

RAE2026

Active Bodysuits for Adult Degenerative Scoliosis (ADS)

Prof. Joanne Yiu-wan YIP

MCO3

Contents

Chapter	Topic	Page
1	Descriptor	03
2	Researcher Profile	04
3	Research Questions	06
4	Research Outputs	07
5	Research Field & Key References	10
6	Research Methods, Prototypes & Materials	12
7	Research Outcomes, Findings & Further Research	21
8	Research Dissemination	22
9	References	28

Title: Active Bodysuits for Adult Degenerative Scoliosis

Descriptor

Adult degenerative scoliosis (ADS) patients often experience progressive lower back pain, deformity, and sagittal imbalance. While bracing is the most common non-invasive treatment, prolonged use can lead to paraspinal muscle deconditioning and worsening symptoms. To address these limitations and the unique needs of older ADS patients, an active training bodywear was developed, **combining passive and active corrective forces** with an **age-friendly design**.

A 3-month intervention study demonstrated significant improvements across all domains of the Brace Questionnaire, notably in vitality, emotional functioning, and physical functioning. The Scoliosis Research Society-22 questionnaire also showed marked improvements in all health-related quality of life domains, particularly pain and mental health. Additionally, the mean Oswestry low back pain disability score decreased from 23.3% to 18.2%.

The bodywear includes a vibrotactile feedback system that monitors sitting and standing postures, providing instant haptic feedback for suboptimal alignments. This helps users establish and maintain optimal posture. Post-intervention results revealed that most participants improved their posture and could maintain proper alignment with greater ease.

The combination of active self-correction and passive bracing in the bodysuit represents an advancement in brace development. The invention is protected by US Patent (US-11931282-B2). The results have been shared in multiple publications, including the *International Journal of Environmental Research and Public Health*, *Color Research and Application*, *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, and *Proceedings of ISERD International Conference*. They were also presented at the *International Conference on Applied Human Factors and Ergonomics 2022* and featured at the *Asia Summit on Global Health 2022*. Additional disseminations, including a public seminar at the *Asia Pacific Institute of Healthy Aging* and a media feature on a local TV programme, have raised public awareness of this innovative solution for aging-related health issues, highlighting its potential to improve older adults' quality of life and engage the wider community.

Personal Profile: Prof. Joanne Yip

Professor Joanne Yip is Professor and Associate Dean (Industrial Partnership) at the PolyU School of Fashion and Textiles. Her research focuses on the development of textile-based medical devices and functional clothing, integrating functional textiles, smart materials, advanced production technologies, and healthcare innovation. A core area of her work is the creation of solutions for adolescent idiopathic scoliosis (AIS).

Professor Yip leads interdisciplinary research programmes that develop wearable interventions for early-stage AIS. These include the Posture Correction Girdle (PCG), which incorporates EVA padding, elastic straps, and plastic bones, and the Anisotropic Textile Brace (ATB), featuring an artificial hinged backbone, corrective straps, and semi-rigid silicone pads. She directs the methodological development, implementation, and dissemination of these projects, integrating anthropometric studies, finite element modeling (FEM) of spinal biomechanics, iterative design trials, and smart sensor technologies for real-time posture monitoring. To facilitate the translation of research outcomes into practice, she established the spin-out company Active Biotechnology (HK) Ltd., which advances wearable technologies for spinal health.

As Principal Investigator, Professor Yip has secured research funding exceeding HK\$30 million, including the Research Impact Fund (RIF: P0044974, 2024–2028) and the Collaborative Research Fund (CRF: C5058-24G, 2025–2028) for projects investigating spinal flexibility, biomechanical behaviour, and predictive modelling in AIS. Her research outputs include 13 patents granted in the US, China, and Hong Kong, and over 300 peer-reviewed publications. Her findings have been widely disseminated through conference presentations, workshops, and exhibitions. Professor Yip's work has been recognised with Gold Medals at the Silicon Valley International Invention Festival (2019, 2024) and the International Exhibition of Inventions Geneva (2023).

<https://orcid.org/0000-0002-3270-4702>

Research Co-Investigators

Role in the Programme:

Leads the project, overseeing the research design and technical development of the active training bodywear, guiding material selection, garment construction, and the integration of passive, active, and vibrotactile corrective mechanisms.

Prof. Kit-Lun YICK

**Professor, SFT, PolyU
Members of RISports, PolyU**

Dr Kenny Kwan

Department Chairperson and Clinical Associate Professor of the Department of Orthopaedics and Traumatology, HKU

Expertise:

- Advanced fashion production technologies
- 3D anthropometric body measurement

Role in the Programme:

- Conducts fit analysis using 3D body scanning technology
- Develops comfort assessment protocols for wear trials

Expertise:

- Clinical management of AIS
- Radiographic assessment methodologies

Role in the Programme:

- Designs and oversees clinical trial implementation
- Validates efficacy through Cobb angle measurements

Research Questions

Question 1:

- The braces available in the market are usually heavy and lack of breathability, while muscle deconditioning of the wearer is frequently reported [9]
- Brace-wearing may be strenuous and complicated for the older adults, the adversities in ability will lead to common perceptions of weakness and useless [10]

Design and develop a **bodywear** that is **close fit, breathable, adaptive**, and can provide **effective pain management** by giving **extra support** to the wearers.

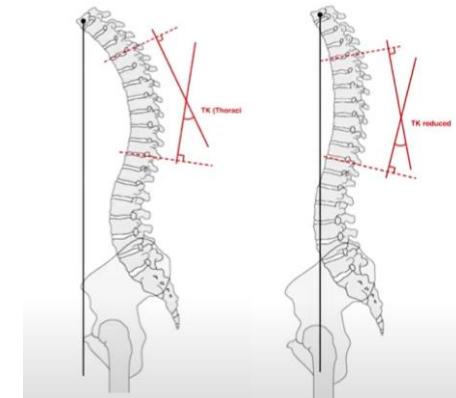
Question 2:

- Aches and pains of ADS patients are oftentimes rooted in improper postural habits which keeps affecting their spinal health [11]
- Individuals cannot be informed of his/her own functional changes consciously [12]

Design and develop a **vibrotactile feedback (VTF) system** to help wearers to maintain good postures by **monitoring spinal alignments** and **giving instant feedback**.

Research Outputs

The Active Bodysuit (First published on 16th February 2020)


A garment-based, with integrated use of rigid, semi-rigid and flexible materials for passive corrective force and sensor-based system for active training that aims to:

- Maintain patients' current level of body function
- Minimize symptom progression
- Support body alignment and pain management
- Address older adults' physical and psychological needs
- Incorporate active training through vibrotactile biofeedback

Bodysuit with rigid and semi-rigid materials to provide back and lumbar support

Active Corrective Forces

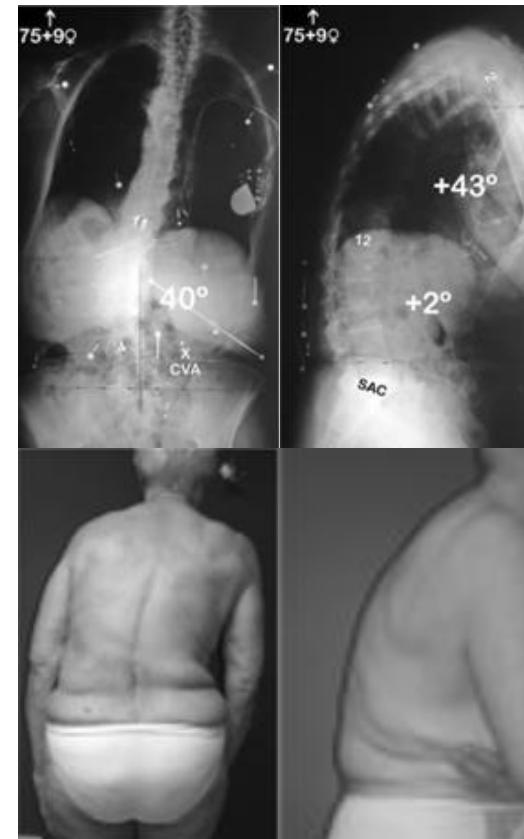
Active self-correction on habitual postures for better pain management

Research Outputs

Patents / Publications / Exhibitions / Interviews

Category	Details
US Patent	Invention title "Bracewear for spinal correction and system for posture training". Patent No.: US-11931282-B2. Publication date: 19 Mar 2024. Application no. 17/071,070. Filing date: 15 Oct 2020.
Journal Articles	<p>Wan, F. K. W., Mak, A. T. H., Chung, C. W. Y., & Yip, J. Y. W. (2024). Development of a motion-based video game for postural training: a feasibility study on older adults with adult degenerative scoliosis. <i>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</i>, https://doi.org/10.1109/TNSRE.2024.3398029</p> <p>Cheung, M. C., Law, D., Yip, J., & Cheung, J. P. Y. (2022). Adolescents' experience during brace treatment for scoliosis: A qualitative study. <i>International Journal of Environmental Research and Public Health</i>, 19(17), 10585. https://doi.org/10.3390/ijerph191710585</p> <p>Chung, W. Y. C., Yip, J., Yick, K. L., & Ng, S. P. (2022). Affective association with and preference for flexible brace colors in older adults with spinal deformities. <i>Color Research and Application</i>, 47(1), 194–203. https://doi.org/10.1002/col.22706</p>
Conference Articles	<p>Sit, Y. L., Yip, Y.W., Kenny, Kwan, (2020). A New Concept for Adult Degenerative Scoliosis: Posture Training Bracewear. In <i>Proceedings of ISERD International Conference</i>, Zurich, Switzerland (pp. 5-7). Available online at: https://www.worldresearchlibrary.org/up_proc/pdf/3717-15923689665-7.pdf</p> <p>Sit, Y. L., Yip, Y.W., Kenny, Kwan, (2021). Preliminary Wear Trial of Posture Training Bracewear For Older Adults With Degenerative Scoliosis (ADS). In <i>Advances in Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2021)</i> (Vol. 263, pp. 81–87). Springer International Publishing AG. http://doi.org/10.1007/978-3-030-80744-3_11</p> <p>Li, X., Yip, J., Liang, R., Zhang, J. (2023). Inclusive design for older adult with degenerative scoliosis: The integration of monitoring sensors and functional garment. In: Jay Kalra and Nancy Lightner (eds) Healthcare and Medical Devices. AHFE (2023) International Conference. AHFE Open Access, vol 79. AHFE International, USA. http://doi.org/10.54941/ahfe1003491</p>

Research Outputs


Patents / Publications / Exhibitions / Interviews

Category	Details
Thesis	<p>Sit, Y. L. (2021). <i>Posture training bracewear for older adults with degenerative scoliosis (ADS)</i>. Hong Kong Polytechnic University.</p> <p>Chung, W. Y. C. (2022). <i>Active bodysuit for adult degenerative scoliosis (ADS)</i>. Hong Kong Polytechnic University.</p>
Public Seminar	<p>Presented by Prof. Joanne Yip. Title: <i>Technology for Aging Population</i>. Asia Pacific Institute of Healthy Aging, Shop A, 1/F, Hong Kong Pacific Center. 30 October 2024</p>
Exhibition	<p>2022 Asia Summit on global Health (ASGH) showcases. Hong Kong Convention and Exhibition Centre. 10-11, November 2022.</p>
Media Reports	<p>Tech Showcase - Interview conducted by Research and Innovation Office, PolyU Available online at https://www.youtube.com/watch?v=Ke2bbmIHjUU.</p> <p>TVB創科導航 未來影院／脊柱側彎. 無綫財經·資訊台. Published on 23 February 2023, https://www.youtube.com/watch?v=wD3NqrBCWIQ.</p>

Research Field & Key References

Adult Degenerative Scoliosis (ADS)

- A condition of the ageing population caused by degenerative changes without pre-existing spinal deformities [1,2]
- Osteoporosis, degenerative disc disease, and iatrogenic instability are risk factors that contribute to ADS development [3]
- Increased concerns about the health effects of ADS: increasing prevalence ranges anywhere from 6% to 68% [4]
- Patients with ADS usually have progressive lower back pain, symptomatic lumbar stenosis, progressive deformity and symptoms of sagittal imbalance [1,5]

Radiographic images of an ADS patient

Research Field & Key References

Current Non-invasive interventions to ADS

Older adults have greater risk of complications with surgical treatment ^[6], due to:

- Higher level of disability
- Greater severity of pain in the low back and leg
- Worse health status

Bracing is the most traditional non-invasive application recommended for ADS treatment which provide **good support of the painful spine area** ^[7]. Different brace upholds different mechanical principles of correction by applying external forces to restore the alignment of spine and posture.

• Physio-logic brace®

SpineCor®

• ScoliSMART

However, these braces do not encourage active self correction. They **may provide immediate relief to lower back pain, but** may also cause **muscle atrophy, pressure marks, skin irritation, breathing effects** which worsen the deformity and symptoms in the long run ^[8].

Research Methods, Prototypes & Materials

Implementation Plan

Milestone 1 - Design and Develop Posture Training Bodywear for Adult Patients with Degenerative Scoliosis and Optimise Passive Corrective Forces

Task 1.1:

Design and develop posture training bodywear for older adults with degenerative scoliosis

Task 1.2:

Select fabric materials and perform testing on them and test a specially-engineered wear system for posture training bodywear

Task 1.3:

Optimise passive corrective forces from posture training bodywear with supportive components

Milestone 2 - Design and Optimise Vibrotactile Feedback (VTF) System to Actively Provide Corrective Forces on Patients with Adult Degenerative Scoliosis

Task 2.1:

Select sensors for posture training bodywear

Task 2.2:

Optimise the location of sensors and their reference points from surface electromyography (sEMG) signals.

Task 2.3:

Validate hardware and carry out pilot testing on entire VTF system

Milestone 3 - Overall Evaluation of Effectiveness of Posture Training Bodywear for Patients with Adult Degenerative Scoliosis

Task 3.1:

Subject Recruitment

Task 3.2:

Preliminary Tests

Task 3.3:

Clinical Trials

Research Methods, Prototypes & Materials

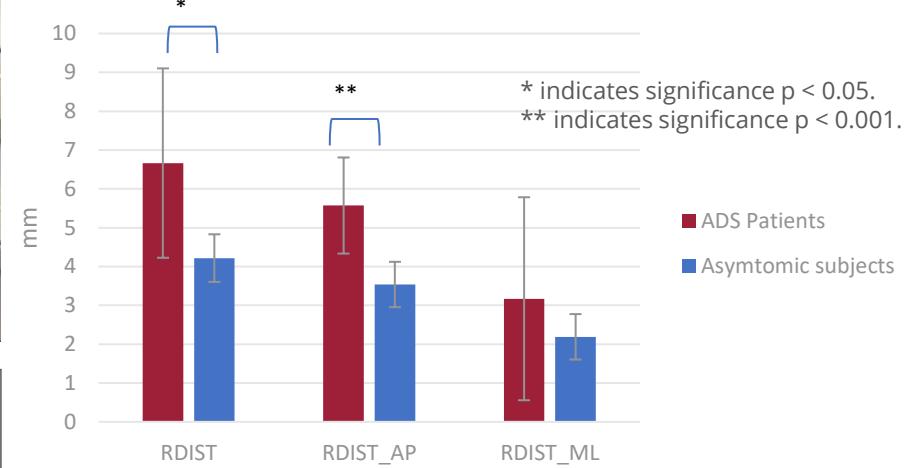
Gait and Balance Evaluation

Purpose: to evaluate the gait and balance of the **ADS patients** and compare with those of **asymptomatic individuals**

Three aspects:

- **Ground reaction force** during standing and walking
- Three-dimensional **motion analysis** during standing, sitting and walking
- **Myoelectric activity** of the paraspinal muscles during standing and sitting

Demographic information of the ADS and asymptomatic subjects


	ADS subjects	Asymptomatic subjects	p-values
No. of subjects	10 (All females)	10 (All females)	
Age	Range	53 - 65	52 - 60
	Mean (S. D.)	60.67 (\pm 4.23)	56.0 (\pm 2.83)
Height (cm)	Range	147 - 164	153 - 159
	Mean (S. D.)	156.83 (\pm 5.98)	154.9 (\pm 2.36)
Weight (kg)	Range	46.0 - 61.7	43.5 - 55.0
	Mean (S. D.)	54.78 (\pm 6.77)	50.7 (\pm 4.41)
BMI	Range	18.13 - 25.38	18.22 - 22.35
	Mean (S. D.)	22.31 (\pm 2.86)	21.12 (\pm 1.66)

Standing balance

- Stand barefoot in a natural posture as still as possible and feet on adjacent force plates
- Heel-to-heel distance at 11% of their height and toe-out angle of 14°
- Eyes aimed at a point marked in the front at eye level
- Arms are relaxed at the side of the body

Standing balance of the two subject groups during habitual standing

Main Observations: ADS patients had **much poorer standing balance** in the anterior-posterior (AP) direction when compared to asymptomatic individuals.

Research Methods, Prototypes & Materials

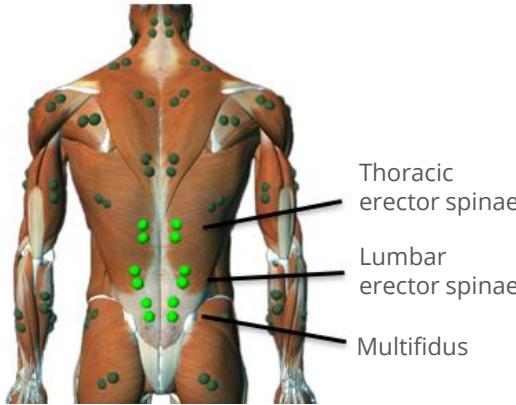
Gait and Balance Evaluation

Normal gait

- Perform normal walking in **barefoot** along a **5 m straight walkway** at their **self-selected pace**
- Eyes looking at a reference mark placed on the wall in the front at eye level
- Subjects were required to walk back and forth along the walkway for around 3-4 minutes until more than **10 clear strikes** on force plate were recorded for each foot

Gait variables	ADS Subjects Mean (S. D.)	Asymptomatic Subjects Mean (S. D.)	p-values
Walking Speed (m/s)	0.912 (\pm 0.088)	0.996 (\pm 0.176)	0.166
Cadence (steps/min)	102.661 (\pm 5.913)	110.176 (\pm 8.744)	0.092
Step Length (m)	0.532 (\pm 0.046)	0.541 (\pm 0.056)	0.328
Step Width (m)	0.143 (\pm 0.019)	0.137 (\pm 0.015)	0.195
Step Time (s)	0.584 (\pm 0.036)	0.545 (\pm 0.046)	0.113
Stride length (m)	1.067 (\pm 0.094)	1.080 (\pm 0.113)	0.340
Stride Time (s)	1.173 (\pm 0.066)	1.095 (\pm 0.087)	0.093
Stance (% of a stride cycle)	62.148 (\pm 1.411)	60.194 (\pm 1.070)	0.003 *
Double Support Time (s)	0.288 (\pm 0.045)	0.225 (\pm 0.039)	0.008 *

* indicates statistical significance at $p < 0.05$.

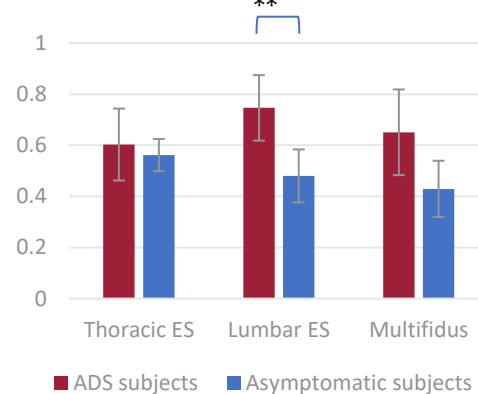

Normal gait

Main Observations: the percentage of the **stance phase in the stride cycle** and the **double support time** have significant difference between the two subject groups

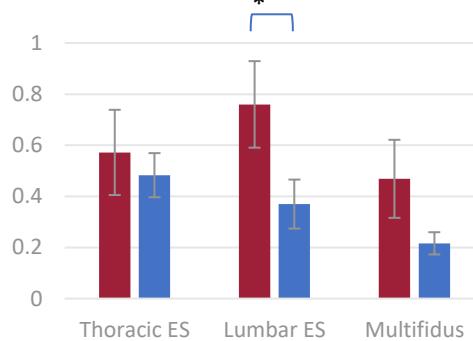
Research Methods, Prototypes & Materials

Evaluation of Paraspinal Muscle Utilization

Purpose: to understand how the paraspinal muscles were utilized in ADS patients during natural standing and sitting



Surface electromyography (sEMG) sensors are used to record the muscle activities of three pairs of paraspinal muscles during trials of habitual sitting and standing



$$\text{Muscle Symmetry Ratio} = \frac{\text{Muscle Activity}_{\text{Left}} - \text{Muscle Activity}_{\text{Right}}}{\frac{1}{2} \times (\text{Muscle Activity}_{\text{Left}} + \text{Muscle Activity}_{\text{Right}})}$$

Muscle Symmetry Ratio of the three pairs of para-spinal muscles during **habitual standing**

Muscle Asymmetry Ratio of the three pairs of para-spinal muscles during **habitual sitting**

* indicates significance $p < 0.05$.

** indicates significance $p < 0.005$

Main Observations:

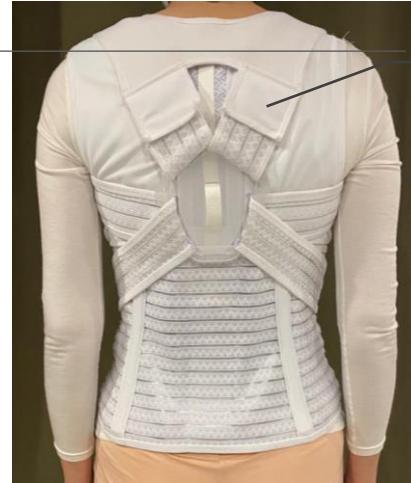
1. The paired t-test comparison showed that the **muscle activity profiles** of the two subject groups **do not differ significantly** during habitual standing and sitting
2. ADS subject group had **significantly higher muscle asymmetry ratio** in the **lumbar erector spinae** during both sitting and standing indicating more imbalanced between-side muscle activities were acquired.

Research Methods, Prototypes & Materials

Bodysuit for Passive Correction

Inner layer

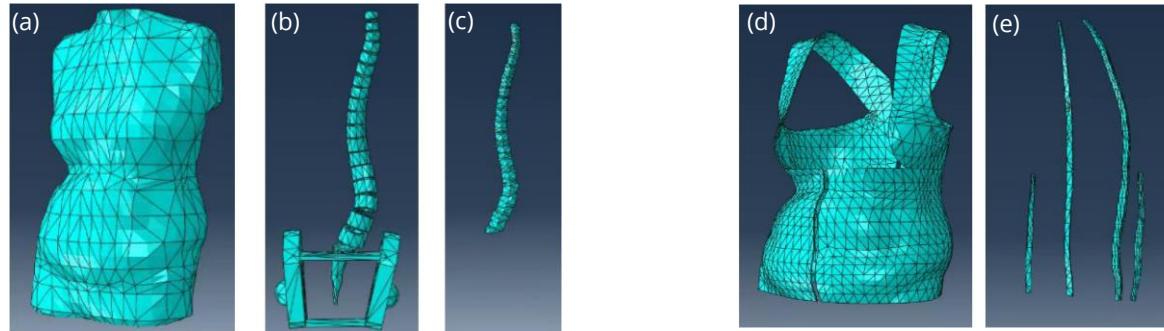
- Detachable supportive bones
- Tailor-made to fit user's spinal curves
- 3D printed with carbon reinforced nylon

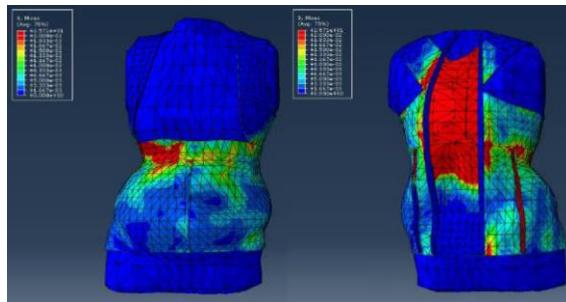

- Open chest design for chest expansion in breathing

- Magnetic zipper for easy put on

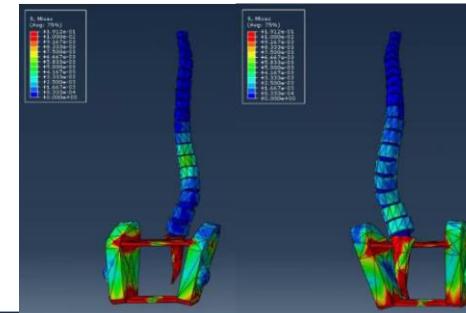
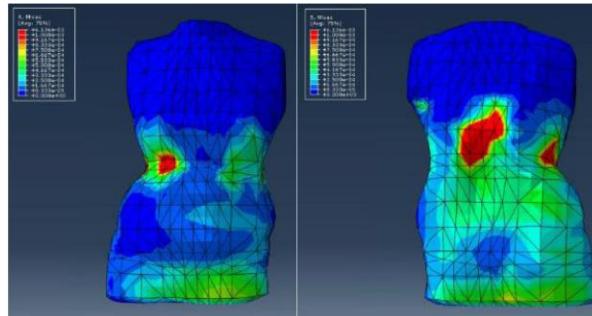
Outer layer

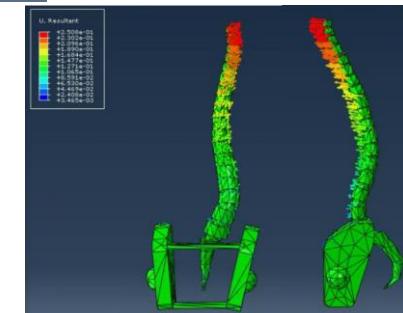
- Velcro fastening for easy put on


- Wide waistband to provide lumbar support

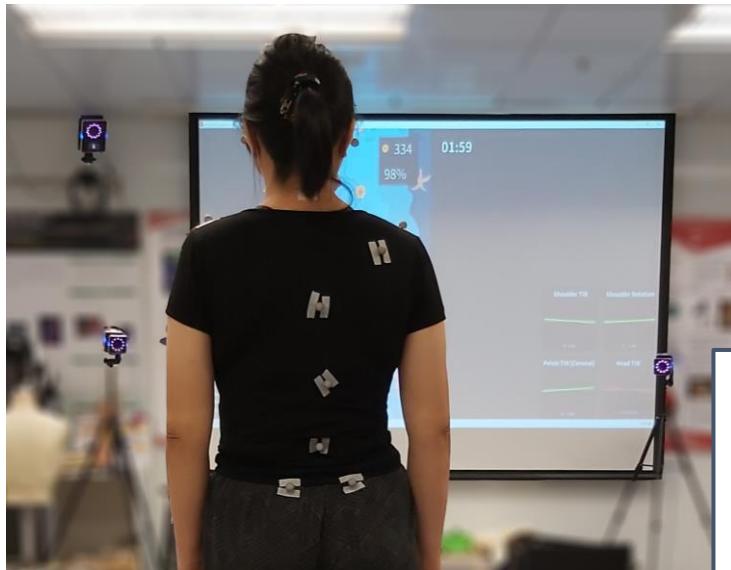

- Adjustable shoulder straps to widen chest and improve rounded shoulders

Research Methods, Prototypes & Materials



FE sub-models to evaluate the compressive stresses produced at the spine and the bodysuit

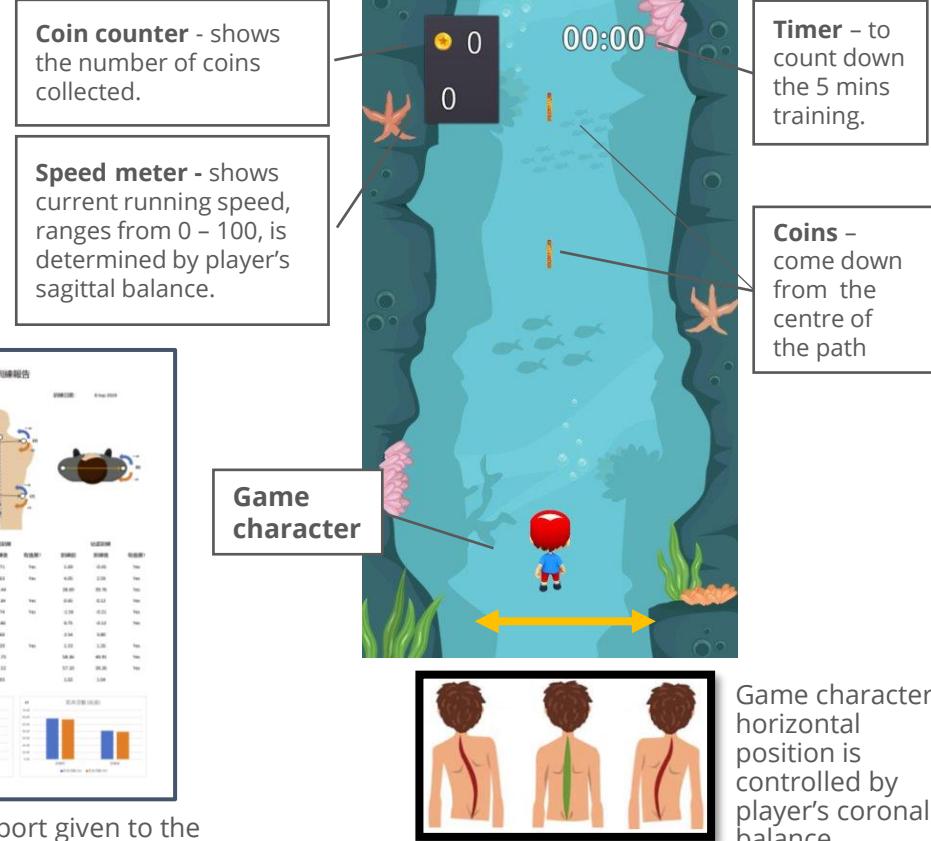

Meshed model of (a) scoliotic torso body, (b) skeletal structure, (c) intervertebral disc, (d) bodysuit, and (e) supportive bones

Stress distribution of the bodysuit (up) and torso (right)



Stress distribution (left) and displacement (bottom) of the skeletal model

Research Methods, Prototypes & Materials

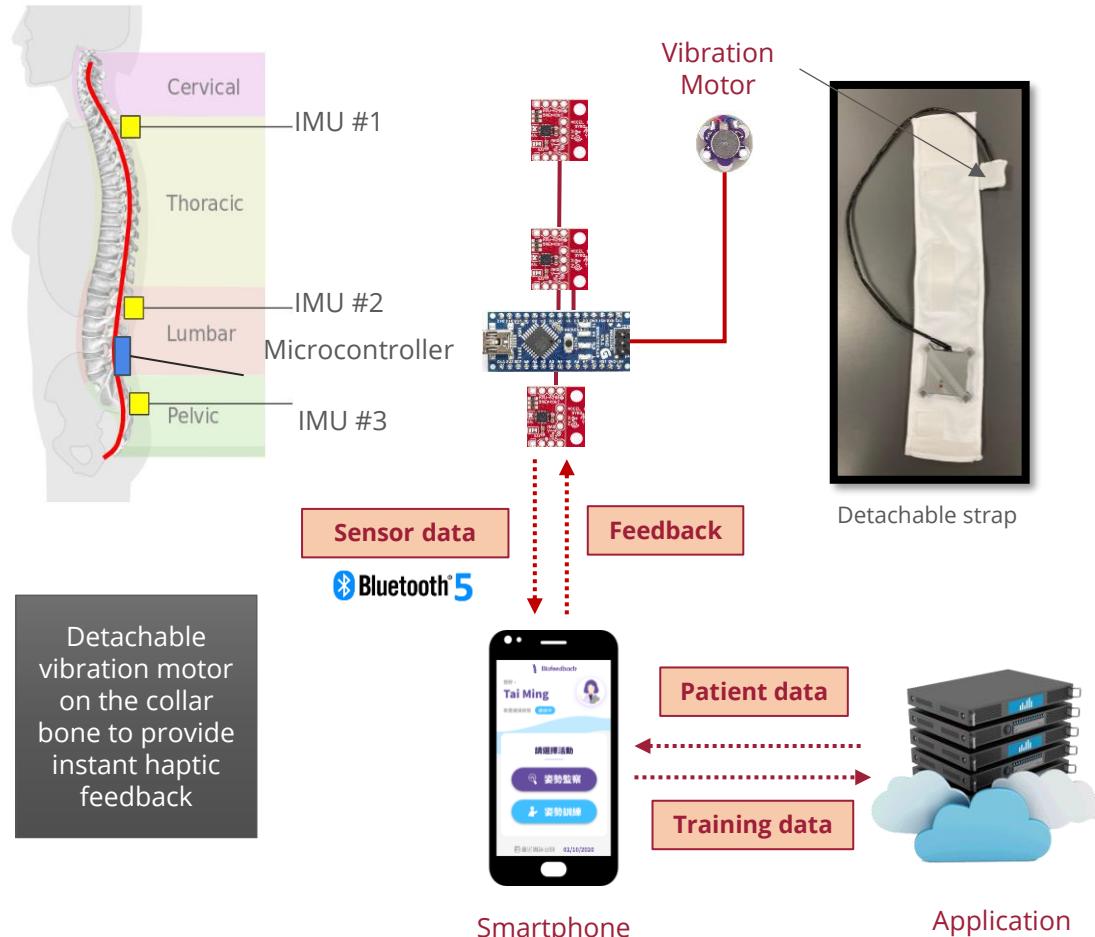

Active Game for Laboratory-based Postural Training

- Positions of 11 body landmarks are measured by a 10-camera Vicon motion capture system
- 11 postural features are monitored
- Game character's running speed and horizontal position is determined by the player's sagittal and coronal balance respectively.
- Player adjust postures to collect as many coins as possible
- Applicable to both standing and sitting postures

Training report given to the participants after each training session

Research Methods, Prototypes & Materials

Vibrotactile feedback (VTF) system and mobile application for home-based postural training


Demonstration video of the active bodysuit

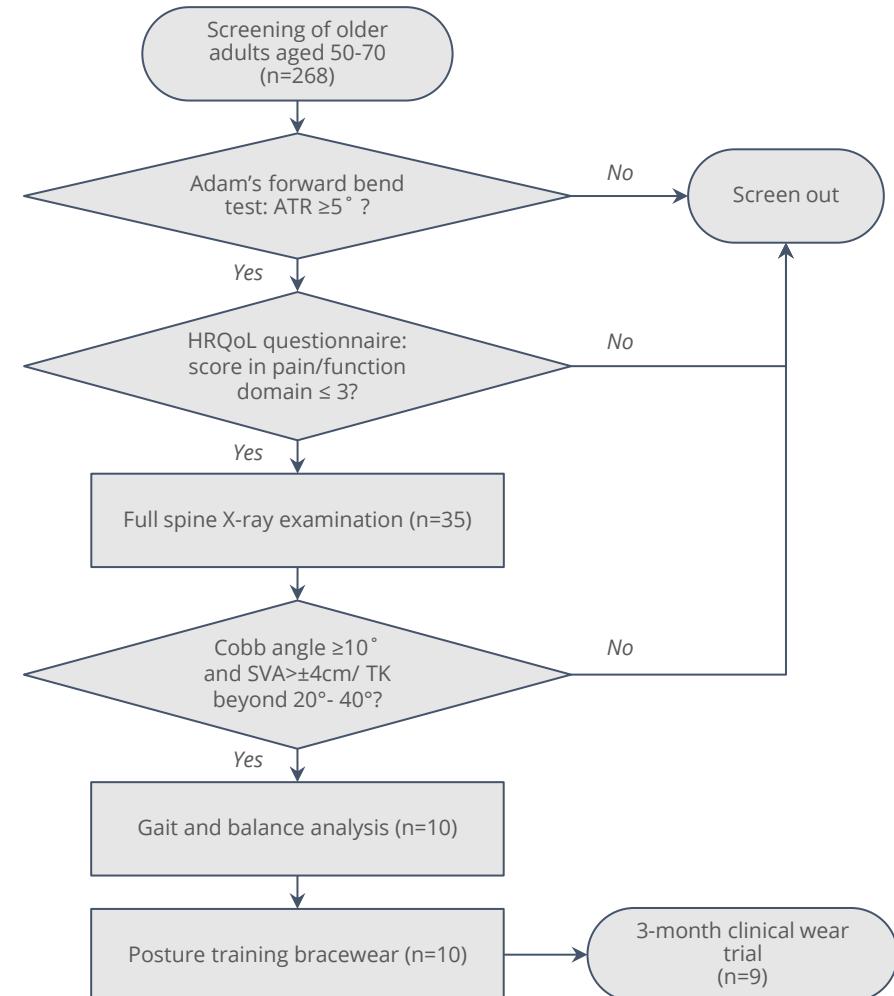
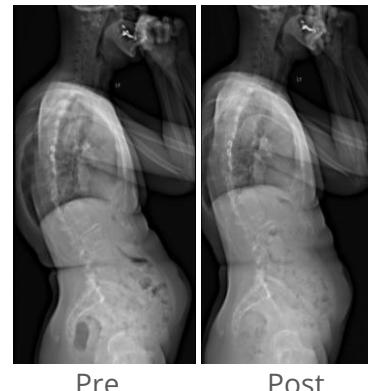
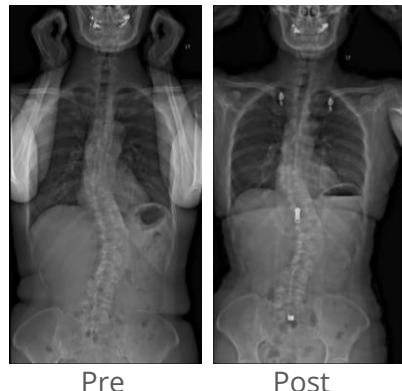
Vibrotactile Feedback (VTF) system with IMU sensors for postural monitoring

Detachable vibration motor on the collar bone to provide instant haptic feedback

Research Methods, Prototypes & Materials

3-months Clinical Wear Trials

Location: The Hong Kong Polytechnic University




Number of subjects recruited: 10

Inclusion criteria:

- **Aged between 50-70**
- **Diagnosed with degenerative scoliosis with Cobb angle $> 10^\circ$**
- **Have reported chronic (> 24 months) lower back pain**
- **have limited mobility due to degenerative scoliosis**

• **Pre- and post- intervention assessments:**

- **Radiographic images (0-month, 3-month, 6-month)**
- **Brace Questionnaire (BrQ)**
- **Oswestry Low Back Pain Disability questionnaire (ODI)**
- **Scoliosis Research Society-22 (SRS-22) questionnaire**
- **Standing and sitting postures**

Research Outcomes, Findings & Further Research

Post-Intervention outcomes:

On pain management and health-related quality of life:

- Improvements were seen in all the 8 domains defined by the **Brace Questionnaire (BrQ)**, with the highest percentage increase in vitality (+19.5%), followed by emotional functioning (+13.91%) and physical functioning (+11.09%).
- The mean **Oswestry Low Back Pain Disability questionnaire (ODI)** score has been reduced from 23.29% to 18.17%. One subject who was classified to had severe disability (56%) before the intervention had improved ODI score to moderate disability (34%).
- **As for Scoliosis Research Society-22 (SRS-22) questionnaire**, improvements were shown in all domains of the health-related quality of life, among which pain (+9.5%) and mental health (+7.2%) domains experienced the greatest improvement.

On sitting and standing postures:

- **Improved sagittal balance**
- **Smaller forward shifts were observed on the head and upper body**
- **More balanced between-side muscle utilization during sitting**

Research Dissemination

US Patent

Title: "Bracewear for spinal correction and system for posture training"
Patent No.: US-11931282-B2
Publication date: 19 Mar 2024.

<https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11931282>

(12) United States Patent
Yip et al.

(10) Patent No.: US 11,931,282 B2
(45) Date of Patent: Mar. 19, 2024

(54) BRACEWEAR FOR SPINAL CORRECTION AND SYSTEM FOR POSTURE TRAINING

(71) Applicant: THE HONG KONG POLYTECHNIC UNIVERSITY, Hong Kong (CN)

(72) Inventors: Yiu-Wan Joanne Yip, Hong Kong (CN); Yin Ling Sit, Hong Kong (CN); Ting Hin Mak, Hong Kong (CN); Kit Lun Yick, Hong Kong (CN); Tsz Hei Cheung, Hong Kong (CN); Sui Pui Ng, Hong Kong (CN); Kenny Yat Hong Kwan, Hong Kong (CN); Mei Chun Cheung, Hong Kong (CN); Ming Fai Chan, Hong Kong (CN)

(73) Assignee: The Hong Kong Polytechnic University, Hong Kong (CN)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 815 days.

(21) Appl. No.: 17/071,070

(22) Filed: Oct. 15, 2020

(65) Prior Publication Data

US 2022/0117769 A1 Apr. 21, 2022

(51) Int. CL

A61F 5/02 (2006.01)

A61F 5/00 (2006.01)

(52) U.S. Cl.

CPC *A61F 5/026* (2013.01); *A61B 5/4561* (2013.01); *A61B 5/486* (2013.01); *A61B*

5/6805 (2013.01); *A61B 5/7405* (2013.01);

A61B 5/742 (2013.01); *A61B 5/7455* (2013.01); *A61F 5/024* (2013.01); *A61B*

2562/0219 (2013.01)

(58) Field of Classification Search

CPC A61F 5/024; A61F 5/026; A61F 5/02-028;

A61B 5/6805; A61B 5/1116; A61B 5/4561; A61B 5/486; A61B 5/7405; A61B 5/742; A61B 5/7455; A61B 2562/0219; A61B 5/6804; Y10S 2913; A41D 1/04; A41D 1/00-22

USPC 602/19
 See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

5,782,782 A 7/1998 Miller
 6,676,617 B1 1/2004 Miller
 7,766,850 B2 8/2010 Simanovsky
 (Continued)

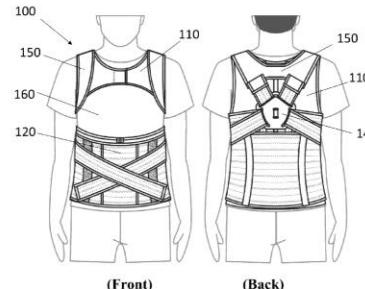
FOREIGN PATENT DOCUMENTS

GB 2467974 A 8/2010
 TW 201106933 A1 3/2011

OTHER PUBLICATIONS

Sit et al.; A New Concept for Adult Degenerative Scoliosis: Posture Training Bracewear; Proceedings of ISERD International Conference, Zurich, Switzerland, Feb. 16-17, 2020; pp. 5-7.

(Continued)


Primary Examiner — Rachael E Bredefeld
Assistant Examiner — Seth R. Brown

(74) Attorney, Agent, or Firm — Spruson & Ferguson (Hong Kong) Limited

(57) ABSTRACT

The present disclosure provides a bracewear for spinal correction and a system for posture training. The system for posture training involves both active and passive corrective forces by using the bracewear and a biofeedback system to address the spinal correction, which can eliminate the adverseity of conventional hard braces and reduce the psychological and physiological barriers to treatment.

16 Claims, 12 Drawing Sheets

Research Dissemination

Publications – Journal Articles

Wan, F. K. W., Mak, A. T. H., Chung, C. W. Y., & **Yip J. Y. W.** (2024). Development of a motion-based video game for postural training: a feasibility study on older adults with adult degenerative scoliosis. *IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society*, <https://doi.org/10.1109/TNSRE.2024.3398029>

Cheung, M. C., Law, D., **Yip, J.**, & Cheung, J. P. Y. (2022). Adolescents' experience during brace treatment for scoliosis: A qualitative study. *International Journal of Environmental Research and Public Health*, 19(17), 10585. <https://doi.org/10.3390/ijerph191710585>

[Article]

Chung, W. Y. C., Yip, J., Yick, K. L., & Ng, S. P. (2022). Affective association with and preference for flexible brace colors in older adults with spinal deformities. *Color Research and Application*, 47(1), 194–203. <https://doi.org/10.1002/col.22706>

Research Dissemination

Publications – Conference Articles

A NEW CONCEPT FOR ADULT DEGENERATIVE SCOLIOSIS: POSTURE TRAINING BRACEWEAR

¹LINDA YIN-LING SIT¹, ²JOANNE YIP², ³KENNY YAT-HON KWAN²

^{1,2}Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
³Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
E-mail: ¹lindsit.sit@connect.polyu.hk, ²cyip@polyu.edu.hk, ³kykw@hku.hk

Abstract - Guided by a design framework, a Posture Training Bracewear has been developed for degenerative scoliosis patients as a non-invasive method that focuses on shifting the core of the body, training the muscles to reduce lower back pain and ease the needs of older adults and considering their physiological concerns. Guided by the design framework, materials science, garment design, wearables technology, active and passive corrective forces are used to improve the body alignment of older adults with degenerative scoliosis. Thus, they benefit by maintaining their current level of physical function while minimizing their symptom progression.

Keywords - Degenerative Scoliosis, Flexible Brace, Smart Garment, Posture Training Bracewear.

I. INTRODUCTION

Adult degenerative scoliosis (ADS) is a spinal deformity in the aging population caused by degenerative changes. ADS patients have a Cobb angle of 10 degrees or larger in the coronal plane [1]. Incidence of ADS has been reported to have been raised due to its increasing prevalence, which ranges from 6% to 68% of the population after the age of 40. Aside from asymmetrical trunk and imbalance in the sagittal plane, progressive pain in the lower back and neck, progressive low back stiffness are most symptoms [2], [3]. However, pain is the most frequently cited problem, especially lower back pain and radiicular pain, which affect the daily activities of health of ADS patients. The deterioration of the overall health and bone quality of older adults compared to younger adults, ADS patients face greater risks if they undergo surgery as a form of treatment for ADS. Thus, bracing is the most typical non-invasive treatment proposed to ADS so that they not only receive better support of their spine but also the load is taken off the spinal column [4].

II. DESIGN LIMITATIONS IN CURRENT BRACING FOR ADS

Bracing is recommended for patients with ADS in order to avoid the progression of their spinal curvatures. Bracing is often suggested to those patients whose curve is taken off the spinal column [4]. There are specific types of spinal orthoses designed for ADS patients which are either rigid or flexible brace built on the fibular or iliac crest [5]. The brace that uses a rigid brace however has resulted in lower patient compliance which has thus been less effective in preventing the progression of the spinal deformity because it is bulky and uncomfortable to wear. The brace may also experience the deconditioning syndrome of their spinal muscles which might be due to excessive reliance on passive corrective forces offered by rigid braces.

Proceedings of ISERD International Conference, Zurich, Switzerland, 16th– 17th February, 2020
5

[Article]

Original screen capture removed for copyright reasons.
Please refer to the citation provided.

Sit, Y. L., Yip, Y.W., Kenny, Kwan, (2020). A New Concept for Adult Degenerative Scoliosis: Posture Training Bracewear. In *Proceedings of ISERD International Conference*, Zurich, Switzerland (pp. 5-7). Available online at: https://www.worldresearchlibrary.org/up_proc/pdf/3717-15923689665-7.pdf

Healthcare and Medical Devices, Vol. 79, 2023, 224-232
<https://doi.org/10.54941/ahfe1003491> **AHFE** International

Inclusive Design for Older Adult With Degenerative Scoliosis: The Integration of Monitoring Sensors and Functional Garment

Xiaolu Li¹, Joanne Yip², Ruixin Liang¹, and Jun Zhang¹

¹Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong
²School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

ABSTRACT

Adult Degenerative Scoliosis (ADS) is an aging population condition that occurs due to a degenerative change with an abnormal lateral curve greater than 10. Increased concern over the health effects of ADS have been raised due to its increasing prevalence. Thus, inclusive design products such as smart monitoring functional garments are recommended for ADS, which integrate smart monitoring sensors with garments that help ADS to rebalance the spine through active self-correction. However, present research on smart monitoring clothing for ADS focuses more on intelligent monitoring components and systems. There is insufficient research on the integration design process of smart sensors with garments. This study aims to establish a scientific integration design framework for inclusive smart monitoring functional garments for ADS. Mixed research methods that combined qualitative and quantitative methods were used in this study. Specifically, the qualitative study, including a case study of a previous prototype and practical research of developing an iteration prototype, was conducted to investigate the integration design of smart monitoring functional garments for ADS. Then quantitative data of detailed anthropometric measurements, patterns, and characteristics of different users and fabrics were collected and analyzed using 3D modeling and fitting by CLO3D software. The quantitative result was then combined with the qualitative result to build an integration design framework for inclusive smart monitoring functional garments for ADS. The results showed that the development of smart monitoring functional garments for ADS is based on both the body factors of ADS and intelligent monitoring component factors. Furthermore, our findings suggested that the internal garment structure combining postural training principles, active and passive corrective forces, each other under the spinal iteration design process. Finally, the proposed integration design framework and the iteration smart monitoring functional garment for ADS were established. Our findings established a thorough scientific basis for the knowledge of the integration design approach of smart monitoring functional garments for ADS.

Keywords: Inclusive design, Integration design framework, Smart monitoring functional garment, Adult degenerative scoliosis

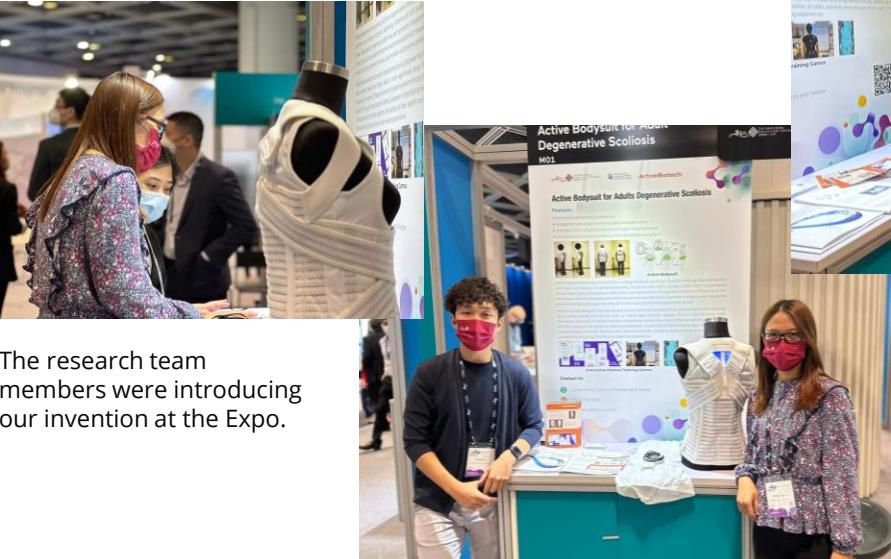
© 2023. Published by AHFE Open Access. All rights reserved.

Sit, Y. L., Yip, Y.W., Kenny, Kwan, (2021). Preliminary Wear Trial of Posture Training Bracewear For Older Adults With Degenerative Scoliosis (ADS). In *Advances in Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2021)* (Vol. 263, pp. 81-87). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-80744-3_11

Li, X., Yip, J., Liang, R., Zhang, J. (2023). Inclusive design for older adult with degenerative scoliosis: The integration of monitoring sensors and functional garment. In: Jay Kalra and Nancy Lightner (eds) *Healthcare and Medical Devices*. AHFE (2023) International Conference. AHFE Open Access, vol 79. AHFE International, USA. <https://doi.org/10.54941/ahfe1003491>

Research Dissemination

Exhibitions



ASIA SUMMIT ON GLOBAL HEALTH

Charting a New Course in Healthcare through Collaboration

10-11 November 2022
Hong Kong | In-person • Online

www.asiasummitglobalhealth.com

The research team members were introducing our invention at the Expo.

Professor Dong SUN, the Secretary for Innovation, Technology and Industry of HKSAR, visited our booth at the Expo.

Research Dissemination

Public Lectures

Technology for Aging Population

30 October 2024

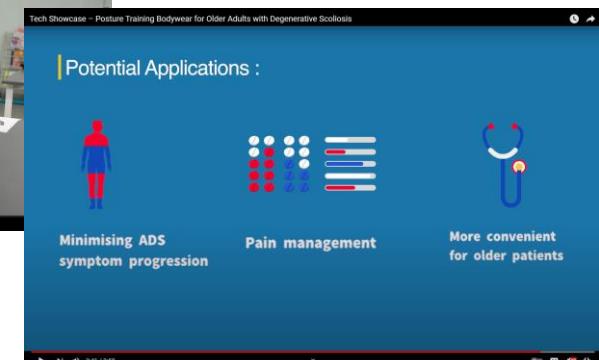
Asia Pacific Institute of Healthy Aging, Shop A, 1/F, Hong Kong Pacific Center.

More information available at <https://www.mtl-sft.com/news/prof-joanne-yip-delivered-insightful-talk-on-functional-clothing-for-adult-degenerative-scoliosis/>

Research Dissemination

Media Reports

Tech Showcase - Interview conducted by **Research and Innovation Office, PolyU**



<https://youtu.be/Ke2bbmIHjUU>

[Media report]

Original screen capture removed for copyright reasons. Please refer to the citation provided.

TVB創科導航 | 未來影院 / 脊柱側彎
(播出日期 : 2023-02-23)

<https://www.youtube.com/watch?v=wD3NqrBCWIQ>
相片由電視廣播有限公司提供

References

1. Kotwal, S., Pumberger, M., Hughes, A., & Girardi, F. (2011). Degenerative scoliosis: a review. *HSS journal*, 7(3), 257.
2. Graham, R. B., Sugrue, P. A., & Koski, T. R. (2016). Adult degenerative scoliosis. *Clinical spine surgery*, 29(3), 95-107.
3. Silva, F. E., & Lenke, L. G. (2010). Adult degenerative scoliosis: evaluation and management. *Neurosurgical focus*, 28(3), E1.
4. Harrop, J., Vaccaro, A., & Awad, A. (2015). *Adult degenerative scoliosis: Coronal and sagittal deformities: Treatment and management* (First ed.)
5. Lee, Y. P., & Ghofrani, H. (2010). Degenerative Scoliosis. *Contemporary Spine Surgery*, 11(5), 1-8
6. Smith, J. S., Shaffrey, C. I., Glassman, S. D., Berven, S. H., Schwab, F. J., Hamill, C. L., ... & Spinal Deformity Study Group. (2011). Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. *Spine*, 36(10), 817-824.
7. Aebi, M. (2005). The adult scoliosis. *European Spine Journal*, 14(10), 925-948.
8. Graham, R.B., Sugrue, P.A. and Koski, (2016) T.R. Adult degenerative scoliosis, *Clinical spine surgery*, vol. 29, pp. 95-107.
9. Morningstar, M. (2013) "Outcome observations in patients using a scoliosis activity suit: a retrospective chart review after one-year follow-up," *J Scoliosis Rehabil*, 1-10.
10. M. T. Sharma, (2016) "Conception of Ageing: Perspective of the Young and the Elderly" *The International Journal of Indian Psychology*, Volume 3, Issue 3, No. 1, p. 73.