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Abstract—Bluetooth Low Energy (BLE) technology, 
characterized by its low energy consumption, cost-effectiveness, 
and scalability, has gained prominence as a viable solution for 
indoor localization within industrial contexts. However, the 
dynamic nature of industrial environments poses considerable 
challenges to the accuracy of BLE-based indoor positioning 
systems (IPSs), particularly those dependent on signal strength for 
localization. Accordingly, this paper proposes a novel method 
framework TransAoA that leverages the Transformer deep 
learning architecture to enhance Angle of Arrival (AoA) 
estimation for BLE indoor positioning. First, a data filtering 
method is designed to eliminate low-quality In-phase and 
Quadrature (I/Q) samples affected by noise. Second, a specialized 
feature extraction method is developed to distill multiple 
informative features from I/Q samples prior to the prediction 
model to enable rapid convergence and improve accuracy. Third, 
the Transformer-based AoA estimation model is constructed to 
establish a mapping relationship between angles (azimuth and 
elevation) and the combined I/Q samples and features. Fourth, 
several BLE anchors collaborate to localize targets using a least 
squares approach, and a self-adjusting calibration mechanism is 
devised to bolster the long-term robustness and stability of the IPS. 
Finally, experiments are conducted in a lab that simulates 
industrial conditions to verify the effectiveness of the framework. 
By comparison, the TransAoA shows superiority over existing 
benchmark methods, achieving estimation errors within 5 degrees 
for 98.85% of azimuth and 99.97% of elevation measurements. 

Index Terms—Indoor localization, Bluetooth low energy, Angle of 
Arrival, Deep learning, Transformer. 

I. INTRODUCTION
HE significance of location-based services (LBS) and 
spatial-temporal traceability has been highlighted in 
Industry 4.0 for enhancing operational and management 

efficiency among activities such as rapid object-picking, stock-
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taking, and strategic asset allocation [1,2]. Furthermore, they 
have also been expected to assume a more vital role in the 
context of Industry 5.0 [3], which prioritizes human-centric 
management, sustainability, and production resilience, 
especially in human safety monitoring, product lifecycle 
supervision, and real-time decision-making [4-6]. 
Correspondingly, indoor positioning systems (IPS) serve as a 
foundation to generate spatial-temporal information necessary 
for these service offerings. In most industrial applications, 
stakeholders favor an IPS that is not only accurate but also cost-
efficient and easy-to-deploy. Bluetooth Low Energy (BLE) 
technology, featuring low energy consumption, affordability, 
and high scalability, emerges as a prime candidate to fulfill 
those indoor localization requirements [7]. However, the 
intricate and dynamic industrial environment, replete with noise 
pollution, signal interference, and physical obstructions, can 
severely impair BLE signal integrity, exacerbate multipath 
fading and, thus, challenge the accuracy, robustness, and 
stability of the positioning system. 

In the early stages, proximity detection, trilateration and 
fingerprinting, mainly relying on the Received Signal Strength 
Indicator (RSSI), were the predominant techniques employed 
in BLE-based location [8,9]. However, the reliability of RSSI 
values is compromised by their propensity to significant 
fluctuations due to signal reflection, refraction, and 
interference, even in the absence of any movement within the 
space. The advancement in localization performance was 
limited until the release of BLE 5.1 in 2019, which introduced 
a direction-finding capability predicated on Angle of Arrival 
(AoA) estimation [10]. AoA measures the angle at which the 
signal from a transmitter arrives at a receiver. This 
enhancement marked a departure from the limitations of RSSI-
based positioning. AoA-based techniques are inherently less 
vulnerable to multipath interference, as they concentrate on the 
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direct signal path from a transmitter to a receiver. The 
utilization of AoA enables the attainment of more granular 
location insights, thereby broadening the scope of potential 
applications. Consequently, the adoption of AoA-based BLE 
indoor localization has garnered increasing interest within both 
academic research and industrial implementation [11,12], 
signaling a shift towards more sophisticated and comprehensive 
indoor positioning solutions. 

The AoA estimation primarily relies on the analysis of In-
phase and Quadrature (I/Q) data. A plethora of algorithms, 
including MUSIC [13], PDDA [14], ISSS [15], ESPRIT [16], 
and maximum likelihood estimation [17], have been developed 
to refine AoA estimation in triangulation-based localization. 
Despite their contributions, these algorithms exhibit limitations 
in handling interference, environmental dynamics, and 
systematic inaccuracies stemming from antenna array 
configurations and radio frequency switching processes, which 
can compromise AoA measurement accuracy. Moreover, the 
computational complexity of some algorithms may impede 
real-time applications and increase energy consumptions. In 
contrast, data-driven models demonstrate a profound capacity 
to assimilate complex environmental interactions and signal 
propagation phenomena, thereby enhancing the fidelity and 
adaptability of AoA estimation for various scenarios [18]. 
Different machine learning methods exemplify such 
approaches. While studies have demonstrated the advantages of 
learning methods [19-21], there remains significant room for 
improvement given the rapid advancements in artificial 
intelligence techniques. Besides, the majority of extant studies 
often focus on positioning accuracy as the primary metric of 
performance [22-24]. However, the response time, robustness, 
and stability of IPS should also be crucial considerations in 
algorithm design. 

Accordingly, this paper proposes a method framework for 
BLE-based indoor positioning, which integrates raw data 
preprocessing, feature extraction, AoA estimation, location 
prediction, and self-calibration to enhance system performance. 
This framework, termed TransAoA, employs the Transformer 
deep learning architecture for AoA computation, leveraging the 
multi-head attention mechanism to capture long-range 
dependencies with parallelizable computation and bolster the 
model’s resilience to noise and outliers in data. A tailored 
feature extraction approach is devised to process raw I/Q 
samples, capturing a comprehensive set of features, involving 
temporal, spectral, energy, envelope, phase difference, and I/Q 
component features, to facilitate AoA estimation. The least 
squares approach is applied for target localization using 
multiple anchors, with a moving average technique designed to 
refine prediction accuracy. Additionally, a self-adjusting 
calibration mechanism is introduced to ensure the localization 
model remains responsive to system and environmental 
variations. The efficacy of TransAoA is validated through 
experiments in a signal-rich laboratory setting that emulates 
industrial conditions, and the results are benchmarked against 
existing methods to demonstrate its superiority. 

Therefore, the main contributions of this study are fourfold: 

1) An AoA-based indoor localization method framework,
TransAoA, is developed to improve the overall performance of 
BLE-based IPSs, which can serve as a valuable reference model 
for industry practitioners to adopt, enabling rapid and effective 
implementation of high-accuracy indoor localization solutions. 

2) A quality filtering technique is designed to exclude
substandard I/Q samples based on the quality analysis that 
mainly considers signal amplitude and phase difference to 
elevate the accuracy and reliability of localization. 

3) A specialized feature extraction method is proposed to
extract multi-domain features from I/Q data, which reinforces 
the generalization ability of the AoA estimation model and also 
expedites its training convergence. 

4) A Transformer-based deep learning model, equipped with
a multi-head attention mechanism, is constructed to capture the 
intricate relationship between I/Q data and AoA, significantly 
enhancing the precision and robustness of AoA predictions. 

The remainder of this paper is structured as follows. Section 
Ⅱ provides a literature review of BLE-based indoor 
localization, focusing on AoA techniques and machine learning 
applications. An overview of the TransAoA method framework 
is introduced in Section Ⅲ. This section is followed by an 
elaboration of the BLE-based indoor positioning methodology 
in Section Ⅳ. Section Ⅴ dwells on the experimental setup and 
analyzes the results. The paper concludes with Section Ⅵ, 
summarizing the findings and pointing out several potential 
directions of future research. 

II. RELATED WORK

Traditional BLE-based positioning approaches, relying on 
theoretical and empirical formulas to estimate location from 
parameters like RSSI [25], time of flight (ToF) [26], and phase 
difference [27], are often susceptible to performance 
degradation due to multipath propagation and environmental 
dynamics. To overcome these limitations, researchers have 
explored the integration of machine learning (ML) techniques 
[28]. For instance, Philip et al. [29] demonstrated the superior 
localization accuracy of k-nearest neighbor (k-NN) compared 
to Support Vector Regression (SVR) and Decision Tree (DT) 
using BLE 5.1. Kriz et al. developed a weighted 𝑘𝑘-NN in signal 
space algorithm [30] to further enhance the accuracy. Kamal et 
al. [31] proposed a method combining recursive continuous 
wavelet transform for feature extraction with the extreme 
gradient boosting machine for location classification. However, 
despite these advancements, ML techniques for BLE-based 
positioning still face challenges. Their reliance on linear 
assumptions or hand-crafted features extracted from raw BLE 
signals can limit their ability to capture complex spatial 
relationships. Therefore, ML-based approaches may struggle to 
fully address the complexities and dynamics of indoor 
environments. 

Many studies have verified that deep learning is such a 
promising technique in capturing the complex relationships 
between signal propagation effects and informative factors, 
leading to more accurate estimation. For example, Cui et al. 
[32] designed a feedforward neural network (FNN) with a
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random vector functional link and demonstrated its superiority 
over several traditional ML methods in terms of both 
localization accuracy and generalization ability. Babakhani et 
al. [33] explored the use of recurrent neural networks (RNNs) 
in dynamic indoor environments, achieving notable 
improvements in tracking moving objects. Turgut and Kakisim 
[34] proposed a hybrid model combining convolutional neural 
networks (CNNs) and long short-term memory (LSTM) 
networks to bolster accuracy and robustness in complex indoor 
settings. Talla-Chumpitaz et al. [35] converted RSSI samples 
into image representations and applied CNN for location 
classification, with an evolutionary algorithm used to find the 
best combination of results. Ho et al. [36] presented a hybrid 
learning approach that incorporated unsupervised learning, 
supervised learning, and genetic algorithms, drawing on 
classical ML techniques and neural networks to refine distance 
estimation accuracy. Despite great strides made in BLE-based 
indoor localization through these models, a research gap 
persists in the integration of advanced artificial intelligence 
frameworks, such as Transformers [37-39]. 

Unlike traditional neural networks, Transformers can handle 
sequential data more efficiently and capture long-range 
dependencies using multi-head attention that enables the model 
to simultaneously focus on information from various 
representation subspaces at any positions [40]. This method can 
potentially offer superior performance in dynamic and intricate 
indoor environments and also promote computational 
efficiency due to parallelization. Therefore, this work aims to 
bridge this gap by applying a Transformer framework to AoA 
estimation, leveraging its capability to process high-
dimensional I/Q samples. To the best of our knowledge, this 
study represents a pioneering effort to establish a 
comprehensive methodology framework for deep learning-
enabled AoA localization, taking advantage of enhanced 
accuracy, robustness and cost-effectiveness. 

III. TRANSAOA FRAMEWORK 
This section provides an introduction to the TransAoA 

framework that combines AoA and deep learning techniques to 
realize indoor localization based on BLE technology. This 
framework mainly consists of five parts, from hardware 
configuration to localization, as shown in Fig. 1. Furthermore, the 
effects of key factors on positioning performance are discussed 
here. 

A. Hardware Configuration 
In AoA-based IPSs, the precision and dependability of 

localization are profoundly impacted by the hardware 
configuration, particularly the arrangement of antenna arrays 
[41]. Thereinto, the form of antenna arrays, the polarization of 
antennas, and the spacings between antennas emerge as pivotal 
elements that necessitate meticulous consideration to enhance 
AoA estimation performance. It is important to note that a set 
of I/Q data comprises two segments corresponding to signal 
reception phases, namely reference and sampling periods. 
During the reference period, one antenna is designated as a 

reference to gather eight pairs of I/Q samples at a 1μs 
frequency, followed by the sampling period, during which 
antennas are switched in sequence to capture signals. 
Consequently, the form of antenna arrays is instrumental in 
defining the directionality and spatial resolution of AoA 
estimation. Common forms include linear, planar (e.g., L-shape 
and rectangular), and circular arrays. Furthermore, antenna 
polarization, which denotes the orientation of the 
electromagnetic wave’s electric field vector in space, is crucial 
for optimizing signal reception quality. In practice, linear and 
circular polarization techniques are employed. Lastly, in line 
with AoA estimation theory, antenna spacing is critical to 
acquire phase difference, and a proper one can help prevent 
grating lobes while ensuring a compact array size. This spacing 
is recommended to be approximately half the wavelength. 

 

 
Fig. 1. The framework of TransAoA. 
 

B. I/Q Data Preprocessing 
In addition to environmental influences, the hardware 

components of an AoA receiver inherently affect the quality of 
I/Q values. The conversion of BLE signals into I/Q values 
involves a series of components, including the antenna, radio 
frequency (RF) switch, local oscillator (LO), 90-degree phase 
shifter, low-pass filter, and analog-to-digital converter (ADC). 
Each of these components has the potential to introduce noise 
and bias into the results. However, low-quality data 
compromises the effectiveness and efficiency of AoA 
estimation, necessitating the implementation of data quality 
analysis to identify and eliminate flawed data. Given that the 
reference period characterizes a continuous sampling process, 
quality analysis can be conducted based on the data acquired 
during this period. When eight pairs of normal data are plotted 
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on a rectangular coordinate system, each pair ideally forms a 
90-degree angle with its adjacent sets and is arranged in a 
counter-clockwise manner. Theoretically, values within the 
same quadrant should overlap. Nonetheless, due to variations in 
amplitude, frequency, and phase, such perfect alignment is 
often not achieved. It is, therefore, imperative to examine the 
overall distribution of the data and the variations within each 
pair to evaluate the quality of each data set. Should the 
distribution pattern diverge from the anticipated norm or if the 
variations are excessive, the data set will be deemed invalid and 
excluded. Furthermore, concerning the input to the AoA 
estimation neural network, the segment corresponding to the 
reference period will also be omitted for each set of I/Q sample 
within this framework to enhance the generalizability of the 
prediction model. 

C. Feature Extraction 
Feature extraction in this context refers to the process of 

transforming raw I/Q samples into a comprehensive set of features 
that can be effectively used by a deep learning model. Previous 
research predominantly leveraged neural networks’ inherent 
ability to autonomously identify and derive features from raw 
data, which, however, imposed constraints on further 
improvements in predictive performance and interpretability of 
the outcomes. In response to these limitations, this study 
introduces a tailored feature extraction approach to fortify AoA 
estimation accuracy. This approach involves the extraction of 
multiple attributes from I/Q samples, encompassing temporal, 
spectral, energy, envelope, phase difference, and I/Q component 
features. Specifically, statistical attributes such as mean, variance, 
skewness, and kurtosis of the I/Q samples are employed to 
summarize the data distribution with respect to the temporal 
domain, while Fourier transforms are utilized to delineate 
frequency characteristics. The energy metric is indicative of the 
signal strength or power level, calculated through the summation 
of the squares of I and Q components. Due to the computational 
efficiency and robustness, the absolute value of a complex number 
is adopted as an envelope feature to depict signal shape changes. 
Additionally, this method incorporates features based on the phase 
difference between consecutive samples and the individual I/Q 
components. This feature extraction method is expected to 
significantly enhance computational efficiency, interpretability, 
and predictive accuracy. 

D. AoA Estimation 
Experimental evidence suggests that incorporating a 

composite input vector of I/Q samples and additional features 
into the AoA prediction model improves accuracy. Initially, this 
amalgamated input vector is subjected to normalization to 
mitigate the impact of scale discrepancies. Subsequently, a 
fully-connected neural network (FCNN) is employed to 
integrate information and partially transform features. This is 
followed by embedding the transformed features into a higher-
dimensional space, enabling the model to discern more intricate 
representations. Upon integration into the Transformer model, 
positional encodings are appended to the embeddings to 
compensate for the lack of inherent sequential data processing 

regarding the model. These encodings furnish the model with 
spatial information of each feature in a sequence, thereby 
facilitating the subsequent implementation of the attention 
mechanism. The architecture of the Transformer typically 
encompasses both encoder and decoder components. However, 
in this context, only the encoder is utilized, with an FCNN 
supplanting the decoder to accomplish regression towards 
azimuth and elevation angles. The encoder consists of multiple 
layers of multi-head self-attention, FCNN, layer normalization, 
and residual connection. The quantity of encoder layers is 
adjustable, contingent on the intricacy of the task. The multi-
head attention mechanism empowers the model to prioritize 
different segments of the I/Q feature sequence during AoA 
estimation, concentrating on the most relevant features. 
Consequently, this approach substantially augments the 
accuracy and dependability of AoA estimation. 

E. Localization  
Based on the acquired AoA values, the least squares (LS) 

method [42] is applied to calculate the spatial coordinates of the 
target by minimizing an error function related to pertinent 
angles. To enhance positioning accuracy and robustness, three 
BLE anchors are strategically deployed to work in concert. 
Moreover, the ultimate location determination is refined 
through the averaging of multiple sequential prediction 
outcomes, including historical data, facilitated by a moving 
time window. This approach ensures smoother and more 
precise estimations. To accommodate environmental variations 
and sustain long-term positioning accuracy, the system 
leverages fixed BLE tags at predetermined locations as 
calibration points, enabling online self-calibration of the BLE 
positioning model. Specifically, the system adaptively modifies 
the regularization target of the positioning model, iteratively 
refining it to attain a global optimum within the updated 
constraints. If the adjustments in regularization fail to satisfy 
the positioning criteria, the positioning model would take 
dynamical expansion, with appropriate modifications to the 
network structure. Through iterative calibration and model 
updates, the system can maintain optimal performance amidst 
evolving environmental conditions. 

Ⅳ. METHODOLOGY 
This section elaborates on the mathematical models 

underpinning the methods involved within the TransAoA 
framework. The initial focus is on the theory of I/Q sampling, 
which lays the foundation for subsequent data quality analysis 
and multi-feature construction. Then, the section delves into the 
implementation of AoA-based localization using deep learning 
techniques. 

A. I/Q Sampling and Quality Analysis 
I/Q sampling is a technique for capturing and processing 

continuous-time analog RF signals to extract their I and Q 
components, then effectively capturing both amplitude and 
phase information. Fig. 2 provides a simplified circuit diagram 
illustrating the key components enabling I/Q sampling. The 
process involves receiving the BLE RF signal, converting it to 
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an analog signal, and multiplying it with a local oscillator signal 
in two paths with a 90° phase shifter. Ideally, the LO signal 
frequency aligns with the RF carrier frequency, resulting in an 
upper sideband frequency and a lower sideband frequency that 
matches the constant tone extension (CTE) baseband frequency. 
Subsequently, low-pass filters eliminate the high-frequency 
upper sideband signals, allowing only the signals at the CTE 
baseband frequency to pass. An ADC digitizes the signals to 
produce I and Q samples. 

 

 
Fig. 2. A simplified circuit for BLE I/Q sampling. 
 
Several factors can influence the quality of I/Q sampling, 

leading to potential errors. A significant factor is the carrier 
frequency offset (CFO) between the LO signal and the BLE 
carrier signal, which can cause a systematic residual and deviate 
the final samples from the intended baseband frequency. 
Another issue is quantization error, which occurs when the 
signal amplitude is too low, reducing the signal-to-noise ratio 
(SNR) and potentially leading to inaccuracies in ADC sampling 
outcomes. Additionally, random noise from various electrical 
components can alter the amplitude and phase of the signal, 
introducing cumulative errors in I/Q samples that are difficult 
to detect or cancel. Therefore, it necessitates the data quality 
analysis and discard substandard samples to maintain AoA 
estimation efficiency. 

Like traditional algorithms to address CFO by processing the 
I/Q samples from the reference period, this study proposes a 
quality filtering method predicated on the reference samples. 
This approach establishes two criteria for quality assessment, 
taking into account the signal’s amplitude and phase difference. 
First, low amplitude is identified as indicative of error, as 
explained above. Let the I/Q samples in the reference period be 
denoted as ( ) ( ) ( ){ }1 1 2 2 ,8 ,8, , , ,..., ,t t t t t t tX i q i q i q= ， ， ， ，

. The amplitude 

of each sample vector can be expressed as: 
           2 2

, , , , 1, 2,...,8t n t n t nA i q n= + =                         (1) 

A threshold value 
amplitudeT  is settled to enable the filtering 

process: 

           ,

,

0 max
1 maxt

t n amplitude
X

t n amplitude

A T
a

A T
≤

=  >
                         (2) 

If 
tXa  equals zero, it needs to discard this set of data due to 

insufficient quality. Pertaining to the second criterion, given 
that phase difference is intrinsically linked to the AoA 
estimation, sample quality is appraised through this differential. 

Specifically, each I/Q sample pair should be converted into a 
phase angle 

,t iθ , computed by: 

         ](,
, ,

,

arctan , ,t n
t n t n

t n

q
i

θ θ π π
 

= ∈ −  
 

                      (3) 

As a signal propagates space, its phase evolves continuously. 
However, phase measurements are typically confined to a finite 
range, introducing potential ambiguity in the true phase 
difference. Phase unwrapping is thus imperative for generating 
a seamless phase profile. In this study, with phase rotation 
assumed to be counterclockwise, the phase for each sample is 
updated as: 

          , , , 1
,

, , , 12
t n t n t n

t n
t n t n t n

if
p if

θ θ θ
θ

θ π θ θ
−

−

′≤
′ =  ′− >

                      (4) 

Here, the p represents the number of complete cycles 
traversed by the signal. To exclude anomalous phase 
differences, upper and lower bounds are defined, ensuring that 
significant deviations from the expected phase difference, 
ideally / 2π , are filtered out: 

                   , , 11

0t

lower t n t n upper
X

T T
a

else

θ θ − ′ ′≤ ∀ − ≤= 


                (5) 

By applying these criteria, the dataset is refined based on the 
quality of the I/Q samples collected during the reference period 
to elevate the reliability of subsequent prediction. 

B. Multi-feature Extraction 
Prior to the AoA estimation model development, a variety of 

features is constructed from the I/Q data within the sampling 
period to expedite model convergence during training and 
promote prediction accuracy. Each I/Q sample pair can be 
denoted as ( ) ( ) ( ){ }1 1 2 2 , ,, , , ,..., ,t t t t t t n t nX i q i q i q= ， ， ， ，

. Given the I 

and Q components originating from a complex signal, each unit 
in the I/Q vector is transformed into a complex representation, 
namely  { },1 ,1 ,2 ,2 , ,, ,...,t t t t t t n t nX i j q i j q i j q= + ⋅ + ⋅ + ⋅ . In this 

study, six distinct feature groups are extracted from the 
complex I/Q vectors. 

1) Temporal feature: This category concerns statistical 
attributes of the signal. The real and imaginary parts of the mean 
of single I/Q vector constitute two features, which are 
formulated by: 

    ( ) ( ) ( )1 1 1 2 1
1

1 , Re , Im
N

k k
k

F i j q f F f F
N =

= + ⋅ = =∑      (6) 

The standard deviation of I/Q vector is given by: 

   ( )( )2
3 2 1

1

1
1

N

k k
k

f F i j q F
N =

= = + ⋅ −
− ∑               (7) 

Additionally, skewness and kurtosis are used to depict the 
shape of a probability distribution, which provide information 
about the asymmetry and peakedness of the distribution, 
respectively. These two features are defined as: 

 ( )( ) ( ) ( )3
3 1 4 3 5 33

12

1 , Re , Im
N

k k
k

F i j q F f F f F
NF =

= + ⋅ − = =∑
(8) 
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( )( ) ( ) ( )4
4 1 6 3 7 34

12

1 , Re , Im
N

k k
k

F i j q F f F f F
NF =

= + ⋅ − = =∑
(9) 

2) Spectral feature: These features reveal the energy 
distribution across different frequencies within the signal. This 
study applies a Fourier transform to the I/Q vectors to obtain 
the frequency spectrum, as modeled by: 

                    ( )
1

2 /
5

0

N
j fk N

k k
k

F i j q e π
−

−

=

= + ⋅ ⋅∑                        (10) 

Hereinto, the mean and standard deviation of both the 
magnitude and phase of the frequency-transformed I/Q vector 
provide four spectral features: 8f , 9f , 10f , and 11f . 

3) Energy feature: This feature is a measure of the total energy 
or power contained within a signal. This feature provides a 
straightforward metric for signal intensity, making it widely 
used in signal processing and machine learning. It is calculated 
by: 

                           ( )2 2
12 6

1

N

k k
k

f F i q
=

= = +∑                           (11) 

4) Envelope feature: The envelope captures the amplitude 
variations of a signal over time and is calculated by taking the 
absolute value of each set of I/Q samples as: 

                       2 2
7 k k k kF i j q i q= + ⋅ = +                       (12) 

The mean, standard deviation, maximum, and minimum 
values of the absolute vector serve as four envelope features: 

13f , 14f , 15f , and 16f . 
5) Phase difference feature: These features have a close 

relation with AoA prediction in line with the theory. The mean 
and standard deviation of a vector of phase difference give birth 
to 17f  and 18f . This difference is estimated by the following 
formula: 

             ( ) ( )8 1 1arctan / arctan /k k k kF q i q i+ += −          (13) 
6) I/Q component feature: The separate mean and standard 

deviation of the in-phase and quadrature components are used 
to produce features 19f , 20f , 21f , and  22f . 

In total, twenty-two features are crafted and then integrated 
with the I/Q sample vector to comprise the input for the AoA 
estimation neural network, which is denoted as 

{ }1 1 , , ,1 ,22, ,..., , , ,...,t t t t n t n t tX i q i q f f′ = ， ， .  

C. Transformer model for AoA Estimation 
It should be clarified that each single numerical value of I and 

Q data is a scalar. A sequence of I/Q scalars collected within 
one round of reference period and sampling period is parallelly 
combined with these feature values to construct a vector as the 
input to AoA estimation. In the Transformer architecture, 
embeddings are pivotal for transforming input tokens into 
vectors of continuous values that the model can process. In the 
feature input, simplified as { }1 22, ,..., nX x x x +′ = 2 , each data 
point could be mapped to a high-dimensional matrix with rows 
and columns through an embedding function

( ) { },1 ,2 ,, ,...,k k k k mEm x e e e= . The embedding matrix is 

characterized by ( )22m n∗ +  dimensions. 
Subsequently, due to the Transformer’s inability to inherently 

process sequential data, it entails the integration of positional 
encodings with each point in the sequence of input embeddings. 
For each position k and dimension m in the embedding, the 
positional encoding PE(k, m) is defined as follows: 

                        
( )

( )

2 /

2 /

, 2 sin

, 2 1 cos

i m

i m

kPE k i
s

kPE k i
s

  =    


  + =    

                      (14) 

The s represents a specific scalar. These equations alternate 
between sine and cosine functions for even and odd indices, 
respectively, allowing the model to distinguish between 
different positions. The final input representation for each data 
point in the sequence is obtained by consolidating its input 
embedding with the positional encoding. 

Next, these representations are fed into encoder layers, the 
number of which is dependable. An encoder layer primarily 
consists of two sub-layers, a multi-head attention function and 
a FCNN. The multi-head attention function features three key 
elements, including matrices of queries Q, keys K, and values 
V. It computes the dot products of the query with all keys and 
applies a softmax function to derive the weights on the values. 
The output matrix is given by: 

   ( ), , softmax
T

k

QKAttn Q K V V
d

 
=   

 
                   (15) 

The kd  denotes the dimension of queries and keys. To 
mitigate the issue of the dot products growing large in 
magnitude, which leads to the softmax function entering 
regions with extremely small gradients, the dot products are 
scaled by 1/ kd . In contrast to single-head attention, multi-
head attention enables the model to concurrently attend to 
various aspects at different positions, fostering a more nuanced 
understanding of the relationships between data points and 
enhancing parallelism. The final results are acquired by a 
concatenation of all the heads, as depicted by: 

( ) ( ) ( )( )1 1 1, , , , ,..., , ,Q K V Q K V
h h hMH Q K V Concat Attn QW KW VW Attn QW KW VW=

(16) 
Here, the projection matrices km dQ

hW ×∈ ,  km dK
hW ×∈ ,  

vm dV
hW ×∈  are allocated to queries, keys and values, 

respectively, and h represents the number of attention heads.  
In addition to the attention sub-layer, each encoder layer 

contains a FCNN, which is applied to each position separately 
and identically. The FCNN is aimed to map the input dimension 
from one space to a higher-dimensional space, and then back to 
the original dimension or another appropriate dimension 
through two linear transformations with a ReLU activation in 
between. Hence, this process facilitates nonlinear 
transformation, enabling the model to capture more complex 
feature relationships and thereby augmenting its expressive 
capability. The FCNN is structured as follows: 
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   ( )1 2 1 1 2max 0,l l l l
l lX W W X b b+ = ⋅ ⋅ + +

 
   

              (17) 

The 1
lW


and 2
lW


 are weight matrices assigned to the input at 

the lth layer for two linear shifts, with 1
lb


and 2
lb


  as the 
corresponding bias matrices. Besides those two sub-layers, each 
sub-layer is enhanced with residual connections and layer 
normalization to foster model convergence and stabilize 
training. 

To optimize model parameters, it is essential to identify an 
appropriate loss function. The mean square error (MSE) is 
utilized as the loss function in response to the application of the 
FCNN. The adaptive moment estimation (Adam) algorithm is 
employed for optimization due to its efficacy across various 
parameter initializations. This algorithm aims to iteratively 
update parameters in the direction of gradient descent to 
minimize loss. 

D. Triangulation 
This study aims to achieve indoor localization through 

triangulation that leverages the AoA values garnered from 
signals transmitted between the target and multiple BLE 
anchors. By acquiring AoA measurements from a minimum of 
three BLE anchors, the spatial coordinates ( ), ,t t t tP x y z=  of 
the target at time t are determined by the minimization of an 
error function. This function quantifies the discrepancy 
between the measured and predicted angles. Mathematically, 
the LS problem can be articulated as: 

( )( ) ( )( )
2 2

, ,
1

ˆ ˆ: , , , ,
n

t i i t t t t i i t t t
i

Min x y z x y zθ θ ϕ ϕ
=

 − + −  ∑ (18) 

where n denotes the number of BLE anchors. The ,t iθ  and  

,t iϕ  are the measured elevation and azimuth angles from the ith 
BLE anchor to the target at time t, respectively. Conversely, the 

( )ˆ , ,i t t tx y zθ  and ( )ˆ , ,i t t tx y zϕ  are the predicted elevation 
and azimuth angles grounded on the estimated position of target 
relative to the ith anchor. The goal is to ascertain the values of x, 
y, and z that minimize this sum, thereby providing the best 
estimate of the target’s position based on the AoA 
measurements. 

Furthermore, a moving average technique is applied to 
smooth out short-term fluctuations and underscore longer-term 
trends in location data. This approach involves averaging a 
sequence of consecutive position estimates to yield a single and 
smoothed location point, as illustrated below: 

                       1 1···t t t w
t

w

P P PP
T

− − ++ + +
=                          (19) 

The wT  signifies the length of the time window for averaging. 
This method proves particularly useful when dealing with noisy 
measurements or when the target’s position is subject to rapid 
changes, engendering accurate and reliable location estimates. 

V. EXPERIMENT AND EVALUATION 
To validate and evaluate the efficacy of the TransAoA method, 

experiments were conducted in a laboratory that is settled to 

mimic an industrial environment, characterized by the presence 
of numerous signals that could potentially cause interference. 
Besides, a comparative analysis was conducted to demonstrate 
the superiority of the proposed method relative to other 
benchmark approaches. 

A. Experimental Settings 
The laboratory environment incorporates various physical 

objects and personnel to simulate potential sources of signal 
reflection and multipath interference, which are common in 
industrial environments, as displayed in Fig. 3. The layout is 
designed to introduce challenges typical of industrial settings, 
such as non-line-of-sight (NLOS) conditions and dynamic 
obstacles. The designated experimental area measures 7.2m by 
5.4m within the laboratory, avoiding fixed arrangements, as 
depicted in Fig. 4. Below are detailed the hardware 
configuration and the establishment of datasets. 

 

 
Fig. 3. The floor plan of experimental settings. 

 
1) Hardware configuration: The experimental setup utilizes 

BLE tags based on the BRD4184B board from Silicon Labs, 
configured to periodically transmit data packets with CTE via 
data channels excluding 37, 38, and 39, as specified by the BLE 
5.1 protocol. For signal reception, a dual-polarized antenna 
array radio board, the BRD4185A, also from Silicon Labs, is 
employed. This board features a rectangular antenna array in a 
44 configuration, with an inter-antenna spacing of 0.036m. 
Moreover, it is equipped with both horizontal and vertical 
antenna polarizations to facilitate the measurement of radiated 
powers across fundamental frequencies and harmonics. An 
antenna board interfaces with a gateway composed of a 
Raspberry Pi 3B+, which provides the necessary computing 
capabilities for I/Q sample collection, data preprocessing, and 
transmission. Three anchors are mounted on tripods at a height 
of two meters within the experimental area, as shown in Fig. 3 
and 4. Data transmission from the gateway to a server is 
accomplished via the Message Queuing Telemetry Transport 
(MQTT) protocol, which is well-suited for industrial 
applications due to its effectiveness in environments with 
constrained resources, low bandwidth, high latency, or 
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unreliable networks. Lastly, the Transformer model for AoA 
estimation is enforced using PyTorch, and the training process 
is executed on a workstation furnished with an Intel(R) Xeon(R) 
Gold 6230R CPU @ 2.10GHz, featuring 8 cores. 

 

Fig. 4. The deployment of BLE indoor positioning system. 
 

2) Dataset establishment: The experimental datasets are 
categorized into two primary groups. The first group involves 
collecting data from fixed points where BLE tags are mounted  
at a height of one meter and remain stationary throughout the 
data collection period. The second group gathers data from 

mobile BLE tags. An experimenter carries these tags and walks 
along a predefined path within the experimental area. For the 
fixed points, the experimental setup includes 910 points along 
both the x and y axes. However, data collection focuses on a 
total of 36 points to support the exploration of neural network 
generalization, as illustrated in Fig. 4. Each of these points 
contributes 3000 data entries, encompassing I/Q samples, RSSI, 
channel information, transmitter and anchor identifications, and 
timestamps. The I/Q samples comprise 8 pairs of I/Q data for 
the reference period and 74 pairs of dually-polarized I/Q data 
for the sampling period, reflecting cyclic sampling across 16 
antennas. Overall, the dataset, exceeding 100,000 entries, is 
segmented into training, validation, and testing subsets for AoA 
estimation, following an 8:1:1 ratio. Regarding the dynamic 
target localization, an experimenter carrying a BLE tag walks a 
predetermined route three times at a normal pace, yielding 9557 
data entries. Concurrently, three anchors work in unison to 
localize the moving target in real-time using individual AoA 
estimation models. 

B. Experimental Results and Analysis 
In this study, several prominent deep learning techniques for 

angulation are employed, including FNN, CNN, and LSTM, to 
perform a comparative analysis with the proposed TransAoA 
method. Additionally, the PDDA approach, which has 
demonstrated superiority over the traditional MUSIC algorithm, 
is included for comparison. The impact of I/Q data quality 
filtering and specific multi-feature extraction on AoA 
prediction accuracy is further investigated in the following 
experiments. 

First, the TransAoA is benchmarked against other four 
methods, involving data quality filtering and feature extraction 

BA01

BA02
BA03

BLE tag

TABLE Ⅰ 
RESULTS OF AOA ESTIMATION WITH QUALITY FILTERING AND FEATURE EXTRACTION 

Method 
Azimuth Elevation   

MSE MAE Within 
5℃ 

Within 
10℃ 

Within 
20℃ MSE MAE Within 

5℃ 
Within 
10℃ 

Within 
20℃ 

TTPP 
(ms) 

PT 
(ms) 

PDDA+QF 114.62 9.78 5.52% 62.74% 95.58% 43.91 5.95 39.81% 89.92% 100% \ 857 
FNN+QF+FE 11.81 2.52 89.48% 98.85% 99.91% 1.51 0.94 99.66% 99.97% 100% 2.41 1 
CNN+QF+FE 27.82 3.70 74.78% 93.88% 99.63% 2.09 1.08 98.79% 99.97% 100% 2.16 52 

LSTM+QF+FE 6.51 1.91 95.52% 99.63% 100% 0.80 0.65 99.91% 100% 100% 1.89 19 
TransAoA 3.62 1.35 98.85% 99.91% 99.97% 0.61 0.53 99.97% 100% 100% 1.53 31 

Note: QF: quality filtering; FE: feature extraction; TTPP: training time per parameter; PT: prediction time. 

TransformerLSTMCNNFNNPDDAFig. 5. The error histogram and CDF of azimuth estimation. 
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processes, across metrics of azimuth and elevation estimation 
accuracy. Evaluation criteria such as MSE, mean absolute error 
(MAE), training time, prediction time, and the distribution of 
specific angular errors are utilized to assess model performance. 
The aggregated findings are presented in Table Ⅰ. It is evident 
that the TransAoA surpasses the other methods in most respects. 
Specifically, the TransAoA achieves an MSE of 3.62 and an 
MAE of 1.35 for azimuth estimation, and 0.61 MSE and 0.53 
MAE for elevation. The LSTM is the next best performing 
method, with MSE values of 6.51 and 0.80, and MAE values of 
1.91 and 0.65 for azimuth and elevation, respectively. The FNN 
demonstrates fewer errors than the CNN but more than the 
LSTM, suggesting a lack of graph-like structure inherent in I/Q 
samples. Conversely, PDDA exhibits the least favorable 
performance, with significantly larger errors in both azimuth 
and elevation estimation. In terms of computational efficiency, 
also considering model size, TransAoA shows the shortest 
training time per parameter (TTPP) to maintain convergence, 
averaging 1.53ms, whereas it would sacrifice the prediction 
time, taking 31ms. Besides, PPDA, despite its simplicity, 
exhibits a significantly longer prediction time compared to all 
deep learning techniques. This suggests that the inference 
efficiency makes learning methods more suitable for real-time 
localization applications. 

 In addition, histograms and cumulative distribution functions 
(CDFs) of the absolute angular errors for azimuth and elevation 
are depicted in Fig. 5 and 6, respectively. Note that the 
TransAoA achieves the most precise estimations, with 98.85% 
of azimuth errors and 99.97% of elevation errors falling within 
5 degrees. Furthermore, it attains 99.91% of azimuth errors 
within 10 degrees and 99.97% within 20 degrees, while 
maintaining 100% accuracy within 10 degrees for elevation. A 
particular emphasis is placed on the LSTM that reaches 100% 

prediction accuracy within 20 degrees for azimuth, surpassing 
the TransAoA. This finding highlights the generalization 
capability of the LSTM in handling deviated data. The LSTM 
also nearly matches the performance of the TransAoA in 
elevation estimation. 

 Furthermore, Fig. 7 illustrates the training loss trajectories of 
the four deep learning methods throughout the optimization 
process. The TransAoA exhibits rapid convergence with 
minimal loss at the start. Although the LSTM experiences 
notable fluctuations early in training, it maintains a low loss in 
the end. The FNN shows robust convergence despite an initially 
high loss, whereas the CNN model undergoes persistent 
oscillations over several epochs. 

Fig. 7. Comparison of the training loss in the optimization 
process. 

 Second, the influence of data filtering in relation to the 
quality of I/Q samples on AoA estimation accuracy is examined. 
According to the findings presented in Table Ⅱ, the absence of 
quality filtering leads to an increase in MSE and MAE values, 
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TABLE Ⅱ 
RESULTS OF AOA ESTIMATION WITH ONLY FEATURE EXTRACTION 

Method 
Azimuth Elevation 

MSE MAE Within 
5℃ 

Within 
10℃ 

Within 
20℃ MSE MAE Within 

5℃ 
Within 
10℃ 

Within 
20℃ 

PDDA 128.47 11.04 3.28% 59.65% 92.87% 57.63 6.81 35.46% 87.91% 99.85% 
FNN + FE 15.44 2.54 88.34% 98.34% 99.61% 1.92 1.03 99.49% 99.94% 100% 
CNN + FE 27.94 3.78 73.52% 93.77% 99.54% 3.15 1.35 98.40% 99.97% 100% 

LSTM + FE 7.65 2.08 94.43% 99.34% 99.88% 1.12 0.71 99.66% 99.93% 100% 
Trans + FE 6.77 1.87 98.02% 99.83% 99.88% 0.64 0.61 99.85% 99.93% 100% 

TransformerLSTMCNNFNNPDDA

Fig. 6. The error histogram and CDF of elevation estimation. 
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alongside a general decrease in the accuracy of angle error 
ratios across different ranges. This contrast with the results 
shown in Table Ⅰ underscores the critical role of quality filtering 
in enhancing estimation precision by eliminating I/Q samples 
distorted by noise. Moreover, this analysis testifies the quality 
consistency between reference and sampling data, as the quality 
assessment exclusively involves reference data. Despite these 
challenges, the TransAoA method consistently outperforms 
other techniques in angle prediction. Notably, the FNN is the 
most affected by the absence of quality filtering, experiencing 
a 30.74% and 27.15% increase in MSE for azimuth and 
elevation, respectively, illustrating its limited generalization 
capability. 

 

 
Fig. 8. Comparison of different moving windows for the 
triangulation of moving targets. 

 
Third, this part explores the effects of a bespoke multi-feature 

extraction technique on deep learning-based AoA prediction. 
The Transformer architecture still achieves superior prediction 
accuracy among the four evaluated methods, as shown in Table 
Ⅲ. Distinctively, most methods exhibit an increase in MSE in 
the absence of prior feature extraction, only the CNN shows a 
decrease, by 22.41 and 1.76 for azimuth and elevation 
estimation, respectively. This suggests that the diversity of 
input data may adversely affect CNN performance. Compared 
to the results in Table Ⅱ, the impact of feature extraction is less 
pronounced than that of quality filtering for the LSTM, whereas 
it is more critical for both the Transformer and FNN. Without 
feature extraction, the Transformer demonstrates a more 

significant reduction in the accuracy of angle error estimation 
within 5 degrees than without quality filtering, 1.52% opposed 
to 0.83% for azimuth. The influence on elevation estimation 
across all methods is comparatively minor except the CNN, 
with a maximum deviation of 0.2% for errors within 5 degrees. 

Fourth, leveraging the superior angle estimation capabilities 
of the TransAoA, it is used to triangulate the positions of 
moving people. An average moving window technique is 
applied to refine the predicted outcomes. Fig. 8 visualizes the 
comparative impact of different moving window sizes (0, 5, 10, 
and 15) on localization performance. The results indicate that 
the average moving window significantly enhances localization 
accuracy. Without its application, the predicted locations are 
dispersed across the map, whereas a more coherent movement 
path emerges as the window size increases. However, 
excessively large windows may restrict the range and 
adaptability of positioning, thereby diminishing accuracy. 
Based on the analysis, a moving window size of 10 strikes an 
optimal balance. In conclusion, the localization outcomes 
validate the effectiveness of the TransAoA as a comprehensive 
solution for BLE indoor localization on the ground of deep 
learning-enhanced AoA measurements. 

Ⅵ. CONCLUSION 
This paper presents an innovative BLE-based indoor 

positioning framework, the TransAoA, that significantly 
improves the accuracy and robustness of AoA estimation 
through the application of the Transformer deep learning 
architecture. The proposed method outperformed traditional 
and contemporary deep learning techniques in a simulated 
industrial environment, attaining 98.85% and 99.97% of 
estimation errors within 5 degrees for azimuth and elevation, 
respectively. Besides, the integration of a data quality filtering 
and specialized feature extraction methods enabled the model 
to readily capture complex signal interactions, leading to rapid 
convergence and enhanced generalization capabilities. It is 
anticipated that this technique framework would inspire new 
ideas for researchers and act as a guide for practitioners to easily 
replicate in order to meet similar application requirements. 

However, a limitation of this work is the reliance on linear 
triangulation for location estimation. The least square technique 
might be susceptible to noise and fail to adequately model the 
inherent non-linearity of localization based on AoAs, 
potentially harming positioning accuracy. Correspondingly, 
future research could explore more robust and non-linear 
approaches to mitigate the impact of noise on AoA-based 
localization performance. Besides, enhancing the scalability 

Moving window = 0 Moving window = 5

Moving window = 10 Moving window = 15

TABLE Ⅲ 
RESULTS OF AOA ESTIMATION WITH ONLY QUALITY FILTERING 

Method 
Azimuth Elevation 

MSE MAE Within 
5℃ 

Within 
10℃ 

Within 
20℃ MSE MAE Within 

5℃ 
Within 
10℃ 

Within 
20℃ 

FNN + QF 18.74 2.87 84.92% 97.47% 99.52% 1.79 1.01 99.52% 99.97% 100% 
CNN + QF 22.41 3.22 79.98% 95.23% 99.57% 1.76 0.97 99.51% 100.00% 100% 

LSTM + QF 7.63 1.88 94.37% 99.29% 99.95% 0.94 0.67 99.78% 99.95% 100% 
Trans + QF 5.57 1.51 97.33% 99.78% 99.90% 0.67 0.58 99.88% 99.98% 100% 
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and adaptability of the TransAoA framework for deployment in 
diverse industrial environments presents a promising direction. 
Investigations into the integration of additional environmental 
and contextual data could further improve the robustness and 
adaptability of the system. Moreover, extensive field trials in 
various industrial scenarios would be invaluable to validate the 
framework’s performance and facilitate its adoption in Industry 
5.0 applications. 
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