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Abstract—Bluetooth Low Energy (BLE) technology,
characterized by its low energy consumption, cost-effectiveness,
and scalability, has gained prominence as a viable solution for
indoor localization within industrial contexts. However, the
dynamic nature of industrial environments poses considerable
challenges to the accuracy of BLE-based indoor positioning
systems (IPSs), particularly those dependent on signal strength for
localization. Accordingly, this paper proposes a novel method
framework TransAoA that leverages the Transformer deep
learning architecture to enhance Angle of Arrival (AoA)
estimation for BLE indoor positioning. First, a data filtering
method is designed to eliminate low-quality In-phase and
Quadrature (I/Q) samples affected by noise. Second, a specialized
feature extraction method is developed to distill multiple
informative features from I/Q samples prior to the prediction
model to enable rapid convergence and improve accuracy. Third,
the Transformer-based AoA estimation model is constructed to
establish a mapping relationship between angles (azimuth and
elevation) and the combined 1/Q samples and features. Fourth,
several BLE anchors collaborate to localize targets using a least
squares approach, and a self-adjusting calibration mechanism is
devised to bolster the long-term robustness and stability of the IPS.
Finally, experiments are conducted in a lab that simulates
industrial conditions to verify the effectiveness of the framework.
By comparison, the TransAoA shows superiority over existing
benchmark methods, achieving estimation errors within 5 degrees
for 98.85% of azimuth and 99.97% of elevation measurements.

Index Terms—Indoor localization, Bluetooth low energy, Angle of
Arrival, Deep learning, Transformer.

[. INTRODUCTION

HE significance of location-based services (LBS) and
spatial-temporal traceability has been highlighted in
Industry 4.0 for enhancing operational and management
efficiency among activities such as rapid object-picking, stock-
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taking, and strategic asset allocation [1,2]. Furthermore, they
have also been expected to assume a more vital role in the
context of Industry 5.0 [3], which prioritizes human-centric
management, sustainability, and production resilience,
especially in human safety monitoring, product lifecycle
supervision, and real-time  decision-making  [4-6].
Correspondingly, indoor positioning systems (IPS) serve as a
foundation to generate spatial-temporal information necessary
for these service offerings. In most industrial applications,
stakeholders favor an IPS that is not only accurate but also cost-
efficient and easy-to-deploy. Bluetooth Low Energy (BLE)
technology, featuring low energy consumption, affordability,
and high scalability, emerges as a prime candidate to fulfill
those indoor localization requirements [7]. However, the
intricate and dynamic industrial environment, replete with noise
pollution, signal interference, and physical obstructions, can
severely impair BLE signal integrity, exacerbate multipath
fading and, thus, challenge the accuracy, robustness, and
stability of the positioning system.

In the early stages, proximity detection, trilateration and
fingerprinting, mainly relying on the Received Signal Strength
Indicator (RSSI), were the predominant techniques employed
in BLE-based location [8,9]. However, the reliability of RSSI
values is compromised by their propensity to significant
fluctuations due to signal reflection, refraction, and
interference, even in the absence of any movement within the
space. The advancement in localization performance was
limited until the release of BLE 5.1 in 2019, which introduced
a direction-finding capability predicated on Angle of Arrival
(AoA) estimation [10]. AoA measures the angle at which the
signal from a transmitter arrives at a receiver. This
enhancement marked a departure from the limitations of RSSI-
based positioning. AoA-based techniques are inherently less
vulnerable to multipath interference, as they concentrate on the
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direct signal path from a transmitter to a receiver. The
utilization of AoA enables the attainment of more granular
location insights, thereby broadening the scope of potential
applications. Consequently, the adoption of AoA-based BLE
indoor localization has garnered increasing interest within both
academic research and industrial implementation [11,12],
signaling a shift towards more sophisticated and comprehensive
indoor positioning solutions.

The AoA estimation primarily relies on the analysis of In-
phase and Quadrature (I/Q) data. A plethora of algorithms,
including MUSIC [13], PDDA [14], ISSS [15], ESPRIT [16],
and maximum likelihood estimation [17], have been developed
to refine AoA estimation in triangulation-based localization.
Despite their contributions, these algorithms exhibit limitations
in handling interference, environmental dynamics, and
systematic inaccuracies stemming from antenna array
configurations and radio frequency switching processes, which
can compromise AoA measurement accuracy. Moreover, the
computational complexity of some algorithms may impede
real-time applications and increase energy consumptions. In
contrast, data-driven models demonstrate a profound capacity
to assimilate complex environmental interactions and signal
propagation phenomena, thereby enhancing the fidelity and
adaptability of AoA estimation for various scenarios [18].
Different machine learning methods exemplify such
approaches. While studies have demonstrated the advantages of
learning methods [19-21], there remains significant room for
improvement given the rapid advancements in artificial
intelligence techniques. Besides, the majority of extant studies
often focus on positioning accuracy as the primary metric of
performance [22-24]. However, the response time, robustness,
and stability of IPS should also be crucial considerations in
algorithm design.

Accordingly, this paper proposes a method framework for
BLE-based indoor positioning, which integrates raw data
preprocessing, feature extraction, AoA estimation, location
prediction, and self-calibration to enhance system performance.
This framework, termed TransAoA, employs the Transformer
deep learning architecture for AoA computation, leveraging the
multi-head attention mechanism to capture long-range
dependencies with parallelizable computation and bolster the
model’s resilience to noise and outliers in data. A tailored
feature extraction approach is devised to process raw 1/Q
samples, capturing a comprehensive set of features, involving
temporal, spectral, energy, envelope, phase difference, and I/Q
component features, to facilitate AoA estimation. The least
squares approach is applied for target localization using
multiple anchors, with a moving average technique designed to
refine prediction accuracy. Additionally, a self-adjusting
calibration mechanism is introduced to ensure the localization
model remains responsive to system and environmental
variations. The efficacy of TransAoA is validated through
experiments in a signal-rich laboratory setting that emulates
industrial conditions, and the results are benchmarked against
existing methods to demonstrate its superiority.

Therefore, the main contributions of this study are fourfold:

1) An AoA-based indoor localization method framework,
TransAoA, is developed to improve the overall performance of
BLE-based IPSs, which can serve as a valuable reference model
for industry practitioners to adopt, enabling rapid and effective
implementation of high-accuracy indoor localization solutions.

2) A quality filtering technique is designed to exclude
substandard 1I/Q samples based on the quality analysis that
mainly considers signal amplitude and phase difference to
elevate the accuracy and reliability of localization.

3) A specialized feature extraction method is proposed to
extract multi-domain features from I/Q data, which reinforces
the generalization ability of the AoA estimation model and also
expedites its training convergence.

4) A Transformer-based deep learning model, equipped with
a multi-head attention mechanism, is constructed to capture the
intricate relationship between 1/Q data and AoA, significantly
enhancing the precision and robustness of AoA predictions.

The remainder of this paper is structured as follows. Section
II  provides a literature review of BLE-based indoor
localization, focusing on AoA techniques and machine learning
applications. An overview of the TransAoA method framework
is introduced in Section III. This section is followed by an
elaboration of the BLE-based indoor positioning methodology
in Section IV. Section V dwells on the experimental setup and
analyzes the results. The paper concludes with Section VI,
summarizing the findings and pointing out several potential
directions of future research.

II. RELATED WORK

Traditional BLE-based positioning approaches, relying on
theoretical and empirical formulas to estimate location from
parameters like RSSI [25], time of flight (ToF) [26], and phase
difference [27], are often susceptible to performance
degradation due to multipath propagation and environmental
dynamics. To overcome these limitations, researchers have
explored the integration of machine learning (ML) techniques
[28]. For instance, Philip ef al. [29] demonstrated the superior
localization accuracy of k-nearest neighbor (k-NN) compared
to Support Vector Regression (SVR) and Decision Tree (DT)
using BLE 5.1. Kriz et al. developed a weighted k-NN in signal
space algorithm [30] to further enhance the accuracy. Kamal et
al. [31] proposed a method combining recursive continuous
wavelet transform for feature extraction with the extreme
gradient boosting machine for location classification. However,
despite these advancements, ML techniques for BLE-based
positioning still face challenges. Their reliance on linear
assumptions or hand-crafted features extracted from raw BLE
signals can limit their ability to capture complex spatial
relationships. Therefore, ML-based approaches may struggle to
fully address the complexities and dynamics of indoor
environments.

Many studies have verified that deep learning is such a
promising technique in capturing the complex relationships
between signal propagation effects and informative factors,
leading to more accurate estimation. For example, Cui et al.
[32] designed a feedforward neural network (FNN) with a
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random vector functional link and demonstrated its superiority
over several traditional ML methods in terms of both
localization accuracy and generalization ability. Babakhani et
al. [33] explored the use of recurrent neural networks (RNNs)
in dynamic indoor environments, achieving notable
improvements in tracking moving objects. Turgut and Kakisim
[34] proposed a hybrid model combining convolutional neural
networks (CNNs) and long short-term memory (LSTM)
networks to bolster accuracy and robustness in complex indoor
settings. Talla-Chumpitaz et al. [35] converted RSSI samples
into image representations and applied CNN for location
classification, with an evolutionary algorithm used to find the
best combination of results. Ho et al. [36] presented a hybrid
learning approach that incorporated unsupervised learning,
supervised learning, and genetic algorithms, drawing on
classical ML techniques and neural networks to refine distance
estimation accuracy. Despite great strides made in BLE-based
indoor localization through these models, a research gap
persists in the integration of advanced artificial intelligence
frameworks, such as Transformers [37-39].

Unlike traditional neural networks, Transformers can handle
sequential data more efficiently and capture long-range
dependencies using multi-head attention that enables the model
to simultaneously focus on information from various
representation subspaces at any positions [40]. This method can
potentially offer superior performance in dynamic and intricate
indoor environments and also promote computational
efficiency due to parallelization. Therefore, this work aims to
bridge this gap by applying a Transformer framework to AoA
estimation, leveraging its capability to process high-
dimensional 1/Q samples. To the best of our knowledge, this
study represents a pioneering effort to establish a
comprehensive methodology framework for deep learning-
enabled AoA localization, taking advantage of enhanced
accuracy, robustness and cost-effectiveness.

III. TRANSAOA FRAMEWORK

This section provides an introduction to the TransAoA
framework that combines AoA and deep learning techniques to
realize indoor localization based on BLE technology. This
framework mainly consists of five parts, from hardware
configuration to localization, as shown in Fig. 1. Furthermore, the
effects of key factors on positioning performance are discussed
here.

A. Hardware Configuration

In AoA-based IPSs, the precision and dependability of
localization are profoundly impacted by the hardware
configuration, particularly the arrangement of antenna arrays
[41]. Thereinto, the form of antenna arrays, the polarization of
antennas, and the spacings between antennas emerge as pivotal
elements that necessitate meticulous consideration to enhance
Ao0A estimation performance. It is important to note that a set
of 1/Q data comprises two segments corresponding to signal
reception phases, namely reference and sampling periods.
During the reference period, one antenna is designated as a

reference to gather eight pairs of I/Q samples at a lus
frequency, followed by the sampling period, during which
antennas are switched in sequence to capture signals.
Consequently, the form of antenna arrays is instrumental in
defining the directionality and spatial resolution of AoA
estimation. Common forms include linear, planar (e.g., L-shape
and rectangular), and circular arrays. Furthermore, antenna
polarization, which denotes the orientation of the
electromagnetic wave’s electric field vector in space, is crucial
for optimizing signal reception quality. In practice, linear and
circular polarization techniques are employed. Lastly, in line
with AoA estimation theory, antenna spacing is critical to
acquire phase difference, and a proper one can help prevent
grating lobes while ensuring a compact array size. This spacing
is recommended to be approximately half the wavelength.

BLE Hardware Configuration
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Fig. 1. The framework of TransAoA.
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B. I/Q Data Preprocessing

In addition to environmental influences, the hardware
components of an AoA receiver inherently affect the quality of
I/Q values. The conversion of BLE signals into I/Q values
involves a series of components, including the antenna, radio
frequency (RF) switch, local oscillator (LO), 90-degree phase
shifter, low-pass filter, and analog-to-digital converter (ADC).
Each of these components has the potential to introduce noise
and bias into the results. However, low-quality data
compromises the effectiveness and efficiency of AoA
estimation, necessitating the implementation of data quality
analysis to identify and eliminate flawed data. Given that the
reference period characterizes a continuous sampling process,
quality analysis can be conducted based on the data acquired
during this period. When eight pairs of normal data are plotted
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on a rectangular coordinate system, each pair ideally forms a
90-degree angle with its adjacent sets and is arranged in a
counter-clockwise manner. Theoretically, values within the
same quadrant should overlap. Nonetheless, due to variations in
amplitude, frequency, and phase, such perfect alignment is
often not achieved. It is, therefore, imperative to examine the
overall distribution of the data and the variations within each
pair to evaluate the quality of each data set. Should the
distribution pattern diverge from the anticipated norm or if the
variations are excessive, the data set will be deemed invalid and
excluded. Furthermore, concerning the input to the AoA
estimation neural network, the segment corresponding to the
reference period will also be omitted for each set of I/Q sample
within this framework to enhance the generalizability of the
prediction model.

C. Feature Extraction

Feature extraction in this context refers to the process of
transforming raw I/Q samples into a comprehensive set of features
that can be effectively used by a deep learning model. Previous
research predominantly leveraged neural networks’ inherent
ability to autonomously identify and derive features from raw
data, which, however, imposed constraints on further
improvements in predictive performance and interpretability of
the outcomes. In response to these limitations, this study
introduces a tailored feature extraction approach to fortify AoA
estimation accuracy. This approach involves the extraction of
multiple attributes from I/Q samples, encompassing temporal,
spectral, energy, envelope, phase difference, and I/Q component
features. Specifically, statistical attributes such as mean, variance,
skewness, and kurtosis of the I/Q samples are employed to
summarize the data distribution with respect to the temporal
domain, while Fourier transforms are utilized to delineate
frequency characteristics. The energy metric is indicative of the
signal strength or power level, calculated through the summation
of the squares of I and Q components. Due to the computational
efficiency and robustness, the absolute value of a complex number
is adopted as an envelope feature to depict signal shape changes.
Additionally, this method incorporates features based on the phase
difference between consecutive samples and the individual I/Q
components. This feature extraction method is expected to
significantly enhance computational efficiency, interpretability,
and predictive accuracy.

D. AoA Estimation

Experimental evidence suggests that incorporating a
composite input vector of 1/Q samples and additional features
into the AoA prediction model improves accuracy. Initially, this
amalgamated input vector is subjected to normalization to
mitigate the impact of scale discrepancies. Subsequently, a
fully-connected neural network (FCNN) is employed to
integrate information and partially transform features. This is
followed by embedding the transformed features into a higher-
dimensional space, enabling the model to discern more intricate
representations. Upon integration into the Transformer model,
positional encodings are appended to the embeddings to
compensate for the lack of inherent sequential data processing

regarding the model. These encodings furnish the model with
spatial information of each feature in a sequence, thereby
facilitating the subsequent implementation of the attention
mechanism. The architecture of the Transformer typically
encompasses both encoder and decoder components. However,
in this context, only the encoder is utilized, with an FCNN
supplanting the decoder to accomplish regression towards
azimuth and elevation angles. The encoder consists of multiple
layers of multi-head self-attention, FCNN, layer normalization,
and residual connection. The quantity of encoder layers is
adjustable, contingent on the intricacy of the task. The multi-
head attention mechanism empowers the model to prioritize
different segments of the I/Q feature sequence during AoA
estimation, concentrating on the most relevant features.
Consequently, this approach substantially augments the
accuracy and dependability of AoA estimation.

E. Localization

Based on the acquired AoA values, the least squares (LS)
method [42] is applied to calculate the spatial coordinates of the
target by minimizing an error function related to pertinent
angles. To enhance positioning accuracy and robustness, three
BLE anchors are strategically deployed to work in concert.
Moreover, the ultimate location determination is refined
through the averaging of multiple sequential prediction
outcomes, including historical data, facilitated by a moving
time window. This approach ensures smoother and more
precise estimations. To accommodate environmental variations
and sustain long-term positioning accuracy, the system
leverages fixed BLE tags at predetermined locations as
calibration points, enabling online self-calibration of the BLE
positioning model. Specifically, the system adaptively modifies
the regularization target of the positioning model, iteratively
refining it to attain a global optimum within the updated
constraints. If the adjustments in regularization fail to satisfy
the positioning criteria, the positioning model would take
dynamical expansion, with appropriate modifications to the
network structure. Through iterative calibration and model
updates, the system can maintain optimal performance amidst
evolving environmental conditions.

IV. METHODOLOGY

This section elaborates on the mathematical models
underpinning the methods involved within the TransAoA
framework. The initial focus is on the theory of I/Q sampling,
which lays the foundation for subsequent data quality analysis
and multi-feature construction. Then, the section delves into the
implementation of AoA-based localization using deep learning
techniques.

A. I/Q Sampling and Quality Analysis

I/Q sampling is a technique for capturing and processing
continuous-time analog RF signals to extract their I and Q
components, then effectively capturing both amplitude and
phase information. Fig. 2 provides a simplified circuit diagram
illustrating the key components enabling I/Q sampling. The
process involves receiving the BLE RF signal, converting it to
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an analog signal, and multiplying it with a local oscillator signal
in two paths with a 90° phase shifter. Ideally, the LO signal
frequency aligns with the RF carrier frequency, resulting in an
upper sideband frequency and a lower sideband frequency that

matches the constant tone extension (CTE) baseband frequency.

Subsequently, low-pass filters eliminate the high-frequency
upper sideband signals, allowing only the signals at the CTE
baseband frequency to pass. An ADC digitizes the signals to
produce I and Q samples.

[Eas)
Low-pass Filter
Y ©)
90°Shifter

® @ ADC } ******* * Q Samples
Fig. 2. A simplified circuit for BLE I/Q sampling.

ADC } ******* + I Samples

Several factors can influence the quality of I/Q sampling,
leading to potential errors. A significant factor is the carrier
frequency offset (CFO) between the LO signal and the BLE
carrier signal, which can cause a systematic residual and deviate
the final samples from the intended baseband frequency.
Another issue is quantization error, which occurs when the
signal amplitude is too low, reducing the signal-to-noise ratio
(SNR) and potentially leading to inaccuracies in ADC sampling
outcomes. Additionally, random noise from various electrical
components can alter the amplitude and phase of the signal,
introducing cumulative errors in I/Q samples that are difficult
to detect or cancel. Therefore, it necessitates the data quality
analysis and discard substandard samples to maintain AoA
estimation efficiency.

Like traditional algorithms to address CFO by processing the
I/Q samples from the reference period, this study proposes a
quality filtering method predicated on the reference samples.
This approach establishes two criteria for quality assessment,
taking into account the signal’s amplitude and phase difference.
First, low amplitude is identified as indicative of error, as
explained above. Let the I/Q samples in the reference period be

denoted as x, = {(1},1 241> (i254, ),_.,(,})8,%8 )} . The amplitude
of each sample vector can be expressed as:

4, =./in +q;,,n=12,..8 )

A threshold value T is settled to enable the filtering

amplitude

process:

amplitude (2)
1 max4,,>T,

If a, equals zero, it needs to discard this set of data due to

mplitude

{0 max 4, , <7,
ay = ’

insufficient quality. Pertaining to the second criterion, given
that phase difference is intrinsically linked to the AoA
estimation, sample quality is appraised through this differential.

Specifically, each I/Q sample pair should be converted into a
phase angle ¢ , computed by:

> Ytn

6,,, = arctan (hJ 6,,€(-m 7] A3)
t.n
As a signal propagates space, its phase evolves continuously.
However, phase measurements are typically confined to a finite
range, introducing potential ambiguity in the true phase
difference. Phase unwrapping is thus imperative for generating
a seamless phase profile. In this study, with phase rotation
assumed to be counterclockwise, the phase for each sample is
updated as:
0, =

tn

gt,n if.gt,n < gt,,n—l (4)
0,-2zp iff, >0

t,n t,n—1
Here, the p represents the number of complete cycles
traversed by the signal. To exclude anomalous phase
differences, upper and lower bounds are defined, ensuring that
significant deviations from the expected phase difference,
ideally /2, are filtered out:

’ ’
Z;uw'cr S V|Ht,n _Ht,n—l <
aXI =

< Tpper (5)
0 else

By applying these criteria, the dataset is refined based on the
quality of the I/Q samples collected during the reference period
to elevate the reliability of subsequent prediction.

B. Multi-feature Extraction

Prior to the AoA estimation model development, a variety of
features is constructed from the I/Q data within the sampling
period to expedite model convergence during training and
promote prediction accuracy. Each I/Q sample pair can be

denoted as X, = {(imqm ),(iwqﬂ),,,,,(it,n,qt‘n )} . Given the I

and Q components originating from a complex signal, each unit
in the I/Q vector is transformed into a complex representation,

namely X, = {it,l +j'%,1’it,2 +j.qt,2""’it,n +j'qz,n}' In this

t

study, six distinct feature groups are extracted from the
complex I/Q vectors.

1) Temporal feature: This category concerns statistical
attributes of the signal. The real and imaginary parts of the mean
of single I/Q vector constitute two features, which are

formulated by:
N

R (it a) fi=Re(R).fi=m(F) ©

k=1
The standard deviation of I/Q vector is given by:

1 &, . 2
fstzz\/mZ((’k*'J'qk)_Fl) (7)

k=1

Additionally, skewness and kurtosis are used to depict the
shape of a probability distribution, which provide information
about the asymmetry and peakedness of the distribution,
respectively. These two features are defined as:

1 & 3
F=gm2\liti-a)=R). fi=Re(R).f,=Im(F)
®)
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E:WZ((ik‘f‘j'qk)_F;)’ fy=Re(F), f,=Im(F,)
©)

2) Spectral feature: These features reveal the energy
distribution across different frequencies within the signal. This
study applies a Fourier transform to the I/Q vectors to obtain
the frequency spectrum, as modeled by:

N-1
B )
k=0

Hereinto, the mean and standard deviation of both the
magnitude and phase of the frequency-transformed 1/Q vector

(10)

provide four spectral features: fg, fo, fi,.and f,.

3) Energy feature: This feature is a measure of the total energy
or power contained within a signal. This feature provides a
straightforward metric for signal intensity, making it widely
used in signal processing and machine learning. It is calculated
by:

N
fo=F= (i +4;) an
k=1
4) Envelope feature: The envelope captures the amplitude
variations of a signal over time and is calculated by taking the
absolute value of each set of I/Q samples as:

Fo=li,+j-q,|=+i; +q; (12)

The mean, standard deviation, maximum, and minimum
values of the absolute vector serve as four envelope features:

f13’ f14’ fls,and flé-

5) Phase difference feature: These features have a close
relation with AoA prediction in line with the theory. The mean
and standard deviation of a vector of phase difference give birth

to f17 and flx This difference is estimated by the following
formula:
(13)

6) 1/Q component feature: The separate mean and standard
deviation of the in-phase and quadrature components are used

to produce features fio, f,. f5-and f5,.

In total, twenty-two features are crafted and then integrated
with the I/Q sample vector to comprise the input for the AoA
estimation neural network, which is denoted as

r_ - .
Xt - {lt,lﬂqz,l""’lt,n’qt,n?fz,l?""fz,zz} :

C. Transformer model for AoA Estimation

F; =arctan(q,,, /i,,,)—arctan (g, /i,)

It should be clarified that each single numerical value of I and
Q data is a scalar. A sequence of I/Q scalars collected within
one round of reference period and sampling period is parallelly
combined with these feature values to construct a vector as the
input to AoA estimation. In the Transformer architecture,
embeddings are pivotal for transforming input tokens into
vectors of continuous values that the model can process. In the

feature input, simplified as X' = {xl 3 X5y X, o9 } , each data
point could be mapped to a high-dimensional matrix with rows
and columns through an  embedding  function

Em(xk)z{ek’l,eu,...,ek,m} . The embedding matrix is

characterized by m * (n + 22) dimensions.

Subsequently, due to the Transformer’s inability to inherently
process sequential data, it entails the integration of positional
encodings with each point in the sequence of input embeddings.
For each position £ and dimension m in the embedding, the
positional encoding PE(k, m) is defined as follows:

PE (k,2i)=sin (%)
s

PE(k,2i+1)= cos( Zlf/m j
s

The s represents a specific scalar. These equations alternate
between sine and cosine functions for even and odd indices,
respectively, allowing the model to distinguish between
different positions. The final input representation for each data
point in the sequence is obtained by consolidating its input
embedding with the positional encoding.

Next, these representations are fed into encoder layers, the
number of which is dependable. An encoder layer primarily
consists of two sub-layers, a multi-head attention function and
a FCNN. The multi-head attention function features three key
elements, including matrices of queries Q, keys K, and values
V. It computes the dot products of the query with all keys and
applies a softmax function to derive the weights on the values.
The output matrix is given by:

(14)

(15)

Attn(Q,K,V) = softmax[?/%r ]V

The d . denotes the dimension of queries and keys. To

mitigate the issue of the dot products growing large in
magnitude, which leads to the softmax function entering
regions with extremely small gradients, the dot products are

scaled by 1//d, . In contrast to single-head attention, multi-

head attention enables the model to concurrently attend to
various aspects at different positions, fostering a more nuanced
understanding of the relationships between data points and
enhancing parallelism. The final results are acquired by a
concatenation of all the heads, as depicted by:

MH (Q,K,V') = Concat  Atn(QW? KW, VW' )...., Attn(QW,2, KW VW, )

(16)
. . . 0 mxdy K mxd,,
Here, the projection matrices W, € R™% | W,* e R™% |

WhV e R™* are allocated to queries, keys and wvalues,

respectively, and h represents the number of attention heads.

In addition to the attention sub-layer, each encoder layer
contains a FCNN, which is applied to each position separately
and identically. The FCNN is aimed to map the input dimension
from one space to a higher-dimensional space, and then back to
the original dimension or another appropriate dimension
through two linear transformations with a ReLU activation in
between. Hence, this process facilitates nonlinear
transformation, enabling the model to capture more complex
feature relationships and thereby augmenting its expressive
capability. The FCNN is structured as follows:
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X, =W, -max (0, - X, +b/)+b, (17)

The VT/II and VT/Z] are weight matrices assigned to the input at

the /™ layer for two linear shifts, with 511 and 521 as the

corresponding bias matrices. Besides those two sub-layers, each
sub-layer is enhanced with residual connections and layer
normalization to foster model convergence and stabilize
training.

To optimize model parameters, it is essential to identify an
appropriate loss function. The mean square error (MSE) is
utilized as the loss function in response to the application of the
FCNN. The adaptive moment estimation (Adam) algorithm is
employed for optimization due to its efficacy across various
parameter initializations. This algorithm aims to iteratively
update parameters in the direction of gradient descent to
minimize loss.

D. Triangulation

This study aims to achieve indoor localization through
triangulation that leverages the AoA values garnered from
signals transmitted between the target and multiple BLE
anchors. By acquiring AoA measurements from a minimum of

three BLE anchors, the spatial coordinates P, = (xt s Vs Zl) of

the target at time ¢ are determined by the minimization of an
error function. This function quantifies the discrepancy
between the measured and predicted angles. Mathematically,
the LS problem can be articulated as:

Mins (0,0, (x.3.2)) +(0, =6 (.3,.2)) | 09

i=1

where n denotes the number of BLE anchors. The Ht’i and

@, ; are the measured elevation and azimuth angles from the /™
BLE anchor to the target at time ¢, respectively. Conversely, the
o, (xt’yt’Zt) and ([3[ (xt,yt,zt) are the predicted elevation

and azimuth angles grounded on the estimated position of target
relative to the i anchor. The goal is to ascertain the values of x,
v, and z that minimize this sum, thereby providing the best
estimate of the target’s position based on the AoA
measurements.

Furthermore, a moving average technique is applied to
smooth out short-term fluctuations and underscore longer-term
trends in location data. This approach involves averaging a
sequence of consecutive position estimates to yield a single and
smoothed location point, as illustrated below:

]__)l=Pt+Pt—1+”'+Pt—w+l (19)

T

w

The T, signifies the length of the time window for averaging.

This method proves particularly useful when dealing with noisy
measurements or when the target’s position is subject to rapid
changes, engendering accurate and reliable location estimates.

V. EXPERIMENT AND EVALUATION

To validate and evaluate the efficacy of the TransAoA method,
experiments were conducted in a laboratory that is settled to

mimic an industrial environment, characterized by the presence
of numerous signals that could potentially cause interference.
Besides, a comparative analysis was conducted to demonstrate
the superiority of the proposed method relative to other
benchmark approaches.

A. Experimental Settings

The laboratory environment incorporates various physical
objects and personnel to simulate potential sources of signal
reflection and multipath interference, which are common in
industrial environments, as displayed in Fig. 3. The layout is
designed to introduce challenges typical of industrial settings,
such as non-line-of-sight (NLOS) conditions and dynamic
obstacles. The designated experimental area measures 7.2m by
5.4m within the laboratory, avoiding fixed arrangements, as
depicted in Fig. 4. Below are detailed the hardware
configuration and the establishment of datasets.
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Fig. 3. The floor plan of experimental settings.

1) Hardware configuration: The experimental setup utilizes
BLE tags based on the BRD4184B board from Silicon Labs,
configured to periodically transmit data packets with CTE via
data channels excluding 37, 38, and 39, as specified by the BLE
5.1 protocol. For signal reception, a dual-polarized antenna
array radio board, the BRD4185A, also from Silicon Labs, is
employed. This board features a rectangular antenna array in a
4X4 configuration, with an inter-antenna spacing of 0.036m.
Moreover, it is equipped with both horizontal and vertical
antenna polarizations to facilitate the measurement of radiated
powers across fundamental frequencies and harmonics. An
antenna board interfaces with a gateway composed of a
Raspberry Pi 3B+, which provides the necessary computing
capabilities for I/Q sample collection, data preprocessing, and
transmission. Three anchors are mounted on tripods at a height
of two meters within the experimental area, as shown in Fig. 3
and 4. Data transmission from the gateway to a server is
accomplished via the Message Queuing Telemetry Transport
(MQTT) protocol, which is well-suited for industrial
applications due to its effectiveness in environments with
constrained resources, low bandwidth, high latency, or
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unreliable networks. Lastly, the Transformer model for AoA

estimation is enforced using PyTorch, and the training process

is executed on a workstation furnished with an Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz, featuring 8 cores.

|

Fig. 4. The deployment of BLE indoor ‘positioning sys:tem.

2) Dataset establishment: The experimental datasets are
categorized into two primary groups. The first group involves
collecting data from fixed points where BLE tags are mounted
at a height of one meter and remain stationary throughout the
data collection period. The second group gathers data from

mobile BLE tags. An experimenter carries these tags and walks
along a predefined path within the experimental area. For the
fixed points, the experimental setup includes 9 X 10 points along
both the x and y axes. However, data collection focuses on a
total of 36 points to support the exploration of neural network
generalization, as illustrated in Fig. 4. Each of these points
contributes 3000 data entries, encompassing I/Q samples, RSSI,
channel information, transmitter and anchor identifications, and
timestamps. The 1/Q samples comprise 8 pairs of I/Q data for
the reference period and 74 pairs of dually-polarized I/Q data
for the sampling period, reflecting cyclic sampling across 16
antennas. Overall, the dataset, exceeding 100,000 entries, is
segmented into training, validation, and testing subsets for AoA
estimation, following an 8:1:1 ratio. Regarding the dynamic
target localization, an experimenter carrying a BLE tag walks a
predetermined route three times at a normal pace, yielding 9557
data entries. Concurrently, three anchors work in unison to
localize the moving target in real-time using individual AoA
estimation models.

B. Experimental Results and Analysis

In this study, several prominent deep learning techniques for
angulation are employed, including FNN, CNN, and LSTM, to
perform a comparative analysis with the proposed TransAoA
method. Additionally, the PDDA approach, which has
demonstrated superiority over the traditional MUSIC algorithm,
is included for comparison. The impact of I/Q data quality
filtering and specific multi-feature extraction on AoA
prediction accuracy is further investigated in the following
experiments.

First, the TransAoA is benchmarked against other four
methods, involving data quality filtering and feature extraction

TABLE I
RESULTS OF AOA ESTIMATION WITH QUALITY FILTERING AND FEATURE EXTRACTION
Azimuth Elevation

Method ithi ithi ithi ithi ithi ithi
R T ol L S B
PDDA+QF 11462  9.78  552%  62.74% 95.58% | 4391 595 39.81%  89.92%  100% \ 857
FNN+QF+FE 11.81 252 89.48% 98.85% 9991% | 1.51 094 99.66%  99.97%  100% 241 1
CNN+QF+FE | 27.82 370 74.78% 93.88% 99.63% | 2.09 1.08 98.79%  99.97%  100% | 2.16 52
LSTM+QF+FE | 6.51 191  9552% 99.63% 100% | 0.80  0.65 9991%  100% 100% 1.89 19
TransAoA 3.62 1.35 98.85% 99.91% 99.97% | 0.61 0.53 99.97%  100%  100% | 1.53 31

Note: QF: quality filtering; FE: feature extraction; TTPP: training time per parameter; PT: prediction time.

Fig. 5. The error histogram and CDF of azimuth estimation.
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PDDA FNN

Fig. 6. The error histogram and CDF of elevation estimation.

processes, across metrics of azimuth and elevation estimation
accuracy. Evaluation criteria such as MSE, mean absolute error
(MAE), training time, prediction time, and the distribution of
specific angular errors are utilized to assess model performance.
The aggregated findings are presented in Table I. It is evident

that the TransAoA surpasses the other methods in most respects.

Specifically, the TransAoA achieves an MSE of 3.62 and an
MAE of 1.35 for azimuth estimation, and 0.61 MSE and 0.53
MAE for elevation. The LSTM is the next best performing
method, with MSE values of 6.51 and 0.80, and MAE values of
1.91 and 0.65 for azimuth and elevation, respectively. The FNN
demonstrates fewer errors than the CNN but more than the
LSTM, suggesting a lack of graph-like structure inherent in /Q
samples. Conversely, PDDA exhibits the least favorable
performance, with significantly larger errors in both azimuth
and elevation estimation. In terms of computational efficiency,
also considering model size, TransAoA shows the shortest
training time per parameter (TTPP) to maintain convergence,
averaging 1.53ms, whereas it would sacrifice the prediction
time, taking 31ms. Besides, PPDA, despite its simplicity,
exhibits a significantly longer prediction time compared to all
deep learning techniques. This suggests that the inference
efficiency makes learning methods more suitable for real-time
localization applications.

In addition, histograms and cumulative distribution functions
(CDFs) of the absolute angular errors for azimuth and elevation
are depicted in Fig. 5 and 6, respectively. Note that the
TransAoA achieves the most precise estimations, with 98.85%
of azimuth errors and 99.97% of elevation errors falling within
5 degrees. Furthermore, it attains 99.91% of azimuth errors
within 10 degrees and 99.97% within 20 degrees, while
maintaining 100% accuracy within 10 degrees for elevation. A
particular emphasis is placed on the LSTM that reaches 100%

CNN

LST™M Transformer

prediction accuracy within 20 degrees for azimuth, surpassing
the TransAoA. This finding highlights the generalization
capability of the LSTM in handling deviated data. The LSTM
also nearly matches the performance of the TransAoA in
elevation estimation.

Furthermore, Fig. 7 illustrates the training loss trajectories of
the four deep learning methods throughout the optimization
process. The TransAoA exhibits rapid convergence with
minimal loss at the start. Although the LSTM experiences
notable fluctuations early in training, it maintains a low loss in
the end. The FNN shows robust convergence despite an initially
high loss, whereas the CNN model undergoes persistent
oscillations over several epochs.

0.5

0.45
0.4
0.35

0.3
" ——FNN
& 0.25
S CNN
0.2 ——LSTM
0.15 Transformer

0.1
0.05

Training Times

Fig. 7. Comparison of the training loss in the optimization
process.

Second, the influence of data filtering in relation to the
quality of I/Q samples on AoA estimation accuracy is examined.
According to the findings presented in Table II, the absence of
quality filtering leads to an increase in MSE and MAE values,

TABLE I
RESULTS OF AOA ESTIMATION WITH ONLY FEATURE EXTRACTION
Azimuth Elevation

Method Within Within Within Within Within Within
MSE MAE 5°C 10°C 20°C . MAE 5°C 10°C 20°C

PDDA 128.47 11.04 3.28% 59.65% 92.87% 57.63 6.81 35.46% 87.91% 99.85%
FNN + FE 15.44 2.54 88.34% 98.34% 99.61% 1.92 1.03 99.49% 99.94% 100%
CNN + FE 27.94 3.78 73.52% 93.77% 99.54% 3.15 1.35 98.40% 99.97% 100%
LSTM + FE 7.65 2.08 94.43% 99.34% 99.88% 1.12 0.71 99.66% 99.93% 100%
Trans + FE 6.77 1.87 98.02% 99.83% 99.88% 0.64 0.61 99.85% 99.93% 100%
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TABLE III
RESULTS OF AOA ESTIMATION WITH ONLY QUALITY FILTERING
Azimuth Elevation

Method Within Within Within Within Within Within
MSE MAE 5°C 10°C 20°C MSE MAE 5°C 10°C 20°C

FNN + QF 18.74 2.87 84.92% 97.47% 99.52% 1.79 1.01 99.52% 99.97% 100%
CNN + QF 22.41 3.22 79.98% 95.23% 99.57% 1.76 0.97 99.51% 100.00% 100%
LSTM + QF 7.63 1.88 94.37% 99.29% 99.95% 0.94 0.67 99.78% 99.95% 100%
Trans + QF 5.57 1.51 97.33%  99.78% 99.90% 0.67 0.58 99.88% 99.98% 100%

alongside a general decrease in the accuracy of angle error
ratios across different ranges. This contrast with the results
shown in Table I underscores the critical role of quality filtering
in enhancing estimation precision by eliminating I/Q samples
distorted by noise. Moreover, this analysis testifies the quality
consistency between reference and sampling data, as the quality
assessment exclusively involves reference data. Despite these
challenges, the TransAoA method consistently outperforms
other techniques in angle prediction. Notably, the FNN is the
most affected by the absence of quality filtering, experiencing
a 30.74% and 27.15% increase in MSE for azimuth and
elevation, respectively, illustrating its limited generalization
capability.
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Fig. 8. Comparison of different moving windows for the
triangulation of moving targets.

Third, this part explores the effects of a bespoke multi-feature
extraction technique on deep learning-based AoA prediction.
The Transformer architecture still achieves superior prediction
accuracy among the four evaluated methods, as shown in Table
MI. Distinctively, most methods exhibit an increase in MSE in
the absence of prior feature extraction, only the CNN shows a
decrease, by 22.41 and 1.76 for azimuth and elevation
estimation, respectively. This suggests that the diversity of
input data may adversely affect CNN performance. Compared
to the results in Table II, the impact of feature extraction is less
pronounced than that of quality filtering for the LSTM, whereas
it is more critical for both the Transformer and FNN. Without
feature extraction, the Transformer demonstrates a more

significant reduction in the accuracy of angle error estimation
within 5 degrees than without quality filtering, 1.52% opposed
to 0.83% for azimuth. The influence on elevation estimation
across all methods is comparatively minor except the CNN,
with a maximum deviation of 0.2% for errors within 5 degrees.

Fourth, leveraging the superior angle estimation capabilities
of the TransAoA, it is used to triangulate the positions of
moving people. An average moving window technique is
applied to refine the predicted outcomes. Fig. 8 visualizes the
comparative impact of different moving window sizes (0, 5, 10,
and 15) on localization performance. The results indicate that
the average moving window significantly enhances localization
accuracy. Without its application, the predicted locations are
dispersed across the map, whereas a more coherent movement
path emerges as the window size increases. However,
excessively large windows may restrict the range and
adaptability of positioning, thereby diminishing accuracy.
Based on the analysis, a moving window size of 10 strikes an
optimal balance. In conclusion, the localization outcomes
validate the effectiveness of the TransAoA as a comprehensive
solution for BLE indoor localization on the ground of deep
learning-enhanced AoA measurements.

VI. CONCLUSION

This paper presents an innovative BLE-based indoor
positioning framework, the TransAoA, that significantly
improves the accuracy and robustness of AoA estimation
through the application of the Transformer deep learning
architecture. The proposed method outperformed traditional
and contemporary deep learning techniques in a simulated
industrial environment, attaining 98.85% and 99.97% of
estimation errors within 5 degrees for azimuth and elevation,
respectively. Besides, the integration of a data quality filtering
and specialized feature extraction methods enabled the model
to readily capture complex signal interactions, leading to rapid
convergence and enhanced generalization capabilities. It is
anticipated that this technique framework would inspire new
ideas for researchers and act as a guide for practitioners to easily
replicate in order to meet similar application requirements.

However, a limitation of this work is the reliance on linear
triangulation for location estimation. The least square technique
might be susceptible to noise and fail to adequately model the
inherent non-linearity of localization based on AoAs,
potentially harming positioning accuracy. Correspondingly,
future research could explore more robust and non-linear
approaches to mitigate the impact of noise on AoA-based
localization performance. Besides, enhancing the scalability
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and adaptability of the TransAoA framework for deployment in
diverse industrial environments presents a promising direction.
Investigations into the integration of additional environmental
and contextual data could further improve the robustness and
adaptability of the system. Moreover, extensive field trials in
various industrial scenarios would be invaluable to validate the
framework’s performance and facilitate its adoption in Industry
5.0 applications.
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