 124M 12 12
GPT-2 medium 355M 24 16
8B
GPT-2 large 774M 36 20
GPT-2 xlarge 1.5B 48 25
None
7B 32 32
13B 40 40
LLaMA 1T
30B 60 52
65B 80 64
7B 32 32
Alpaca 1T+52K
13B 40 40
Instruction
Gemma-Instruct 7B 28 16 6T°
Mistral-Instruct 7B 32 32 8T
7B 32 32
Vicuna 1T+70K Conversation
13B 40 40

The number of total parameters, number of layers and attention heads, size of the training
corpus for each LLM, and whether the LLM is a base model or has undergone instruction
fine-tuning. The number reflects the training data size for the base model, whereas the
dataset used for instruction tuning has not been disclosed. The training data for the base
Mistral model is an estimate (see ref. 65).

matrices for every quarter of layers and computed the Dy for
each quarter-layer. Figure 2b shows the results of the divergence
analyses. We observed that for both the base (LLaMA) and fine-tuned
models (Alpaca and Vicuna), as the model size increases, the D). of
model attentions linearly increases from the first quarter to the last
quarter of the model layers; however, when comparing the base and
fine-tuned models of the same sizes, the D)5 of model attentions
remains small across all layers for most model pairs, except for
Vicuna 13B and LLaMA 13B, which exhibit significantly larger diver-
gence, particularly in the higher layers (see Supplementary Table 3
for the detailed t-test statistics). Vicuna was fine-tuned using conver-
sational data, incorporating multi-turn dialogues that capture awide
range of conversational contexts®. As a result, it provides a more
natural and context-aware dialogue experience compared to
Alpaca, which was fine-tuned on instruction-following examples,
leading to strong performance on single-turn tasks*. This distinction
may account for the greater divergence observed between Vicuna
13Band LLaMA 13B.

Sensitivity of model attention to instructions

To confirm that the fine-tuned models exhibit distinct instruction-
following behaviors compared with the base models, we analyzed the
sensitivity of their attention toinstructions. We added two instructions
before eachsentencein our text stimuli: ‘Please translate this sentence
into German:’ and ‘Please paraphrase this sentence:’. As a control,
weintroduced a noise prefix composed of five randomly sampled Eng-
lish words, such as ‘cigarette’, ‘first’, ‘steel’, ‘convenience’, ‘champion’.
We then extracted the attention matrices for the original sentence
spans and calculate the Dy of attentions between each model pair
layerwise. Our results showed a significantly larger divergence in the
attention matrices for the fine-tuned models when processing plain
versus instructed texts, for both the 7B and 13B sizes. By contrast, the
LLaMA models did not show sensitivity to instructions at either size.
Nosignificant difference was found for the Dy s of attentions across all
layers between the base and fine-tuned models for plain versus
noise-prefixed text (see Fig. 2c and Supplementary Table 4 for the
detailed ¢-test statistics).

Sensitivity of model attention to trivial patterns

Past studies have highlighted certain patterns in LLMs’ attention matri-
ces, such as atendency to focus on the first word of a sentence, the
immediately preceding word¥, or on the word itself**. We consider
these tendencies ‘trivial patterns’ because these behaviors are exhib-
ited by allLLMs. Asaresult, itis not relevant to the effects of scaling or
fine-tuning on LLMs’ brain-encoding performance, whichis the primary
focus of this study. To examine how scaling and fine-tuning influence
the models’ sensitivity to these trivial patterns, we constructed abinary
matrix for each sentence in the test stimuli, marking cells that exhib-
ited these trivial relationships. We then regressed each model’s atten-
tion matrix for each sentence at each layer against the corresponding
trivial patterns. Our findings showed that for the LLaMA series and
their fine-tuned versions, as the model size increases from 7B to 65B,
the average regression score for predicting the trivial patterns across
layers decreases. No significant differences were observed between
the LLaMA models and their fine-tuned versions (see Fig. 2d and Sup-
plementary Tables 5and 6). Given that similar trivial patterns were not
observedin human eye movement data, we believe they do not reflect
underlying human cognitive processes. As the attention weights of
larger models display fewer trivial patterns compared with smaller
models, this reduced sensitivity may contribute to their greater cogni-
tive plausibility.

Effects of scaling versus fine-tuning on model-behavior
alignment

Comparisons of LLMsinNWP onour test stimuliindicate anadvantage
forlarger models, suggesting they may achieve better alignment with
both behavioral and neural data. To test this hypothesis, we first
regressed the attention matrices of the LLMs against the number of
regressive eye saccades for all stimuli sentences. We did not include
forward saccades, not only due to the unidirectional nature of LLMs,
butalsobecause regressive saccades may carry moreinformative value
inreading. Regressive saccades occur whenreadersrevisit earlier text,
highlighting the importance of previous words in understanding the
current word*’—similar to how attention weights functionin LLMs. We
extracted the lower-triangle portions (excluding the diagonal line) of
the attention matrix nyorq X Nyord X Mneaq from all attention heads for
every sentence. The attention matrices for all sentences were concat-
enated to create a regressor with dimensions 7,388 x ny,.,q for each
layer, where 7,388 represents the total number of elements obtained
after concatenating the lower triangles of the attention matrices across
all sentences in our stimuli. For the human eye saccade data, we con-
structed matrices for saccade number, F,, €R™*™4 for each sen-
tence. Each cell at row [ and column min E,, and Ey,, represents the
number of eye fixation moving from the word in row [ to the word in
columnm, respectively. We then extracted the lower-triangle parts of
the matrices that mark right-to-left eye movement. Similar to the mod-
els’attention matrices, we flattened the regressive eye saccade number
matrices for all sentences and concatenated themto create 7,388-length
vectors for each patient. We then performed ridge regression for each
modellayer, usingthe 7,388 x nye,qregressor to predict each patient’s
regressive eye saccade number vectors. The final Rfmdelwas normalized
by the Rgemng, where the ceiling model represents the mean of all
patients’ regressive eye saccade number vectors.

Our findings show that for the LLaMA series, as model size
increases from 7B to 65B, theregression scores alsoincrease across lay-
ers. The GPT-2models, which has the smallest parameter size, exhibits
thelowest regression scores. By contrast, base and fine-tuned models
ofthe same sizes exhibit no difference in their regression scores when
aligned with human eye movement patterns, suggesting that scaling,
rather than fine-tuning, enhances the alignment between LLMs and
humanreadingbehaviors. No significant difference was found for the
regression scores of controlled models of matching sizes (see Fig. 3a
and Supplementary Table 7 and Supplementary Data 1). Notably, the
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Fig. 3 | Effects of scaling and fine-tuning on the alignment between LLMs

and human regressive eye saccade patterns during naturalistic reading.

a, Regression results of the LLMs’ best-performing layer on the regressive eye
saccade patterns and their results on alogarithmic size scale (N = 51). The bar
plot denotes the mean of the normalized R? score of the model best-performing
layer. Error bars denote s.d. across patients. b, Regression results of different

LLMs and regressive eye saccade number patterns across experimental sections
(N=51). The x-axis denotes the five consecutive sections of the stimulus, and the
y-axis denotes the normalized R*score across participants. The center lines of the
boxplots denote the median; the box limits denote the 25th and 75th percentiles;
whiskers extend to the most extreme data points within 1.5 times the interquartile
range; and outliers beyond this range are plotted individually as dots.

GPT-2models of varying sizes did not exhibit any significant differences
inthe fit between these models and the eye regression patterns. This
may be because the size differences among these models are not as
substantial as, for example, between 7B and 65B. We further plotted
the maximumregression scores from all model layers against different
LLMs and the logarithmic scale of parameter size, illustrating a clear
scaling law of model-behavior alignment (see Fig. 3a, right panel).
Given that participants answered ten comprehension questions
after reading each article, there is a possibility that their reading
behavior shifted from naturalistic reading to a more focused approach

aimed at solving questions asthe experiment progressed. This could mean
that LLMs with instruction tuning might increasingly align with human
behavior later in the experiment. To test this hypothesis, we performed
the same regression analyses separately for each section of the experi-
ment. Our results revealed no significant difference in the regression
scores for base and fine-tuned LLMs over time, suggesting that human
reading behaviors during naturalistic reading are not influenced by the
subsequent comprehension questions (see Fig. 3b). Supplementary
Table 8 lists the F statistics from one-way analysis of variance (ANOVA)
for each base and fine-tuned LLM across the five experimental sections.
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Effects of scaling versus fine-tuning on model-brain alignment
We next conducted a ridge regression using the attention
matrix U’model ateach layer j from each LLM to predict each voxel’s
blood-oxygen-level-dependent (BOLD) vector V;; in the whole brain
for each patient (refer to the ‘Alignment between LLMs and fMRIdata’
section in the Methods for details). As shown in Fig. 4a, the average
prediction performance across patients from the best-performing
layer of each LLM increases with model size. By contrast, base and
fine-tuned LLMs of the same sizes did not show differences in their
average prediction performance (see Supplementary Table 9 and Sup-
plementary Data 2). We also plotted the normalized correlation coef-
ficients from the best-performing layer of each model onalogarithmic
scale, demonstrating a clear scaling effect where larger models better
explained the fMRI activity patterns during naturalistic reading.
Figure 4b presentssignificant brain clustersidentified when contrast-
ingthe prediction performance (Pearson’s rmaps) of larger and smaller
LLMs. The results show that larger LLMs consistently exhibited sig-
nificantly more activation in a bilateral temporal-parietal network
compared with their smaller counterparts. Although the effect size as
measured by the Cohen’s dis larger in the left hemisphere than the
right hemisphere (see Table 2). We also compared the regression scores
of base and fine-tuned models of same sizes, yet no significant brain
cluster has been observed.

Expanding the analysis to different datasets

To verify whether our findings can generalize to a broader spectrum
of human language processing, we performed the same analysison a
fMRI dataset collected while participants listened to a20 min Chinese
audiobook in the scanner. We regressed the attention weights of the
base and fine-tuned LLaMA3 8B, LLaMA3 70B, LLaMA3-Instruct 8B and
LLaMA3-Instruct 70B models against the fMRI data matrices at the
paragraph level (refer to ‘Additional results from fMRI data of natu-
ralistic listening’ in Supplementary Section 2). We used the LLaMA3

models for their better performancein Chinese. This analysis extends
beyond sentence-level comprehension to discourse-level processing
andintroduces both a different modality (listening versus reading) and
adifferent language (Chinese versus English). Our findings remained
consistent: model scaling had asignificant effect on model-brain align-
ment, while fine-tuned and base models of the same size showed no
differencein brain-encoding performance (see Supplementary Fig.1a
and Supplementary Tables 10-12).

We also regressed the predictions from the base and fine-tuned
LLaMA3 8B and LLaMA3 70B models against the fMRI data collected
while participants answered multiple-choice comprehension questions
aboutthe precedinglistening session (refer to ‘Additional results from
fMRI data of naturalistic listening’ in Supplementary Section 2). Our
results showed LLaMA3 8B exhibited asignificantly higher regression
score (mean = 0.219 + 0.004) compared with LLaMA3-Instruct 8B
(mean=0.211+0.004,¢=58.073,P=7.47 x107); LLaMA3-Instruct 70B
showed a higher mean regression score (mean = 0.259 + 0.005) across
participants compared to the LLaMA3 70B (mean = 0.243 + 0.005,
t=80.528, P=5.76 x10™), but no significant brain cluster has been
found between the contrast of the two 70B models’ R* maps (see Sup-
plementary Fig.1b and Supplementary Tables 13-15).

Discussion

Twokey factors driving theimprovement of recent LLMs compared with
their predecessors, such as BERT (ref.12) and GPT-2 (ref. 11), are scaling
and fine-tuning. Although past work suggests that the scalinglaw also
applies to LLMs’ brain-encoding performance with extensive fMRI
data during naturalistic language comprehension®**’, it is still unclear
how effective scaling is for model-brain alignment when dealing with
shorter texts. As GPT-2 has been shown to predict more variance relative
to the ceiling in some neuroimaging datasets*"*>—where the ceiling is
defined as the mean of the neural responses from all participants in
these datasets—smaller models may have reached their performance
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Table 2 | Comparison of brain-encoding results between different model pairs

Model1 Model 2 Left hemisphere Right hemisphere

N vertices P Cohen'sd N vertices P Cohen'sd
LLaMA 7B GPT-2 large 133 0.006 7.303 517 0.007 3.691
LLaMA 13B LLaMA 7B 1096 0 18.005 622 0 7670
LLaMA 30B LLaMA13B 69 0.051 2159 \ \ \
LLaMA 65B LLaMA 30B 1734 0.007 7149 650 0.008 3.709

Summary statistics for the significant brain clusters in the left and right hemisphere from the contrast of the correlation coefficients of model pairs from the ridge regression analyses.
Significance of the r-map contrasts was assessed using cluster-based two-sample one-sided t-tests with 10,000 permutations (Maris and Oostenveld™).

limits on next-word prediction for simpler texts. Moreover, current
LLMs far exceed human capabilities in terms of datainput during train-
ingand memory resources for accessing contextual information during
comprehension. It has been argued that larger models increasingly
diverge from human language-processing patterns®. In this study we
evaluated the alignment between LLMs of varying sizes and human
eye movement and fMRI activity patterns during naturalistic read-
ing. Despite using experimental stimuli and fMRI data that are much
smaller in size compared with previous studies?’, we observed consist-
entimprovementsinalignment as the modelsizeincreased from 774M
to 65B, without any apparent diminishing returns. Similar results have
also been reported for electrocorticography data during naturalistic
listening®. This suggests that the scaling law of model-brain alignment
holds even with shorter text stimuli and smaller fMRI data.

Althoughthelargest LLMs today still do not matchthe humanbrain
interms of synapse count, training and operating such large LLMs pose
significant computational challenges, especially inacademic settings
withlimited computingresources. Fine-tuning LLMs with instructions
offers a viable approach to enhance the performance and usability of
pre-trained language models without expanding their size’**’. Ouyang
etal.” noted that the typical next-token prediction training objective
of language models often diverges from user intentions, leading to
outputs that are less aligned with user preferences. Although there is
ample evidence that human language processing involves next-word
prediction*®*, research also showed that fine-tuning language mod-
els for tasks such as narrative summarization can enhance model-
brain alignment, especially in understanding characters, emotions
and motions*. It is possible that instruction-following plays a role in
human language learning and that fine-tuned models might contain
richer discourse and pragmatic information beyond basic meaning
representation.

However, our regression results with human behavioral and neu-
ral patterns did not reveal any significant improvement in alignment
for fine-tuned LLMs compared with base models of identical size. We
examined whether fine-tuned models exhibited better alignment to eye
movement patterns as participants completed more comprehension
questions over time, but no significant differences were found in the
regression scores. We also examined predictions from the fine-tuned
LLaMA3 7B and LLaMA3 70B models against the fMRI data collected
while participants answered multiple-choice comprehension ques-
tions about the preceding listening session, yet we still did not find a
consistent advantage of the fine-tuned model on model-brain align-
ment. Ourresults therefore highlight the greaterimpact of scaling over
fine-tuning in model-brain alignment, contributing to the existing lit-
erature on the scaling law in brain-encoding performance****. Similar
findings have beenreported by Kuribayashietal.**, who demonstrated
thatinstruction-tuned and prompted LLMs do not provide better esti-
mates thanbase LLMs when simulating human reading behavior. How-
ever, itis possible that LLMs using different fine-tuning techniques may
exhibit a positive effect. Here we examined two additional fine-tuned
models (Gemma-Instruct and Mistral-Instruct) and did not find any
improvement over the base LLMs, but Kuribayashi et al.>* reported

that Falcon instruction-tuned LLMs, which use a supervised tuning
approach different fromreinforcementlearning from human feedback,
showed amoderate positive effect in simulating human reading data.
Futureresearch should further explore the impact of fine-tuning tech-
niques on the cognitive plausibility of instruction tuning.

Our findings that scaling has a larger impact than fine-tuning
on model-behavior and model-brain alignments are particularly
relevant in the current landscape, where reasoning LLMs such as
DeepSeek-R1 (ref. 32) exhhibited superior performance with similar
or fewer activated parameters compared with existing open-source
LLMs. We acknowledge that cautionis needed wheninterpreting these
results. Asinstruction tuning effectively realigned the model weights
inresponsetoinstructions, these realigned model weights may better
fitbrainactivity patterns where participants performed tasks aligned
with theinstruction-following nature of the fine-tuning process. How-
ever, due to the lack of such openly available neuroimaging datasets,
we cannot evaluated the fine-tuned LLMs on these task-specific brain
data. This gap leaves the potential for future research to explore the
impact ofinstruction tuning on model-brain alignmentin controlled
experimental settings.

Methods

The eye-tracking and fMRI dataset used in the analysis is publicly
available® and does not contain sensitive content such as personal
information. The adaptation and use of the dataset are conducted in
accordance with its license. The model states of LLMs are used solely
for research purposes, aligning with their intended use.

Eye-tracking and fMRI data

We used the openly available Reading Brain dataset® on OpenNeuro.
Thisdatasetincludes concurrent eye-tracking and fMRIdata collected
from 52 native English speakers (27 females, mean age =22.8 +4.7
years) as they read five English STEM articles inside an fMRI scanner.
One participant’s (patient ID 21) eye-tracking data was excluded due
toincomplete recording, resulting in a final sample of 51 participants
(26 females; meanage = 22.6 + 4.0 years) for the eye-tracking analysis.
Two participants’ (patient IDs 21 and 52) fMRI data were excluded
due to preprocessing errors, leaving 50 participants (25 females;
mean age = 22.5 + 4.1 years) for the fMRI analysis. The articles were
constructed using materials from established sources such as the
NASA science website, the GPS.gov website (http://www.gps.gov),
and Wikipedia. These texts underwent an extensive revision process
to ensure content accuracy and stylistic consistency®. Each article
containsanaverage 0of29.6 + 0.68 sentences, with each sentence com-
prising approximately 10.33 + 0.15words. Participants read each article
sentence-by-sentence in a self-paced manner, pressing a response
buttontoadvanceto the next sentence. If there was no response within
8,000 ms, the screen would automatically progress to the next sen-
tence. The sequence in which the five texts were presented was ran-
domized across participants to control for potential order effects.
At the end of each article, participants answered ten multiple-choice
questions to ensure their comprehension. The whole experiment,
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including preparation time, lasted for about 1 h (see Fig. 1a for the
experimental procedure). The study was approved by the Pennsylvania
State University Institutional Review Board (CRO0003867). All partici-
pants provided written informed consent before the experiment and
were compensated for their participation.

Allimaging and eye-tracking data were acquired in 3 T Siemens
Magnetom Prisma Fit scanner at the Center for NMR Research at the
Pennsylvania State University Hershey Medical Center in Hershey,
Pennsylvania. The anatomical scans were acquired using a
magnetization-prepared rapid gradient-echo pulse sequence with T1
weighted contrast (176 ascending sagittal slices with A/P phase encod-
ing direction; voxel size =1 mmisotropic; field of view (FOV) =256 mm;
repetitiontime (TR) =1,540 ms; echo time (TE) = 2.34 ms; acquisition
time =216 s; flip angle = 9°; GRAPPA in-plane acceleration factor = 2;
brain coverageis complete for cerebrum, cerebellum and brain stem).
The functional scans were acquired using T2*-weighted echo planar
sequence images (30 interleaved axial slices with A/P phase encod-
ing direction; voxel size =3 mm x 3 mm x 4 mm; FOV =240 mm;
TR =400 ms; TE =30 ms; acquisition time varied on the speed of
self-paced reading, maximal 5.1 min per run; multiband accelera-
tion factor for parallel slice acquisition = 6; flip angle = 35°; where
the brain coverage missed the top of the parietal lobe and the lower
end of the cerebellum). A pair of spin echo sequence images with
A/P and P/A phase encoding direction (30 axial interleaved slices;
voxel size =3 mm x 3 mm x 4 mm; FOV =240 mm; TR =3,000 ms;
TE = 51.2 ms; flip angle = 90°) were collected to calculate distortion
correction for the multiband sequences*®. fMRI preprocessing of
the was conducted using fMRIPrep (v.25.0.0)*” with all default para-
meters. Final resampling to Montreal Neurological Institute (MNI)
spaceand fsaverage5 surface was performed inasingle interpolation
step using antsApplyTransforms and mri_vol2surf. Participants’ eye
movements were simultaneously recorded using an MRI-compatible
EyeLink 1,000 Plus eye tracker*® with a sampling rate of 1,000 Hz.
The eye tracker was mounted at the rear end of the scanner bore and
captured eye movements via a reflective mirror positioned above
the MRI's head coil.

Large language models

To investigate the effects of scaling and instruction tuning on the
alignment of LLMs with human behavior and neural data, we used
the open-source LLaMA model* and its instruction-tuned variants,
Alpaca’®® and Vicuna®, which are available in various sizes. LLaMA
is a series of pre-trained causal language models trained on over
one trillion publicly accessible text tokens, primarily in English.
Itachieved state-of-the-art performance on most LLM benchmarks™.
We employed all four sizes of LLaMA: 7B, 13B, 30B and 65B. We
also included all of the GPT-2 models" to represent smaller pre-
trained language models (base = 124M, medium = 355M, large = 774 M,
xlarge = 1.5B) as well as two other fine-tuned models, Gemma-
Instruct 7B (ref. 49) and Mistral-Instruct 7B (v.03)*°, for comparison
withLLaMA 7B.

Alpaca® was fine-tuned from the 7B LLaMA model and was trained
on 52K English instruction-following demonstrations generated by
GPT-3 (ref. 51) using the self-instruct method*>. We also developed a
13B version of Alpaca using the same training data and strategy. Our
13B Alpaca model achieved accuracy scores of 43.9 and 46.0 on the
MMLU dataset™ in zero- and one-shot settings, respectively, outper-
formingthe original 7B model’s scores 0f40.9 and 39.2. Vicuna versions
7B and 13B (ref. 35) were fine-tuned from the respective 7B and 13B
LLaMA models, using 70K user-shared conversations with ChatGPT".
This dataset includes instruction and in-context learning samples
across multiple languages. Gemma-Instruct 7B was fine-tuned on a
mix of synthetic and human-generated prompt-response pairs*’, and
Mistral-Instruct 7B was fine-tuned on publicly available instruction

datasets from the Hugging Face repository®.

Comparison of next-word prediction loss

To examine the effects of scaling and fine-tuning model’s performance
in next-word prediction, we calculated the mean NWP loss (the nega-
tivelog-likelihood loss normalized by sequence lengths) of the models
employedinthis study on every sentence of the articlesin the Reading
Braindataset. As LLMs use subword tokenization (Kudo and Richardson,
2018)**, we aligned subwords to words by summing over the ‘to’ tokens
and averaging over the ‘from’ tokens in a split word, as suggested by
Clark etal.”® and Manning and colleagues™. For example, suppose the
phrase ‘delicious cupcake’ is tokenized as ‘del icious cup cakes’, the
attention score from ‘cupcake’ to ‘delicious’ is the sum of the atten-
tion scores from ‘del’ to ‘cup’, and ‘cake’ and ‘icious’ to ‘cup’ and ‘cake’,
divided by two as there are two ‘to’ tokens (‘cup’ and ‘cake’). We also
removed the special tokens ‘<s>’ from the sentence beginnings. The
losses for all sentences were z-scored model-wise and the contrasts
of the z-scored losses for two models (for example, LLaMA 7B versus
Alpaca 7B) were tested using a two-sample two-tailed related ¢-test.
The false discovery rate (FDR) was applied to correct for multiple
comparisons across layers.

Comparison of model attentions

The self-attention matrices of different LLMs given the same input were
compared using their mean Jensen-Shannon (J-S) divergence across
alllayers. For every sentence in our stimuli, we extracted the attention
matrices A and B from one attention head and one layer of two target
LLMs (A, BeR™oxmwore), and their J-S divergence D.(4, B) is computed

as Djs(A.B) = %Zf’w""‘ [DxL (A; || B)) + Dy (B; || A)], where A; and B; are

i=1

the ith rows in the two matrices and Dy, is the Kullback-Leibler (K-L)
divergence®. The attention matrices were normalized such that each
row sums to one, and the final Dy s for each layer was averaged across
attention heads. We aligned subword tokenization to words using the
previously described methods for calculating NWP loss. For models
with different numbers of layers, we divided their layers into four
quarters and averaged the D s quarter-wise. We compared each model
pair’s D5 for each layer or each quarter-layer using a two-sided
two-samplerelated ¢-test with FDR correction.

Model sensitivity to instructions

We compared the models’ attention matrices for each stimuli sentence
when prefixed with two instructions: ‘Please translate this sentence
into German?’, and ‘Please paraphrase this sentence:’. As a control, we
introduced a noise prefix composed of five randomly sampled English
words, such as ‘Cigarette first steel convenience champion. We then
extracted the attention matrices for the original sentence spans. We
calculated the D, sbetween the prefixed and original sentences across
different models to assess each model’s sensitivity to instructions.

Model sensitivity to trivial patterns

Past studies have highlighted certain trivial patterns in the attention
matrices within a given context, such as a tendency to focus on the
first word of a sentence, the immediately preceding word®, or the
word itself**, We consider the model’s tendencies to attend to the
immediately preceding or current word ‘trivial patterns’ because these
behaviorsare exhibited by all LLMs. As aresult, itis notrelevantto the
effects of scaling or fine-tuning on LLMs’ brain-encoding performance,
whichis the primary focus of this study. To examine whether scaling and
fine-tuning will change the models’ reliance on these trivial patterns,
we constructed a binary matrix for each sentence in the test stimuli,
marking cells that exhibit these trivial attention relationships with al.
We then flattened the lower-triangle parts of these matrices to create
trivial pattern vectors. We then performed ridge regressions using
eachmodel’s attention vectors for each sentence at each quarter-layer
to predict the corresponding trivial pattern vectors. The resulting
regression scores were averaged across model layers and were z-scored
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and assessed for statistical significance using two-tailed one-sample
t-tests with FDR corrections. We subtracted these patterns from all
the attention matrices of the LLMs for the following ridge regression
analyses. Given that similar patterns were not observed in human eye
movement data, we believe they do not reflect underlying human
cognitive processes.

We also examined results based on the original attention matrices
(without subtracting the trivial patterns) fromeach LLM and observed a
similarscaling effect, with larger models exhibiting higher model-brain
alignment within a bilateral temporal-parietal network; however, no
significantbrain clusters were observed for the contrasts between the
mid-sized LLaMA pairs 13B versus 7B and 30B versus 13B (see Supple-
mentary Fig.2and Supplementary Table 16 and Supplementary Data 3).
This may be due to smaller and mid-sized models being more suscep-
tible to capturing trivial patterns, leading to similar brain responses.

Alignment between LLMs and eye movement
Weinputeachsentenceinto the LLMsindividually, consistent with how
sentences were presented separately to participants on the screen
during fMRIscanning. Furthermore, regressive eye saccade informa-
tionwasavailable only at the sentencelevel. As our autoregressive LLMs
useright-to-left self-attention, we extracted the lower-triangle portions
of the attention matrix from each layer and each attention head for
every sentence. These matrices were flattened and concatenated to
formthe attention vector Vﬁ;f)del forallsentences athead kinlayer,. We
stacked these vectors along the attention heads to create amatrix urfnf, el
forthejthlayer. For the humaneye saccade data, we constructed matri-
ces forsaccade number E,,,eR™ ™ for each sentence. Each cell at
row/and columnmin E,, represents the number of times of eye fixa-
tion moving from the word in row [ to the word in column m, respec-
tively. We then extracted the lower-triangle parts of the matrices which
marks right-to-left regression. Like the models’ attention matrices, we
flattened theregressive eye saccade number matrices for all sentences
and concatenated themto get theregressive eye saccade number vec-
tor Vi,..for each patienti. We then conducted aridge regression using
the model attention matrix %Ode]at eachlayer jtopredicteach patient’s
regressive eye saccade number vector. The final dimensionality of the
dependent variable Xis 7,388 x N, .., Where 7,388 represents the
length of the concatenated vector formed by flattening the
lower-triangular part of the attention matrix for each sentence at each
layer, and Nis the number of attention heads at that layer. We did not
average across attention heads to obtain a single attention matrix
per sentence, as each head is known to capture distinct relationships
amongwordsinasentence (Manning and co-workers®). The dependent
variable (y) is a 7,388-dimensional vector, where 7,388 again reflects
the length of the concatenated and flattened lower-triangular part of
the regressive eye saccade matrix for each sentence.

Weusedridgeregressioninstead of ordinary least squares regression
as most models have 32 attention heads, with the maximum being 64.
We believe that applying ridge regression is preferable to mitigate
collinearity among the regressors and enhance prediction accuracy.
The penalty regularization parameter was kept as the default value of 1.
Thefinal RZ . wasnormalized by the Rge”mg, where the ceiling model
represents the mean of all patients’ regressive eye saccade number
vectors. Atthegroup level, the significance of the contrast of theregres-
sion performance R? . forevery model pair at every layer was exam-
ined using atwo-tailed one-samplerelated ¢-test, with FDR corrections
for multiple comparisons across layers.

Totest this hypothesis that participants’ reading behavior shifted
from naturalistic reading to a more focused approach aimed at solv-
ing questions as the experiment progressed, we performed the same
regression analysis separately for each section of the experiment. We
then compared the regression scores of each LLM across different
times using ANOVA to assess changes in model fit over the course of
the experiment.

Alignment between LLMs and fMRI data

For eachvoxel of the fMRI data for each patient, we constructed aBOLD
matrix BeR™*™for each sentence. The value at row/and columnm
in Brepresents the sum of the BOLD signals at the timepoints where
the eye fixation moves from the word in row /to the word in columnm.
We extracted the lower-triangle parts of the Bmatrices (excluding the
diagonal line) for all sentences and concatenated them to form the
BOLD vector Vi for each voxel of each patient i. Next, we conducted a
ridge regression using each patient’s regressive eye saccade vectors
Vium to predict each patient’s BOLD vector Vi at each voxel. We then
performed ridge regressions using the attention matrix v/ . ateach
layer jfromeach LLMto predict each voxel's BOLD vector Vi inthe whole
brainforeach patient (see Fig. 1). The dimensionality of the independ-
entvariableis 7,388 x N, n..a, Where 7,388 represents thelength of the
concatenated vector formed by flattening the lower-triangular part of
theattention matrix for each sentence at eachlayer, and Nis the number
of attention heads at that layer. The dependent variable (y) is a
7,388-dimensional vector, where 7,388 again reflects the length of the
concatenated and flattened lower-triangular part of the BOLD response
matrix for each sentence at each voxel for each patient. As we con-
structed the BOLD matrix for each sentence based on the regressive
eye saccade patterns, each BOLD matrix of each sentence is of size
Nyora X Nyora» its dimension matches the dimension of model’s attention
matrix for each sentence.

The penalty regularization parameter for each voxel within each
patient was determined using a grid search with nested cross-validation
across 20 candidate regularization coefficients (log-spaced between 10
and1,000), following previous approach’. We adopted a train-test split
method with ten-fold cross-validation, using 90% of the fMRIdata (133 out
of148 sentences) tofit theridge regression models and evaluating perfor-
manceby computingthe correlationbetween the predicted and observed
time courses on the remaining 10% of the data (15 out of 148 sentences).
For each voxel, a P-value for the correlation coefficient (r) was obtained
by permuting the predicted time course 10,000 times and comparing
the observed r to the distribution of permuted r values. Significance of
the r-map contrasts was assessed using cluster-based two-sample t-tests
with 10,000 permutations®. All of our analyses and visualizations were
performed using custom Python codes, making heavy use of the torch
(v2.2.0)*, MNE (v.1.6.1)*’ and scipy (v1.12.0)°° packages.

Although most past model-brain alignment studies regressed
embeddings at each model layer onto voxel-wise activity time
series®'¢! this method is not feasible for the current study due to the
non-linear nature of reading. Note that our task is not self-paced read-
ing at word level where each word appears on the screen sequentially,
instead, we presented the whole sentence on the screen and relied on
eye-tracking toidentify the timepoints for each word. We cannot directly
regress the embeddings for each sentence with the fMRI data because
is not strictly sequential. For example, our first participant read the
sentence ‘Could humans live on Mars some day’ in the following order
based their eye fixations: ‘humans humans Could humans on Mars on
some some day’. We could not simply input this disordered sequenceinto
the LLM, as it would generate meaningless representations. Similarly,
we cannot directly regress embeddings from the correctly ordered
sentence onto the fMRI data, as the recorded neural responses corre-
spondtotheactual reading sequence, which does not follow the original
sentence structure. To the best of our knowledge, no past studies have
employed this approach, probably because most previous research
relied on naturalistic listening or self-paced reading paradigms at the
word level, which inherently enforce sequential word processing. We
hope our rationale is now clearer and that future studiesincorporating
concurrent eye-tracking and fMRIwill consider applying our methods.

Statistics and reproducibility
We analyzed openly available eye-tracking and fMRI data from 52
participants during naturalistic sentence reading, regressing model
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attention matrices against their eye movement and BOLD responses.
One participant (patient ID 21) was excluded in eye-tracking analysis
duetoincomplete recording. Two participants (patient IDs 21and 52)
were excluded in fMRI analysis due to fMRI preprocessing errors. No
statistical method was used to predetermine sample size. The text
order wasrandomized across participants, and theinvestigators were
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The attention matrices of all the LLMs for our experimental stimuliare
available at https://github.com/RiverGao/scaling_finetuning (ref. 62)
and onZenodo via https://zenodo.org/records/15788717 (ref. 63). The
reading eye-trackingand fMRI dataset is available at https://openneuro.
org/datasets/ds003974/versions/3.0.0 (ref. 33). The listening and
comprehension fMRI dataset is available at https://openneuro.org/
datasets/ds005345 (ref. 64). Source Data are provided with this paper.

Code availability
Allcodesareavailableathttps://github.com/RiverGao/scaling_finetuning
(ref. 62) and on Zenodo via https://zenodo.org/records/15788717
(ref. 63).
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Study description The study involves participants reading articles in the fMRI scanner. The attention matrices of large language models for each
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Research sample The reading brain dataset (https://openneuro.org/datasets/ds003974/versions/3.0.033) involves a total of 52 participants.
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Data collection All imaging data were acquired in 3 T Siemens Magnetom Prisma Fit scanner at the Center for NMR Research at the Pennsylvania
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Naturalistic reading

Design specifications Participants read each article sentence-by-sentence in a self-paced manner, pressing a response button to advance to
the next sentence.

Behavioral performance measures At the end of each article, participants answered 10 multiple-choice questions to ensure their comprehension.

Acquisition
Imaging type(s) functional

Field strength 3T

Sequence & imaging parameters The anatomical scans were acquired using a Magnetization Prepared RApid Gradient-Echo (MP-RAGE) pulse sequence
with T1 weighted contrast (176 ascending sagittal slices with A/P phase encoding direction; voxel size = Imm isotropic;
FOV =256 mm; TR = 1540 ms; TE = 2.34 ms; acquisition time = 216 s; flip angle = 9°; GRAPPA in- plane acceleration
factor = 2; brain coverage is complete for cerebrum, cerebellum and brain stem). The functional scans were acquired
using T2* weighted echo planar sequence images (30 interleaved axial slices with A/P phase encoding direction; voxel
size =3 mm x 3mm x 4 mm; FOV = 240 mm; TR = 400 ms; TE = 30 ms; acquisition time varied on the speed of self-paced
reading, maximal 5.1 minutes per run; multiband acceleration factor for parallel slice acquisition = 6; flip angle = 35°;
where the brain coverage missed the top of the parietal lobe and the lower end of the cerebellum). A pair of spin echo
sequence images with A/P and P/A phase encoding direction (30 axial interleaved slices; voxel size=3mmx 3mmx 4mm);
FOV=240mm; TR=3000ms; TE=51.2 ms; flip angle = 90°) were collected to calculate distortion correction for the
multiband sequences (Glasser et al., 2013).

Area of acquisition whole-brain
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Preprocessing

Preprocessing software fMRIPrep (v25.0.0)

Normalization Final resampling to MNI space and fsaverage5 surface was performed in a single interpolation step using
antsApplyTransforms and mri_vol2surf.

Normalization template MNI152, fsaverage5 surface
Noise and artifact removal field inhomogeneity artefacts correction
Volume censoring Volumes exceeding FD>0.5 mm or standardized DVARS>1.5 were flagged as motion outliers. All transforms were applied in a

single interpolation step using antsApplyTransforms with Lanczos interpolation.

Statistical modeling & inference

Model type and settings We performed ridge regressions using the attention matrix at each layer from each LLM to predict each voxel’s BOLD vector
in the whole brain for each subject.
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Effect(s) tested Significant correlation coefficients.

Specify type of analysis:  [X] whole brain [ | ROI-based || Both

Statistic type for inference cluster-wise: Clusters were formed from statistics corresponding to a p-value less than 0.05, and only clusters spanning a

minimum of 50 vertices were included in the analysis
(See Eklund et al. 2016)

Correction FDR corrections

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

IZ |:| Graph analysis

|:| & Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis = We performed ridge regressions using the attention matrix at each layer from each LLM to predict each
voxel’s BOLD vector in the whole brain for each subject. We then tested whether the trained ridge regression
model can predict test BOLD signals.
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