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Increasing alignment of large language 
models with language processing in the 
human brain
 

Changjiang Gao    1,2,4, Zhengwu Ma    1,4, Jiajun Chen2, Ping Li3, 
Shujian Huang2,5   & Jixing Li    1,4,5 

Transformer-based large language models (LLMs) have considerably 
advanced our understanding of how meaning is represented in the human 
brain; however, the validity of increasingly large LLMs is being questioned 
due to their extensive training data and their ability to access context 
thousands of words long. In this study we investigated whether instruction 
tuning—another core technique in recent LLMs that goes beyond mere 
scaling—can enhance models’ ability to capture linguistic information 
in the human brain. We compared base and instruction-tuned LLMs of 
varying sizes against human behavioral and brain activity measured with 
eye-tracking and functional magnetic resonance imaging during naturalistic 
reading. We show that simply making LLMs larger leads to a closer match 
with the human brain than fine-tuning them with instructions. These finding 
have substantial implications for understanding the cognitive plausibility of 
LLMs and their role in studying naturalistic language comprehension.

Autoregressive transformers are increasingly used in cognitive neu-
roscience for language processing studies, enhancing our under-
standing of meaning representation and composition in the human 
language system1–6. For instance, Goldstein et al.2 found that the prob-
ability of words given a context significantly correlates with human 
brain activity during naturalistic listening, suggesting that language 
models and the human brain share some computational principles 
for language processing, such as the ‘next-word prediction’ mecha-
nism (see also refs. 7,8). Furthermore, pre-trained transformers are 
essential for decoding speech or text from neuroimaging data9,10. They 
provide embeddings for training encoding models that map words 
to neural data and generate continuations as decoding candidates10. 
However, those studies mostly adopted smaller pre-trained language 
models such GPT-2 (ref. 11) and BERT (ref. 12), whereas recent large 
language models (LLMs) such as GPT-4 (ref. 13) and LLaMA (ref. 14) 
are significantly larger in terms of parameter size and training data. 

It has been demonstrated that as the model size, training dataset and 
computational resources increase, so does performance on bench-
mark natural language processing (NLP) tasks, following a power-law 
scaling15–17. These newer LLMs have already been adopted in recent 
studies to understand language processing in the human brain18,19, 
but whether they better resemble human language processing is 
still an ongoing debate. On the one hand, it has been demonstrated 
that larger models exhibit a stronger correlation with the human 
brain20,21 during language comprehension, mirroring the scaling law 
in other deep learning contexts. On the other hand, the validity of 
larger models as cognitive models has been questioned due to their 
extensive training data and their ability to access context thousands 
of words long, which far exceeds human capabilities. Research has 
shown that surprisal values from larger transformer-based language 
models align less well with human reading times22, and that language 
model with the lowest perplexity may not result in the best model 
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as they read five English STEM articles inside an fMRI scanner. Each 
article contains an average of 29.6 ± 0.68 sentences, with each sen-
tence comprising approximately 10.33 ± 0.15 words. Participants read 
each article sentence-by-sentence in a self-paced manner, pressing a 
response button to advance to the next sentence. We regressed the 
self-attention of base and fine-tuned LLMs of varying sizes against the 
eye movement and functional fMRI activity patterns of each sentence 
(refer to Fig. 1 for the experimental procedure and the analyses pipe-
line). The LLMs employed for our study include all GPT-2 models (base, 
medium, large, xlarge), four different sizes of LLaMA (7B, 13B, 30B and 
65B), two fine-tuned versions of LLaMA (Alpaca and Vicuna) in 7B and 
13B configurations, and two other fine-tuned models Gemma-Instruct 
7B and Mistral-Instruct 7B (refer to Table 1 for the detailed configura-
tions of the LLMs).

Before comparing LLMs with human behavioral and neural pat-
terns, we first evaluated their performance on the experimental stimuli 
independently. To test how much the LLMs vary in predicting the next 
word, we calculated the averaged next-word prediction (NWP) loss of 
all of the LLMs on every sentence of our stimuli. The NWP loss exhibited 
a trend where, for the base models, an increase in model size corre-
sponded to a decrease in mean NWP loss; however, fine-tuned models 
did not improve performance on NWP for our test stimuli (see Fig. 2a 
and Supplementary Table 1 for the mean NWP loss for each model; Sup-
plementary Table 2 shows the t-test statistics between all model pairs).

Comparison of model attentions
To examine the effect of scaling and instruction tuning on LLMs’ atten-
tion matrices, we calculated the mean Jensen–Shannon ( J–S) diver-
gence (DJ-S) for each pair of LLM’s attention matrices over all attention 
heads at each model layer. We compared only the LLaMA models and 
their fine-tuned variants to control for potentially confounding fac-
tors such as variations in model architecture and training data. For 
LLMs with the same number of layers, we computed the DJ-S layerwise. 
For LLMs with different numbers of layers, we averaged the attention 

fits23,24. Furthermore, limiting the context access of language models 
can improve their simulation of language processing in humans6,25.

In addition to scaling, fine-tuning LLMs has been shown to improve 
performance on NLP tasks and enhance generalization to new tasks26–29. 
For instance, Ouyang et al.27 fine-tuned GPT-3 models of varying sizes 
using reinforcement learning from human feedback30,31, and showed 
that the fine-tuned models with only 1.3B parameters were more aligned 
with human preferences than the 175B base GPT-3. Recent reasoning 
LLMs such as DeepSeek-R1 (ref. 32)—which integrates chain-of-thought 
reasoning with reinforcement learning during fine-tuning—achieve 
state-of-the-art performance while using similar or fewer activated 
parameters than existing open-source LLMs. The superior perfor-
mance of these fine-tuned LLMs over base LLMs on NLP tasks raises the 
question of whether scaling or fine-tuning has a greater impact on the 
models’ brain-encoding performance.

In this work we systematically compared the self-attention of base 
and fine-tuned LLMs of varying sizes against human eye movement and 
functional magnetic resonance imaging (fMRI) activity patterns during 
naturalistic reading33. We show that as the model size increases from 
774M to 65B, the alignment with human eye movement and fMRI acti
vity patterns also significantly improves, adhering to a scaling law20,21. 
By contrast, instruction tuning does not affect this alignment, consist-
ent with past findings34. Model analyses show that base and fine-tuned 
LLMs diverged the most when instructions were added to the stimuli 
sentences, suggesting that fine-tuned LLMs are sensitive to instruc-
tions in ways that naturalistic human language processing may not be.

Results
Model performance on the text stimuli
We used the publicly available Reading Brain dataset33 from OpenNeuro 
to investigate the impact of scaling and instruction tuning on the align-
ment between LLMs and human eye movement and neural data. The data-
set includes concurrent eye-tracking and fMRI data collected from 50 
native English speakers (25 females, 25 males; mean age = 22.5 ± 4.1 years)  
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Fig. 1 | Experimental procedure of the dataset and the analyses pipeline. 
a, Experiment procedure. Participants read five English articles sentence-by-
sentence while inside the fMRI scanner with concurrent eye-tracking. b, LLMs of 
different sizes with and without fine-tuning are employed in the study. c, Analysis 

pipeline. The attention matrices of each layer of the LLMs for each sentence in the 
experimental stimuli were averaged over attention heads and aligned with eye 
movement and fMRI activity patterns for each sentence using ridge regression.
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matrices for every quarter of layers and computed the DJ-S  for  
each quarter-layer. Figure 2b shows the results of the divergence 
analyses. We observed that for both the base (LLaMA) and fine-tuned 
models (Alpaca and Vicuna), as the model size increases, the DJ-S of 
model attentions linearly increases from the first quarter to the last 
quarter of the model layers; however, when comparing the base and 
fine-tuned models of the same sizes, the DJ-S  of model attentions 
remains small across all layers for most model pairs, except for  
Vicuna 13B and LLaMA 13B, which exhibit significantly larger diver-
gence, particularly in the higher layers (see Supplementary Table 3 
for the detailed t-test statistics). Vicuna was fine-tuned using conver-
sational data, incorporating multi-turn dialogues that capture a wide 
range of conversational contexts35. As a result, it provides a more 
natural and context-aware dialogue experience compared to  
Alpaca, which was fine-tuned on instruction-following examples, 
leading to strong performance on single-turn tasks36. This distinction 
may account for the greater divergence observed between Vicuna 
13B and LLaMA 13B.

Sensitivity of model attention to instructions
To confirm that the fine-tuned models exhibit distinct instruction- 
following behaviors compared with the base models, we analyzed the 
sensitivity of their attention to instructions. We added two instructions 
before each sentence in our text stimuli: ‘Please translate this sentence 
into German:’ and ‘Please paraphrase this sentence:’. As a control,  
we introduced a noise prefix composed of five randomly sampled Eng-
lish words, such as ‘cigarette’, ‘first’, ‘steel’, ‘convenience’, ‘champion’. 
We then extracted the attention matrices for the original sentence 
spans and calculate the DJ-S of attentions between each model pair 
layerwise. Our results showed a significantly larger divergence in the 
attention matrices for the fine-tuned models when processing plain 
versus instructed texts, for both the 7B and 13B sizes. By contrast, the 
LLaMA models did not show sensitivity to instructions at either size. 
No significant difference was found for the DJ-S of attentions across all 
layers between the base and fine-tuned models for plain versus 
noise-prefixed text (see Fig. 2c and Supplementary Table 4 for the 
detailed t-test statistics).

Sensitivity of model attention to trivial patterns
Past studies have highlighted certain patterns in LLMs’ attention matri-
ces, such as a tendency to focus on the first word of a sentence, the 
immediately preceding word37, or on the word itself38. We consider 
these tendencies ‘trivial patterns’ because these behaviors are exhib-
ited by all LLMs. As a result, it is not relevant to the effects of scaling or 
fine-tuning on LLMs’ brain-encoding performance, which is the primary 
focus of this study. To examine how scaling and fine-tuning influence 
the models’ sensitivity to these trivial patterns, we constructed a binary 
matrix for each sentence in the test stimuli, marking cells that exhib-
ited these trivial relationships. We then regressed each model’s atten-
tion matrix for each sentence at each layer against the corresponding 
trivial patterns. Our findings showed that for the LLaMA series and 
their fine-tuned versions, as the model size increases from 7B to 65B, 
the average regression score for predicting the trivial patterns across 
layers decreases. No significant differences were observed between 
the LLaMA models and their fine-tuned versions (see Fig. 2d and Sup-
plementary Tables 5 and 6). Given that similar trivial patterns were not 
observed in human eye movement data, we believe they do not reflect 
underlying human cognitive processes. As the attention weights of 
larger models display fewer trivial patterns compared with smaller 
models, this reduced sensitivity may contribute to their greater cogni-
tive plausibility.

Effects of scaling versus fine-tuning on model–behavior 
alignment
Comparisons of LLMs in NWP on our test stimuli indicate an advantage 
for larger models, suggesting they may achieve better alignment with 
both behavioral and neural data. To test this hypothesis, we first 
regressed the attention matrices of the LLMs against the number of 
regressive eye saccades for all stimuli sentences. We did not include 
forward saccades, not only due to the unidirectional nature of LLMs, 
but also because regressive saccades may carry more informative value 
in reading. Regressive saccades occur when readers revisit earlier text, 
highlighting the importance of previous words in understanding the 
current word39—similar to how attention weights function in LLMs. We 
extracted the lower-triangle portions (excluding the diagonal line) of 
the attention matrix nword × nword × nhead from all attention heads for 
every sentence. The attention matrices for all sentences were concat-
enated to create a regressor with dimensions 7,388 × nhead for each 
layer, where 7,388 represents the total number of elements obtained 
after concatenating the lower triangles of the attention matrices across 
all sentences in our stimuli. For the human eye saccade data, we con-
structed matrices for saccade number, Enum∈ℝ

nword×nword, for each sen-
tence. Each cell at row l and column m in Enum and Edur represents the 
number of eye fixation moving from the word in row l to the word in 
column m, respectively. We then extracted the lower-triangle parts of 
the matrices that mark right-to-left eye movement. Similar to the mod-
els’ attention matrices, we flattened the regressive eye saccade number 
matrices for all sentences and concatenated them to create 7,388-length 
vectors for each patient. We then performed ridge regression for each 
model layer, using the 7, 388 × nhead regressor to predict each patient’s 
regressive eye saccade number vectors. The final R2

model was normalized 
by the R2

ceiling , where the ceiling model represents the mean of all 
patients’ regressive eye saccade number vectors.

Our findings show that for the LLaMA series, as model size 
increases from 7B to 65B, the regression scores also increase across lay-
ers. The GPT-2 models, which has the smallest parameter size, exhibits 
the lowest regression scores. By contrast, base and fine-tuned models 
of the same sizes exhibit no difference in their regression scores when 
aligned with human eye movement patterns, suggesting that scaling, 
rather than fine-tuning, enhances the alignment between LLMs and 
human reading behaviors. No significant difference was found for the 
regression scores of controlled models of matching sizes (see Fig. 3a 
and Supplementary Table 7 and Supplementary Data 1). Notably, the 

Table 1 | Configurations of the LLMs evaluated in the study

Model Size Layers Attention 
heads

Training 
data size

Fine-tuning

GPT-2 base 124M 12 12

8B

None

GPT-2 medium 355M 24 16

GPT-2 large 774M 36 20

GPT-2 xlarge 1.5B 48 25

LLaMA

7B 32 32

1T
13B 40 40

30B 60 52

65B 80 64

Alpaca
7B 32 32

1T + 52K

Instruction
13B 40 40

Gemma-Instruct 7B 28 16 6Ta

Mistral-Instruct 7B 32 32 8Ta

Vicuna
7B 32 32

1T + 70K Conversation
13B 40 40

The number of total parameters, number of layers and attention heads, size of the training 
corpus for each LLM, and whether the LLM is a base model or has undergone instruction 
fine-tuning. aThe number reflects the training data size for the base model, whereas the 
dataset used for instruction tuning has not been disclosed. The training data for the base 
Mistral model is an estimate (see ref. 65).
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GPT-2 models of varying sizes did not exhibit any significant differences 
in the fit between these models and the eye regression patterns. This 
may be because the size differences among these models are not as 
substantial as, for example, between 7B and 65B. We further plotted 
the maximum regression scores from all model layers against different 
LLMs and the logarithmic scale of parameter size, illustrating a clear 
scaling law of model–behavior alignment (see Fig. 3a, right panel).

Given that participants answered ten comprehension questions 
after reading each article, there is a possibility that their reading  
behavior shifted from naturalistic reading to a more focused approach 

aimed at solving questions as the experiment progressed. This could mean 
that LLMs with instruction tuning might increasingly align with human 
behavior later in the experiment. To test this hypothesis, we performed 
the same regression analyses separately for each section of the experi-
ment. Our results revealed no significant difference in the regression 
scores for base and fine-tuned LLMs over time, suggesting that human 
reading behaviors during naturalistic reading are not influenced by the 
subsequent comprehension questions (see Fig. 3b). Supplementary 
Table 8 lists the F statistics from one-way analysis of variance (ANOVA) 
for each base and fine-tuned LLM across the five experimental sections.

a b
 Fine-tuned versus base

Noise-prefixed text versus plainInstructed text versus plain

Large versus small

Quarter layer Layer

Layer Layer Layer Layer

Layer

J–
S 

di
ve

rg
en

ce

Divergence between the model attention matricesMean NWP loss for the test stimuli

1 2 3 4

0.005

0.010

0.01

0.02

0.03

0.04

1 32 1 40

1 32

0.01

0.02

0.03

0.04
13B

1 40

7B 13B 7B 13B

1 32 1 40

13B versus 7B

c Model sensitivity to instructions

J–
S 

di
ve

rg
en

ce

Model sensitivity to trivial patterns

R2  
sc

or
e

0.4

0.8

d

 N
W

P 
lo

ss

13
B7B

77
4M 30

B

65
B

5

10

13
B7B

30
B

65
B

0

GPT-2 774M LLaMA 7B
LLaMA 13B LLaMA 30B LLaMA 65B

Alpaca 7B
Alpaca 13B

Vicuna 7B
Vicuna 13B

Gemma 7B Mistral 7B

77
4M

Vicuna 13B versus LLaMA 13B
Alpaca 13B versus LLaMA 13BLLaMA 13B versus 7B 

Vicuna 13B versus 7B  
Alpaca 13B versus 7B  

Alpaca 7B versus LLaMA 7B
Vicuna 7B versus LLaMA 7B

7B
n = 148

0

n = 36–80

3 5 6 7 8 9 10 11 12 13 14

3 5 6 7 8 9 10 11 12 13 14

3 65

10 13 1411

7

12

8 9

Fig. 2 | Comparison between the attention matrices of different LLMs. a, The 
mean NWP loss (y-axis) of all of the LLMs for the test stimuli (N = 148). b, J–S 
divergence between the attention matrices of different LLMs at each layer or 
quarter-layer. c, The impact of scaling and fine-tuning on LLMs’ sensitivity to 

instructions. Shaded regions denote s.d. d, The impact of scaling and fine-tuning 
on LLMs’ sensitivity to trivial patterns between words in a sentence (N = 36–80). 
The y-axis denotes the average R2 score across model layers and error bars denote 
s.d. Dashed lines in a and d represent groups of LLMs of same size.

SectionsSections

7B 13B

N
or

m
al

iz
ed

 R
2

log Parameter scale

0.8

0

0.4

1 2 3 4 5

0.5

1.0

1.5

1 2 3 4 5

N
or

m
al

iz
ed

 R
2

a b

13
B7B

<1
.5

B

65
B

0.4

0

0.2
0.5

1.0

1.5

30
B

LLaMA 65B
Alpaca 7B

Alpaca 13B
Vicuna 7B

Vicuna 13BGemma 7B Mistral 7B
GPT­2 124M GPT­2 335M GPT­2 774M GPT­2 1.5B LLaMA 7B

LLaMA 13B LLaMA 30B

n = 51

65

10 13 1411

7

129

321

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4

8

n = 51 n = 51

Fig. 3 | Effects of scaling and fine-tuning on the alignment between LLMs  
and human regressive eye saccade patterns during naturalistic reading. 
 a, Regression results of the LLMs’ best-performing layer on the regressive eye 
saccade patterns and their results on a logarithmic size scale (N = 51). The bar 
plot denotes the mean of the normalized R2 score of the model best-performing 
layer. Error bars denote s.d. across patients. b, Regression results of different 

LLMs and regressive eye saccade number patterns across experimental sections 
(N = 51). The x-axis denotes the five consecutive sections of the stimulus, and the 
y-axis denotes the normalized R2 score across participants. The center lines of the 
boxplots denote the median; the box limits denote the 25th and 75th percentiles; 
whiskers extend to the most extreme data points within 1.5 times the interquartile 
range; and outliers beyond this range are plotted individually as dots.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00863-0

Effects of scaling versus fine-tuning on model–brain alignment
We next conducted a ridge regression using the attention  
matrix vjmodel  at each layer j  from each LLM to predict each voxel’s 
blood-oxygen-level-dependent (BOLD) vector ViB in the whole brain 
for each patient (refer to the ‘Alignment between LLMs and fMRI data’ 
section in the Methods for details). As shown in Fig. 4a, the average 
prediction performance across patients from the best-performing 
layer of each LLM increases with model size. By contrast, base and 
fine-tuned LLMs of the same sizes did not show differences in their 
average prediction performance (see Supplementary Table 9 and Sup-
plementary Data 2). We also plotted the normalized correlation coef-
ficients from the best-performing layer of each model on a logarithmic 
scale, demonstrating a clear scaling effect where larger models better 
explained the fMRI activity patterns during naturalistic reading. 
Figure 4b presents significant brain clusters identified when contrast-
ing the prediction performance (Pearson’s r maps) of larger and smaller 
LLMs. The results show that larger LLMs consistently exhibited sig-
nificantly more activation in a bilateral temporal-parietal network 
compared with their smaller counterparts. Although the effect size as 
measured by the Cohen’s d is larger in the left hemisphere than the 
right hemisphere (see Table 2). We also compared the regression scores 
of base and fine-tuned models of same sizes, yet no significant brain 
cluster has been observed.

Expanding the analysis to different datasets
To verify whether our findings can generalize to a broader spectrum 
of human language processing, we performed the same analysis on a 
fMRI dataset collected while participants listened to a 20 min Chinese 
audiobook in the scanner. We regressed the attention weights of the 
base and fine-tuned LLaMA3 8B, LLaMA3 70B, LLaMA3-Instruct 8B and 
LLaMA3-Instruct 70B models against the fMRI data matrices at the 
paragraph level (refer to ‘Additional results from fMRI data of natu-
ralistic listening’ in Supplementary Section 2). We used the LLaMA3 

models for their better performance in Chinese. This analysis extends 
beyond sentence-level comprehension to discourse-level processing 
and introduces both a different modality (listening versus reading) and 
a different language (Chinese versus English). Our findings remained 
consistent: model scaling had a significant effect on model–brain align-
ment, while fine-tuned and base models of the same size showed no 
difference in brain-encoding performance (see Supplementary Fig. 1a 
and Supplementary Tables 10–12).

We also regressed the predictions from the base and fine-tuned 
LLaMA3 8B and LLaMA3 70B models against the fMRI data collected 
while participants answered multiple-choice comprehension questions 
about the preceding listening session (refer to ‘Additional results from 
fMRI data of naturalistic listening’ in Supplementary Section 2). Our 
results showed LLaMA3 8B exhibited a significantly higher regression 
score (mean = 0.219 ± 0.004) compared with LLaMA3-Instruct 8B 
(mean = 0.211 ± 0.004, t = 58.073, P = 7.47 × 10−7); LLaMA3-Instruct 70B 
showed a higher mean regression score (mean = 0.259 ± 0.005) across 
participants compared to the LLaMA3 70B (mean = 0.243 ± 0.005, 
t = 80.528, P = 5.76 × 10−4), but no significant brain cluster has been 
found between the contrast of the two 70B models’ R2 maps (see Sup-
plementary Fig. 1b and Supplementary Tables 13–15).

Discussion
Two key factors driving the improvement of recent LLMs compared with 
their predecessors, such as BERT (ref. 12) and GPT-2 (ref. 11), are scaling 
and fine-tuning. Although past work suggests that the scaling law also 
applies to LLMs’ brain-encoding performance with extensive fMRI 
data during naturalistic language comprehension20,40, it is still unclear 
how effective scaling is for model–brain alignment when dealing with 
shorter texts. As GPT-2 has been shown to predict more variance relative 
to the ceiling in some neuroimaging datasets41,42—where the ceiling is 
defined as the mean of the neural responses from all participants in 
these datasets—smaller models may have reached their performance 
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limits on next-word prediction for simpler texts. Moreover, current 
LLMs far exceed human capabilities in terms of data input during train-
ing and memory resources for accessing contextual information during 
comprehension. It has been argued that larger models increasingly 
diverge from human language-processing patterns25. In this study we 
evaluated the alignment between LLMs of varying sizes and human 
eye movement and fMRI activity patterns during naturalistic read-
ing. Despite using experimental stimuli and fMRI data that are much 
smaller in size compared with previous studies20, we observed consist-
ent improvements in alignment as the model size increased from 774M 
to 65B, without any apparent diminishing returns. Similar results have 
also been reported for electrocorticography data during naturalistic 
listening21. This suggests that the scaling law of model–brain alignment 
holds even with shorter text stimuli and smaller fMRI data.

Although the largest LLMs today still do not match the human brain 
in terms of synapse count, training and operating such large LLMs pose 
significant computational challenges, especially in academic settings 
with limited computing resources. Fine-tuning LLMs with instructions 
offers a viable approach to enhance the performance and usability of 
pre-trained language models without expanding their size26–29. Ouyang 
et al.27 noted that the typical next-token prediction training objective 
of language models often diverges from user intentions, leading to 
outputs that are less aligned with user preferences. Although there is 
ample evidence that human language processing involves next-word 
prediction2,8,43, research also showed that fine-tuning language mod-
els for tasks such as narrative summarization can enhance model–
brain alignment, especially in understanding characters, emotions 
and motions44. It is possible that instruction-following plays a role in 
human language learning and that fine-tuned models might contain 
richer discourse and pragmatic information beyond basic meaning 
representation.

However, our regression results with human behavioral and neu-
ral patterns did not reveal any significant improvement in alignment 
for fine-tuned LLMs compared with base models of identical size. We 
examined whether fine-tuned models exhibited better alignment to eye 
movement patterns as participants completed more comprehension 
questions over time, but no significant differences were found in the 
regression scores. We also examined predictions from the fine-tuned 
LLaMA3 7B and LLaMA3 70B models against the fMRI data collected 
while participants answered multiple-choice comprehension ques-
tions about the preceding listening session, yet we still did not find a 
consistent advantage of the fine-tuned model on model–brain align-
ment. Our results therefore highlight the greater impact of scaling over 
fine-tuning in model–brain alignment, contributing to the existing lit-
erature on the scaling law in brain-encoding performance4,20,21. Similar 
findings have been reported by Kuribayashi et al.34, who demonstrated 
that instruction-tuned and prompted LLMs do not provide better esti-
mates than base LLMs when simulating human reading behavior. How-
ever, it is possible that LLMs using different fine-tuning techniques may 
exhibit a positive effect. Here we examined two additional fine-tuned 
models (Gemma-Instruct and Mistral-Instruct) and did not find any 
improvement over the base LLMs, but Kuribayashi et al.34 reported 

that Falcon instruction-tuned LLMs, which use a supervised tuning 
approach different from reinforcement learning from human feedback, 
showed a moderate positive effect in simulating human reading data. 
Future research should further explore the impact of fine-tuning tech-
niques on the cognitive plausibility of instruction tuning.

Our findings that scaling has a larger impact than fine-tuning 
on model–behavior and model–brain alignments are particularly 
relevant in the current landscape, where reasoning LLMs such as 
DeepSeek-R1 (ref. 32) exhhibited superior performance with similar 
or fewer activated parameters compared with existing open-source 
LLMs. We acknowledge that caution is needed when interpreting these 
results. As instruction tuning effectively realigned the model weights 
in response to instructions, these realigned model weights may better 
fit brain activity patterns where participants performed tasks aligned 
with the instruction-following nature of the fine-tuning process. How-
ever, due to the lack of such openly available neuroimaging datasets, 
we cannot evaluated the fine-tuned LLMs on these task-specific brain 
data. This gap leaves the potential for future research to explore the 
impact of instruction tuning on model–brain alignment in controlled 
experimental settings.

Methods
The eye-tracking and fMRI dataset used in the analysis is publicly 
available33 and does not contain sensitive content such as personal 
information. The adaptation and use of the dataset are conducted in 
accordance with its license. The model states of LLMs are used solely 
for research purposes, aligning with their intended use.

Eye-tracking and fMRI data
We used the openly available Reading Brain dataset33 on OpenNeuro. 
This dataset includes concurrent eye-tracking and fMRI data collected 
from 52 native English speakers (27 females, mean age = 22.8 ± 4.7 
years) as they read five English STEM articles inside an fMRI scanner. 
One participant’s (patient ID 21) eye-tracking data was excluded due 
to incomplete recording, resulting in a final sample of 51 participants 
(26 females; mean age = 22.6 ± 4.0 years) for the eye-tracking analysis. 
Two participants’ (patient IDs 21 and 52) fMRI data were excluded 
due to preprocessing errors, leaving 50 participants (25 females; 
mean age = 22.5 ± 4.1 years) for the fMRI analysis. The articles were 
constructed using materials from established sources such as the 
NASA science website, the GPS.gov website (http://www.gps.gov), 
and Wikipedia. These texts underwent an extensive revision process 
to ensure content accuracy and stylistic consistency45. Each article 
contains an average of 29.6 ± 0.68 sentences, with each sentence com-
prising approximately 10.33 ± 0.15 words. Participants read each article 
sentence-by-sentence in a self-paced manner, pressing a response 
button to advance to the next sentence. If there was no response within 
8,000 ms, the screen would automatically progress to the next sen-
tence. The sequence in which the five texts were presented was ran-
domized across participants to control for potential order effects. 
At the end of each article, participants answered ten multiple-choice 
questions to ensure their comprehension. The whole experiment, 

Table 2 | Comparison of brain-encoding results between different model pairs

Model 1 Model 2 Left hemisphere Right hemisphere

N vertices P Cohen’s d N vertices P Cohen’s d

LLaMA 7B GPT-2 large 1133 0.006 7.303 517 0.007 3.691

LLaMA 13B LLaMA 7B 1096 0 18.005 622 0 7.670

LLaMA 30B LLaMA 13B 69 0.051 2.159 \ \ \

LLaMA 65B LLaMA 30B 1734 0.007 7.149 650 0.008 3.709

Summary statistics for the significant brain clusters in the left and right hemisphere from the contrast of the correlation coefficients of model pairs from the ridge regression analyses. 
Significance of the r-map contrasts was assessed using cluster-based two-sample one-sided t-tests with 10,000 permutations (Maris and Oostenveld57).
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including preparation time, lasted for about 1 h (see Fig. 1a for the 
experimental procedure). The study was approved by the Pennsylvania 
State University Institutional Review Board (CR00003867). All partici-
pants provided written informed consent before the experiment and 
were compensated for their participation.

All imaging and eye-tracking data were acquired in 3 T Siemens 
Magnetom Prisma Fit scanner at the Center for NMR Research at the 
Pennsylvania State University Hershey Medical Center in Hershey,  
Pennsylvania. The anatomical scans were acquired using a 
magnetization-prepared rapid gradient-echo pulse sequence with T1 
weighted contrast (176 ascending sagittal slices with A/P phase encod-
ing direction; voxel size = 1 mm isotropic; field of view (FOV) = 256 mm; 
repetition time (TR) = 1,540 ms; echo time (TE) = 2.34 ms; acquisition 
time = 216 s; flip angle = 9°; GRAPPA in-plane acceleration factor = 2; 
brain coverage is complete for cerebrum, cerebellum and brain stem). 
The functional scans were acquired using T2*-weighted echo planar 
sequence images (30 interleaved axial slices with A/P phase encod-
ing direction; voxel size = 3 mm × 3 mm × 4 mm; FOV = 240 mm; 
TR = 400 ms; TE = 30 ms; acquisition time varied on the speed of 
self-paced reading, maximal 5.1 min per run; multiband accelera-
tion factor for parallel slice acquisition = 6; flip angle = 35°; where 
the brain coverage missed the top of the parietal lobe and the lower 
end of the cerebellum). A pair of spin echo sequence images with 
A/P and P/A phase encoding direction (30 axial interleaved slices; 
voxel size = 3 mm × 3 mm × 4 mm; FOV = 240 mm; TR = 3,000 ms; 
TE = 51.2 ms; flip angle = 90°) were collected to calculate distortion 
correction for the multiband sequences46. fMRI preprocessing of 
the was conducted using fMRIPrep (v.25.0.0)47 with all default para
meters. Final resampling to Montreal Neurological Institute (MNI) 
space and fsaverage5 surface was performed in a single interpolation 
step using antsApplyTransforms and mri_vol2surf. Participants’ eye 
movements were simultaneously recorded using an MRI-compatible 
EyeLink 1,000 Plus eye tracker48 with a sampling rate of 1,000 Hz. 
The eye tracker was mounted at the rear end of the scanner bore and 
captured eye movements via a reflective mirror positioned above 
the MRI’s head coil.

Large language models
To investigate the effects of scaling and instruction tuning on the 
alignment of LLMs with human behavior and neural data, we used 
the open-source LLaMA model14 and its instruction-tuned variants, 
Alpaca36 and Vicuna35, which are available in various sizes. LLaMA 
is a series of pre-trained causal language models trained on over 
one trillion publicly accessible text tokens, primarily in English.  
It achieved state-of-the-art performance on most LLM benchmarks14. 
We employed all four sizes of LLaMA: 7B, 13B, 30B and 65B. We  
also included all of the GPT-2 models11 to represent smaller pre- 
trained language models (base = 124M, medium = 355M, large = 774 M, 
xlarge = 1.5B) as well as two other fine-tuned models, Gemma- 
Instruct 7B (ref. 49) and Mistral-Instruct 7B (v.03)50, for comparison 
with LLaMA 7B.

Alpaca36 was fine-tuned from the 7B LLaMA model and was trained 
on 52K English instruction-following demonstrations generated by 
GPT-3 (ref. 51) using the self-instruct method52. We also developed a 
13B version of Alpaca using the same training data and strategy. Our 
13B Alpaca model achieved accuracy scores of 43.9 and 46.0 on the 
MMLU dataset53 in zero- and one-shot settings, respectively, outper-
forming the original 7B model’s scores of 40.9 and 39.2. Vicuna versions 
7B and 13B (ref. 35) were fine-tuned from the respective 7B and 13B 
LLaMA models, using 70K user-shared conversations with ChatGPT13. 
This dataset includes instruction and in-context learning samples 
across multiple languages. Gemma-Instruct 7B was fine-tuned on a 
mix of synthetic and human-generated prompt-response pairs49, and 
Mistral-Instruct 7B was fine-tuned on publicly available instruction 
datasets from the Hugging Face repository50.

Comparison of next-word prediction loss
To examine the effects of scaling and fine-tuning model’s performance 
in next-word prediction, we calculated the mean NWP loss (the nega-
tive log-likelihood loss normalized by sequence lengths) of the models 
employed in this study on every sentence of the articles in the Reading 
Brain dataset. As LLMs use subword tokenization (Kudo and Richardson,  
2018)54, we aligned subwords to words by summing over the ‘to’ tokens 
and averaging over the ‘from’ tokens in a split word, as suggested by 
Clark et al.38 and Manning and colleagues55. For example, suppose the 
phrase ‘delicious cupcake’ is tokenized as ‘del icious cup cakes’, the 
attention score from ‘cupcake’ to ‘delicious’ is the sum of the atten-
tion scores from ‘del’ to ‘cup’, and ‘cake’ and ‘icious’ to ‘cup’ and ‘cake’, 
divided by two as there are two ‘to’ tokens (’cup’ and ‘cake’). We also 
removed the special tokens ‘<s>’ from the sentence beginnings. The 
losses for all sentences were z-scored model-wise and the contrasts 
of the z-scored losses for two models (for example, LLaMA 7B versus 
Alpaca 7B) were tested using a two-sample two-tailed related t-test. 
The false discovery rate (FDR) was applied to correct for multiple 
comparisons across layers.

Comparison of model attentions
The self-attention matrices of different LLMs given the same input were 
compared using their mean Jensen–Shannon ( J–S) divergence across 
all layers. For every sentence in our stimuli, we extracted the attention 
matrices A and B from one attention head and one layer of two target 
LLMs (A,B∈ℝnword×nword ), and their J–S divergence DJ-S(A,B) is computed 

as DJ-S (A,B) =
1
2
∑nword
i=1 [DK-L (Ai ∥ Bi) + DK-L (Bi ∥ Ai)], where Ai  and Bi  are  

the ith rows in the two matrices and DK-L is the Kullback–Leibler (K–L) 
divergence56. The attention matrices were normalized such that each 
row sums to one, and the final DJ-S for each layer was averaged across 
attention heads. We aligned subword tokenization to words using the 
previously described methods for calculating NWP loss. For models 
with different numbers of layers, we divided their layers into four 
quarters and averaged the DJ-S quarter-wise. We compared each model 
pair’s DJ-S  for each layer or each quarter-layer using a two-sided 
two-sample related t-test with FDR correction.

Model sensitivity to instructions
We compared the models’ attention matrices for each stimuli sentence 
when prefixed with two instructions: ‘Please translate this sentence 
into German:’, and ‘Please paraphrase this sentence:’. As a control, we 
introduced a noise prefix composed of five randomly sampled English 
words, such as ‘Cigarette first steel convenience champion.’ We then 
extracted the attention matrices for the original sentence spans. We 
calculated the DJ-S between the prefixed and original sentences across 
different models to assess each model’s sensitivity to instructions.

Model sensitivity to trivial patterns
Past studies have highlighted certain trivial patterns in the attention 
matrices within a given context, such as a tendency to focus on the 
first word of a sentence, the immediately preceding word37, or the 
word itself38. We consider the model’s tendencies to attend to the 
immediately preceding or current word ‘trivial patterns’ because these 
behaviors are exhibited by all LLMs. As a result, it is not relevant to the 
effects of scaling or fine-tuning on LLMs’ brain-encoding performance, 
which is the primary focus of this study. To examine whether scaling and 
fine-tuning will change the models’ reliance on these trivial patterns, 
we constructed a binary matrix for each sentence in the test stimuli, 
marking cells that exhibit these trivial attention relationships with a 1. 
We then flattened the lower-triangle parts of these matrices to create 
trivial pattern vectors. We then performed ridge regressions using 
each model’s attention vectors for each sentence at each quarter-layer 
to predict the corresponding trivial pattern vectors. The resulting 
regression scores were averaged across model layers and were z-scored 
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and assessed for statistical significance using two-tailed one-sample 
t-tests with FDR corrections. We subtracted these patterns from all 
the attention matrices of the LLMs for the following ridge regression 
analyses. Given that similar patterns were not observed in human eye 
movement data, we believe they do not reflect underlying human 
cognitive processes.

We also examined results based on the original attention matrices 
(without subtracting the trivial patterns) from each LLM and observed a 
similar scaling effect, with larger models exhibiting higher model–brain 
alignment within a bilateral temporal-parietal network; however, no 
significant brain clusters were observed for the contrasts between the 
mid-sized LLaMA pairs 13B versus 7B and 30B versus 13B (see Supple-
mentary Fig. 2 and Supplementary Table 16 and Supplementary Data 3). 
This may be due to smaller and mid-sized models being more suscep-
tible to capturing trivial patterns, leading to similar brain responses.

Alignment between LLMs and eye movement
We input each sentence into the LLMs individually, consistent with how 
sentences were presented separately to participants on the screen 
during fMRI scanning. Furthermore, regressive eye saccade informa-
tion was available only at the sentence level. As our autoregressive LLMs 
use right-to-left self-attention, we extracted the lower-triangle portions 
of the attention matrix from each layer and each attention head for 
every sentence. These matrices were flattened and concatenated to 
form the attention vector V j,k

model for all sentences at head k in layer j. We 
stacked these vectors along the attention heads to create a matrix v j,kmodel 
for the jth layer. For the human eye saccade data, we constructed matri-
ces for saccade number Enum∈ℝ

nword×nword, for each sentence. Each cell at 
row l and column m in Enum represents the number of times of eye fixa-
tion moving from the word in row l to the word in column m, respec-
tively. We then extracted the lower-triangle parts of the matrices which 
marks right-to-left regression. Like the models’ attention matrices, we 
flattened the regressive eye saccade number matrices for all sentences 
and concatenated them to get the regressive eye saccade number vec-
tor Vinum for each patient i. We then conducted a ridge regression using 
the model attention matrix v jmodel at each layer j to predict each patient’s 
regressive eye saccade number vector. The final dimensionality of the 
dependent variable X is 7,388 × Natt_head, where 7,388 represents the 
length of the concatenated vector formed by flattening the 
lower-triangular part of the attention matrix for each sentence at each 
layer, and N is the number of attention heads at that layer. We did not 
average across attention heads to obtain a single attention matrix 
per sentence, as each head is known to capture distinct relationships 
among words in a sentence (Manning and co-workers55). The dependent 
variable (y) is a 7,388-dimensional vector, where 7,388 again reflects 
the length of the concatenated and flattened lower-triangular part of 
the regressive eye saccade matrix for each sentence.

We used ridge regression instead of ordinary least squares regression 
as most models have 32 attention heads, with the maximum being 64.  
We believe that applying ridge regression is preferable to mitigate 
collinearity among the regressors and enhance prediction accuracy. 
The penalty regularization parameter was kept as the default value of 1.  
The final R2

model was normalized by the R2
ceiling, where the ceiling model 

represents the mean of all patients’ regressive eye saccade number 
vectors. At the group level, the significance of the contrast of the regres-
sion performance R2

model for every model pair at every layer was exam-
ined using a two-tailed one-sample related t-test, with FDR corrections 
for multiple comparisons across layers.

To test this hypothesis that participants’ reading behavior shifted 
from naturalistic reading to a more focused approach aimed at solv-
ing questions as the experiment progressed, we performed the same 
regression analysis separately for each section of the experiment. We 
then compared the regression scores of each LLM across different 
times using ANOVA to assess changes in model fit over the course of 
the experiment.

Alignment between LLMs and fMRI data
For each voxel of the fMRI data for each patient, we constructed a BOLD 
matrix B∈ℝnword×nword for each sentence. The value at row l and column m 
in B represents the sum of the BOLD signals at the timepoints where 
the eye fixation moves from the word in row l to the word in column m. 
We extracted the lower-triangle parts of the B matrices (excluding the 
diagonal line) for all sentences and concatenated them to form the 
BOLD vector ViB for each voxel of each patient i. Next, we conducted a 
ridge regression using each patient’s regressive eye saccade vectors 
Vinum to predict each patient’s BOLD vector ViB at each voxel. We then 
performed ridge regressions using the attention matrix v jmodel at each 
layer j from each LLM to predict each voxel’s BOLD vector ViB in the whole 
brain for each patient (see Fig. 1). The dimensionality of the independ-
ent variable is 7,388 × Natt_head, where 7,388 represents the length of the 
concatenated vector formed by flattening the lower-triangular part of 
the attention matrix for each sentence at each layer, and N is the number 
of attention heads at that layer. The dependent variable (y) is a 
7,388-dimensional vector, where 7,388 again reflects the length of the 
concatenated and flattened lower-triangular part of the BOLD response 
matrix for each sentence at each voxel for each patient. As we con-
structed the BOLD matrix for each sentence based on the regressive 
eye saccade patterns, each BOLD matrix of each sentence is of size 
Nword × Nword, its dimension matches the dimension of model’s attention 
matrix for each sentence.

The penalty regularization parameter for each voxel within each 
patient was determined using a grid search with nested cross-validation 
across 20 candidate regularization coefficients (log-spaced between 10 
and 1,000), following previous approach3. We adopted a train–test split 
method with ten-fold cross-validation, using 90% of the fMRI data (133 out 
of 148 sentences) to fit the ridge regression models and evaluating perfor-
mance by computing the correlation between the predicted and observed 
time courses on the remaining 10% of the data (15 out of 148 sentences). 
For each voxel, a P-value for the correlation coefficient (r) was obtained 
by permuting the predicted time course 10,000 times and comparing 
the observed r to the distribution of permuted r values. Significance of 
the r-map contrasts was assessed using cluster-based two-sample t-tests 
with 10,000 permutations57. All of our analyses and visualizations were 
performed using custom Python codes, making heavy use of the torch 
(v2.2.0)58, MNE (v.1.6.1)59 and scipy (v1.12.0)60 packages.

Although most past model–brain alignment studies regressed 
embeddings at each model layer onto voxel-wise activity time 
series3,4,18,61, this method is not feasible for the current study due to the 
non-linear nature of reading. Note that our task is not self-paced read-
ing at word level where each word appears on the screen sequentially, 
instead, we presented the whole sentence on the screen and relied on 
eye-tracking to identify the timepoints for each word. We cannot directly 
regress the embeddings for each sentence with the fMRI data because 
is not strictly sequential. For example, our first participant read the 
sentence ‘Could humans live on Mars some day’ in the following order 
based their eye fixations: ‘humans humans Could humans on Mars on 
some some day’. We could not simply input this disordered sequence into 
the LLM, as it would generate meaningless representations. Similarly, 
we cannot directly regress embeddings from the correctly ordered 
sentence onto the fMRI data, as the recorded neural responses corre-
spond to the actual reading sequence, which does not follow the original 
sentence structure. To the best of our knowledge, no past studies have 
employed this approach, probably because most previous research 
relied on naturalistic listening or self-paced reading paradigms at the 
word level, which inherently enforce sequential word processing. We 
hope our rationale is now clearer and that future studies incorporating 
concurrent eye-tracking and fMRI will consider applying our methods.

Statistics and reproducibility
We analyzed openly available eye-tracking and fMRI data from 52 
participants during naturalistic sentence reading, regressing model 
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attention matrices against their eye movement and BOLD responses. 
One participant (patient ID 21) was excluded in eye-tracking analysis 
due to incomplete recording. Two participants (patient IDs 21 and 52) 
were excluded in fMRI analysis due to fMRI preprocessing errors. No 
statistical method was used to predetermine sample size. The text 
order was randomized across participants, and the investigators were 
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The attention matrices of all the LLMs for our experimental stimuli are 
available at https://github.com/RiverGao/scaling_finetuning (ref. 62) 
and on Zenodo via https://zenodo.org/records/15788717 (ref. 63). The 
reading eye-tracking and fMRI dataset is available at https://openneuro.
org/datasets/ds003974/versions/3.0.0 (ref. 33). The listening and 
comprehension fMRI dataset is available at https://openneuro.org/
datasets/ds005345 (ref. 64). Source Data are provided with this paper.

Code availability
All codes are available at https://github.com/RiverGao/scaling_finetuning  
(ref. 62) and on Zenodo via https://zenodo.org/records/15788717  
(ref. 63).
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