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Abstract—Accurate gearbox fault identification is
paramount for industrial production. In practice, gearboxes
typically operate under normal conditions (rarely under
faulty conditions), resulting in a long-tailed distribution
of monitoring data. However, the majority of current
algorithms are crafted based on the assumption of
balanced sample distributions, which don’t correspond
with the prevalent conditions encountered in actual
industrial settings. To cope with this challenge, an
attention-based multireceptive field convolutional neural
network (AMFCN) is established in this paper. This study’s
main contributions can be summarized as follows: 1) We
introduce a global contextual attention module (GCAM) to
instruct the model to focus on learning ample features;
2) We establish a hierarchical receptive field module
(HRFM) to incorporate powerful multi-level learning
capabilities into the AMFCN model; 3) We devise an
adaptive label regulation loss (ALRL) to facilitate the model
to obtain accurate fault identification results, particularly
in situations with imbalanced data distributions. Two case
studies show that the AMFCN model achieves 83.72% and
81.63% accuracy on two extremely imbalanced gearbox
datasets, outperforming seven competitive algorithms.

Index Terms—Gearbox, fault identification, long-tailed
distribution, global contextual attention module (GCAM),
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hierarchical receptive field module (HRFM), daptive label
regulation loss (ALRL).

NOMENCLATURE

ALRL Adaptive Label Regulation Loss

AMFCN Attention-based multireceptive field convolutional
neural network

CAB Channel Attention Branch

CNN Convolutional Neural Networks

GCAM Global Contextual Attention Module

HRFM Hierarchical Receptive Field Module

KNN k-nearest Neighbors Algorithm

MIXConv Mix Convolutional Layer

MLP Multi-layer Perceptron

PReLU Parametric Rectified Linear Unit

SAB Spatial Attention Branch

SMOTE Synthetic Minority Over-Sampling Technique

t — SNE T-distributed stochastic neighbor embedding

[. INTRODUCTION

S mechanical equipment continues to advance in preci-
sion, complexity, scale, and intelligence, the operational
health of such machinery becomes pivotal for ensuring produc-
tion process safety and product quality stability [1]. Among the
essential components of rotating machinery, gearboxes stand
out as the core support mechanism. The seamless and secure
operation of machinery hinges on the optimal functioning
of these gearboxes. Hence, in practical production settings,
real-time dynamic monitoring, fault analysis, and predictive
maintenance of gearboxes hold immense significance.
During gear operation, various factors such as fatigue,
overload, and abrupt load changes can readily trigger surface
peeling, leading to gear damage [2]. This peeling phenomenon
arises from prolonged elastic deformation of the gear, sub-
jected to repetitive twisting and bending stresses [3]. Further-
more, if the main shaft undergoes bending or sustains damage,
the gearbox experiences recurring impact loads during oper-
ation, exacerbating potential damage. Moreover, inadequate
lubrication or sealing of the gearbox may facilitate foreign
particle intrusion, resulting in aggressive wear and subsequent
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peeling failures [4]. Hence, the foundation for ensuring the
smooth operation of mechanical equipment lies in the effective
condition monitoring and diagnosis of gear spalling faults.

The vibration signal collected during mechanical equip-
ment operation serves as a crucial and dependable foun-
dation for fault diagnosis [5]. Traditionally, fault diagnosis
involves extracting pertinent fault characteristic information
from the original vibration signal. This includes methods such
as time domain analysis, frequency domain analysis, and time-
frequency domain analysis, etc. Zhang et al. [6] put forward
a total variational denoising-based model for critical feature
extraction of bearings. Yu et al. [7] developed a time-frequency
feature extraction approach to construct quantitative indicators
for running status monitoring of bearings. Zhang et al. [§]
devised a recursive frequency estimation algorithm, which
utilized the Cholesky decomposition strategy for the fault
frequency location of machines. Nikula et al. [9] designed a
new time domain feature autocorrelation approach for locating
the failure location of low-speed bearings. First, a filter was
applied to locate the explicit span of the given fault sig-
nals; Then, some time-frequency indicators were calculated to
strengthen the fault-related frequency; Finally, a novel search
strategy was utilized to locate the exact fault frequency of the
given signal. A new component separable synchroextraction
transform approach was devised for extracting the critical
fault-related components of the input signals [10]. First, a
new ridge optimization scheme was utilized to extract poten-
tial fault information; Then, an intelligent time-varying filter
was employed to locate the specific failure features; Finally,
the concise fault-related information was reconstructed with
high fidelity using the synchronous extraction method. The
efficacy of the proposed approach is confirmed through the
analysis of both simulated and experimental signals. While
these methods are indeed effective, they heavily depend on
the expertise of technicians. For less experienced personnel,
achieving desired diagnostic outcomes with these methods
can be challenging. Furthermore, the original vibration signals
produced by modern mechanical equipment are voluminous
and intricate. Given their complexity, traditional fault diagnosis
methods struggle to accurately analyze and process such large
amounts of complex data.

With the continuous accumulation of data and the im-
provement of computing power, the application of artificial
intelligence technology in the industrial field has been greatly
expanded and deepened. Many companies and organizations
have begun to build large-scale models based on artificial
intelligence to effectively respond to the complex challenges
encountered in production operations. Looking around the his-
torical monitoring data allows us to uncover patterns, trends,
and anomalies that can signify various aspects of bearing
health. In this context, deep learning-based diagnostic methods
have begun to be used in fault diagnosis of mechanical
equipment. Deep learning-based approaches can autonomously
learn to extract fault characteristic information from extensive
vibration data. The extracted insights facilitate precise fault
classification, mitigating the influence of manual expertise on
results and enhancing fault identification accuracy. A parallel
deep learning-based model was put forward in [11] for running

status monitoring of drilling pumps. Specifically, an attention-
enabled AlexNet and a signal transformer were combined
for time-frequency feature exploration of the input signals.
The on-site pump data was utilized for the experiment to
validate the effectiveness of this approach. Xiao et al. [12]
developed a new Bayesian signal transformer for machine
health status recognition. First, a universal Bayesian model
was constructed; Then, a new self-attention block was used
to obtain the attention weights of the prior and posterior
distributions; Finally, a newly designed optimization scheme
was utilized to guide the model learning process. A new
lightweight transformer was devised for machine condition
monitoring [13]. First, a separable multilevel convolution
module was employed to capture the global fault information;
Then, a broadcast attention module was used for exploring
multireceptive features. Two datasets of mechanical systems
were used for the experimental validation. Xu et al. [14]
put forward a multiscale threshold denoising CNN model for
health monitoring of rotating machinery. First, a multilevel
feature extraction module and a threshold denoising module
were introduced for efficient feature exploration. Afterward, a
novel knowledge distillation scheme was applied for critical
information location. A cross-fusion CNN model was devised
for fault diagnostics and prognostics of machines [15]. First,
a new CNN backbone was designed for abundant feature
learning. Then, a central fusion block was established for
feature interaction learning. Finally, a novel learning scheme
was devised to guide the learning process of the model. Xu
et al. [16] introduced a novel methodology that integrates a
CNN model with a multi-receptive field module and residual
connections for intelligent feature extraction from vibration
signals. To effectively capture multiscale features, they intro-
duced a multireceptive field denoising block that dynamically
learns from the vibration signals. Additionally, an efficient
information fusion module was integrated to intelligently
combine the extracted feature information, thereby bolstering
the diagnostic efficacy of the model.

As modern industry evolves and sensing technology ad-
vances, acquiring sensor data for fault diagnosis has become
increasingly accessible, unavoidably adding complexity to
the diagnostic process. Data-driven diagnostic models rely
on thorough analysis of sensory data. Enhanced accuracy in
fault diagnosis is achieved with ample training data samples
encompassing diverse fault types. However, real-world scenar-
ios often entail long periods of normal equipment operation
with relatively few fault occurrences. Despite continuous data
collection by sensors during system operation, the majority
of collected data pertains to the system’s healthy state, while
fault data may be sparse or absent for certain fault categories.
Moreover, the complexity of working conditions yields a
plethora of data with unknown fault categories. Although fault
simulation test beds in laboratories or simulation software
can be employed to mimic system faults, challenges arise
due to the inability to replicate complex working conditions
accurately, leading to significant disparities between simulated
and actual data. Consequently, the imbalanced distribution
of samples presents substantial challenges in training data-
driven diagnostic models, necessitating urgent attention from



academia and industry. Utilizing unbalanced data directly for
fault diagnosis often results in diminished diagnostic accuracy
and poor generalization performance, thereby failing to meet
the requirements of effective fault diagnosis.

In recent years, a plethora of fault diagnosis methods have
emerged to tackle the challenge of class imbalance. A new
imbalanced diagnostic algorithm was presented by Wang et
al. [17] for machine health state monitoring. First, Wavelet
transform was employed to transform the input signals into
images; Afterwards, a modified CNN architecture was used
for feature exploration; Finally, a new attention block and a
new loss function were applied for fault classification. The
experimental cases validated the approach was effective. A
cost-sensitive transformer-based architecture was devised for
long-tail fault recognition of machines [18]. First, the classic
CNN model was utilized for the construction of token embed-
ding. Afterward, an adaptive loss was introduced to redistribute
weights. Extensive case studies were implemented to vali-
date the method’s efficacy. A multi-attention-empowered CNN
model with a new loss function was devised for imbalanced
fault classification [19]. First, a multiscale block and a feature
aggregation block were introduced for feature exploration;
Afterwards, a dual focal loss function was designed to help the
model to focus on critical information. Extensive approaches
showed that this approach was useful. Wu et al. [20] built an
information-imbalance framework for health monitoring under
imbalance cases. First, data-level and feature-level information
was considered for useful feature exploration. Then, a Bayes-
optimal classifier was constructed for imbalance fault identifi-
cation. An intelligent augmentation algorithm for bearing fault
prognostics was proposed by Li et al. [21]. First of all, a vy
based thresholding algorithm was applied to set the centers
of the cluster; Afterwards, an enhanced KNN was applied to
classify the samples effectively. Finally, seven cutting-edge
methods were introduced to compare with this approach on
two industrial datasets. A wavelet similarity fusion framework
was devised for fault identification of hydraulic pumps under
imbalance cases [22]. First, a Wavelet packet decomposition
algorithm was utilized to decompose the input signals into
frequency maps; Then, a similarity fusion scheme was used to
fuse important features; Finally, the features were augmented
using the developed framework. Li et al. [23] put forward a
reinforcement learning-based architecture for condition mon-
itoring of bearings under data imbalance scenarios. First,
the SMOTE technique was applied to augment the industrial
dataset; Afterwards, a densely connected network combined
with mixed attention blocks was used for crucial feature
extraction; Finally, a parallel learning scheme was deployed
to carry out the diagnostic task.

The above-mentioned algorithms can be summarized as data
augmentation-based algorithms and cost-sensitive loss-based
algorithms. Although these techniques improve diagnostic
accuracy in imbalanced situations to a certain extent, they
still retain certain inadequacies: 1) Some methods perform
poorly when dealing with highly imbalanced datasets, making
it difficult to fully extract feature information from minority
class samples; 2) The data augmentation method may intro-
duce noise or cause excessive distortion of samples, affecting

the model’s generalization ability; 3) Cost-sensitive methods
typically require manual setting of class weights, which may
be difficult to determine, and adjustments for different classes
may affect model performance. In our perspective, the crucial
aspect for successfully tackling data imbalance rests in the
model’s strong feature extraction capability and the imple-
mentation of effective sensitivity learning strategies tailored
for imbalanced data. The model’s strong feature learning
capability can assist in extracting ample and comprehensive
feature information from imbalanced data, while effective sen-
sitivity learning strategies can guide the model to focus more
on valuable features within small-sample data. To tackle the
challenges mentioned earlier and attain favorable diagnostic
outcomes in the presence of data imbalance, we put forward
an attention-based multireceptive field convolutional network
with an adaptive label regulation loss. To begin with, we
introduce a global contextual attention module (GCAM) to
exploit discriminative features. GCAM owns a parallel struc-
ture, which can achieve a balance between feature extraction
and discriminate feature selection during the back-propagation
process. Second, we establish a hierarchical receptive field
module (HRFM) to improve the receptive field of the convo-
lutional layer, thus incorporating powerful multi-level learning
capabilities into the AMFCN model. Finally, an adaptive label
regulation loss is devised to facilitate precise fault recognition
of the monitored machine.

To wrap up, the key innovations of this paper are outlined
as follows:

(1) A global contextual attention module (GCAM) and a mix
convolutional (MIXConv) layer are utilized to instruct the
AMEFCN to concentrate on extracting ample features.

(2) A hierarchical receptive field module (HRFM) is estab-
lished to incorporate powerful multi-level learning capa-
bilities into the AMFCN model.

(3) An adaptive label regulation loss (ALRL) is devised to fa-
cilitate precise fault recognition, particularly in situations
with imbalanced data distributions.

The arrangement of this remaining content is outlined be-
low: Section II delineates the AMFCN model, while Sections
IIT and IV carry out experiments to verify the effectiveness
of the AMFCN on two gearbox datasets. Afterward, ablation
studies are implemented to verify the improvements of this
paper. Lastly, Section VI furnishes a thorough overview of
the study’s contributions.

[I. PROPOSED ALGORITHM

Fig. 1 displays the AMFCN model, featuring several convo-
lutional layer, multiple mix convolutional (MIXConv) layers, a
few global contextual attention module (GCAM), several hier-
archical receptive field module (HRFM), and a classification
module. In alignment with Ref [24], we employ MIXConv
to augment the AMFCN’s feature extraction prowess without
inflating the parameter count. The utilization of GCAM assists
the model in prioritizing discriminative features, thereby am-
plifying its overall performance. Due to its parallel structure,
these two modules not only independently optimize themselves
but also collaborate to achieve a balance between feature
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Fig. 1. The attention-based multireceptive field convolutional neural network.

extraction and discriminate feature selection during the back-
propagation process. Subsequently, the side-out features are
routed into the HRFM for further processing. The HRFM com-
bines convolution kernels with different dilation rates in a par-
allel manner to increase the receptive field of the convolutional
layer, thus injecting powerful multi-level learning capabilities
into the AMFCN model. Afterward, the unique traits from
various branches are efficiently concatenated. Eventually, an
adaptive label regulation loss is devised to facilitate precise
fault identification of the monitored machine.

A. Hierarchical Receptive Field Module

This section introduces the hierarchical receptive field mod-
ule (HRFM) to augment the diversity of local receptive fields.
The HRFM combines convolution kernels with different dila-
tion rates in a parallel manner to increase the receptive field
of the convolutional layer, thus injecting powerful multi-level
learning capabilities into the AMFCN model. To be specific,
the HRFM first deploys a 1 x 1 convolution to integrate
features across channels. Afterwards, features collected from
each layer of the encoder are then merged, ensuring that
both original feature data and enhanced contextual details
are preserved. Within the HRFM, individual branches process
their groups independently through distinct convolutions, with
receptive sizes being hierarchically adjusted. Based on the set
of operations, the MRFM can extract rich multiscale features.

As illustrated in Fig. 1, the HRFM comprises three
branches. Initially, a 1 x 1 convolution is utilized to the input
feature for each branch. Subsequently, group convolutions with
varying kernels and dilated convolutions with different dilation
rates are executed to extract additional features. Then, feature
maps from the different branches are concatenated along the

channel dimension. Finally, a shortcut connection scheme is
employed to retain the original feature information.

B. Global Contextual Attention Module

As depicted in Fig. 1, we employ GCAM to aid the model
in prioritizing discriminative features, consequently boosting
its overall performance. The GCAM consists of two branches,
namely the channel attention branch (CAB) and the spatial
attention branch (SAB). The average channel attention branch
is utilized to capture global information across the feature map
and extract representative features, while the maxpool spatial
attention branch further considers spatial information of the
feature map to accurately capture important features. Due to
its parallel structure, these two modules not only independently
optimize themselves but also collaborate to achieve a balance
between feature extraction and discriminate feature selection
during the back-propagation process.

To commence, the input feature I is initially supplied. The
avgpool operation is first utilized for discovering global chan-
nel information. Afterward, a mulit-layer perceptron (MLP),
which consists of two 1 x 1 convolutions, was applied to
further explore channel features. To amplify the nonlinearity
within the MLP, PReLU is utilized to activate the output
of MLP. Moreover, to mitigate the parameter count and
computational complexity of the channel attention branch, a
bottleneck architecture is adopted in the architecture. This
architecture entails that the number of input channels for the
initial convolutional layer is r times the number of output
channels. Ultimately, the channel attention weights are derived
through a sigmoid activation function. The generation process
of the channel branch can be delineated as:

CAB(I) = Sigmod[FY(PReLU (Ff(Avgpool(I))))] (1)



where Ff,i = 1,2 denotes the i;;, k x 1 convolution.

On the other hand, the spatial attention branch explores
crucial spatial information to accurately capture discriminative
features. To begin with, the maxpool operation is applied to
produce coefficients for the horizontal segment of the input
feature map. The max pooling layer’s output undergoes convo-
lution with a substantial receptive field sized at k x 1, followed
by activation through a sigmoid function to yield spatial
attention weights. This method adeptly fine-tunes parameter
count, as illustrated in the subsequent expression:

SAB(I) = Sigmod[F¥(Mazpool(I))] (2)

where SAB(I) denotes the output of the spatial attention
branch.

Further, the global contextual attention weight is calculated
via the point-wise multiplication of the channel attention
weight and the global attention weight. At last, the global
attention feature map is obtained via the broadcast multipli-
cation of the global contextual attention weight and the input
feature. The generation process of the global attention feature
map can be delineated as:

GCAM(I) = SAB(I) ® CAB(I) ® I 3)

where GCAM (I) represents the global contextual attention
feature map.

C. Mix Convolutional Layer

Building upon the concepts introduced in [24], we incorpo-
rate the MIXConv operation to effectively explore abundant
fault-related information, as displaced in Fig. 1. At the outset,
the MIXConv utilizes depthwise convolution to explore spatial
information. Moreover, it proficiently fosters cross-channel
feature interaction via convolutional operations, ensuring the
smooth combination of information across diverse channels.
Following this, we introduce the skip connection strategy,
which can avoid information loss. By appropriately increasing
the network depth, MIXConv highlights important information
extracted from the input signal. Moreover, it facilitates a more
comprehensive integration of spatial information by employing
larger convolution kernels.

D. Adaptive Label Regulation Loss

In many diagnostic tasks, regularization techniques seam-
lessly integrate calibration methods into the training process
to empower deep learning-based models to deliver heightened
diagnostic precision, even amidst data imbalance scenarios.
Network calibration regularization techniques commonly in-
corporate an additional term alongside the cross-entropy loss
function, aiming to alleviate issues of miscalibration, as given
as follows:

L=Lcg+Lgr “4)

In this context, Ly stands for the regularization term. Then,
the gradient of Eq. (4) can be obtained:
oL OLg

921 —pi—Qi“‘Tzi (@)

This can be restated as follows:

oL _)pi— (qi — f(2:)G(2)),
0z; pi — (@i + f(2:)G(2)),

In this context, p signifies the output generated by the model
and ¢ refers to the real target distribution; f stands for
a smoothing function that governs the level of smoothing,
while G acts as an indicator determining the application of
smoothing. As in [25], the smoothing function is defined as:

F) = M (z; — mingzy — M),
)\2(2@ — Z; — M,

(6)

i=3g,
i 7 Y

in which, A; and Ao serve as hyperparameters to balance the
two terms; M stands for a margin. The piecewise linearity
within the smoothing function guarantees a continual decrease

in the target label as the probability rises. In addition, the
assessment indicator is designed as:

Glz) = 1[z; — mingz, > M|,
Y 1zg — 2 > M),

(7

=17,
i # 9,
in which, 1[-] represents a function that returns a value of 1 if
the condition holds true, and O otherwise. By integrating the

smoothing and evaluation functions described in Eq. (7) and
Eq. (8) into the terms provided in Eq. (6), we can obtain:

OLALRL {/\1R6LU(Zi —mingzy — M),
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Through the integration, we derive the loss function, denoted
as the adaptive label regulation loss (ALRL), as follows:

I - )\1(1%6[/[](ZZ - minkzk — M))2,
ALRE TN (ReLU (25 — 2 — M))?,

_ 9
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We incorporate both fidelity and regularization terms in the

model training process. The comprehensive loss function is
presented as follows:

(10)

L=Lcg+ LaLRL- (11)

The ALRL can help the AMFCN model to achieve heightened
diagnostic precision, even in data imbalance scenarios.

E. AFMCN-based Framework for Gearbox Health Status
Monitoring

We offer a detailed depiction of the fault diagnosis paradigm
rooted in AFMCN. To encapsulate, the specific procedure can
be delineated as:

1) Data Preparation: The process begins with the collection
of mechanical signals using a signal acquisition system,
followed by their segmentation into many samples.

2) Model Training: The AFMCN algorithm undergoes train-
ing using the provided training samples, with the process
enhanced through the integration of adaptive label regula-
tion loss.

3) Model Validation: Feed the testing data into the trained
model to precisely evaluate the running state of the moni-
tored gearbox.
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Fig. 3. The XJTU test rig designed for simulating gearbox faults [26].

TABLE |
COMPREHENSIVE OVERVIEW OF THE XJTU GEARBOX DATASET

Class Detailed information Data for training Data for testing
0 Outer race failure 1000 1000
1 Ball failure 1000 1000
2 Missing teeth failure 1000 1000
3 Root cracks 1000 1000
4 Tooth surface wear 1000 1000
5 Normal status 1000 1000

II1. CASE sTUDY |: XJTU GEARBOX DATASET

A. Data Collection

Fig. 3 illustrates the experimental setup, comprising a driv-
ing motor, a controller, a planetary gearbox, a parallel gearbox,
and a brake. One notable component is the motor, specifically
a 3-phase, 3 HP motor, powered by a three-phase alternating
current (230V, 60/50Hz). Two PCB352C04 accelerometers are
strategically positioned on the X and Y axes of the planetary
gearbox to capture vibration signals, with a focus on utilizing
the signals from the Y-axis direction. The signals of six distinct
condition type are collected for the experiment. In every health
state, we painstakingly gather 2000 samples, splitting them
into 1000 for training and 1000 for testing. Each of these
samples consists of 2048 measured data points. Throughout
the experiments, the motor maintains a speed of 1800 rotations
per minute (rpm), while the sampling frequency is configured
at 20480 Hertz (Hz). Detailed information regarding the XJTU
gearbox dataset is outlined in Table I.

B. Deployment Configurations

All experiments are carried out on a laptop featuring a
GTX 3060 Ti GPU. Seven cut-edging approaches are used
to compare with the AMFCN model.

(1) MAIDCNN: MA1DCNN, as introduced in [27], is a CNN
model utilized for interpretable fault diagnosis, capable of
operating effectively under varying speed conditions.
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Fig. 4. Accuracy of diagnostics performed on the XJTU gearbox dataset.

(2) DCA-BiGRU: DCA-BiGRU [28] is a recently devised
approach that merges CNN and LSTM models to improve
bearing fault diagnostics.

(3) MIXCNN: MIXCNN, outlined in [29], is a newly devised
lightweight algorithm tailored for fault classification.

(4) MRACN: MRACN, detailed in the study by [30], is an
innovative residual attention network crafted to excel in
fault recognition amidst nonstationary conditions.

(5) MBSCNN: MBSCNN, proposed in [31], is a CNN network
with multiple branches designed to extract multiscale
features from monitored signals.

(6) DRSN: DRSN, proposed in [32], is a CNN algorithm
highly regarded for its proficiency in machinery fault
diagnosis

(7) MSCNN: MSCNN [33] is a fault diagnosis model designed
to handle gearbox issues amid fluctuating speed condi-
tions.

C. Compared with State-of-the-Art Techniques

Fig. 4 and Table II display the average accuracy (Ave-
Acc) and average F) score for different methods on the
XJTU dataset. Additionally, the tables also show the stan-
dard deviations derived from 5 trials. As shown in Table
II, the proposed AMFCN method demonstrated an impres-
sive performance, achieving Ave-Acc of 99.96%. The result
notably surpassed all comparative methods. Moreover, AM-
FCN stands out for its exceptional performance in terms
of the average F) score. Specificallyy, AMFCN (99.96%)
outperforms MAIDCNN (98.49%), DCA-BiGRU (95.80%),
MIXCNN (99.88%), MRACN (98.44%), MBSCNN (88.70%),
DRSN (98.08%), and MSCNN (92.06%) by margins of 1.47%,
4.16%, 0.08%, 1.52%, 11.26%, 1.88%, and 7.9%, respectively.
Furthermore, the proposed method showed the least variability
among all techniques in terms of standard deviation. These
results confirm the efficacy and durability of the proposed
method in recognizing the failure of the gearbox.
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TABLE I
OUTCOMES DERIVED FROM THE DIAGNOSTIC EXAMINATION OF THE
XJTU GEARBOX DATASET.

Algorithms ~ Max-acc (%] Min-acc (%] Avg-acc (%]  Avg-Fy[%)
MAIDCNN 98.85 98.03 98.49 +£ 036 98.49 + 0.35
DCA-BiGRU 97.92 92.10 95.80 + 2.19  95.80 £ 2.20
MIXCNN 99.90 99.85 99.88 £+ 0.02 99.88 £ 0.02
MRACN 99.02 97.50 98.43 £ 0.62 98.44 £+ 0.62
MBSCNN 92.78 87.28 89.38 £ 2.64 88.70 £ 3.03
DRSN 98.65 96.97 98.07 £ 0.69 98.08 &+ 0.69
MSCNN 96.17 87.00 92.15 +£3.99 92.06 + 4.02
AMFCN 99.98 99.93 99.96 £+ 0.02  99.96 £ 0.02

TABLE Il

DETAILED DESCRIPTION OF THE FOUR NEWLY XJTU DATASETS.

Training data

Class Training set A Training set B Training set C  Training set D
0 100% 100% 100% 100%
1 10% 5% 2% 1%
2 10% 5% 2% 1%
3 10% 5% 2% 1%
4 10% 5% 2% 1%
5 10% 5% 2% 1%

D. Resilience Towards Imbalanced Dataset

To confirm the diagnostic effectiveness of our proposed
method on imbalanced datasets, we created four imbalanced
datasets derived from the XJTU dataset. The specifics of
these datasets are outlined in Table III. It can be observed
that dataset D is highly imbalanced, with the number of
fault category instances comprising only one percent of the
total instances in the normal category. The results, as shown
in Table IV, indicate that all methods are highly sensitive
to the imbalance ratio of the data. More precisely, as the
imbalance ratio escalates, there is a marked decrease in the
diagnostic efficacy achieved by these methods. However, the
findings unmistakably demonstrate that AMFCN consistently
outshines the other seven algorithms across all imbalanced
conditions, consistently attaining a notably better result. In
particular, AMFCN demonstrates a significant performance

TABLE IV
OUTCOME OF THE DIAGNOSTIC EVALUATION CONDUCTED ON THE
FOUR XJTU GEARBOX DATASET.

Methods Dataset A [%] Dataset B [%] Dataset C [%] Dataset D [%]
MAIDCNN 7398 +£4.09 69.74 £ 4.17 6272 £ 391 54.03 £2.84
DCA-BiGRU  83.00 £3.52  79.51 4+ 2.08 62.94 4+ 4.17 52.17 £ 424

MIXCNN 96.75 + 0.87  91.20 £ 2.81  71.12 £ 3.15  52.76 £+ 2.56

MRACN 7142 +7.86 7593 £ 10.50 6553 +9.43  68.25 £+ 4.72

MBSCNN 71.57 + 4.81  62.46 + 2.38  54.65 + 8.26  38.55 £ 6.89

DRSN 9224 +£0.74 8677 + 1.36  72.85 £ 2.62  57.19 £+ 2.85

MSCNN 72.87 £491  59.71 £530 5272 £ 575 40.76 £+ 8.27

AMFCN 9840 £ 0.35 9495 + 048 8824 +0.56 83.72 £+ 0.89

advantage over the other seven algorithms on dataset D. To
be more specific, AMFCN achieves a notable performance
superiority with an accuracy of 83.72%, respectively surpass-
ing MATDCNN (54.03%), DCA-BiGRU (52.17%), MIXCNN
(52.76%), MRACN (68.25%), MBSCNN (38.55%), DRSN
(57.19%), and MSCNN (40.76%) by margins of 29.69%,
31.55%, 30.96%, 15.47%, 45.17%, 26.53%, and 42.96% on
dataset D. Furthermore, AMFCN’s robustness is evidenced
by its standard deviation consistently registering lower values
compared to the other seven state-of-the-art algorithms across
all imbalanced datasets.

For a deeper insight into feature distribution, we apply the
t-SNE technique [34] to visualize the features learned from
Dataset B. As depicted in Fig. 5, AMFCN demonstrates excep-
tional capability in discerning class differences in comparison
with other algorithms. Particularly noteworthy are the feature
maps produced by AMFCN, showcasing clear clustering of
similar categories while minimizing overlaps across different
classes.

IV. CASE sTUDY Il: CUMT GEARBOX DATASET
A. Data Description

Fig. 6 showcases the CUMT gearbox test bench utilized
for experimental validation. This setup comprises components
such as an induction motor and a control cabinet. In the signal
acquisition stage, the rotational speed was controlled from 0
to 1200 rpm, while the sampling frequency is configured at
20480 Hertz (Hz). The signals of eight distinct condition types



Fig. 6. The CUMT test rig is designed for simulating gearbox faults.

TABLE V
COMPREHENSIVE OVERVIEW OF THE CUMT GEARBOX DATASET

Category Detailed description

0 Normal
Root crack and teeth wear
broken teeth

Cage failure

ball defect

1
2
3
4 pitting defect
5
6 Inner race failure
7

Gear wear and pitting

TABLE VI
OUTCOME OF THE DIAGNOSTIC EVALUATION CONDUCTED ON THE
CUMT GEARBOX DATASET.

Methods Max-acc (%] Min-acc (%] Avg-acc (%]  Avg-Fy[%)]
MAIDCNN 99.20 91.98 96.86 £ 2.93 96.87 + 291
DCA-BiGRU 94.45 83.30 88.95 + 4.48 89.05 4 4.38

MIXCNN 98.48 97.33 98.15 £ 0.47 98.16 + 0.47

MRACN 97.85 95.85 96.74 + 0.83  96.75 £ 0.83

MBSCNN 96.95 92.43 95.71 + 1.88 9572 + 1.88

DRSN 98.77 98.12 98.40 £ 0.29 98.41 £+ 0.29

MSCNN 88.15 74.67 80.75 £ 4.98 80.54 &+ 5.05

AMFCN 99.40 99.13 99.27 £ 0.13  99.27 £ 0.13

are collected for the experiment. In every health state, we
painstakingly gather 1000 samples, splitting them into 500 for
training and 500 for testing. Each of these samples consists
of 2,048 measured data points. Detailed information regarding
the CUMT gearbox dataset is outlined in Table V.

B. Compared with State-of-the-Art Techniques

Fig. 7 and Table VI display the average accuracy (Ave-
Acc) and average F) score for different methods on the
CUMT dataset. Additionally, the tables also show the stan-
dard deviations derived from 5 trials. As shown in Table
VI, the proposed AMFCN method demonstrated an impres-
sive performance, achieving Ave-Acc of 99.27%. The result
notably surpassed all comparative methods. Moreover, AM-
FCN stands out for its exceptional performance in terms
of the average F) score. Specifically, AMFCN (99.27%)
outperforms MAIDCNN (96.87%), DCA-BiGRU (89.05%),
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TABLE VII
DETAILED DESCRIPTION OF THE FIVE NEWLY CUMT DATASETS.

Class Training data

Training set I  Training set I Training set IIl  Training set IV Training set V

0 100% 100% 100% 100% 100%
1 40% 30% 20% 10% 6%
2 40% 30% 20% 10% 6%
3 40% 30% 20% 10% 6%
4 40% 30% 20% 10% 6%
5 40% 30% 20% 10% 6%
6 40% 30% 20% 10% 6%
7 40% 30% 20% 10% 6%

MIXCNN (98.16%), MRACN (96.75%), MBSCNN (95.72%),
DRSN (98.41%), and MSCNN (80.54%) by margins of 2.4%,
10.22%, 1.11%, 2.52%, 3.55%, 0.86%, and 18.73%, respec-
tively. Furthermore, the proposed method showed the least
variability among all techniques in terms of standard devia-
tion. These results confirm the efficacy and durability of the
proposed method in recognizing the failure of the gearbox.

C. Resilience Towards Imbalanced Dataset

To confirm the diagnostic effectiveness of our proposed
method on imbalanced datasets, we created five imbalanced
datasets derived from the CUMT dataset. The specifics of
these datasets are outlined in Table VII. It can be easily
observed that dataset V is highly imbalanced, with the number
of fault category instances comprising only one percent of the
total instances in the normal category. The results, as shown
in Table VIII, indicate that all methods are highly sensitive
to the imbalance ratio of the data. More precisely, as the
imbalance ratio escalates, there is a marked decrease in the
diagnostic efficacy achieved by these methods. However, the
findings unmistakably demonstrate that AMFCN consistently
outshines the other seven algorithms across all imbalanced
conditions, consistently attaining a notably better result. In
particular, AMFCN demonstrates a significant performance
advantage over the other seven algorithms on dataset V. To
be more specific, AMFCN achieves a notable performance
superiority with an accuracy of 81.63%, respectively surpass-
ing MAIDCNN (61.69%), DCA-BiGRU (38.44%), MIXCNN
(51.31%), MRACN (42.57%), MBSCNN (49.50%), DRSN
(56.35%), and MSCNN (32.07%) by margins of 19.94%,
43.19%, 30.32%, 39.06%, 32.13%, 25.28%, and 49.56% on



: - : 0
% B . ﬁ‘:* % “"’__“;'”*4\(» 2
IR 2 S e~
| Sy T R
(c) (d)
11N % S S S I 5
S e o e Yy S %
4 /;pf':« if: > - . s%,ﬁg{“' - 2,:"“_ R ,hi?‘« . s‘-—_‘: %&ﬁ g
: oSt F oo 3 “%e e e NN N
eyt el B Ses A B ¥ e
. b » &

=

() (h

Fig. 8. Employing t-SNE for the Visualization of Features on CUMT dataset: (a) MAT1DCNN; (b) DCA-BIGRU; (c) MIXCNN; (d) MRACN; (e)
MBSCNNN; (f) DRSN; (g) MSCNN; and (h) AMFCN.

TABLE VIII
QUTCOME OF THE DIAGNOSTIC EVALUATION CONDUCTED ON THE
FIVE CUMT GEARBOX DATASET.

Algorithms Dataset I [%] Dataset IT [%] Dataset IIT [%] Dataset IV [%] Dataset V [%]
MAIDCNN  97.03 + 0.40 92.76 &+ 0.99 89.76 + 1.34 79.68 + 1.95 61.69 + 5.08
DCA-BiGRU 81.04 + 3.16 59.02 + 5.35 47.55 £ 7.17 41.30 + 6.17 38.44 + 545
MIXCNN 96.51 £ 0.85 93.17 + 1.44 91.30 + 1.34 66.90 + 0.89 51.31 £ 3.06
MRACN 87.90 + 4.78 7147 + 6.04 79.04 £ 9.61 69.38 + 8.57 42.57 £ 431
MBSCNN 89.36 + 1.66  88.43 + 1.52 83.32 £ 3.38 70.60 + 4.86 49.50 £+ 5.79
DRSN 91.98 + 1.33  89.30 + 0.39 83.56 + 1.67 64.68 + 3.82 56.35 + 3.45
MSCNN 68.77 £ 3.12  56.33 £ 9.10 54.83 + 6.38 48.37 £+ 4.76 32.07 + 3.84
AMFCN 99.23 £ 0.17  99.00 £ 0.16 97.87 £ 0.29 94.21 £ 0.75 81.63 £+ 1.63
TABLE IX
RESULTS FROM THE DIAGNOSTIC ANALYSIS OF THE FOUR
ALGORITHMS.
Methods Dataset C [%] Dataset D [%] Dataset IV [%] Dataset V [%]
AMFCN 88.24 + 0.56  83.72 = 0.89 9421 £ 0.75 81.63 £+ 1.63
AMFCN-nALRL 8533 +241  79.50 &+ 1.98 90.47 + 3.06 77.40 + 291
AMFCN-nGCAM  86.08 4+ 1.26  80.32 & 1.69 90.63 + 0.74 77.10 £ 1.73
AMFCN-nHRFM  84.46 + 191 79.79 £ 3.01 88.83 + 2.67 7455 + 1.74

dataset V. Furthermore, AMFCN’s robustness is evidenced
by its standard deviation consistently registering lower values
compared to the other seven state-of-the-art algorithms across
all imbalanced datasets.

For a deeper insight into feature distribution, we apply
the t-SNE technique [34] to visualize the features learned
from Dataset IV. As depicted in Fig. 8§, AMFCN demon-
strates exceptional capability in discerning class differences
in comparison with other algorithms. Particularly noteworthy
are the feature maps produced by AMFCN, showcasing clear
clustering of similar categories while minimizing overlaps
across different categories.

V. ABLATION STUDIES
A. Efficacy of the ALRL

Within this segment, we delve into experiments aimed at
gauging the effectiveness of the ALRL. To provide a base-
line for comparison, we introduce a model named AMFCN-
nALRL, which mirrors the architecture of AMFCN but ex-
cludes ALRL. The core difference between AMFCN and

AMFCN-nALRL is that the latter uses cross-entropy loss
instead of ALRL in the training stage. Summarizing the
experimental findings in Table IX, we observe that AMFCN
outperforms AMFCN-nALRL in terms of average accuracy,
showcasing improvements of 2.91%, 4.22%, 3.74% and 4.23%
across four distinct diagnostic scenarios. This enhancement is
ascribed to the ALRL’s adeptness in Facilitating the AMFCN
to achieve accurate fault identification results, particularly in
situations with imbalanced data distributions.

B. Efficacy of the GCAM

Within this segment, we delve into experiments aimed at
gauging the effectiveness of the GCAM. To provide a base-
line for comparison, we introduce a model named AMFCN-
nGCAM, which mirrors the architecture of AMFCN but
excludes GCAM. The core disparity between AMFCN and
AMFCN-nGCAM lies in the latter’s omission of GCAMs.
Summarizing the experimental findings in Table IX, we ob-
serve that AMFCN outperforms AMFCN-nGCAM in terms of
average accuracy, showcasing improvements of 2.16%, 3.4%,
3.58% and 4.53% across four distinct diagnostic scenarios.
This enhancement is ascribed to the GCAM’s adeptness in
harnessing ample features, thereby augmenting the model’s
capacity to glean robust feature representations.

C. Efficacy of the HRFM

Within this segment, we delve into experiments aimed at
gauging the effectiveness of the HRFM. To provide a base-
line for comparison, we introduce a model named AMFCN-
nHRFM, which mirrors the architecture of AMFCN but
excludes HRFM. The core disparity between AMFCN and
AMFCN-nHRFM lies in the latter’s omission of HRFMs.
Summarizing the experimental findings in Table IX, we ob-
serve that AMFCN outperforms AMFCN-nHRFM in terms of
average accuracy, showcasing improvements of 3.78%, 3.93%,
5.38% and 7.08% across four distinct diagnostic scenarios.
This enhancement is ascribed to the HRFM’s adeptness in
capturing multilevel discriminate features.

D. Feature Visualization

In this section, we present a comprehensive analysis of the
enhancements for interpretability. Specifically, we apply the t-
SNE technique to visualize the features learned from Dataset
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Fig. 9. Employing t-SNE for the Visualization of Features on CUMT dataset:

AMFCN.

IV. As depicted in Fig. 8, AMFCN demonstrates exceptional
capability in discerning class differences in comparison with
the other three algorithms. Particularly noteworthy are the
feature maps produced by AMFCN, showcasing clear clus-
tering of similar categories while minimizing overlaps across
different categories.

VI. CONCLUSION

Accurate gearbox fault identification applied to imbalanced
data scenarios is crucial for industrial production. From our
perspective, the key to effectively addressing data imbalance
lies in the model’s robust feature extraction capabilities and
the integration of sensitive learning strategies for unbalanced
datasets. To attain favorable diagnostic outcomes in the pres-
ence of data imbalance, this study introduces an attention-
based multireceptive field convolutional network with an adap-
tive label regulation loss. Firstly, we introduce a global contex-
tual attention module (GCAM) designed to leverage discrimi-
native features. GCAM adopts a parallel structure, enabling a
harmonious interplay between feature extraction and selective
feature discrimination during the back-propagation process.
Secondly, we introduce a hierarchical receptive field module
(HRFM) aimed at enhancing the receptive field of the convo-
lutional layer, thereby integrating robust multi-level learning
capabilities into the AMFCN model. Lastly, we devise an
adaptive label regulation loss (ALRL) to refine predictions and
ensure accurate classification of the operational states of the
target machine. The experimental results indisputably indicate
that AMFCN outperforms seven other cutting-edge methods,
particularly exhibiting superiority in addressing imbalanced
scenarios. Future work will focus on the implementation of
the AMFCN in real industrial scenarios.
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