

RAE2026

Anisotropic Textile Brace for Adolescent Idiopathic Scoliosis (AIS)

Prof. Joanne Yiu-wan Yip

MCO 2

Contents

Chapter	Topic	Page numbers
1	Project Description	03
2	Researcher Profile	04
3	Research Questions	07
4	Research Output	08
5	Research Field and Key References	12
6	Research Advancement	16
7	Research Methods, Prototypes, and Materials	17
8	Research Outcomes and Findings	41
9	Research Dissemination	54
10	References	80

Title: Anisotropic Textile Brace for Adolescent Idiopathic Scoliosis (AIS)

Descriptor

AIS is a prevalent spinal condition in adolescents that progresses during puberty and causes three-dimensional deformities. AIS with moderate scoliosis (Cobb angle of 20°–40°), is traditionally managed through rigid bracing, which often causes discomfort, skin irritation, and restricted mobility, thus resulting in poor compliance and an increased risk of curve progression. To address these challenges, a multidisciplinary research programme was initiated in 2016 to develop an anisotropic textile brace (ATB) for adolescents with early-stage AIS. This programme was supported by two funded projects: GRF (152061/15E, \$495,728, 2016–2018) and GRF (P152101/16E, \$844,559, 2017–2019) that were submitted to RAE2020. Building on previous findings, additional funding from PolyU internal seed grants (P0001310, \$2M, 2019–2022), the Lee Hysan Foundation (P0034236, \$3M, 2021–2026), and the Research Impact Fund (R5039-23, \$5M, 2024–2028) has supported advanced development and is submitted to RAE2026.

From 2020, the programme integrated engineering and biomedical techniques to refine the ATB. Finite element (FE) models of the adolescent torso were developed to simulate tissue biomechanics and optimise corrective force distribution. Large-scale Hong Kong school screenings recruited participants for iterative wear trials. Insights from objective data and feedback informed a redesigned ATB, with textile material upgrades enhancing comfort and breathability as well as modified artificial bone construction and materials to enhance strength and durability. The findings demonstrate that 23 out of 23 AIS subjects showed an immediate correction rate ($\geq 5^\circ$ Cobb angle reduction) after two hours of wear, and eight out of nine (89%) had promising outcomes indicating curve correction/stabilisation over six months.

Research outputs include patents (US12,129,886B2 and ZL 202330553930.X), peer-reviewed publications, and conference presentations. Industry partnerships – fostered through exhibitions, workshops, and public talks – support clinical validation and translation. These efforts advance brace-mediated rehabilitation strategies for AIS with moderate curves.

PERSONAL PROFILE: Prof. Joanne Yip

Prof. Joanne Yip is Professor and Associate Dean (Industrial Partnership) at the School of Fashion and Textiles, The Hong Kong Polytechnic University. She specialises in developing innovative textile-based medical devices for AIS, integrating smart materials and biomechanics to improve brace effectiveness and their quality of life. She pioneers textile braces for AIS, leading the development of the following innovations:

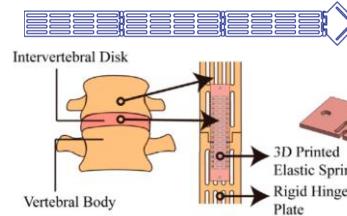
MCO 1: Posture correction girdle (PCG) for adolescents with mild scoliosis (Cobb angles of 10°–20°). This device provides a crucial early-intervention option for a patient group that previously had no active treatment beyond observation. Its innovations include integrated sensors for real-time posture monitoring and scalable fitting protocols.

MCO 2: ATB for adolescents with moderate scoliosis (Cobb angles of 20°–40°). It is certified as a Class II medical device in Mainland China (clinically proved to be effectiveness to treat AIS), which provides a breathable, flexible, and comfortable alternative to traditional braces. She has been instrumental in driving these projects, from methodological development to clinical application and commercialisation of the products, coordinating among healthcare providers, manufacturers, and government agencies from Mainland China and Hong Kong. Her work has been recognised with Gold Medals at the Silicon Valley International Invention Festival (2019, 2024) and the International Exhibition of Inventions Geneva (2023). Together, these multicomponent outputs advance understanding of nonrigid orthotic systems, establish new methodological frameworks for integrating biomechanics and textiles, and provide empirical evidence supporting early intervention in AIS management.

<https://orcid.org/0000-0002-3270-4702>

Research Timeline

- This study is a cross-disciplinary one, spanning textile materials science, intimate apparel design, biomechanical engineering, and biomedical engineering.


RAE 2020 ATB

Refined ATB [1-5]

Artificial hinged bone [6]

Final version

RAE 2020

2020

2021

2022

RAE 2026

2024

2025

- ✓ Problem identification
- ✓ Material selection and testing
- ✓ ATB prototyping
- ✓ Initial wear trials

- ✓ School screening and participant recruitment
- ✓ Refinement of the ATB on textile materials to improve wear comfort and user-friendliness
- ✓ Three conference paper publications
- ✓ US Patent (artificial hinged bone)
- ✓ Certificate application for further commercialisation
- ✓ One paper publication (ATB)
- ✓ One conference paper publication

- ✓ Improve effectiveness and durability of ATB
- ✓ Clinical wear trials
- ✓ Obtained certificate of conformance
- ✓ Licensed for sale
- ✓ One paper publication (artificial hinged bone)
- ✓ US patent (ATB)

- ✓ Application and commercialisation phase
- ✓ Showcased at exhibitions and competitions
- ✓ Obtained Mainland China Medical Device Registration Certificate (MDRC) as a Class II medical device, which means available for purchase by patients
- ✓ One conference paper publication

Research Coinvestigators

Role in the Programme:

Leads the project, overseeing the design and optimisation of the ATB. She directs FEM spinal biomechanics modelling, anthropometric studies, and iterative design trials, and drives clinical translation

Prof. Kit-Lun YICK

Professor, SFT, PolyU
Members of RISports, PolyU

Expertise:

- Advanced fashion production technologies
- 3D anthropometric body measurement

Role in the programme:

- Conducts fit analysis using 3D body scanning technology
- Develops comfort assessment protocols for wear trials

Prof. Jason Cheung

Department Chairperson and Clinical Professor of the Department of Orthopaedics and Traumatology, HKU

Expertise:

- Clinical management of AIS
- Radiographic assessment methodologies

Role in the programme:

- Designs and oversees clinical trial implementation
- Validates efficacy through Cobb angle measurements

Prof. Raymond Tong

Professor and Chairman in the Department of Biomedical Engineering, CUHK

Expertise:

- Soft robotics applications
- Dynamic force adjustment systems

Role in the programme:

- Advises on adaptive hinge mechanism design
- Integrates soft robotic principles for dynamic correction

Dr. Sun-Pui Ng

Associate Division Head (SEHS) and Associate HoR, Division of Science, Engineering and Health Studies, PolyU

Expertise:

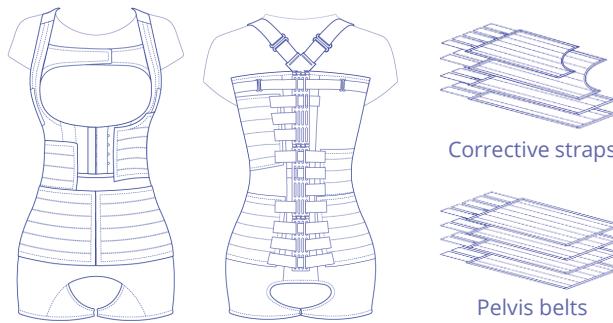
- Composite materials stress analysis
- Mechanical failure testing

Role in the programme:

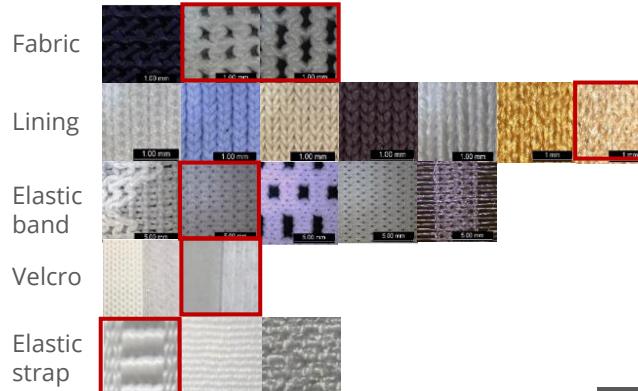
- Evaluates material durability under cyclic loading
- Ensures compliance with medical device regulations
- Validates biomechanical safety of corrective components

Research Questions

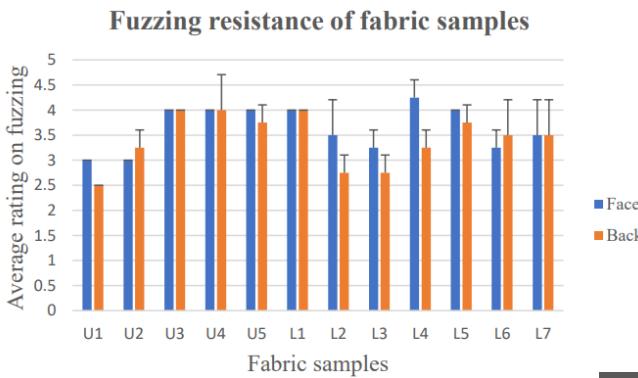
To translate the proof-of-concept ATB from a functional prototype into a validated, commercially viable, and user-centric medical device for moderate AIS, this research addresses the following key questions in the context of moderate-stage AIS management:

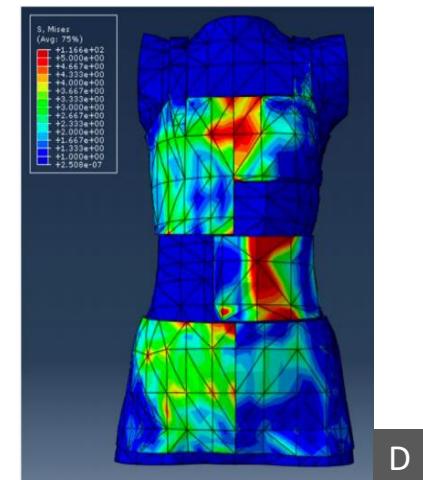

1. What specific material and design modifications to the RAE 2020 prototype ATB optimises the trade-off between biomechanical efficacy and user-centred outcomes, and how do these modifications impact wearability and quality of life?
2. How does the refined ATB perform in terms of long-term structural integrity (at three, six, and nine months), consistent corrective force application, and ultimate clinical effectiveness in correcting spinal curvature?
3. Which design-for-manufacturing strategies, modular sizing schemes, and material selections are required to transform the RAE 2020 ATB prototype into a scalable mass-production design, and clinically effective commercial product suitable for a diverse demographic of AIS patients?
4. Which evidence-based implementation strategies, training programmes for clinicians, and reimbursement pathways are necessary to successfully integrate the refined ATB into standard scoliosis management protocols?

Research Outputs


Category	Details
Product	<ul style="list-style-type: none"> a) Refinements of ATB's design and textile materials b) Refinements to ATB's hinged bone design and materials c) Detailed refinements of the ATB
Academic Papers	<ul style="list-style-type: none"> • Fok, Q., Yip, J., Yick, K. L., & Ng, S. P. (2022). Design and fabrication of anisotropic textile brace for exerting corrective forces on spinal curvature. <i>Journal of Industrial Textiles</i>, 51(1_suppl), 1682S-1702S. https://doi.org/10.1177/15280837211032619 • Lei, Q. E., Shu, J., Wang, J., Cheung, H. Y., Cheung, J. P., Wong, W. F., Lau, S.C.Y., Yip, J., & Tong, R. K. (2023). Design and characterise of kirigami-inspired springs and the application in vertebrae exoskeleton for adolescent idiopathic scoliosis brace treatment. <i>Frontiers in Mechanical Engineering</i>, 9, 1152930. https://doi.org/10.3389/fmech.2023.1152930
Conference papers	<ul style="list-style-type: none"> • Wong, S.H., Yip, J., Yick, K.L., & Ng, S.P. (2020). Preliminary wear trial of anisotropic textile brace for adolescent idiopathic scoliosis. In <i>International Society for Engineering Research and Development International Conference (ISERD International Conference)</i>, Zurich, Switzerland, 16-17 February. • Fok, Q., & Yip, J. (2021). Applying numerical simulation to predict effect of brace wear for scoliosis. In <i>Advances in human factors and ergonomics in healthcare and medical devices</i>, pp. 217-223. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-79763-8_26 • Wong, C. S. H., Yip, J., Yick, K. L., & Ng, Z. S. P. (2021). A case study of initial In-brace spinal correction of anisotropic textile brace and Boston brace. In: Kalra, J., Lightner, N.J., Taiar, R. (eds) <i>Advances in Human Factors and Ergonomics in Healthcare and Medical Devices</i>. AHFE 2021. Lecture Notes in Networks and Systems, vol 263, pp. 109-115. Springer, Cham. https://doi.org/10.1007/978-3-030-80744-3_14 • Cheung, H., Yip, J., Yick, K., Ng, S. (2022). Preliminary wear trial of anisotropic textile brace designed for adolescent idiopathic scoliosis. In: Jay Kalra and Nancy Lightner (eds) <i>Healthcare and Medical Devices</i>. AHFE (2022) <i>International Conference</i>. AHFE Open Access, vol 51. AHFE International, USA. https://ira.lib.polyu.edu.hk/handle/10397/115893 • Ma, J., Lee, K., Cheung, K., Tong, K., Yip, J. (2025). Advancing Scoliosis Treatment: Development and Evaluation of Anisotropic Textile Brace (ATB) for Enhanced Patient Compliance. In: Jay Kalra (eds) <i>Healthcare and Medical Devices</i>. AHFE (2025) <i>International Conference</i>. AHFE Open Access, vol 171. AHFE International, USA. http://doi.org/10.54941/ahfe1006193
Patent	<ul style="list-style-type: none"> • Orthopaedic Hinge Assembly. US12,129,886B2. Pub. date: 30 Jan 2020 • Anisotropic Textile Brace. ZL 202330553930.X. Application date: 14 Mar 2024

Research Outputs

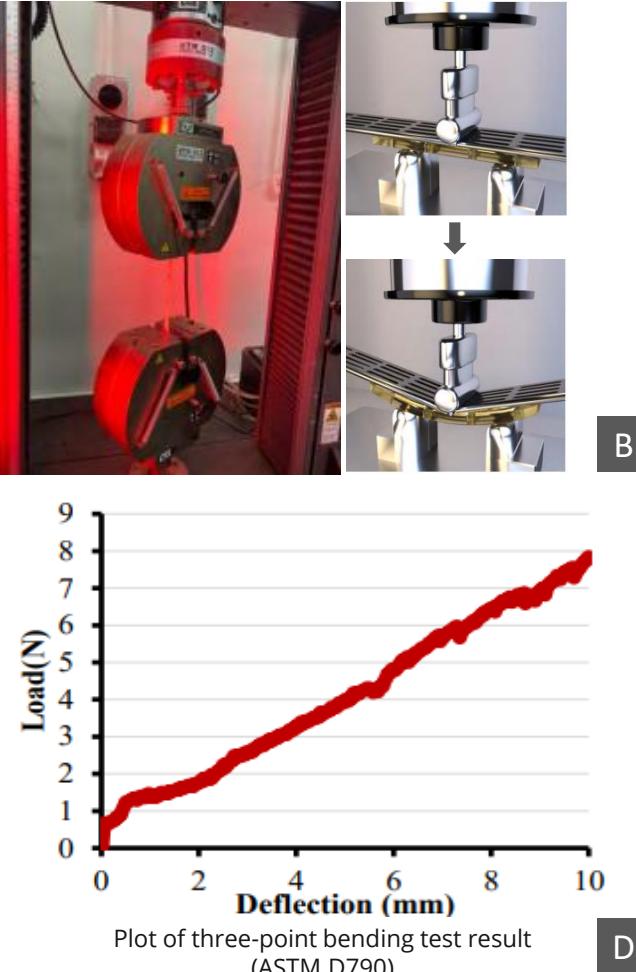
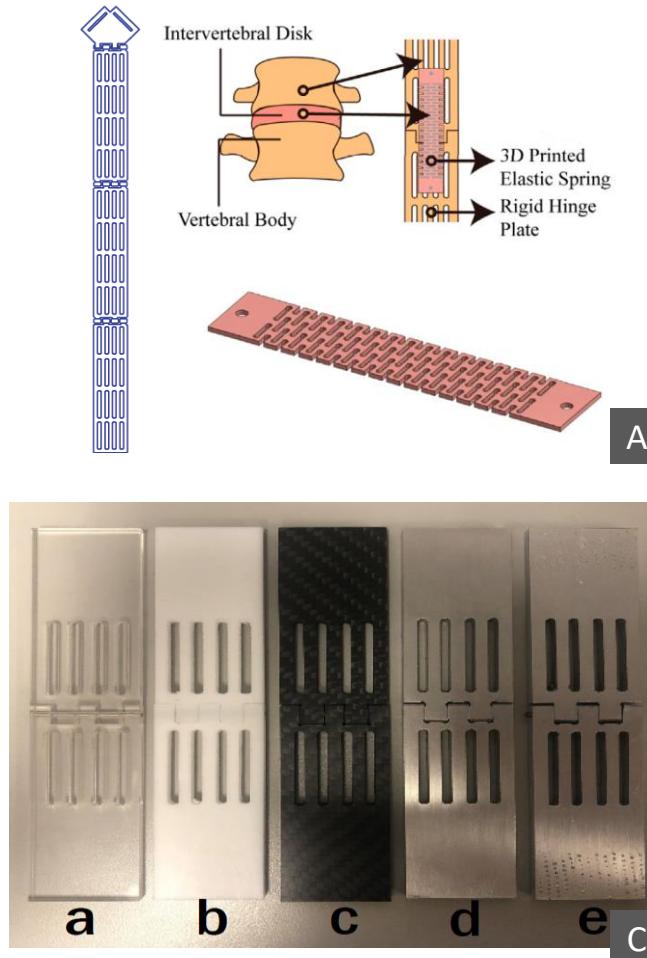

a. Refinements of ATB's Design and Textile Materials (2020–2025)


A

B

C

D

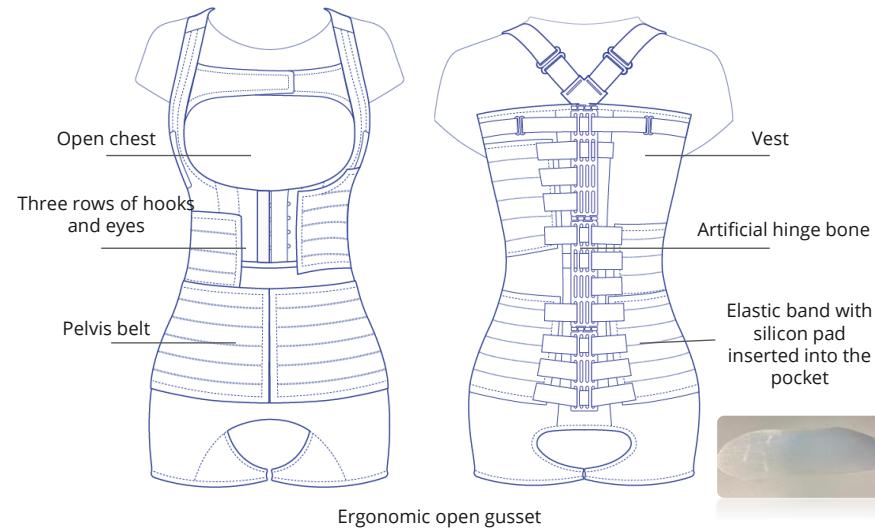
E

- A. Refined ATB design: Four corrective straps and four pelvis belts to accommodate a wider range of body shapes. Supports mass commercialisation through improved adaptability.
- B. Potential textile materials to enhance ATB fit, effectiveness and comfort. Shell Fabric 2 and 3, Lining 7, Elastic 2, Velcro 2, Elastic strap 1 were selected due to exceptional fabric recovery and good fabric extension; good heat, air, sweat and moisture transfer; better handfeel; better pilling resistance; elasticity; dimensional stability even after laundering.
- C. Various fabric testing was conducted to evaluate the behaviour of different materials.
- D. Developed finite element models (FEM) to analyse spinal biomechanical responses to various levels of pressure.
- E. Plotted graph based on the FEM to identify the optimal corrective force on thoracic and lumbar areas.

Research Outputs

b. Refinement of ATB and Hinged Bone Design (2020–2025)

- A. New hinged bone with integrated 3D-printed elastic spring to enhance fitting accuracy and long-term durability as well as prevents shifting and accidental disassembly.
- B. Material testing (ASTM D638-22) was conducted to evaluated the tensile strength of the elastic spring. Testing confirmed a tensile strength of 0.9 MPa, thus ensuring optimal flexibility while resisting deformation.
- C. Potential artificial bone materials to avoid breakage. Aluminium (d) is selected because of higher tensile and torque strength.
- D. Material testing (ASTM D790) was conducted on the aluminium hinge's bone torque. A force of 7 N was required to achieve a deflection 10 mm, thereby demonstrating improved rigidity and load-bearing capacity.


Research Outputs

c. Detailed refinements of the ATB (2020–2025)

- **ATB** for moderate curvature AIS adolescents (Cobb angle : 20°–40°)
- The ATB is a tight-fitting, vest-like undergarment that extends from the shoulders to the pelvis, combining biomechanical engineering with wearable comfort for noninvasive spinal correction. Its innovative design integrates **artificial hinge bones** for flexible support, **adjustable corrective straps** to apply targeted pressure based on spinal curvature, and customisable **silicone pads** within pocket linings for adaptive comfort.
- This **noninvasive, preintervention treatment** employs an **invisible** posture-correcting design to reduce or prevent spinal curve progression, prioritising high compliance through discreet, breathable materials and customisable biomechanical support.

Refined ATB

Front and back views

Research Field and Key References

AIS and its clinical management

AIS is a complex 3D spinal deformity, defined by a lateral curvature $>10^\circ$ with vertebral rotation. It affects 0.9%–12% of adolescents globally [7-9], causing trunk asymmetry, pain, and functional impairment. For 10% of patients (aged 10–16 years) with curves progressing to $\geq 20^\circ$, rigid bracing for 18–23 hours daily until skeletal maturity is the standard of care [10], to improve QoL [11].

This treatment's primary objective is to halt progression and prevent surgery. Its effectiveness is exclusively determined by two factors: the biomechanical corrective force of the brace and patient compliance to brace. However, current protocols disproportionately focus on the corrective force and **neglect the psychosocial factors essential for adherence**. Long-term effectiveness is ultimately determined by patient compliance. For example, adherence of ≥ 18 hours daily achieves a success rate of 90%–93%, compared to merely 42% for wear duration of less than six hours [12].

[Image]

Image not included. Please contact the author for permission to view or reuse.

Research Field and Key References

Global Research Landscape and Key Developments:

Rigid Braces

Braces are generally classified as rigid or flexible [13]. Rigid braces, typically constructed from thermoplastics such as polyethylene, are the standard of care due to their proven biomechanical efficacy in applying strong, consistent corrective forces [14].

However, their rigid nature is the source of significant patient burdens, including **skin irritation, discomfort, thermal discomfort, poor aesthetics, poor self esteem** due to their bulk, and associated psychological distress. These adverse effects frequently lead to **poor compliance**, thus directly **undermining the treatment's potential effectiveness**.

[Image]

Image not included. Please contact the author for permission to view or reuse.

The Boston Brace

Knowledge gap 1: Neglecting the Importance of Brace Adherence

Brace physical and mental comfort is not sufficiently integrated into brace design criteria.

Research Field and Key References

Global Research Landscape and Key Developments:

Flexible braces

In an effort to mitigate these limitations, flexible braces were developed [15]. Designs such as the TriaC (which utilises a three-point pressure system) and the SpineCor (which employs dynamic elastic bands) aimed to improve comfort, mobility, and aesthetics to enhance wearability and compliance [16-20].

Nonetheless, a growing body of clinical evidence suggests that these designs often achieve their improved comfort at the **expense of corrective biomechanical force**. Studies indicate that flexible braces may provide inadequate in-brace correction and possess **insufficient strength to effectively prevent curve progression**, thus raising questions regarding their overall therapeutic effectiveness [20-23].

Knowledge gap 2: The Fundamental Design Trade-Off

No existing solution successfully integrates both comfort and corrective force

Research Field and Key References

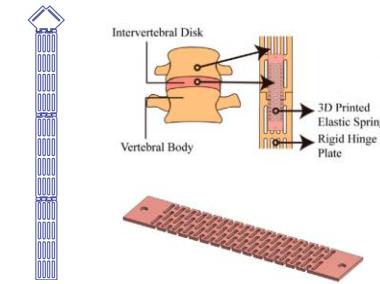
A summary of the limitations of existing braces

Effectiveness	Factors	Rigid brace	Other textile braces
Corrective effect	Mechanism and force	<ul style="list-style-type: none"> • Relies on rigid shell for high, often uncomfortable three-point pressure • Risk of over-correction and muscle atrophy 	<ul style="list-style-type: none"> • Inadequate, poorly directed force due to lack of rigid elements • Only suitable for younger users with a mild curve (~15°) • Short-term studies only; long-term efficacy unproven
	Durability	<ul style="list-style-type: none"> • Structurally durable but outgrown quickly, requiring frequent replacements 	<ul style="list-style-type: none"> • Prone to material fatigue; loss of corrective force over time
	Usability and fit	<ul style="list-style-type: none"> • Custom-made for initial fit but becomes quickly obsolete with growth • Difficult to put on independently 	<ul style="list-style-type: none"> • Often a complex harness of straps, which are difficult to fit and secure correctly
Compliance	Physical comfort	<ul style="list-style-type: none"> • Causes skin irritation, pain, and pressure ulcers due to rigid edges and poor breathability 	<ul style="list-style-type: none"> • More comfortable than rigid braces but can still cause chafing from straps and poor moisture management
	Mobility	<ul style="list-style-type: none"> • Severely restricts torso movement (bending, flexing). 	<ul style="list-style-type: none"> • Good mobility but can occasionally feel unstable or unsupportive
	Aesthetics and discretion	<ul style="list-style-type: none"> • Bulky and highly visible under clothing, leading to stigma 	<ul style="list-style-type: none"> • Less bulky but often uses external straps, creating an obvious 'medical' appearance
	Psychological issues	<ul style="list-style-type: none"> • Strongly linked to low self-esteem, anxiety, and social isolation due to its appearance and discomfort 	<ul style="list-style-type: none"> • Improves on rigid braces but the visible nature of straps can still cause self-consciousness

Research Advancements

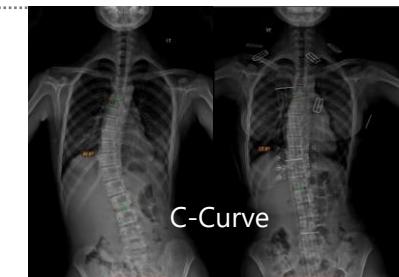
Bridging the Gap: Comfort Meets Correction:

- **Patient-centric design:** Features enhanced breathability, conformable textiles, and improved aesthetics to optimise comfort and compliance.
- **Biomechanical efficacy:** Incorporates innovative aluminium-hinged supports to deliver targeted corrective forces, addressing limitations of traditional flexible braces.

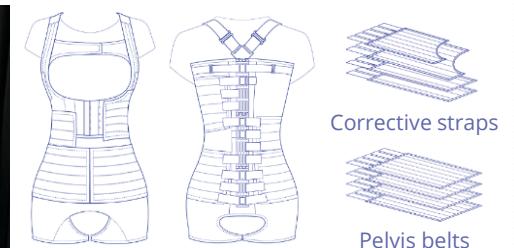

Advancements Over Existing Solutions:

- **Hybrid material system:** Merges the flexibility of textiles with the stability of semi-rigid components, thereby balancing comfort and efficacy
- **Rigorous clinical validation:** A long-term trial with standardised recruitment to eliminate prior methodological biases
- **Compliance-driven metrics:** Tracks wear-time, skin tolerance, and psychological feedback—key factors neglected in earlier studies

Research Methods, Prototypes, and Materials


Milestone 1: Refine the design of ATB to improve comfort and durability

Refined the ATB according to the functional, expressive, and aesthetic model. This includes subject recruitment, design frameworks, material selection, pattern drafting, garment assembling, and fitting modification.


Milestone 2: Evaluation of the effectiveness of the Refined ATB

Conduct a preliminary trial of the refined ATB design & revise the design. This includes subject recruitment, wear trial protocol, fitting modification, and clinical results.

Milestone 3: Evaluation of the effectiveness of the mass-produced ATB & implementation

Conduct a clinical study to investigate the effectiveness of the mass-produced ATB by comparing Cobb angles and quality of life before and after wearing the ATB. Confirm final design and implementation.

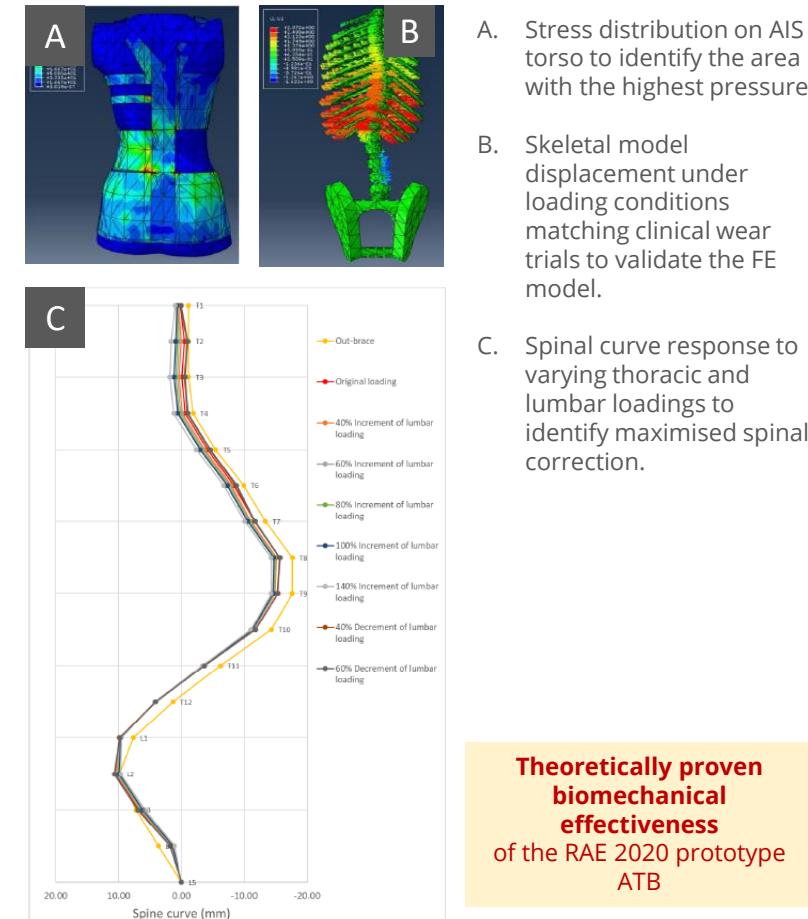
The project workflow

Research Methods, Prototypes, and Materials

Milestone 1.1 RAE 2020 Prototype ATB Strength and Problem Identification

The FE model was built to prove the long-term biomechanical effects of the RAE 2020 prototype ATB. It aims to provide convincing clinical data to recruit AIS patients to wear the ATB for three months or longer.

Key research findings regarding the RAE 2020 Prototype ATB


FE Model Testing: The FEM consisted of a scoliotic torso, skeletal structure, and the RAE 2020 prototype ATB. Fifteen FE models were developed with varying thoracic and lumbar loadings to analyse force distribution and optimise strap tension and pad placement.

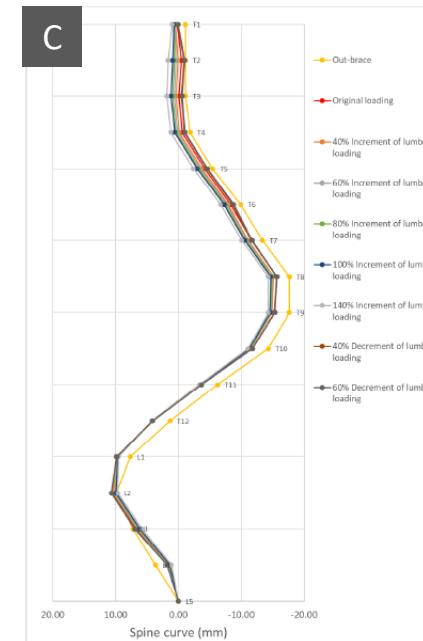
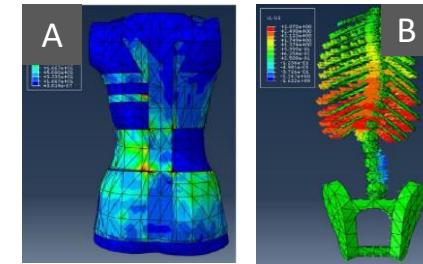
1. Hinge placement and comfort

- Wear trials:** Feedback indicated that the hinge effectively matched the intervertebral region, thus enabling natural spinal motion while maintaining corrective alignment.
- Stress distribution analysis:** FE analysis revealed peak pressure at the pelvic pad, thus indicating minimal hinge discomfort.

2. Optimal configuration of straps and belts

- Critical finding: Proper lumbar force management is essential to prevent thoracic overcorrection and maintain balanced spinal alignment.
- Key trade-off: Overloading the thoracic region disrupted lumbar alignment

Theoretically proven biomechanical effectiveness of the RAE 2020 prototype ATB



Research Methods, Prototypes, and Materials

Milestone 1.1 RAE 2020 Prototype ATB Strength and Problem Identification

The FE model was built to prove the long-term biomechanical effects of the RAE 2020 prototype ATB. It aims to provide convincing clinical data to recruit AIS patients to wear the ATB for three months or longer.

3. Spinal curvature reduction

- An increase of 140% in lumbar load maximised spinal correction.
- Pad positioning was critical for effectiveness.

- A. Stress distribution on AIS torso to identify the areas with the highest pressure
- B. Skeletal model displacement under loading conditions matching clinical wear trials to validate the FE model.
- C. Spinal curve response to varying thoracic and lumbar loadings to identify maximised spinal correction.

Theoretically Proven Biomechanical Effectiveness of the RAE 2020 Prototype ATB

Research Methods, Prototypes, and Materials

Milestone 1.1 RAE 2020 Prototype ATB Strength and Problem Identification

- ❖ Due to the lengthy research and development process, the wear trials for the RAE 2020 Prototype ATB lasted only two hours to evaluate its initial corrective effects. However, its **long-term effects on the AIS body remain questionable.**
- ❖ The RAE 2020 ATB prototype suffered from **significant usability issues**. The following are the key shortcomings:
 - Poor strap and elastic design:** Multiple tight straps dug into the skin, and sharp-edged elastics created considerable discomfort.
 - Nonadjustable fit:** A single, standard bra cup size failed to accommodate different body types.
 - Inconvenient shorts design:** The open-gusset shorts were impractical for users.
 - Overly complex construction:** The multipiece assembly made the garment unnecessarily complicated to put on and take off.

RAE 2020 Prototype ATB

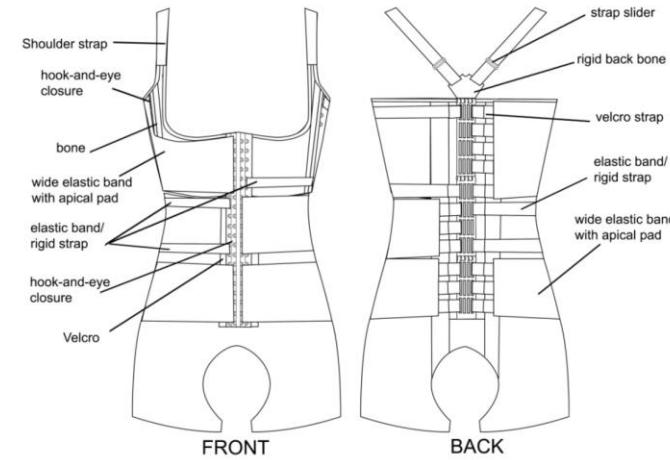
Raw edges of the corrective bands caused a prickly sensation

The **long-term efficacy** of the device on the AIS body is **unproven**, and it has several **usability issues** that would need to be addressed in a long-term clinical trial.

Research Methods, Prototypes, and Materials

Milestone 1.2 Refine the Design of ATB to Improve Comfort

First attempt

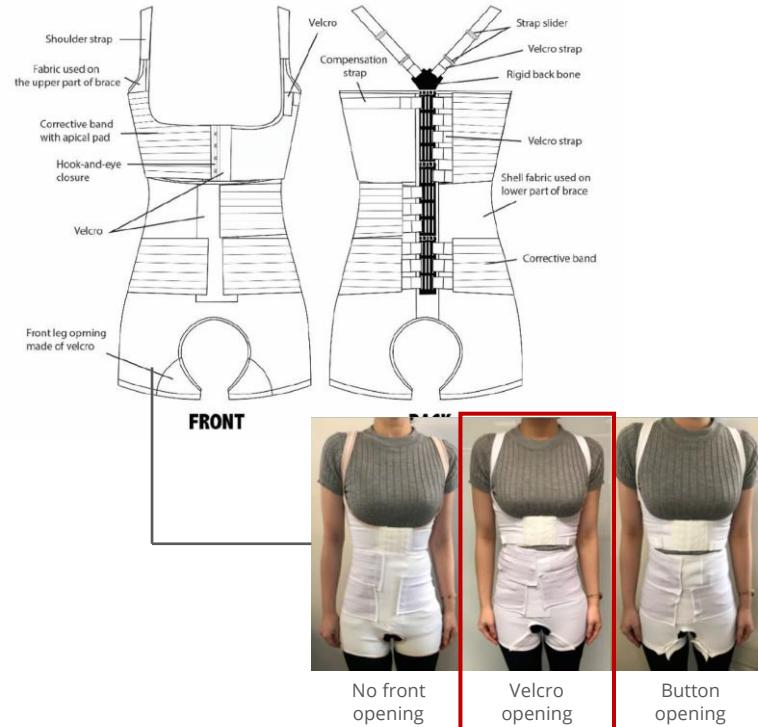

- Two main components: a cupless bra top + shorts
- Cupless design improves fit and avoids compressing the breasts
- Hook-and-eye closures replace the Velcro fasteners to accommodate different body proportions & addresses the discomfort and inconvenience

Limitations and solutions:

- Adjust the hooks and eyes to ensure they are centred
- Shorten the front opening
- Modify the low and curved underbust band
- Shorten the straps to improve the fit.

Second attempt

- A one-piece garment for improved user-friendliness.
- Made from cupless, stretchable fabrics for comfort and fit.
- Maintain an open crotch design for convenience.
- The hooks-and-eyes closure was extended to the bottom of the brace to prevent shifting.
- Cushioning pads were added behind the hinges to prevent discomfort or pain.


Research Methods, Prototypes, and Materials

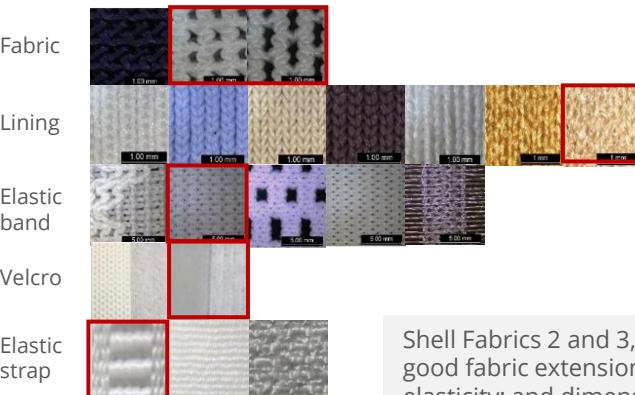
Milestone 1.2 Refine the Design of ATB to Improve Comfort

Third attempt

Fourth attempt

Limitations and solutions

- Caused discomfort and abdomen bulge due to rigid hook and eyes displacement of the brace
 - Reduce the thickness and rigidity of the panel
 - Changed to thinner and softer Velcro
 - Shorten the length of the hooks and eyes


- The design features a front opening, thus allowing the thigh tightness to be adjusted.
- The leg opening can also be torn away if needed.
- Although the plastic button opening is the most secure, it is difficult to fasten and causes puckering.
- Velcro was selected for this function due to its neat appearance and the ease with which it can be torn open.

Research Methods, Prototypes, and Materials

Milestone 1.3 Refine the Materials of ATB to Improve Comfort and Durability

Potential textile materials to enhance comfort, ATB fit, and effectiveness

Selected textile materials

Physical tests

KES-F Thermo Labo II
(Tests thermal comfort)

KES-F8-AP1 Air
Permeability Tester
(Tests breathability)

KESFB4-AUTO-A
Automatic Surface Tester
(Tests smoothness/
handfeel)

Instron 4411 Tensile
Strength Tester
(Tests tensile strength)

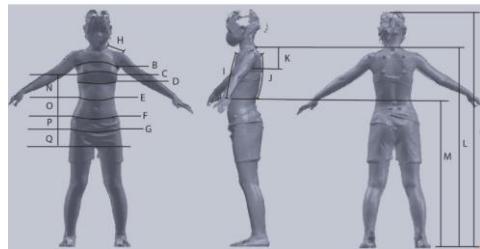
Instron 4411 tester used
for peel strength test
(Tests peeling strength
of Velcro)

Instron 5944 used for
repeated stretch test
(Tests durability)

Data Analyse

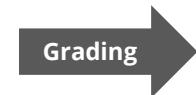
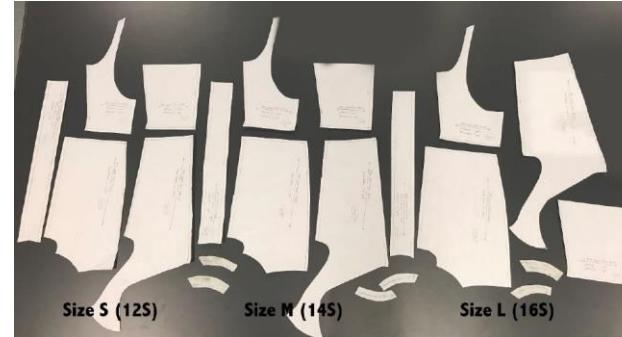
Apparatus for fabric
evaluation
(Observe pilling effect)

Martindale abrasion
tester
(Tests abrasion)

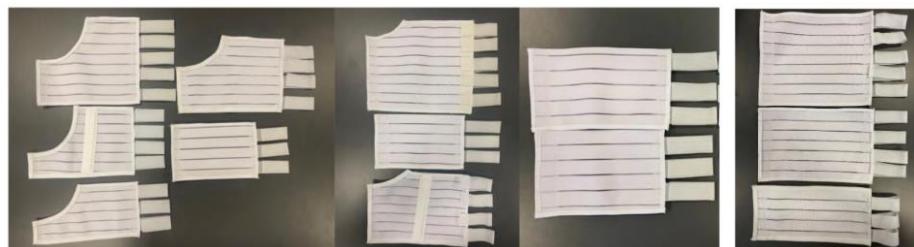

Dimensional
changes of fabrics
after home
Laundering

Water vapor
permeability test

Shell Fabrics 2 and 3, Lining 7, Elastic 2, Velcro 2, Elastic strap 1 were selected due to exceptional fabric recovery and good fabric extension; good heat, air, sweat and moisture transfer; better hand feel; better pilling resistance; elasticity; and dimensional stability even after laundering.



Research Methods, Prototypes, and Materials

Milestone 1.4 Pattern Grading to Fit AIS with Diverse Body Shapes

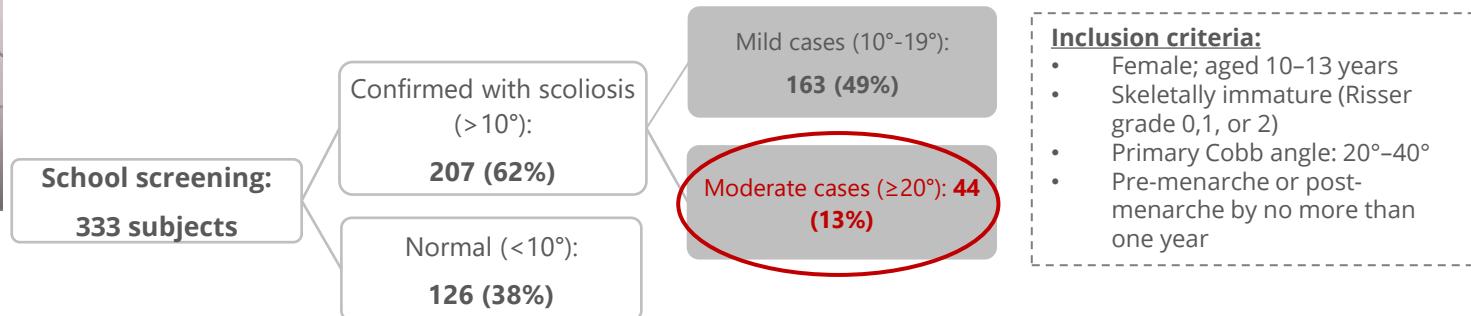


Size	12S	14S	16S
Body weight (mean), kg	84	99	109
Body weight (range), kg	79-89	93-104	103-114
A Height (cm)	147.55	155.18	159
B Upper-chest girth (inches)	27	28 ¹ / ₂	29 ⁷ / ₈
C Chest/ Bust girth (inches)	27 ¹ / ₂	29	30 ¹ / ₂
D Under-bust girth (inches)	25 ¹ / ₄	26 ³ / ₈	27 ⁵ / ₈
E Waist girth (inches)	24	25	26
F High-hip girth (inches)	26 ⁵ / ₈	27 ⁷ / ₈	29 ¹ / ₈
G Hip/ Seat girth (inches)	28	29 ¹ / ₂	31
H Shoulder length (inches)	3 ⁵ / ₈	3 ³ / ₄	3 ⁷ / ₈
I Centre front waist length (inches)	11 ³ / ₄	12 ³ / ₈	12 ³ / ₄
J Centre back waist length (inches)	13 ¹ / ₈	13 ⁷ / ₈	14 ¹ / ₄
K Scye depth (inches)	5 ¹ / ₂	5 ¹ / ₂	5 ³ / ₄
L Cervicale height (inches)	49 ³ / ₄	52 ¹ / ₄	53 ⁵ / ₈
M Waist height (inches)	36 ³ / ₄	38 ⁷ / ₈	39 ⁷ / ₈
N Bottom scye to waist height (inches)	7 ¹ / ₂	7 ⁷ / ₈	8
O Waist to high-hip height (inches)	3 ³ / ₈	3 ⁵ / ₈	3 ⁶ / ₈
P High-hip to hip/seat height (inches)	3 ¹ / ₄	3 ¹ / ₂	3 ³ / ₄
Q Hip/Seat to crotch height (inches)	2 ¹ / ₂	2 ⁵ / ₈	2 ³ / ₄

ASTM D6192M standard tables of body measurements for girls, sizes 2 to 20 (reg & slim) and plus-size girls

Size XS ATB and shorter artificial hinged bone are developed to meet the needs of shorter patients in Hong Kong under 147.5 cm.

Different types of corrective bands for thoracic, thoracolumbar, lumbar curves, and pelvis belts


Research Methods, Prototypes, and Materials

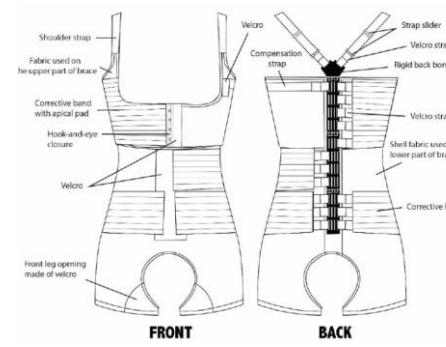
Milestone 1.5 Subject Recruitment



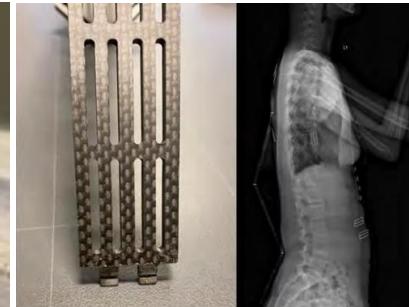
Adam's forward bend test

School screening: Began from 2020, 642 out of 3209 students had shown signs of scoliosis, and 333 of them accepted our offer to conduct EOS low-dose X-ray radiograph imaging.

Protocol for the three-month clinical wear trials:



Research Methods, Prototypes, and Materials

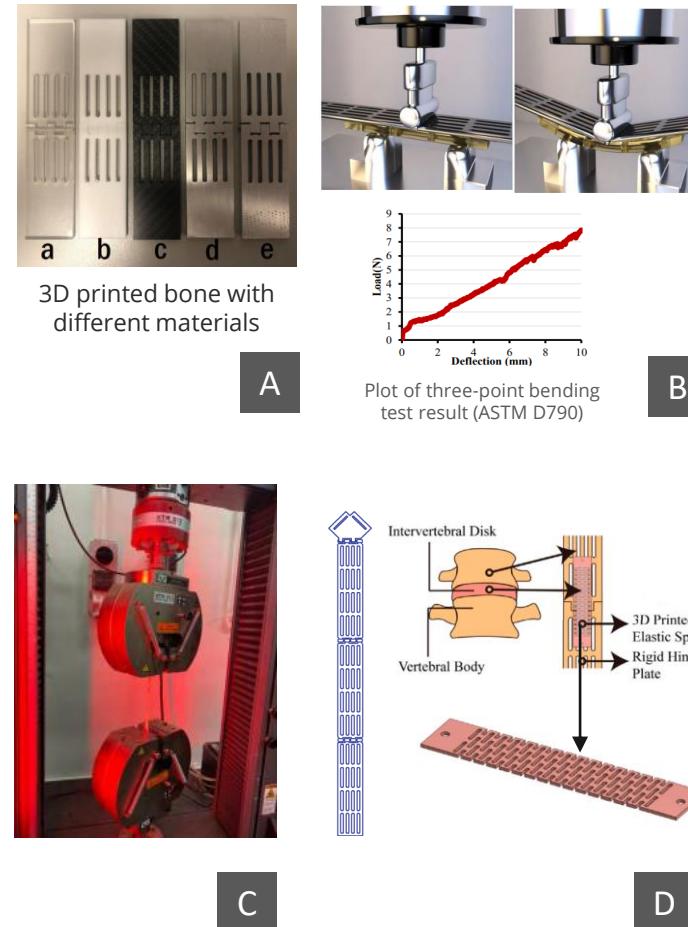
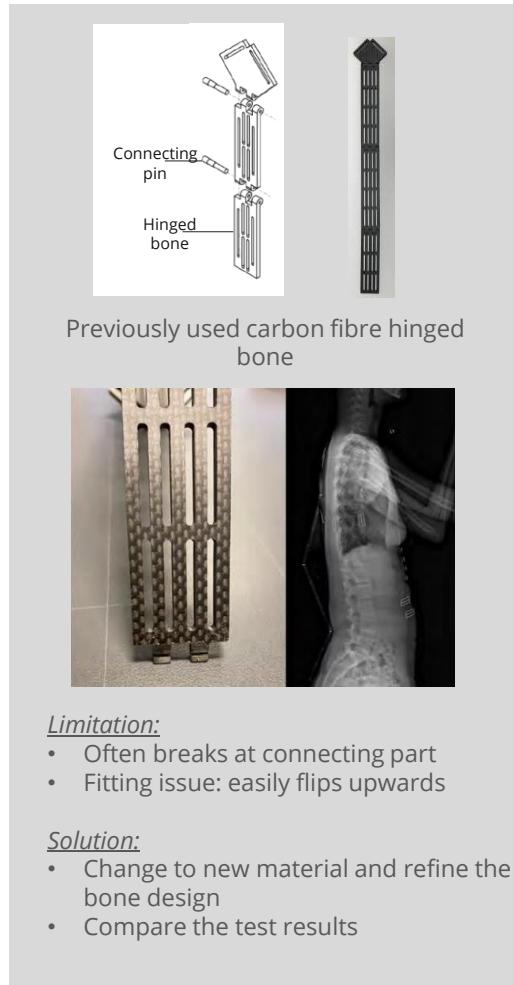

Milestone 1.6 Fourth Attempt ATB Preliminary Trials

Fourth attempt ATB

Fuzzing problem

The bone often breaks at the connecting part; fitting issue: easily flip upwards

Comparison of pre- and post-intervention of ATB (Version 2) after three-month wear trials



Subject	Curves (start-apex-end)	Baseline (out-Brace)	After two hours (In-brace)	Three month (out-brace)	Differences
B1	T11-L1-L3	21.0°	15.4°	21.8°	0.8°
B2	T1-T9-T11	18.8°	14.7°	Dropped out	/
B3	T10-T12-L3	22.2°	15.2°	20.8°	-1.4°
B4	T6-T9-T11	21.8°	16.2°	21.6°	-0.2°
	T12-L1-L5	16.7°	18.3°	19.7°	3.0°
B5	T10-T12-L3	31.3°	21.5°	29.2°	-2.1°
B6	T6-T9-T11	23.1°	14.8°	15.7°	-7.4°
	T11-L1-L3	27.8°	22.4°	21.6°	-6.2°
B7	T11-T12-L2	22.0°	14.5°	23.6°	1.6°

4/7 (57%) showed a reduction in Cobb angles

This brace has clinically proven effectiveness. However, it **cannot be worn for a long time** due to the poor durability of its textile and artificial bone components.

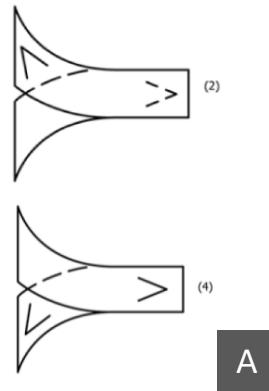
Research Methods, Prototypes & Materials

Milestone 1.7 Refinement of Hinged Bone Design and Materials

- 3D printed bone with different materials
- Material testing (ASTM D638-22) was conducted to evaluate the tensile strength of the elastic spring. Testing confirmed a tensile strength of 0.9 MPa, thus ensuring optimal flexibility while resisting deformation.
- Material testing (ASTM D790) was conducted to evaluate the artificial bone torque with aluminium hinges. A force of 7 N was required to achieve a deflection of 10 mm, thereby demonstrating improved rigidity and load-bearing capacity.
- New hinged bone with integrated 3D-printed elastic spring enhances fitting accuracy and long-term durability as well as prevents shifting and accidental disassembly.

Research Methods, Prototypes, and Materials

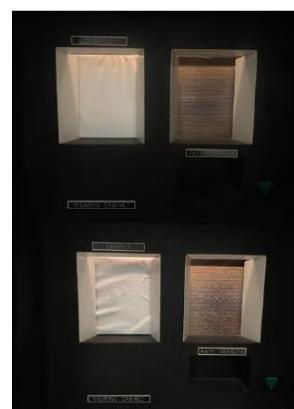
Milestone 1.7 Refinement of Hinged Bone Design and Materials



Limitations:

- Fuzzing after three months of bracing
- Insufficient elasticity of the elastic band

Solution:


- Change to new Velcro
- Compare the previous and new materials based on the physical tests


A

	Direction 1 (Maximum Load)	Direction 2 (Maximum Load)	Direction 3 (Maximum Load)	Direction 4 (Maximum Load)
1	14.76	14.76	13.69	16.24
2	11.4	11.27	10.46	13.28
3	8.85	12.34	11.27	11.4
4	9.39	10.46	10.2	10.6
Mean	11.16	11.86	11.57	12.29
S.D.	2.32	1.80	1.42	2.54

B

C

D

Elastic band	Extension (Average)	Growth (Average)	Recovery (Average)
Modified ATB from Wong (2021)	48.3%	3.2%	93.3%
Newly sourced	44.7%	1.53%	96.6%

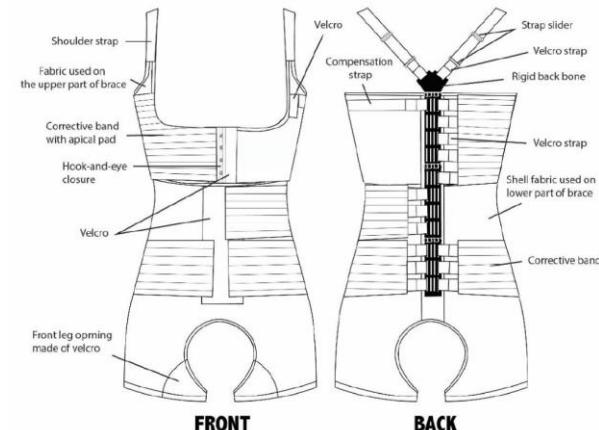
E

- Peeling in Directions 2 and 4 based on ASTM D5170. The highest peel strength can be found in Direction 4.
- Peel strength of newly sourced Velcro: mean peel strength ranges from 11.16 N to 12.29 N, which indicated better fuzzing resistance. (Previous: 0.085 N)
- Pilling resistance of newly sourced Velcro: Grade 5 (the best) i.e., no visual change on the front of the fabric.
- Demonstration photo after three months of brace wear with new Velcro
- Elasticity and recovery of newly sourced Velcro (ASTM D6614-07): The recovery rate is 96.6%, higher than the previous elastic band (i.e. 93.3%)

Research Methods, Prototypes, and Materials

Milestone 1.8 Summary on Refinement of ATB and Hinged Bone Design

1. Upgraded wear comfort to improve QoL

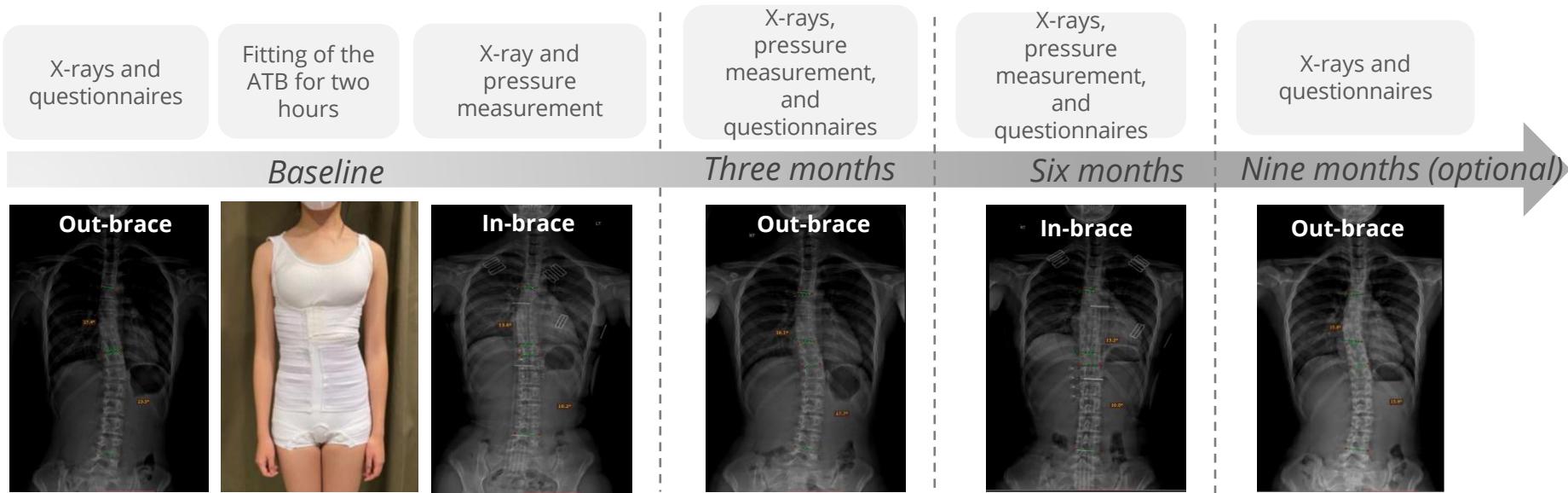

- **Integrated vest design:** Reduces strap pressure to prevent skin irritation.
- **Softer Velcro & edge-free elastics:** Eliminates discomfort from sharp edges.
- **Advanced textile materials:** Improved breathability (air permeability), moisture-wicking (water vapor permeability), and softer hand feel.

2. Enhanced user-friendliness to enhance treatment compliance rates

- **Open-gusset shorts:** Allows convenient bathroom access without removing the garment.
- **One-piece design:** Simplifies dressing and undressing for independent use.

3. Reinforced durability

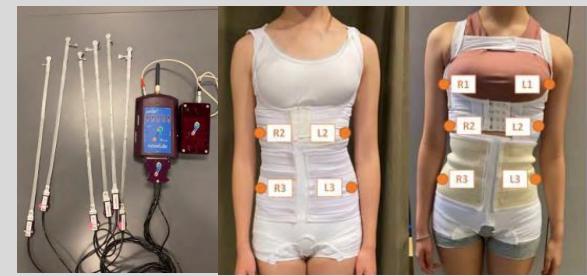
- **High-performance textiles:** Enhanced elastic recovery, pilling resistance, and wash durability for long-term use.
- **Material upgrade for artificial bones:** Switched from carbon fibre to aluminium for higher tensile and torque strength.
- **3D-printed elastic spring:** Secures bones to prevent accidental disassembly while maintaining flexibility.



Refined ATB

Research Methods, Prototypes, and Materials

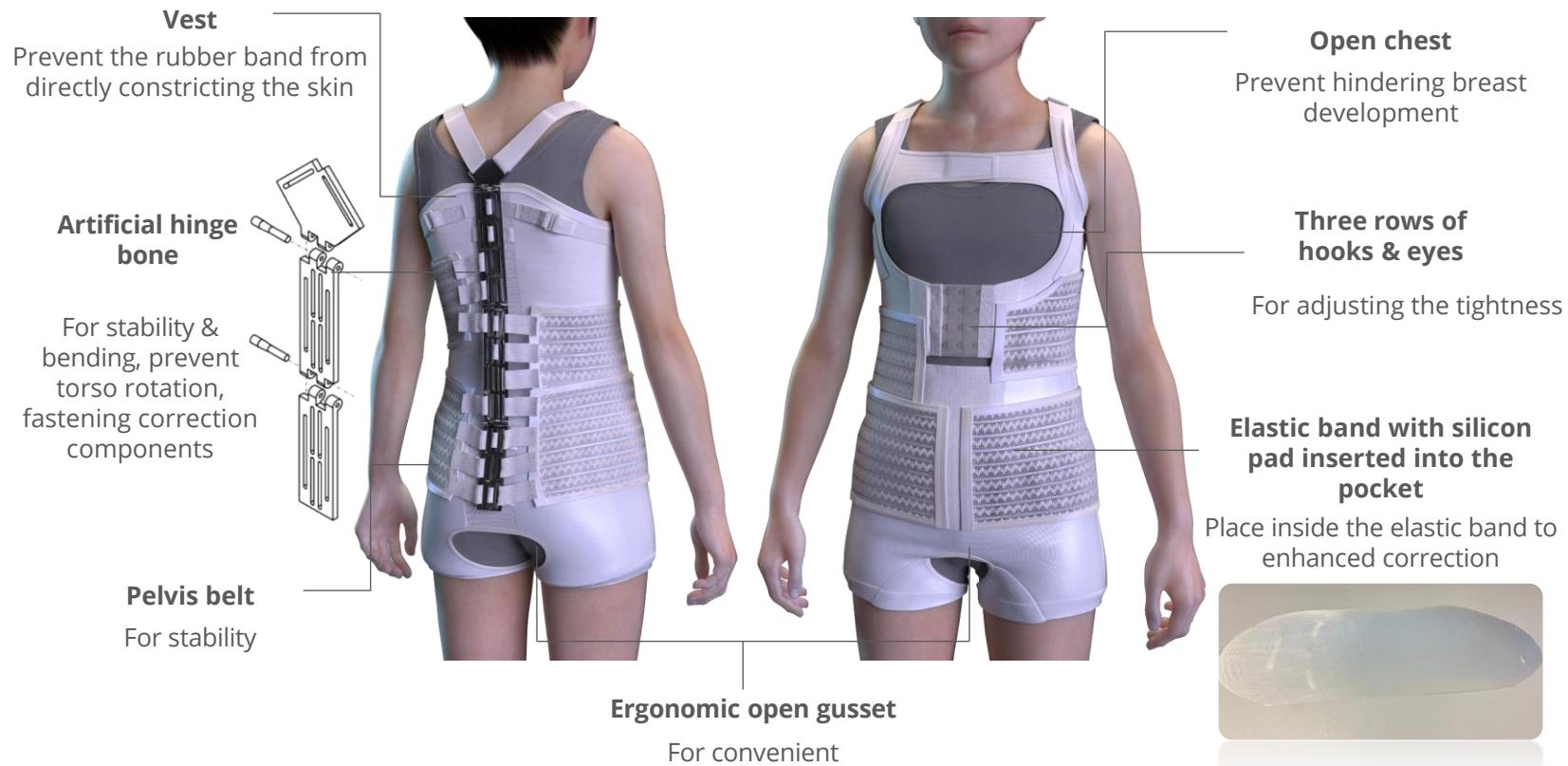
Milestone 2 Clinical Evaluation of the Refined ATB


Six-month clinical wear trials protocol:

Questionnaires

- **SRS-22 questionnaire**
 - Measure QoL in five domains: pain, mental, self-image, function, treatment satisfaction
- **BrQ Assessment**
 - Measure QoL in Gernal health perception, physical functioning, emotional functioning, self-esteem and aesthetic, vitality, school activity, bodily pain, and social functioning
- **Bad Sovernheim Stress Questionnaire (BSSQ)**
 - Observes the psychological and physiological comfort of the brace

Pressure measurement



Research Methods, Prototypes, and Materials

Milestone 3.1 Standardised the Mass-produced ATB

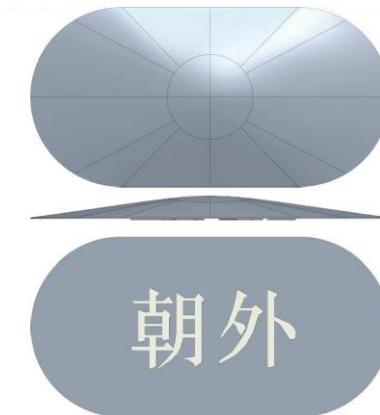
Based on subject feedback, the ATB design was refined to meet mass-production requirements. The new design is simpler, more comfortable, more durable, and more effective. The next step is clinical trials on the mass-produced units.

- **Anisotropic textile brace** for the adolescents who have moderate scoliosis (Cobb angle: 20°–40°)

Research Methods, Prototypes, and Materials

Milestone 3.1 Standardised the Mass-produced ATB

a) Manufacturing Process for Silicone Padding


Material: 100% Silicone

Manufacturing Process: Injection molding

Production Workflow:

1. Silicone raw material (typically in a paste or block form) is mixed with a vulcanising agent in a rubber mill to form sheets.
2. Pre-weighed amounts of this material are placed into the mold of a vulcanisation molding machine.
3. After complete vulcanisation, the mold is opened to remove the product.
4. The final step involves manual trimming of any flash (excess material) to produce the finished item.

Machinery: 250T Vacuum Vulcanisation Machine

Adding Identification Marks to Solve Orientation Recognition Issues

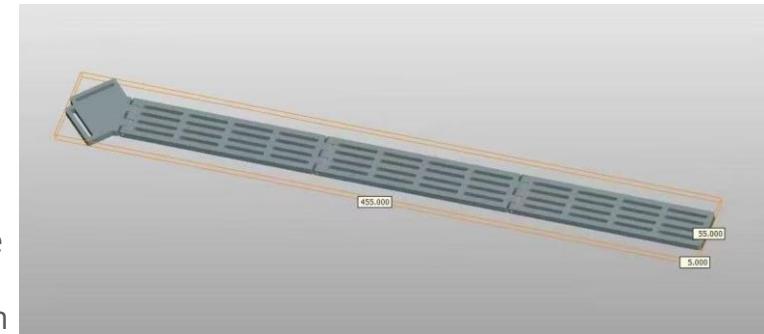
Problem Description: Children find it difficult to identify the correct orientation of the silicone padding, frequently inserting it incorrectly.

Solution: Embossed braille or raised characters will be added to the flat surface of the padding. This provides a tactile cue for clear and correct placement orientation.

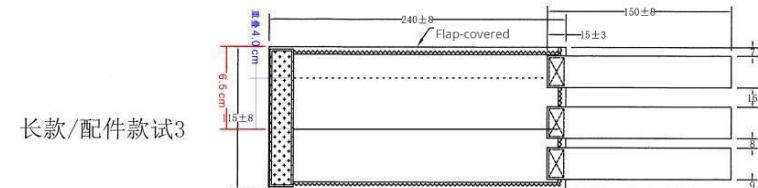
Research Methods, Prototypes, and Materials

Milestone 3.1 Standardised the Mass-produced ATB

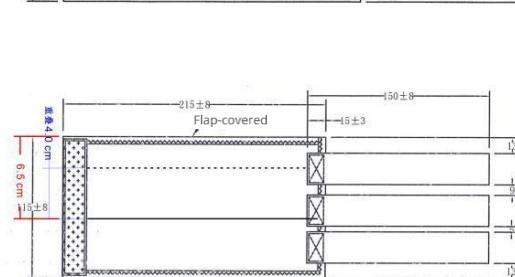
b) Manufacturing Process for Hinged Bone


Material: 6063 Aluminium Alloy, Stainless Steel Pins

Manufacturing process: CNC Machining + Anodising


Production workflow: The movement of the CNC machine is pre-programmed based on 3D drawings, which define the tool path, speed, and cutting depth. Assembly is completed after all parts are completed.

Test conditions: 10,000 cycles of torsional stress at 4.6 ± 0.2 kg-cm torque in both clockwise and counterclockwise directions.


Acceptance criteria: No functional failure or structural damage after completion of the test.

Hinged Bone

长款/配件款试3

长款/配件款试4

Long wide elastic band with 'flap-covered' pocket

c) Long Wide Elastic Band-Silicone Pad Loss Issue

Problem description: The long corrective elastic band is overly long, which causes the silicone pads to detach and get lost easily.

Solution: Redesign the pocket opening into a 'flap-covered' style to secure the pads.

Research Methods, Prototypes, and Materials

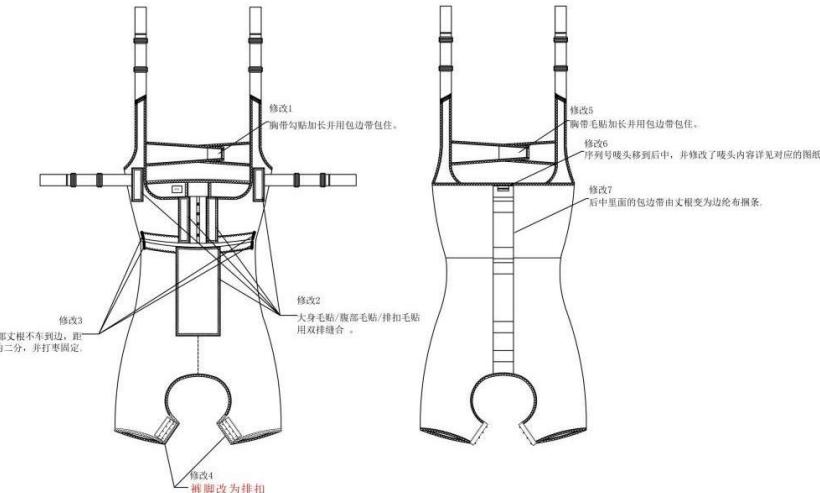
Milestone 3.1 Standardised the Mass-produced ATB

d) Recommendation for increase in leg circumference

Problem description: The leg circumference is too small and this causes it to dig into and constrict the thighs.

Solution: Increase the leg circumference measurement by 2.5 cm to enhance wearing comfort and reduce pressure.

e) Improvement in the Leg Strap Design


Problem description: The original garment used a hook-and-loop fastener at the leg opening, which caused skin irritation and fabric pilling. Its peel strength also declined with prolonged use, raising durability concerns.

Solution: Change the leg strap closure from a Velcro (hook-and-loop) design to a snap-button design to further improve comfort and durability.

f) Improvement in the Front Strap Design

Problem description: The current front strap does not effectively prevent constriction, thus negatively impacting the wearing experience.

Solution: Either readjust the length of the front strap or adjust the ratio of the hook and loop areas on the Velcro

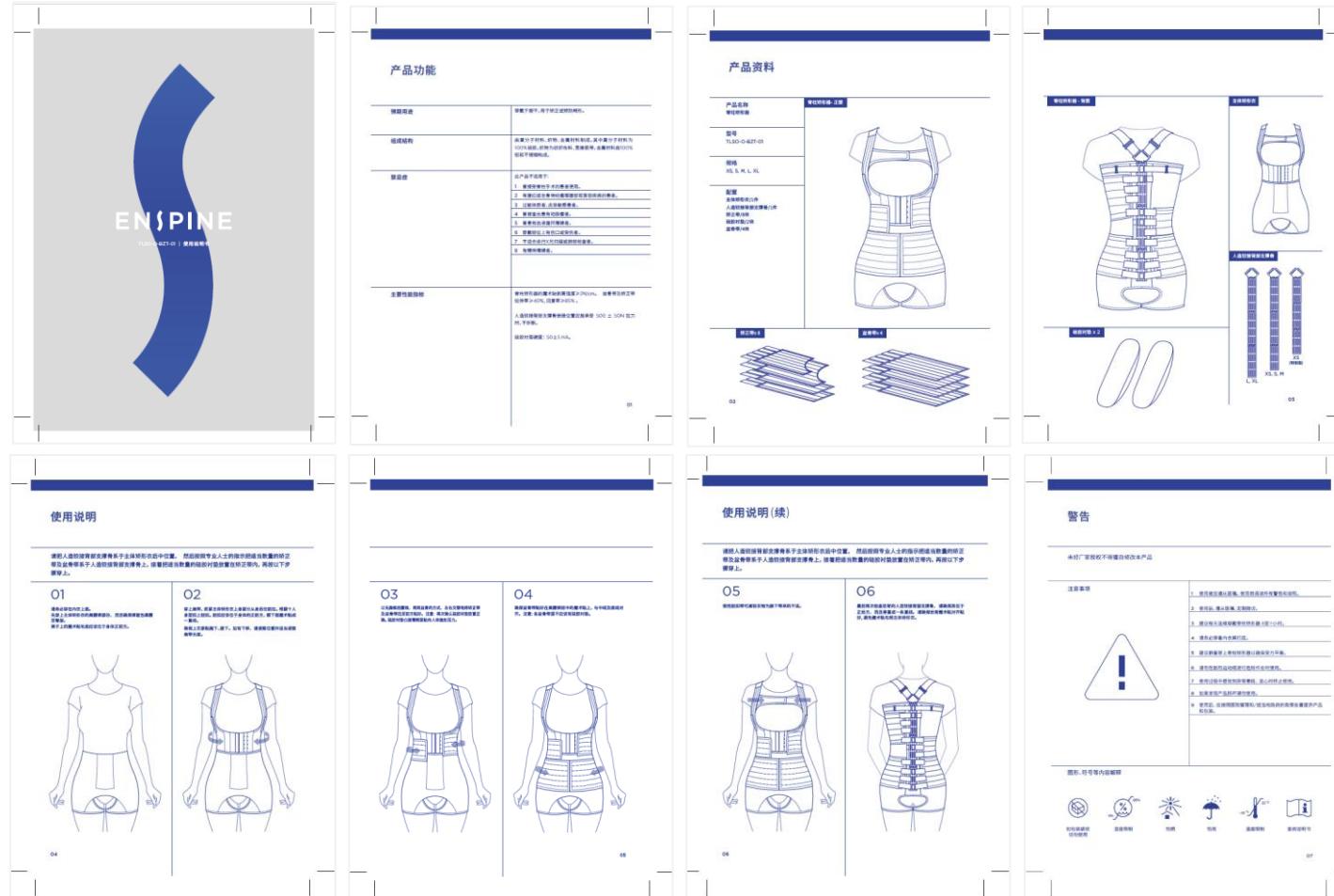
Commercialised ATB

Research Methods, Prototypes, and Materials

Milestone 3.1 Standardised the Mass-produced ATB

g) Pattern grading

Refined ATB: In this study, the pattern grading for key components of the ATB was based on the ASTM D6192M standard body measurement table for girls. Since patients with AIS tend to be slimmer and lighter compared to typical adolescents, sizes 12S, 14S, and 16S were adopted, which represented S, M, L sizes, respectively.


Mass-produced ATB: To better accommodate the needs of diverse patients, the latest version of the ATB design expands the size range to five sizes: 10S to 18S, corresponding to XS, S, M, L, and XL sizes, thus providing more options for patients with varying body types. Based on refinements derived from short- and long-term wear trials involving over 30 subjects, we provide the following table as a size reference for initial fitting of the ATB.

	XS	S	M	L	XL
Height	135 cm-145 cm		145 cm-165 cm		156 cm-175 cm
Weight	31 kg-36 kg	36 kg-42 kg	42 kg-47 kg	47 kg-52 kg	52 kg-57 kg
Bust	64 cm-68 cm	68 cm-72 cm	72 cm-76 cm	76 cm-79 cm	79 cm-85 cm
Under Bust	59 cm-63 cm	63 cm-65 cm	65 cm-69 cm	69 cm-71 cm	71 cm-75 cm
Waist	56 cm-60 cm	60 cm-62 cm	62 cm-65 cm	65 cm-67 cm	67 cm-71 cm
Hip	65 cm-69 cm	69 cm-73 cm	73 cm-77 cm	77 cm-80 cm	80 cm-90 cm

Size chart

Research Methods, Prototypes, and Materials

Milestone 3.2 Develop User Manual of Mass-produced ATB

The ATB User Manual for customers, includes product instructions, application guidelines, safety warnings, an information sheet, and a consent form

Research Methods, Prototypes, and Materials

Milestone 3.3 Mass Production of Mass-produced ATB

A **fully operational production line** in Mainland China has been established in partnership with Dongguan Yongjian Rehabilitation Equipment Co., Ltd. (东莞永健康复器具有限公司). A **certificate of conformance** from Vincent Rehab Devices Co., Ltd. has also been received, thus ensuring that the ATB meets the highest industry standards.

东莞永健康复具有限公司 生产工艺流程			
文件编号	TCGP50010222AS001	文件版本	A
产品名称	ATB主体衣	页号	1 of 5
准备	PE工程师, 日期:	批准	日期
会签	生产会签; 日期:		
	项目会签; 日期:		
	品质会签; 日期:		
适用产品			
项次	产品名称/型号	产品编号	
1	ATB主体衣\SV10FC\箱	50010222	
2	ATB主体衣\VA10FC\箱	50010223	
3	ATB主体衣\LA10FC\箱	50010224	
	以下空白		
版本	修改记录	修改日期	
A	始发版本 以下空白	2024/5/5	
<p style="text-align: center;">加盖红色 受控印章 方为有效</p>			

A fully operational production line

**Vincent Rehab Devices Co., Ltd.
Dongguan Vincent Rehab Devices Co., Ltd.**

Certificate of Conformance

合格证

Customer 客户: 保姿体生物科技(广州)有限公司

Sales Order No. 销售订单编号: 20056784

VRD Part Number 水健产品编号: 50010224

Model 产品: N/A

Description 产品名称: Anisotropic textile brace/L

Production Lot Number 生产批号: 2444073

Quantity 数量: 100 **PCS**

**Customer Specification Revision:
客户规格:** N/A

We certify that the above named production lots(s) was (were) built according to the Device Master Record for the product. The lot was (were) inspected per item listed in related work instruction and was (were) accepted at final inspection in accordance with procedures. All records were completed and verified.

本证书证明上列产品是根据该产品的相关档案(Device Master Record)生产的，并已根据制程指引中相关项目进行了100%全检，且在最终检查程序确定为合格。所有记录都已完成后和核实。

2024.11.19

Quality Assurance Representative / Date
品质保证代表 / 日期

Certificate of Conformance

Research Methods, Prototypes, and Materials

Milestone 3.4 Implementation of Mass-produced ATB in the Hospital

Apply Mainland China Medical Device Registration Certificate (MDRC) as a Class II medical device, so that it can be purchased in clinical practice across Mainland China hospitals and clinics, with doctors recommending it to patients.

MEDICAL DEVICE REGISTRATION IN CHINA

Medical device product registration and importation in China requires a Medical Device Registration Certificate (MDRC) issued by the [National Medical Products Administration \(NMPA\)](#), previously the China Food and Drug Administration (CFDA). This document is technically owned by the foreign manufacturer, but is controlled by the Legal Agent listed on the certificate who is responsible for the registration application. Products must have home country approval prior to applying for registration in China.

Medical device registration in China is now valid for 5 years (previously it was valid for only 4 years). If a manufacturer wants to renew a device's registration, a renewal application should be submitted 6 months prior to the expiration date and can now be submitted online through the new [Electronic Regulated Product Submission \(eRPS\)](#) system, along with all new applications.

CHINA REGULATORY SUPPORT

- [Medical Device Registration](#)
- [IVD Device Registration](#)
- [Independent License Holding](#)
- [Clinical Trial Management](#)
- [Stand-Alone Medical Software](#)
- [Predicate Device Identification](#)
- [China NMPA](#)

CHINA SALES SUPPORT

MEDICAL DEVICE CLASSIFICATION

Low Risk Class I medical devices are subject to a filing process with applications submitted to the NMPA. Administrative review and MDRC issuance takes about 4 weeks from application submission.

Medium Risk Class II and High Risk Class III medical devices are subject to a registration process with applications and supporting documentation submitted to the NMPA. Product testing certificates issued from a (local) NMPA-certified laboratory are a required element of the application. Local clinical test data is also required for most Class II and III devices.

As of October 2022, the NMPA has published their classification catalogue adjustments for comment. More information available [here](#). Recently, the NMPA has updated the classification status of Sodium Hyaluronate products. Read more about the notice [here](#).

Asia Actual's new tool for RA professionals, R.O.S.E., can help identify Same-Type devices (aka Predicate Devices) and their classification. Click [here](#) to learn more.

	NMPA REVIEW FEES	REVIEW TIMEFRAME
LOW RISK CLASS I	NA	4 weeks
MEDIUM RISK CLASS II	210,900 RMB (~\$30,000 USD)	12-24 months
HIGH RISK CLASS III	308,800 RMB (\$44,000 USD)	12-24 months

<https://asiaactual.com/china/medical-device-registration/>

Research Methods, Prototypes, and Materials

Milestone 3.4 Implementation of Mass-produced ATB in the Hospital

To ensure product safety for its Class II medical device application, the main components of the mass-produced ATB underwent testing by a recognised certification authority.

Produkte
Products

TÜV Rheinland®

Test Report No.:	CN24921B 001	Order No.:	170377166	Page 1 of 5 页码 1 of 5
客户报告编号: CN24921B 001		订单编号: 170377166		
Client Reference No.:	不适用	Order date:	07.05.2024	
客户:	保健生物科技(湖南)有限公司 湖南省湘潭市岳塘区五经路岳塘区31号创新创业中心1号栋20层2010室			
Test Item:	测试样品: 100% 铅塑人造接骨臂支撑条 + 不锈钢钢钉			
Identification/Type No.:	产品识别型: Hinge Bone-V.1			
Order content:	按客户要求提供测试报告			
Test specification:	测试标准: 根据客户要求 - 振转弯曲寿命试验 (10000 次循环)			
Date of receipt:	07.05.2024	收到日期:		
Test sample No.:	A003712583-001	样品编号:		
Testing period:	07.05.2024 – 21.05.2024	测试日期:		
Place of testing:	广州市科珠路 199 号	测试地点:		
Testing laboratory:	莱茵技术监督服务(广东)有限公司 测试实验室:			
Test result*:	通过			
tested by / 测试:	李舜生			
03.06.2024 李舜生 / 工程师 Engineer	03.06.2024 谢春生	reviewed by / 审核:	谢春生	
Signature	Signature	Reviewer	Signature	
Name / Position	Date / 日期	Reviewer	Signature	
李舜生 / 工程师	03.06.2024	谢春生 / 审核人	谢春生	

Other / 其他:
 1. 根据客户要求, 本报告为参考报告编号 CN246DGM 001 的中文补充报告, 所有结果均来自原始报告编号 CN246DGM 001.
 2. 目的: 中国
 3. 该报告仅限于委托企业在内进行质量评估。

Condition of the test item at delivery: Test item complete and undamaged
接收时样品的状况: 样品完整无损坏

Legend:	2 = good	3 = satisfactory	4 = sufficient	5 = poor
结果:	完全符合	部分符合	部分不适用	完全不适用
Plates	2 = good	3 = satisfactory	4 = sufficient	5 = poor

Plates = 不锈钢接骨臂的厚度
Plates = 不锈钢接骨臂的厚度
Note = 不适用

**This test report only relates to the test item tested and the permission of the test center this test report is not
permitted to be communicated in any other way.** This test report does not contain any information that
can be used for any other purpose.

测试结果只适用于提交的样品, 未经测试中心许可, 该测试报告不得以任何其他方式传播。此测试报告不得进行任何其他目的的安全标记

TÜV Rheinland (GuangDong) Ltd. - No. 199 Kechu Road, Guangzhou Science City - Guangzhou, 510663, P.R. China
Tel.: +86 20 2599 1888 - Fax: +86 20 2539 1999 - Mail: service-gd@tuv.com - Web: www.tuv.com

湖南新领航检测技术有限公司

资料编号: ME20241953

R12/CXWJ-37

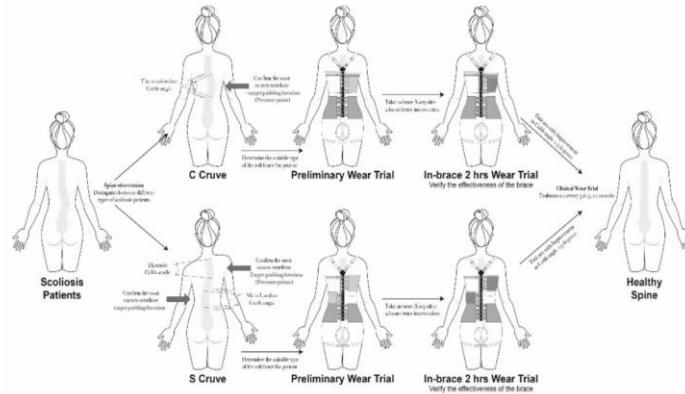
检验项目	标准规定	实验周期和结果	
		第 0 天	第 78 天
尺寸 (2.2)	矫形衣腰围: 60cm-62cm	61cm	61 cm
	矫形衣臀围长: 69cm-73cm	70cm	70 cm
	铰链支撑骨长: 42.3cm \pm 0.2cm	42.2cm	42.3 cm
	铰链支撑骨宽: 5.5cm \pm 0.1cm	5.5cm	5.5 cm
	铰链支撑骨厚: 0.5cm \pm 0.1cm	0.5cm	0.5 cm
	硅胶衬垫长: 17.8cm \pm 0.5cm	18.0cm	18.1 cm
	硅胶衬垫宽: 9.1cm \pm 0.5cm	9.1cm	9.1 cm
	硅胶衬垫顶点厚度: 0.9cm \pm 0.2cm	1.0cm	1.0 cm
性能要求 (2.3)	2.3.1 魔术贴的剥离强度应 \geq 2N/cm	5N/cm	5N/cm
	2.3.2 盆骨带拉伸率 \geq 40%	107%	111%
	矫正带拉伸率 \geq 40%	55%	56%
	盆骨带回复率 \geq 85%	97%	95%
	矫正带回复率 \geq 85%	96%	93%
	2.3.3 支撑骨嵌接位置应能承受 500 \pm 50N 拉力时, 不折断	嵌接位置能承受 500N 拉力, 不折断	嵌接位置能承受 500N 拉力, 不折断
	2.3.4 硅胶衬垫硬度: 50 \pm 5HA	51HA	49HA

4. 结论

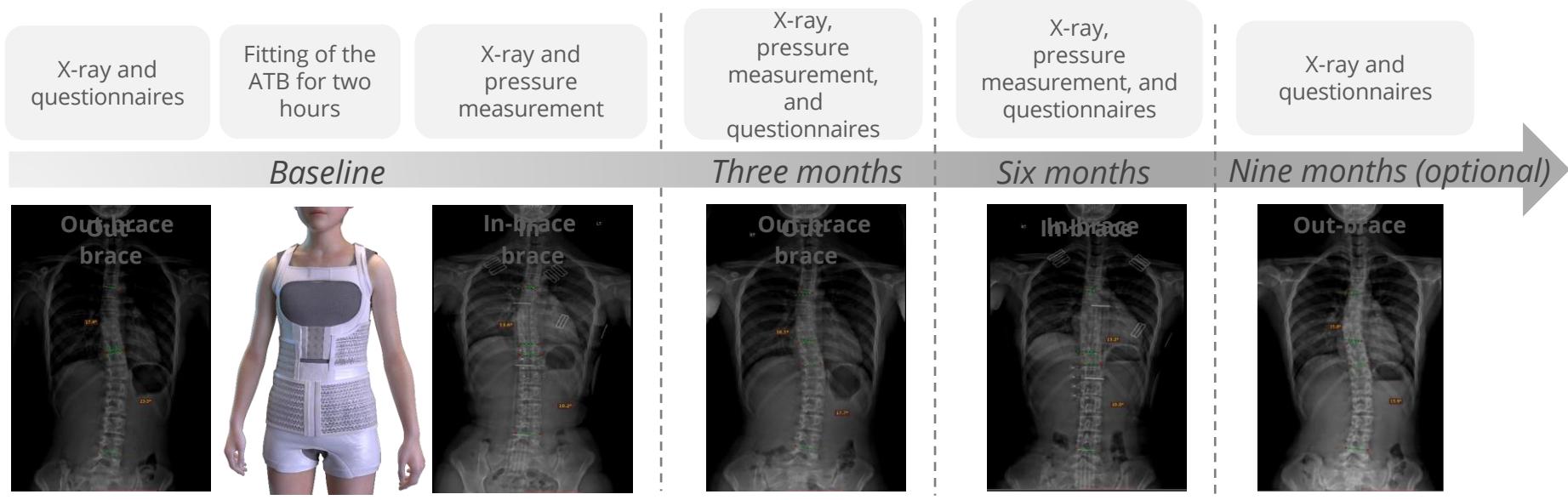
保姿姿生物科技(湖南)有限公司(脊柱矫形器)的有效期可定为 3 年

以下空白

Hinged bone bending life test


Hinged bone twisting axis life test

ATB aging tests with a shelf life of up to three years

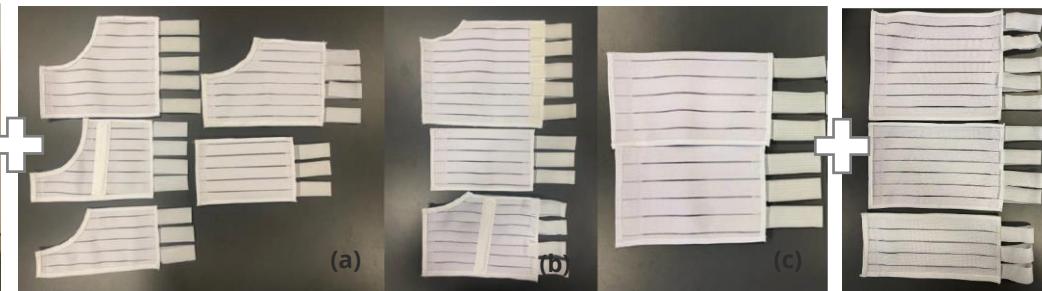

Research Methods, Prototypes, and Materials

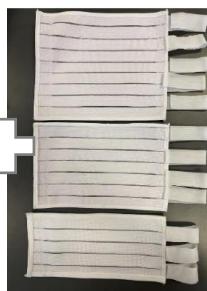
Milestone 3.5: Clinical Evaluation of the Mass-produced ATB

Two-hour clinical wear trial protocol

Six-month clinical wear trial protocol:

Research Outcomes and Findings


Clinical Evaluation of the Refined ATB


Refined ATB

The basic textile brace

Elastic bands for (a) thoracic, (b) thoracolumbar, and (c) lumbar curve

Three types of pelvis belt

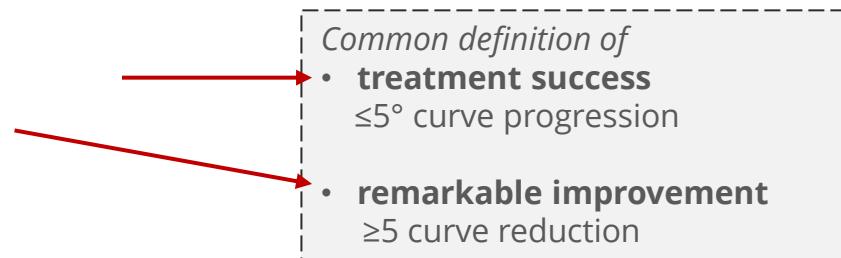
Comparison of pre- and post-intervention of remodified ATB after two-hour wear trials

Subject	Curves (Start-Apex-End)	Baseline (Out-Brace)	After two hours (In-brace)	Differences
C1	T6-T10-L1	34.2°	25.1°	-9.1°
	T4-T8-T11	28.5°	25.8°	-2.7°
C2	T11-L2-L3	27.3°	26.3°	-1°
	T1-T2-T4	29.9°	26.5°	-3.4°
C3	T5-T9-T12	24.2°	21.5°	-2.7°
	T6-T9-T11	34.1°	27.9°	-6.2°
C4	T11-L2-L3	25°	21.7°	-3.3°
	T6-T8-T11	21.5°	18.7°	-2.8°
C5	T11-L2-L4	16.5°	19.2°	2.7°
	T6-L1-L3	39°	34.2°	-4.8°
C6	T6-T8-T11	22.7°	14.1°	-8.6°
	T10-L2-L4	20.7°	14.1°	-6.6°
C7	T5-T7-T9	17.4°	13.6°	-3.8°
	T10-L1-L3	23.5°	10.2°	-13.3°
C8	T8-T9-T11	16.1°	15.4°	-0.7°
	T11-L1-L3	25.3°	19.7°	-5.6°

Subject	Curves (Start-Apex-End)	Baseline (Out Brace)	After two hours (In-brace)	Differences
C10	T11-L1-L3	22.7°	18°	-4.7°
	T12-L2-L4	35°	24.1°	-10.9°
C11	T8-T10-T12	29.1°	25.2°	-3.8°
	T12-L2-L4	12.7°	12.3°	-0.4°
C12	T11-L1-L3	20.2°	12.9°	-7.3°
	T8-T10-L2	20.3°	13.9°	-6.4°
C13	L2-L4-L5	18.1°	7.4°	-10.7°
	T6-T8-T10	38.6°	32.8°	-5.8°
C14	T11-L1-L3	38.1°	37°	-1.1°
	T3-T8-T10	25°	21.9°	-3.1°
C15	T6-T4-T6	16.7°	16.2°	-0.5°
	T6-T9-T11	18.1°	16.8°	-1.3°
	T11-L2-L4	25.1°	17.0°	-8.1°
C16	T6-T10-L2	30.6°	15°	-15.6°

- **18/18 (100%)** showed a reduction in Cobb angles
- **11/18 (61%) improved $\geq 5^\circ$**

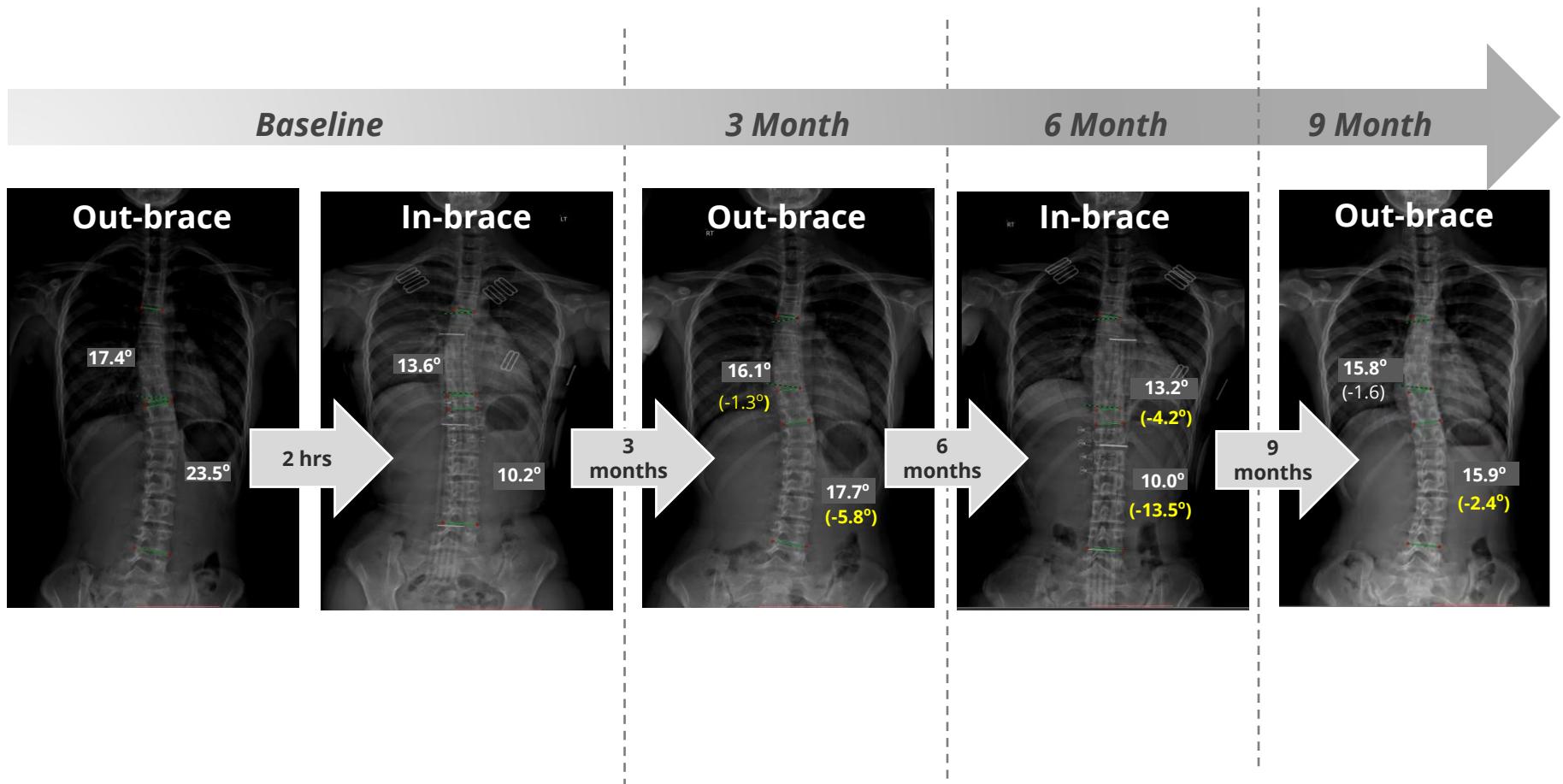
Research Outcomes and Findings


Clinical Evaluation of the Refined ATB

Comparison of pre- and post-intervention of ATB after 9 months wear trials

Subject	Baseline (Out-brace)	After 2 hours (In-brace)	3 months (Out-brace)	6 months (In-brace)	Differences	9months (Out-brace)	Differences
C8	17.4° 23.5°	13.6° 10.2°	16.1° 17.7°	13.2° 10.0°	-4.2° -13.5°	15.8° 15.9°	-1.6° -2.4°
C9*	16.1° 25.3°	15.4° 19.7°	17.6° 27.8°	19.9° 25.8°	3.8° 0.5°	21.6° 30.0°	5.5° 4.7°
C13	20.2°	12.9°	20°	14.1°	-6.1°	/	/
C17	16.7° 18.1° 25.1°	16.2° 16.8° 17.0°	14.6° 18.6° 24.3°	14.7° 17.7° 24.4°	2.0° -0.4° -0.7°	/	/

*No longer wear brace after six-month intervention


- Six-month wear trials: Four subjects completed the treatments
Two subjects showed no deterioration
Two subjects improved $\geq 5^\circ$
- Largest percentage of correction: **-13.5°**

Research Outcomes and Findings

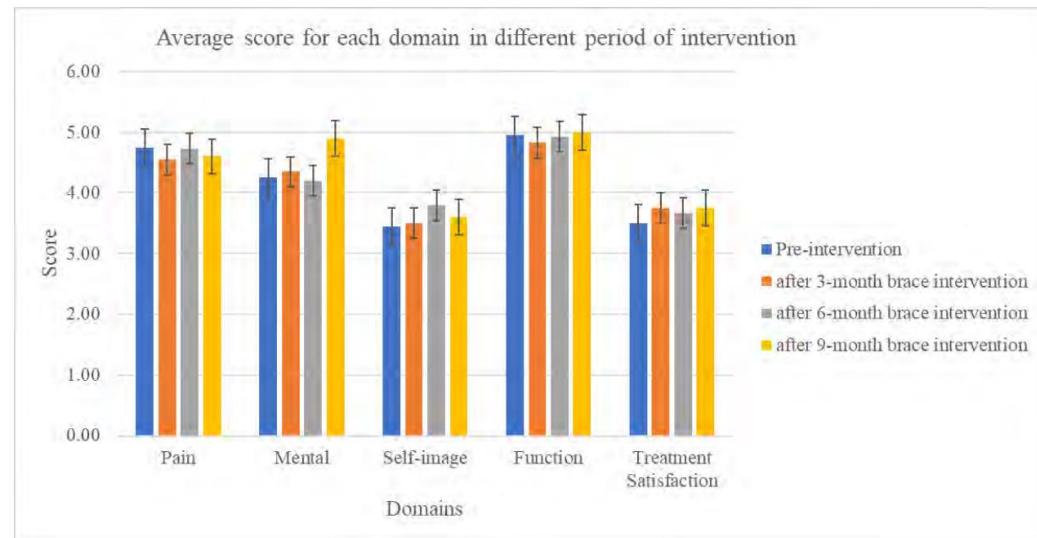
Clinical Evaluation of the Refined ATB

Example: Subject C8

Research Outcomes and Findings

Evaluation of the Effectiveness of Refined ATB on QoL

SRS-22 questionnaire

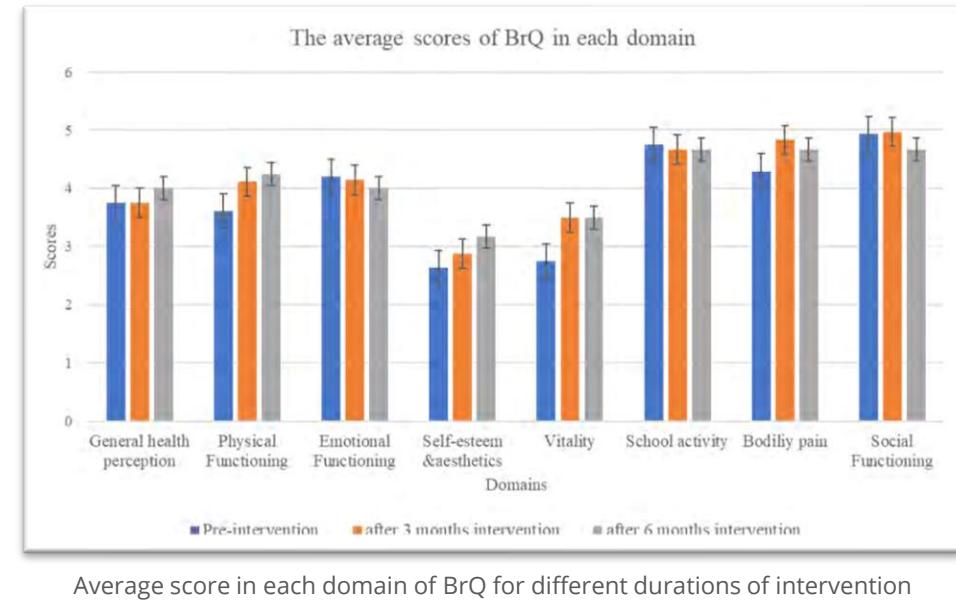

- To evaluate the efficacy of various treatment standards for AIS
- Subjects completed the BrQ at baseline, three-month, six-month, and nine-month follow-ups

• Scoring system:

- Scale: 1 (worst) to 5 (Best)
- Five domains are summed for a total score
- Summary score range:
 - 110 = Optimal QoL
 - 22 = Poor QoL

• Study results:

- Mean overall score: **93.25** (baseline) to **100** (after nine months)
- Highest average score : **Function**

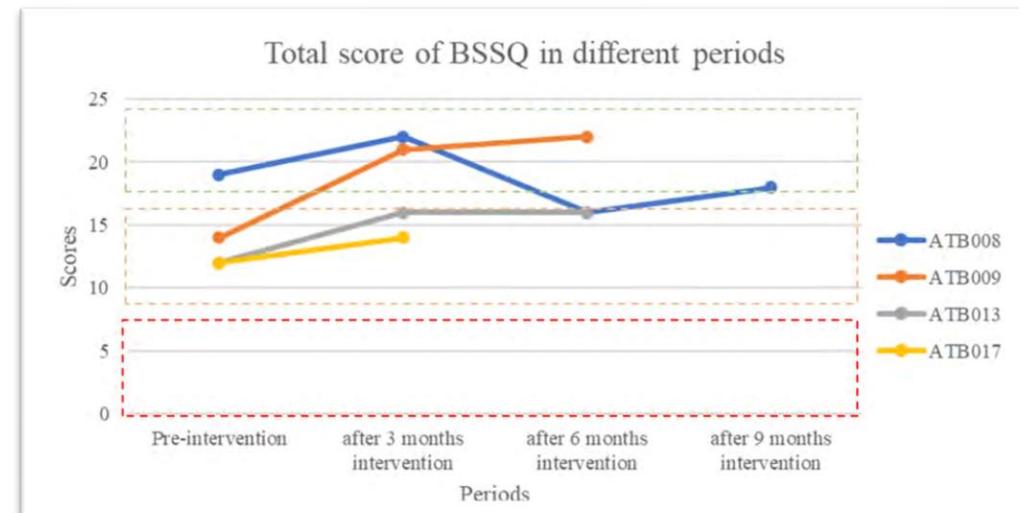

Average score of each domain in SRS-22 for different durations of the intervention

Research Outcomes and Findings

Evaluation of the Effectiveness of Refined ATB on QoL

BrQ Assessment

- The BrQ is a valid and reliable questionnaire used to measure the quality of life of scoliosis adolescents aged between 9 and 18 years who are receiving treatment with a brace.
- Subjects completed the BrQ after two hours of bracing, three-month, six-month, and nine-month follow-ups.
- Scoring system:**
 - Scale: 1 (worst QoL) to 5 (Best QoL)
 - Eight domains are summed for a total score
 - Summary score range:
 - 100 = Optimal QoL
 - 20 = Poor QoL
- Study results:**
 - Mean overall score: **80.15** (after two hours) to **85.49** (after six months)
 - Improvement in the QoL



Research Outcomes and Findings

Evaluation of the Effectiveness of Refined ATB on QoL

Bad Söbernheim Stress Questionnaire (BSSQ)

- Observes the psychological and physiological comfort of the brace
- Subjects completed the BrQ after two hours of bracing, three-month, six-month, and nine-month follow-ups
- **Scoring system:**
 - Scale: 0 (lowest stress) to 3 (highest stress)
 - Eight questions are summed for a total score
 - 0–8 (high stress)
 - 9–16 (medium stress)
 - 17–24 (little stress)
- **Study results:**
 - Mean score : **14.25** (baseline) to **18** (after six months)
 - Manageable increase in stress during long-term use

Total BSSQ score with different lengths of intervention

Previous data on Milwaukee brace [24]:

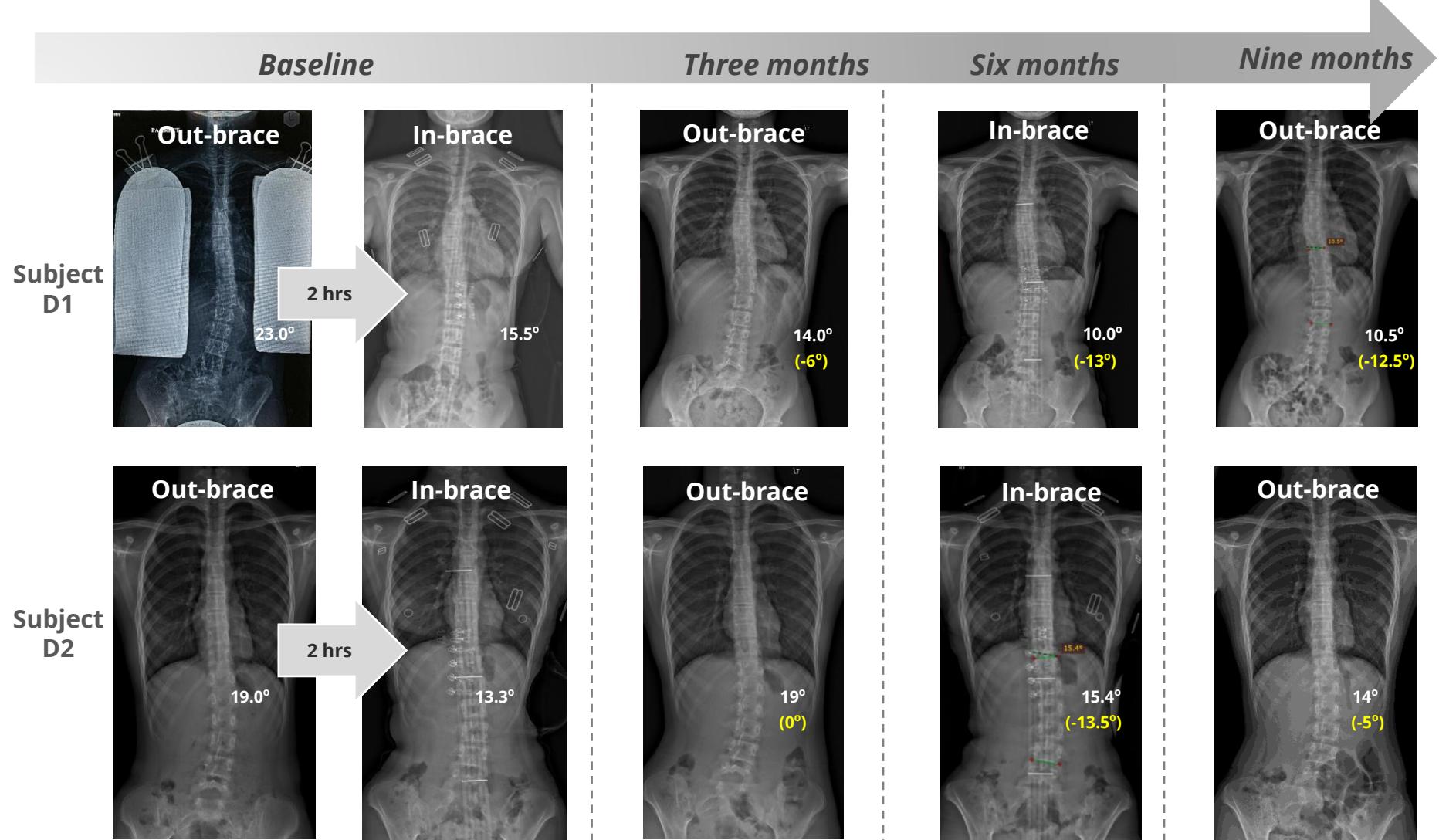
- 38.46% of the patients showed high levels of stress
- 61.54% of patients suffer a moderate level of stress

Research Outcomes and Findings

Clinical Evaluation of the Mass-produced ATB

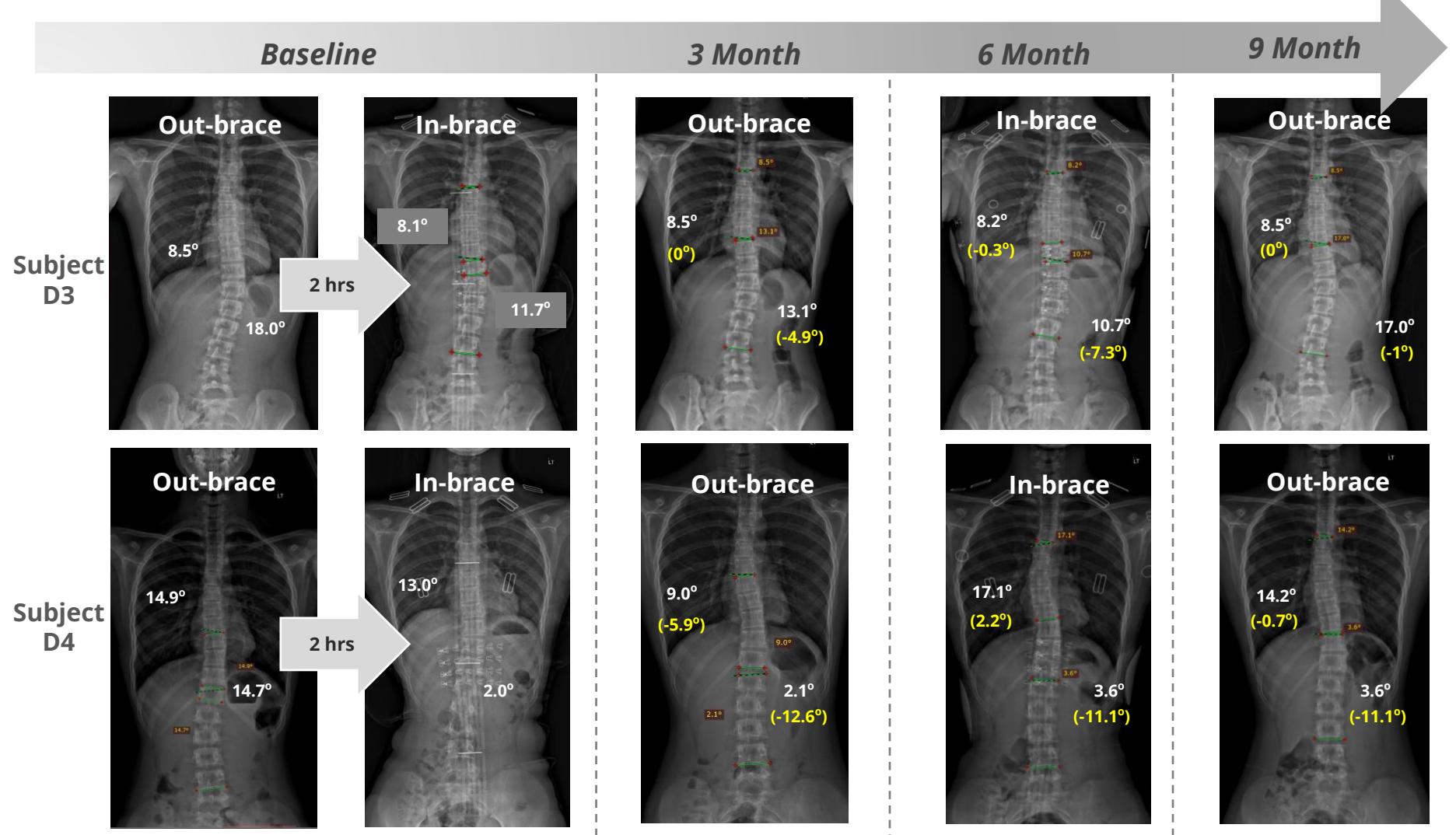
Subject	Baseline (Out-Brace)	After two hours (In-brace)	Three months (Out-brace)	Six months (In-brace)	Differences	Nine months (Out-brace)	Differences
D1	23.0	15.0\5	14.0	10.0	-13.0	10.5	-12.5
D2	19.0	13.3	19.0	15.4	-3.6	14	-5.0
D3	8.5	8.1	8.5	8.2	-0.3	8.5	0
	18.0	11.7	13.1	10.7	-7.3	17	-1
D4	14.9	13.0	9.0	17.1	2.2	14.0	-0.9
	14.7	2.0	2.1	3.6	-11	4.8	-10.9
D5	15.0	11.3	10.0	9.1	-5.9	10.0	-5.0
	18.0	11.0	17.0	15.0	-3.0	17.0	-1.0

- Two-hour effect: all showed a reduction in Cobb's angles
- Three-month wear trials: **3/5 (60%) improved $\geq 5^\circ$**
- Six-month wear trials: **3/5 (60%) improved $\geq 5^\circ$**
- Nine-month wear trials: all subjects completed the treatments
all subjects showed no deterioration
4/5 (80%) improved $\geq 5^\circ$
- Largest percentage of correction: **-12.5°**


Common definition of

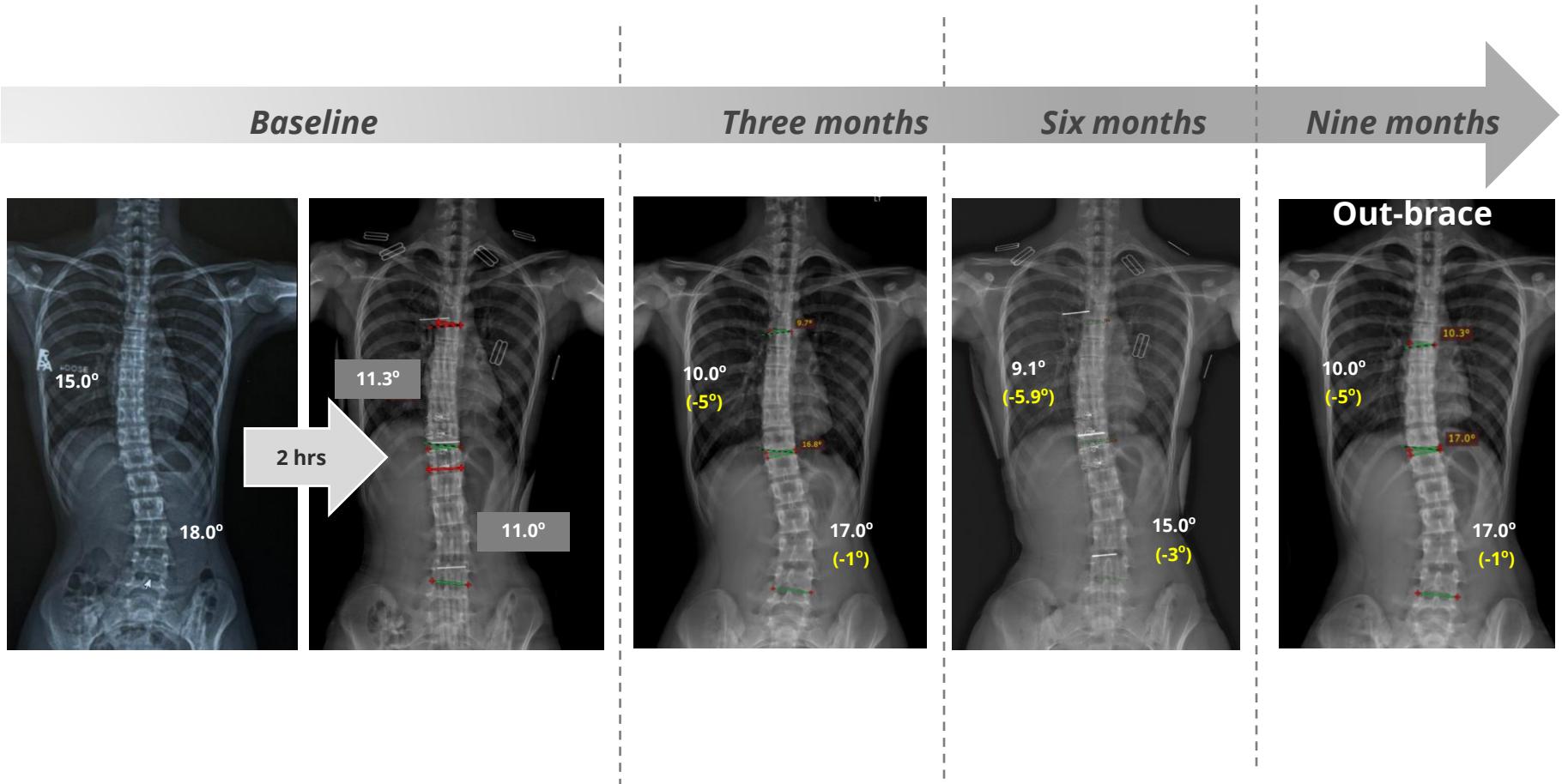
• **treatment success**
 $\leq 5^\circ$ curve progression

• **remarkable improvement**
 ≥ 5 curve reduction


Research Outcomes and Findings

Clinical Evaluation of the Mass-produced ATB

Research Outcomes and Findings


Clinical Evaluation of the Mass-produced ATB

Research Outcomes and Findings

Clinical Evaluation of the Mass-produced ATB

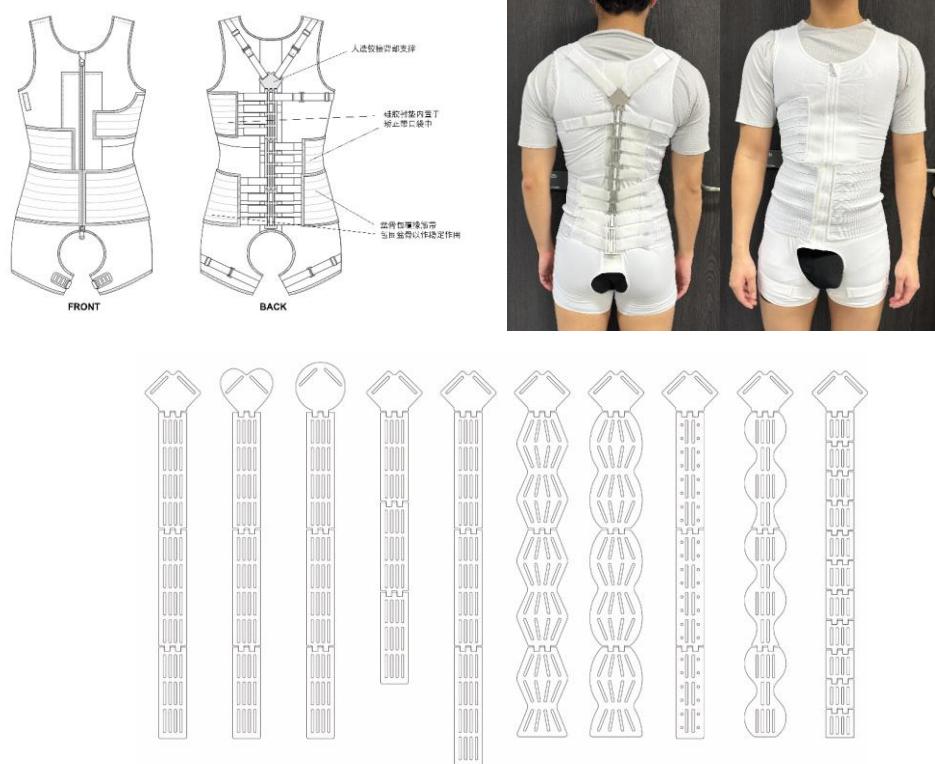
Subject D5

Research Outcomes and Findings

A summary of the refined and mass-produced ATB

Effectiveness	Factors	Refined and mass-produced ATB
Corrective effect	Mechanism and force	<ul style="list-style-type: none"> • Aluminium-hinged supports deliver precise, controlled three-point forces without over-correction • Clinically validated in long-term trials to effectively reduce Cobb angle
	Durability	<ul style="list-style-type: none"> • Durable textile composites resist stretching and wear • Modular design allows for adjustments to accommodate growth, extending usable life
	Usability and Fit	<ul style="list-style-type: none"> • One-piece design for easy donning/doffing • Open-gusset shorts allow for convenient bathroom use • Ergonomic fit requires minimal adjustments
Compliance	Physical comfort	<ul style="list-style-type: none"> • Advanced, breathable fabrics with superior moisture-wicking. • Softer hook-and-loop (Velcro) and edge-free elastics prevent skin damage • Strategic ventilation reduces heat buildup
	Mobility	<ul style="list-style-type: none"> • Hybrid design provides support without sacrificing the ability to bend and move naturally
	Aesthetics and discretion	<ul style="list-style-type: none"> • Low-profile garment resembling intimate wear is easily concealed • No external straps to tie; clean and simple appearance
	Psychological aspects	<ul style="list-style-type: none"> • Improved comfort and mobility reduce treatment-related distress • Compliance tracking focuses on holistic patient well-being

Research Outcomes and Findings



- 1) Successfully refined an ATB for adolescents aged 10–13 years with AIS and Cobb angles ranging from 20°–40°. This ATB demonstrates high compliance, flexibility, and wearability, with a discreet, clothing-like design that reduces social stigma and psychological burden. The ATB can be customised for each subject to provide targeted biomechanical support tailored to their spinal curvature.
- 2) Proved immediate reduction in Cobb angle : In two-hour wear trials, 100% (23/23) of the subjects showed a reduction in the Cobb angle reduction, with 70% (16/23) achieving improvements of $\geq 5^\circ$.
- 3) Proved long-term Cobb's angle control effectiveness: After six-month wear trials, 89% (8/9) of subjects demonstrated improvements in Cobb angle of $\geq 5^\circ$. The greatest correction observed was -13.5° .
- 4) Proved improvement in quality of life: SRS-22 scores improved from 93.25 (baseline) to 100 (6 months), with the highest gains in function. BrQ scores rose from 80.15 (two hours) to 85.49 (six months), thus indicating modest QoL improvements.
- 5) Observed slight increase in brace-related stress: BSSQ scores rose from 14.25 to 18 over six months, thus suggesting a manageable increase in stress during long-term use.
- 6) Children were found to be 'trainable', adopting better postural habits through consistent girdling, which carried over into their daily lives.

Research Outcomes and Findings

Future Research:

- **Expanding trials with a larger sample size** in collaboration with leading hospitals in Mainland China, including Peking Union Medical College Hospital and The First Affiliated Hospital of Sun Yat-sen University, to validate long-term efficacy.
- **Male-specific ATB development:** A specialised ATB will be engineered to cater to the unique physiological requirements of male patients.
- **Hinge bone optimisation:** Multiple hinge bone geometries and materials will be prototyped and subjected to rigorous mechanical testing to assess their structural strength and long-term durability.

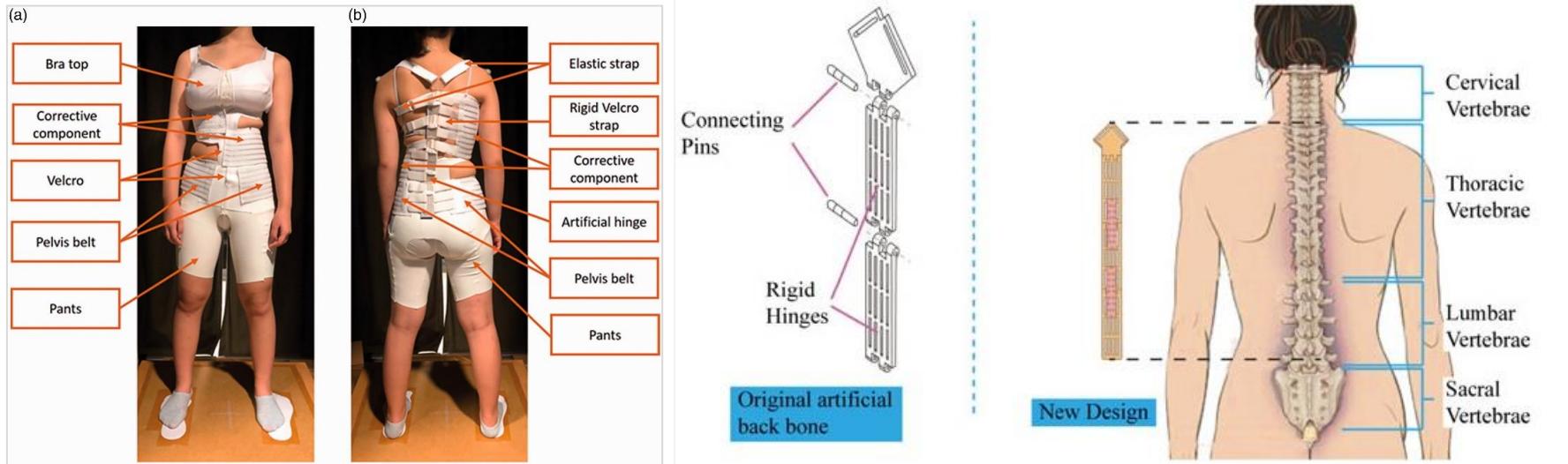
Research Dissemination

Category	Details
Academic Papers	<ul style="list-style-type: none"> Fok, Q., Yip, J., Yick, K. L., & Ng, S. P. (2022). Design and fabrication of anisotropic textile brace for exerting corrective forces on spinal curvature. <i>Journal of Industrial Textiles</i>, 51(1_suppl), 1682S-1702S. https://doi.org/10.1177/15280837211032619 Lei, Q. E., Shu, J., Wang, J., Cheung, H. Y., Cheung, J. P., Wong, W. F., Lau, S.C.Y., Yip, J., & Tong, R. K. (2023). Design and characterize of kirigami-inspired springs and the application in vertebrae exoskeleton for adolescent idiopathic scoliosis brace treatment. <i>Frontiers in Mechanical Engineering</i>, 9, 1152930. https://doi.org/10.3389/fmech.2023.1152930
Conference papers	<ul style="list-style-type: none"> Wong, S. H., Yip, J., Yick, K. L., & Ng, S. P. (2020). Preliminary wear trial of anisotropic textile brace for adolescent idiopathic scoliosis. In <i>International Society for Engineering Research and Development International Conference (ISERD International Conference)</i>, Zurich, Switzerland, 16-17 February. Fok, Q., & Yip, J. (2021). Applying numerical simulation to predict effect of brace wear for scoliosis. In <i>Advances in human factors and ergonomics in healthcare and medical devices</i>, pp. 217-223. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-79763-8_26 Wong, C. S. H., Yip, J., Yick, K. L., & Ng, Z. S. P. (2021). A case study of initial In-Brace Spinal Correction of Anisotropic Textile Brace and Boston Brace. In: Kalra, J., Lightner, N.J., Taiar, R. (eds) <i>Advances in Human Factors and Ergonomics in Healthcare and Medical Devices</i>. AHFE 2021. Lecture Notes in Networks and Systems, vol 263, pp. 109-115. Springer, Cham. https://doi.org/10.1007/978-3-030-80744-3_14 Cheung, H., Yip, J., Yick, K., Ng, S. (2022). Preliminary wear trial of anisotropic textile brace designed for adolescent idiopathic scoliosis. In: Jay Kalra and Nancy Lightner (eds) <i>Healthcare and Medical Devices</i>. AHFE (2022) International Conference. AHFE Open Access, vol 51. AHFE International, USA. https://ira.lib.polyu.edu.hk/handle/10397/115893 Ma, J., Lee, K., Cheung, K., Tong, K., Yip, J. (2025). Advancing scoliosis treatment: Development and evaluation of anisotropic textile brace (ATB) for enhanced patient compliance. In: Jay Kalra (eds) <i>Healthcare and Medical Devices</i>. AHFE (2025) International Conference. AHFE Open Access, vol 171. AHFE International, USA. http://doi.org/10.54941/ahfe1006193
Patents	<ul style="list-style-type: none"> Orthopaedic Hinge Assembly. US12,129,886B2. Pub. date: 30 Jan 2020 Anisotropic Textile Brace. ZL 202330553930.X. Application date: 14 Mar 2024

Research Dissemination

Exhibitions/Interviews

Category	Details		
Events	Number	Number of people	Description
Public events	4	Around 100	<ul style="list-style-type: none"> The International Scoliosis Awareness Day event held on 25 June 2022, 24 June 2023, 22 June 2024, and 8 June 2025 were a collaborative effort between prominent educational institutions and healthcare associations in Hong Kong.
Training sessions and Educational workshops and seminars	3	Over 100	<ul style="list-style-type: none"> Visit The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province. Doctors, P&O specialists, and experts from various hospitals in Mainland China attended. Presentation to clinicians/doctors in 2024 in Guangdong Province for the Public Welfare Training Programme & 'Spine Health Awareness' across 100 Cities. A presentation at the 2025 Digital Intelligence-Empowered Scoliosis Academic Conference, which was attended by approximately 100 doctors from cities across Mainland China.
Expert consultants	2	Over 30	<ul style="list-style-type: none"> Delivered a presentation and held discussions with doctors and clinicians at Nanjing Drum Tower Hospital. The University of Hong Kong Shenzhen Hospital specialises in spinal development and a spectrum of related disorders, including the management of complex scoliosis cases, kyphosis, and other spinal deformities. The collaborations aim to enhance the ATB by leveraging this clinical expertise to address real-world challenges encountered during its practical use on AIS subjects.


Research Dissemination

Exhibitions/Interviews

Category	Details		
Events	Number	Number of people	Description
Exhibitions	1	Almost 10,000 buyers	<ul style="list-style-type: none"> • International exhibition • ATB's poster was presented at the 2025 Design Research Impact and Global Insights Colloquium Cum Exhibition.
Competitions	4	Over 300	<ul style="list-style-type: none"> • Champion – Fourth Hong Kong Innovation Day, The Global Healthcare Innovation Academy, Toronto, Canada, 2020 • Gold Medal with the Congratulations of the Jury – The 48th International Exhibition of Inventions Geneva, Switzerland, 26 to 30 April 2023 • Gold Medal – FITMI Asia International Innovative Invention Exhibition, Hong Kong, 20-23 June 2023 • Innovation Project Nomination Award – Hong Kong Chamber of Commerce in Shanghai: Innovation is Everywhere' Hong Kong Enterprise Innovation Project, Shanghai, China, 14 Oct 2024
Symposia and colloquia	1	Over 200	<ul style="list-style-type: none"> • Travelled to Zhongshan, Guangdong Province, to attend the 2024 Guangdong Province Rehabilitation Medicine – Spine Rehabilitation Academic Annual Conference – Flexible Correction Technology Training Programme.

Research Dissemination

Academic papers

Fok, Q., & **Yip, J.** (2021). Applying numerical simulation to predict effect of brace wear for scoliosis. In *Advances in human factors and ergonomics in healthcare and medical devices*, pp. 217–223. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-79763-8_26

Lei, Q. E., Shu, J., Wang, J., Cheung, H. Y., Cheung, J. P., Wong, W. F., Lau, S.C.Y., **Yip, J.**, & Tong, R. K. (2023). Design and characterisation of kirigami-inspired springs and the application in vertebrae exoskeleton for adolescent idiopathic scoliosis brace treatment. *Frontiers in Mechanical Engineering*, 9, 1152930. <https://doi.org/10.3389/fmech.2023.1152930>

Research Dissemination

Conference articles

16-17 Feb, 2020
Zurich, Switzerland

PRELIMINARY WEAR TRIAL OF ANISOTROPIC TEXTILE BRACE FOR ADOLESCENT IDIOPATHIC SCOLIOSIS

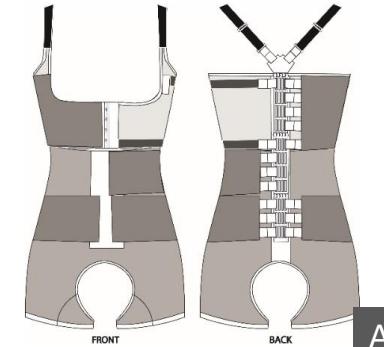
¹S.H. WONG, ²J. YIP, ³K.L. YICK, ⁴S.P. NG

^{1,2,3}Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong

⁴Hong Kong Community College, The Hong Kong Polytechnic University, Hong Kong

E-mail: ¹sh-charlotte.wong@connect.polyu.hk, ²joanne.yip@polyu.edu.hk, ³kit-lun.yick@polyu.edu.hk, ⁴ccspng@hkcc.polyu.edu.hk

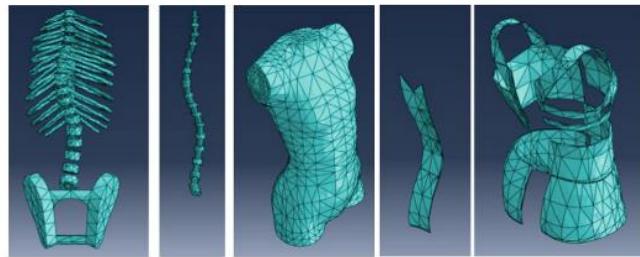
Abstract - While the effectiveness of non-rigid braces remains controversial, in fact, some have applied proven corrective mechanisms and provided good spinal corrective results which mean that they might be a feasible treatment for scoliosis as long as their shortcomings are addressed, such as discomfort. To this end, this study designs a semi-rigid brace(anisotropic textile brace) modified from a previous brace design. The newly designed brace is developed for patients with adolescent idiopathic scoliosis and provides a good bracing effect and wear experience. A preliminary wear trial is conducted after fabricating the brace. The obtained results show that the performance of the brace in correcting spinal curvature is comparable to that of the original brace but provides an even more superior bracing experience.


Keywords - Adolescent Idiopathic Scoliosis, Semi-Rigid Brace, Spinal Correction, Anisotropic Textile Brace

I. INTRODUCTION

Scoliosis is a three-dimensional spinal condition and adolescent idiopathic scoliosis (AIS) is the most common form. A sideways curve that is "C" or "S" shaped is always found in youths with scoliosis, particularly during puberty. If patients with mild AIS are not properly monitored and given treatment, the progression of their spinal curvature may increase in severity [1]-[2]. To cope with these situations, there are various types of medical care for scoliosis patients which depend on the curvature of their spine, such as observation, non-invasive treatment, and surgical correction [3].

subject by 6.6 degrees (26.1%) after intervention which proves that the brace applies the appropriate corrective mechanism, there is still room for improvement because there are other problems, such as the fit, donning and doffing the brace, and discomfort [11].


The aim of this study is to thus design a semi-rigid bracefor AIS patients that is based on modifications of the FIA. This new brace is dubbed an anisotropic textile brace (with different corrective forces based on rigid, semi-rigid and flexible materials), and a preliminary wear trial is carried out to determine its ability to correct spinal curvatures.

A. Wong, S. H., Yip, J., Yick, K. L., & Ng, S.P. (2020). Preliminary wear trial of anisotropic textile brace for adolescent idiopathic scoliosis. In International Society for Engineering Research and Development International Conference (ISERD International Conference), Zurich, Switzerland, 16-17 February. Available at https://www.researchgate.net/publication/347973683_PRELIMINARY_WEAR_TRIAL_OF_ANISOTROPIC_TEXTILE_BRACE_FOR_ADOLESCENT_IDIOPATHIC_SCOLIOSIS

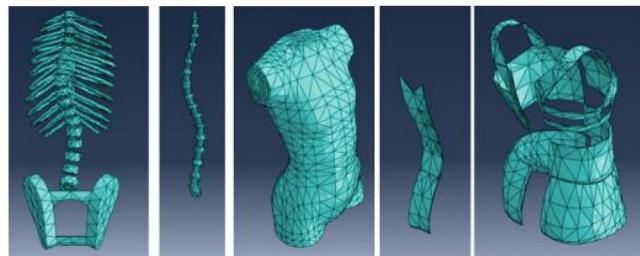
Research Dissemination

Conference articles

B

C

D


E

B. Fok, Q., & **Yip, J.** (2021). Applying numerical simulation to predict effect of brace wear for scoliosis. In: Wright, J.L., Barber, D., Scataglini, S., Rajulu, S.L. (eds) *Advances in Simulation and Digital Human Modeling*. AHFE 2021. *Lecture Notes in Networks and Systems*, vol 264, pp. 217-223, Springer, Cham.
https://doi.org/10.1007/978-3-030-79763-8_26

C. Wong, C. S. H., **Yip, J.**, Yick, K. L., & Ng, Z. S. P. (2021). A case study of initial in-brace spinal correction of anisotropic textile brace and Boston brace. In: Kalra, J., Lightner, N.J., Taiar, R. (eds) *Advances in Human Factors and Ergonomics in Healthcare and Medical Devices*. AHFE 2021. *Lecture Notes in Networks and Systems*, vol 263, pp. 109-115. Springer, Cham.
https://doi.org/10.1007/978-3-030-80744-3_14

Research Dissemination

Conference articles

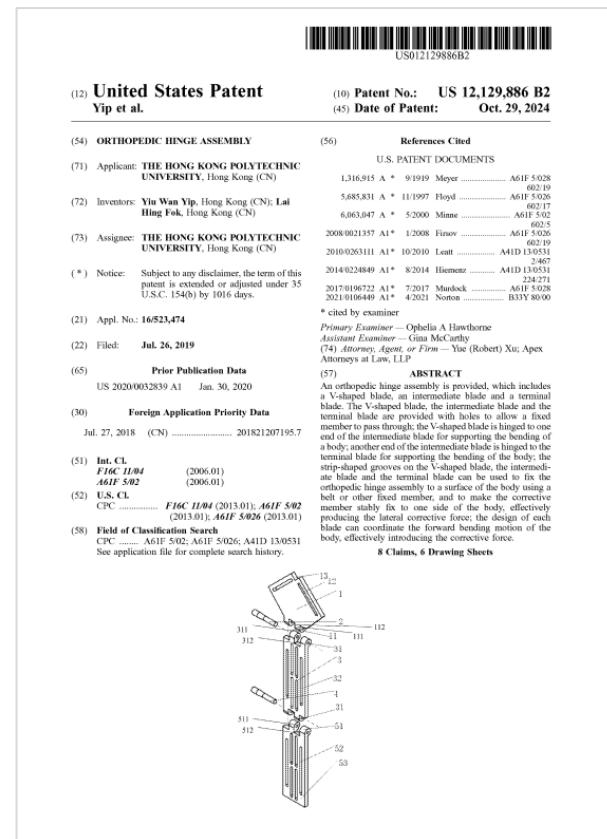
B

C

D

E

D. Cheung, H., **Yip, J.**, Yick, K., Ng, S. (2022). Preliminary wear trial of anisotropic textile brace designed for adolescent idiopathic scoliosis. In: Jay Kalra and Nancy Lightner (eds) *Healthcare and Medical Devices*. AHFE (2022) International Conference. AHFE Open Access, vol 51. AHFE International, USA. <https://ira.lib.polyu.edu.hk/handle/10397/115893>


E. Ma, J., Lee, K., Cheung, K., Tong, K., **Yip, J.** (2025). Advancing scoliosis treatment: Development and evaluation of anisotropic textile brace (ATB) for enhanced patient compliance. In: Jay Kalra (eds) *Healthcare and Medical Devices*. AHFE (2025) International Conference. AHFE Open Access, vol 171. AHFE International, USA. <http://doi.org/10.54941/ahfe1006193>

Research Dissemination

Patents

Orthopedic Hinge Assembly

US Patent:
US12,129,886B2

Pub. date: 30 Jan 2020

ATB

China Patent (application no.): ZL
202330553930.X.

Pub. date: 14 Mar 2024

Research Dissemination

Public events

- A. The International Scoliosis Awareness Day event held on 25 June 2022. Experts from HKU Department of Orthopaedics and Traumatology, Hong Kong Scoliosis Awareness Group, Hong Kong Academy of Orthopaedic Surgeons, and Hong Kong Physiotherapy Association, etc.
- B. The International Scoliosis Awareness Day held on 8 June 2025
- C. The International Scoliosis Awareness Day held on 22 June 2024
- D. Poster of The International Scoliosis Awareness Day held on 25 June 2022
- E. Poster of The International Scoliosis Awareness Day held on 24 June 2023

Research Dissemination

Training sessions, educational workshops, and seminars

A & B: Educational workshop to explain the design principles, usage methods, and applications of the ATB to doctors at the First Affiliated Hospital of Sun Yat-sen University in Guangzhou.

C. A presentation on the research regarding the effects of the flexible brace on posture and proprioception at the 2025 Digital Intelligence-Empowered Scoliosis Academic Seminar.

D. The seminar in Fig. C was attended by approximately 100 doctors specialising in orthopaedics, surgery and rehabilitation from various cities across mainland China.

Research Dissemination

Expert consultants

Presentation to Nanjing Drum Tower Hospital

This talk outlined the development and clinical rationale of a specialised ATB aimed at improving the noninvasive management of early adolescent scoliosis through ergonomic design and guided support.

Presentation to The University of Hong Kong
- Shenzhen Hospital

Prof. Yip presents the comfort-focused ATB that supports spinal alignment in adolescents with moderate scoliosis, emphasising practical integration into daily life and conservative treatment plans.

Research Dissemination

Expert consultants

Presentation to clinicians/doctors in The First Affiliated Hospital of Sun Yat-sen University,
Guang Zhou, Guang Dong Province

Research Dissemination

Exhibitions

A

B

C

D

E

F

- A. The ATB was exhibited at PolyU Zhongshan Life Science Park, where Prof. Yip introduced the ATB to visitors and government officials.
- B. During PolyU Alumni Coming Day 2024, visitors came to see the ATB exhibition.
- C. An ATB mini model was displayed at the School of Fashion and Textiles, PolyU (2024-Now).
- D. The ATB was exhibited in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guang Dong Province, China
- E. Municipal leaders from Shanghai, China, visited Prof. Yip's lab to view the ATB.
- F. The ATB was also featured in a newspaper article highlighting its innovation.
- G. ATB's poster was presented at the 2025 Design Research Impact and Global Insights Colloquium Cum Exhibition.

Research Dissemination

Competition

The Fourth Hong Kong Innovation Day, The Global Healthcare Innovation Academy (Champion)

The 4th Hong Kong Innovation Day

The 4th Hong Kong Innovation Day was held online in February 2020 due to the outbreak of COVID-19. The award winners and their projects were as follows:

CHAMPION

Project Title: Flexible Scoliosis Brace with Artificial Hinge

Project Leader: Dr Joanne YIP, Associate Professor, Institute of Textiles & Clothing, PolyU

YouTube Link <https://youtu.be/YwFEqbGGwU8>

The 5TH Hong Kong Innovation Day

18 April 2023 @ Hong Kong PolyU

 THE HONG KONG POLYTECHNIC UNIVERSITY
 GHIA
 InnoHealth

The Hong Kong Innovation Day

To nourish a culture of innovations in healthcare, the School of Nursing, The Hong Kong Polytechnic University is organising The 5th Hong Kong Innovation Day (HKIA).

HKIA aims to stimulate innovative ideas and concepts that bring immediate benefits to the patients, clinicians as well as the healthcare industry. We cordially invite healthcare institutions (public or private), universities and colleges, as well as entities and small private enterprises focusing on health innovations in Hong Kong and the Greater Bay Area of China to submit their contributions regarding the solutions, discoveries and innovations in healthcare science to participate in The 5th Hong Kong Innovation Day.

The winner will be awarded with a trophy, a certificate and a cash prize. Outstanding team(s) selected by the jury at the Hong Kong Innovation Day will also join The Global Healthcare Innovation Day (GHID) to be held in Brighton, UK in 2023 to compete for the *Innovation for Health Award of Excellence*.

Initially developed by leading healthcare organisations in Geneva, Switzerland, GHIA has grown into an international collaboration between Switzerland, Canada, Hong Kong and UK. The international event is to provide a platform that allows entrepreneurs, academics and healthcare professionals to showcase and promote their healthcare innovations, as well as to exchange ideas that benefit medical and healthcare sciences.

The 5th Hong Kong Innovation Day Organising Committee

General Chair	Prof. Engie Angela Chan
	Professor & Interim Head, School of Nursing, PolyU Associate Director, International Research Centre for Advancement of Healthcare Communication (IRCAHC), Department of English and Communication, PolyU
Programme Chair	Dr Harry Qin
	Associate Professor Centre for Smart Health School of Nursing, PolyU
	Dr Vivian Hui
	Assistant Professor Centre for Smart Health School of Nursing, PolyU
Academy Secretariat	Prof. Thomas Choi
	Professor Centre for Smart Health School of Nursing, PolyU
	Ms Helen Hsu
	Communications Manager School of Nursing, PolyU

Toronto, Canada, 22-23 June 2020

<https://sn.polyu.edu.hk/hkia/>

Research Dissemination

Competition

The 48th International Exhibition of Inventions Geneva
(Gold Medal with Congratulations of the Jury)

Gold Medal with the Congratulations of Jury: AI-Assisted Design of Functional Clothing for Scoliosis Treatment

Switzerland, 26–30 April 2023

Research Dissemination

Competition

Asia International Innovative Invention Exhibition (Gold medal)

School of Fashion & Textiles

ABOUT US MEMBERS PROJECTS PUBLICATIONS PATENTS NEWS CONTACT US

Hong Kong Polytechnic University Researchers Win Gold Award for Medical Textile Inventions

July 3, 2023

Researchers from the medical textiles and functional clothing research cluster at the Hong Kong Polytechnic University have developed AI-assisted functional clothing to address scoliosis. The team presented their inventions at the Asia International Innovative Invention Exhibition and received a gold award for their work. This innovative technology includes a Biofeedback tank top, Anisotropic textile brace, and Posture Correction Girdle, aimed at providing relief for scoliosis symptoms.

The Anisotropic textile brace is designed to provide support and flexibility at the same time catering to the individual needs of scoliosis patients. The technology uses a special weaving technique that reinforces the areas of the brace where support is needed most while remaining flexible in other areas. This allows for a custom fit that improves the effectiveness of the brace and provides better support for the spine.

The Biofeedback tank top was designed to help scoliosis patients sense their spine curvature, enhancing posture and support. Equipped with sensors, it monitors spine movements and offers real-time data for adjustments. A significant advancement in scoliosis treatment, it has the potential to greatly enhance the quality of life for those affected. *The biofeedback tank top, anisotropic textile brace, and posture correction girdle (from left to right) being displayed at the exhibition.*

The Posture Correction Girdle is designed to improve posture and provide necessary support to the spine, allowing for increased mobility and comfort. It helps alleviate discomfort or pain caused by scoliosis.

The scoliosis treatment developed by researchers at Hong Kong Polytechnic University is a remarkable innovation in medical textiles. With AI-assisted functional clothing technology, scoliosis patients now enjoy personalized support and feedback, enhancing their quality of life and mobility. The gold award received at the Asia International Innovative Invention Exhibition is a testament to the researchers' hard work and dedication, inspiring future advancements in medical technology.

ATB displayed at the exhibition

Hong Kong, 20-23 June 2023
<https://www.mtl-sft.com/news/hong-kong-polytechnic-university-researchers-win-gold-award-for-medical-textile-inventions>

Research Dissemination

Competition

The Hong Kong Chamber of Commerce in Shanghai: 'Innovation is Everywhere' Hong Kong Enterprise Innovation Project (Flexible Scoliotic Brace- Innovation Project Nomination Award)

arctic VISION

Home About Us Science and Pipeline News Center Partners Investors Join Us 简 繁

Innovation is everywhere – Hong Kong Enterprise Innovation Project Selection and Recognition Conference came to a Successful Conclusion

2024-10-24

On October 14th, the 'Innovation is Everywhere' Hong Kong Enterprise Innovation Project Prize Ceremony and Hong Kong Enterprise Innovation Communication Event was successfully held in Shanghai. The event was jointly organized by Hong Kong Trade Development Council and Hong Kong Chamber of Commerce in Shanghai and intended to encourage Hong Kong enterprises in various industries to think out of the box and actively explore innovation.

ATB being nominated in the competition

Shanghai, China, December 2024
<https://www.arcticvision.com/newsdetail/id/69.html>

Research Dissemination

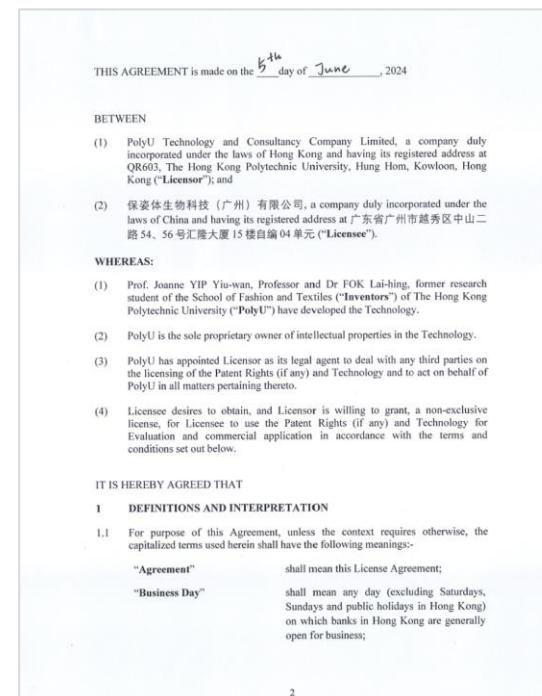
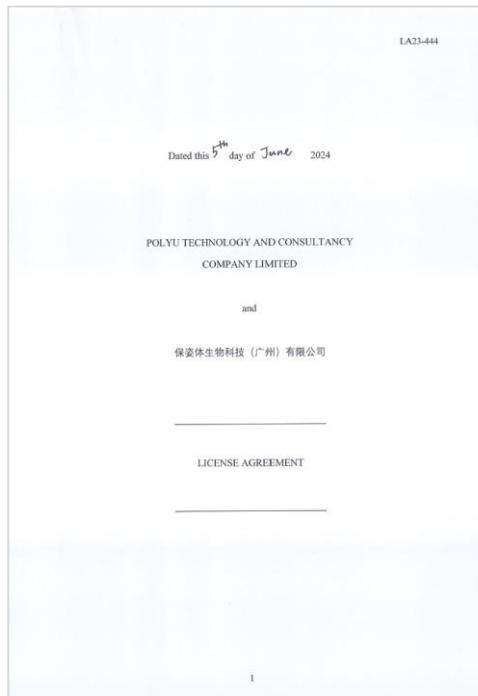
Symposia and colloquia

A

B

C

D

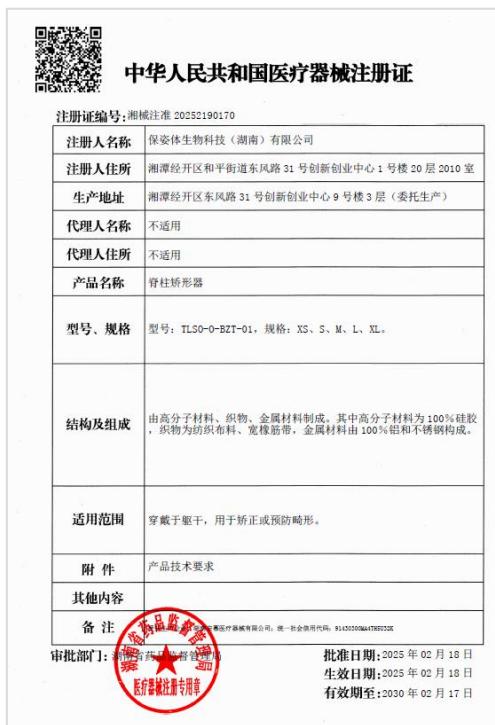


- A. Prof. Yip was photographed with experts and doctors at the Guangdong Province Rehabilitation Medicine – Spine Rehabilitation Academic Annual Conference & Flexible Correction Technology Training Programme.
- B. Prof. Yip delivered a presentation on the mechanism of spinal correction using the ATB.
- C. The ATB was also exhibited to clinicians and doctors at the 2024 Guangdong Province Public Welfare Training, introducing its design and clinical applications.
- D. Prof. Yip's team attended the conference to demonstrate the product and engage with medical professionals.

Research Dissemination

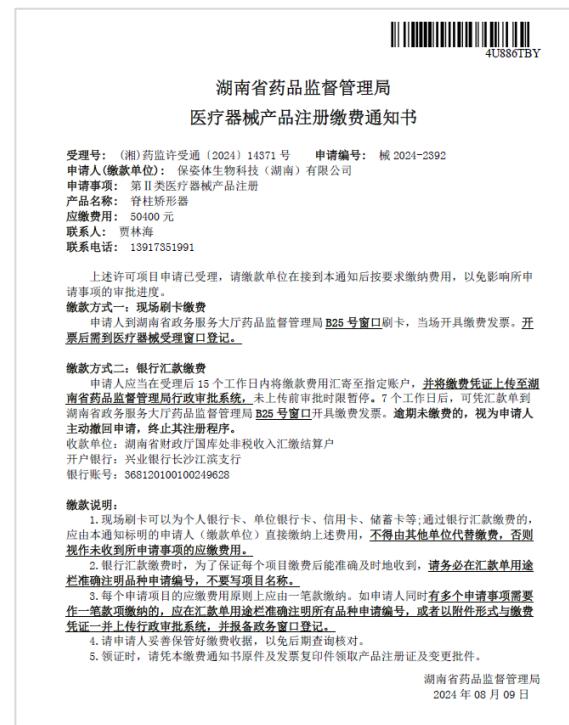
License and Certificate

The Anisotropic Textile Brace (ATB) has successfully **transitioned from research to a commercial product**. This innovative brace is now licensed under 保姿体生物科技(广州)有限公司 for sale, thereby marking a significant milestone in our efforts to bring cutting-edge solutions to the market.

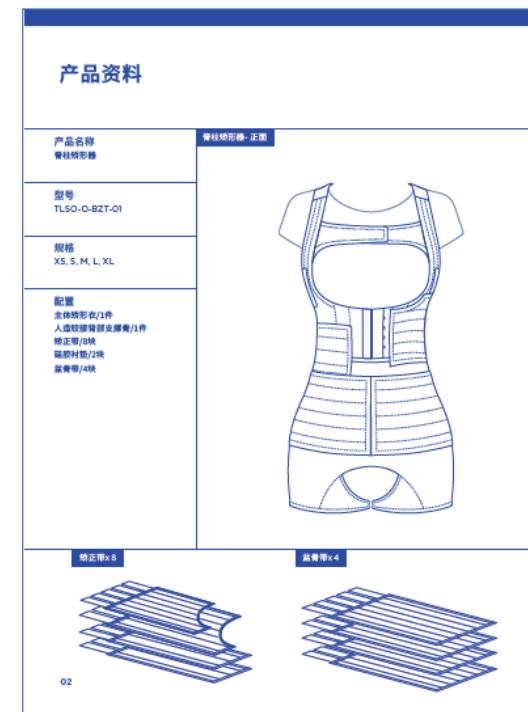
Prof. Joanne Yip and PolyU jointly hold Active Biotechnology (Hong Kong) Company Limited, which has established 利康云医学科技(上海)有限公司 in Mainland China. They are also collaborating with 脊客医疗信息科技 (广州) 有限公司 to jointly set up 保姿体生物科技(广州)有限公司 and 保姿体生物科技(湖南)有限公司.



ATB license agreement

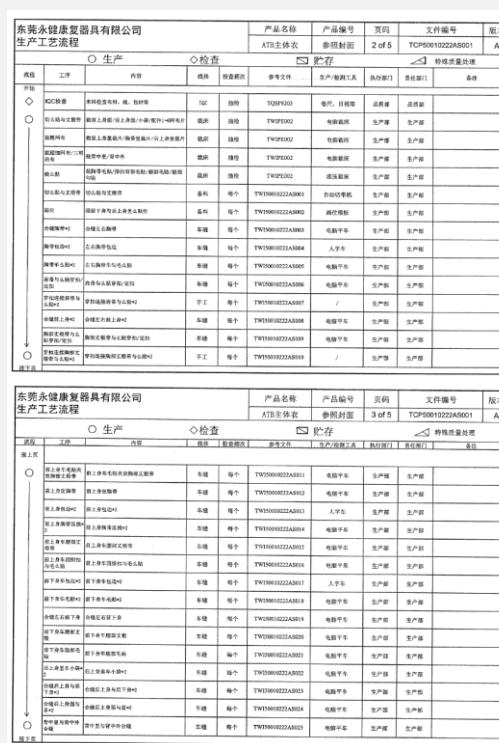

Research Dissemination

License and Certificate


ATB has obtained its **Mainland China Medical Device Registration Certificate (MDRC) as a Class II medical device**, which was approved in February 2025. Following this milestone, ATB has been adopted in clinical practice across hospitals and clinics in Mainland China, with doctors recommending it to patients. It is now officially **available for purchase**, providing a new treatment option in the region. Currently, the Spinal Research Team at Sun Yat-sen University (中山大學脊柱研究團隊) is collaborating with us to market the ATB.

Mainland China Medical Device Registration Certificate (MDRC) Class II medical device

Payment Notification of MDRC – Class II medical device



The ATB User Manual for customers

Research Dissemination

License and Certificate

东莞永健康复器具有限公司			
生产工艺流程			
文件编号	TCP50010222AS001	文件版本	A
产品名称	ATB主体衣	页号	1 of 5
准 备	PE工程师: 日期:	批准	日期
食 签	生产会签: 日期:		
	项目会签: 日期:		
	品质会签: 日期:		
适用产品			
项次	产品名称/型号	产品编号	
1	ATB主体衣\5\10PC/箱	50010222	
2	ATB主体衣\6\10PC/箱	50010223	
3	ATB主体衣\4\10PC/箱	50010224	
	以下空白		
版本	修改记录	修改日期	
A	始发版本 以下空白	2024/6/5	
加盖红色 受控印章 方为有效			

A fully operational production line

Vincent Rehab Devices Co., Ltd.
Dongguan Vincent Rehab Devices Co., Ltd.

Certificate of Conformance

合格证

Customer 客户: 保姿体生物科技(广州)有限公司

Sales Order No. 销售订单编号: 20056784

VRD Part Number 水健产品编号: 50010224

Model 产品: N/A

Description 产品名称: Anisotropic textile brace/L

Production Lot Number 生产批号: 2444073

Quantity 数量: 100 PCS

Customer Specification 规格:

客户规格: N/A

We certify that the above named production lot(s) was (were) built according to the Device Master Record for the product. The lot was (were) inspected per item listed in related work instruction and was (were) accepted at final inspection in accordance with procedures. All records were completed and verified.

本证书证明上列产品是根据该产品的相关档案(Device Master Record)生产的，并已根据制程指引中相关项目进行了100%全检，且在最终检查程序确定为合格。所有记录都已签完和核对。

2024.11.19

Quality Assurance Representative / Date
品质保证代表 / 日期

Certificate of conformance

Research Dissemination

Category	Details
Media Reports	<ol style="list-style-type: none"> 理大在日內瓦發明展囊括多個最高殊榮大獎冠本港參展團隊 (PolyU). 29 April 2023. Available online at https://www.polyu.edu.hk/sc/media/media-releases/2023/0429_polyu-wins-record-breaking-number-of-awards-at-geneva-inventions-expo/ 理大日內瓦國際發明展摘31獎 為歷年之最 (香港商報網). 4 May 2023. Available online at https://www.hkcd.com/content_app/2023-05/04/content_1398597.html 理大奪日內瓦國際發明展多個獎項 歷來最多. 香港電台-港聞 (Yahoo). 4 May 2023. Available online at https://hk.news.yahoo.com/share/41ca72e8-8143-3b66-af8d-356730b80a51 理大研相機登陸火星 防控鏡片助抑近視 功能服裝治療脊柱側彎 (東網). 4 May 2023. Available online at https://today.line.me/hk/v2/article/Qwyrg9z 理大獲「日內瓦國際發明展」31個獎項 兒童近視防控鏡奪特別大獎 (晴報). 4 May 2023. Available online at https://www.bastillepost.com/hongkong/article/12739314-%E7%90%86%E5%A4%A7%E7%99%BC%E6%98%8E%E7%8D%B2%E3%80%8C2023%E5%B9%B4%E6%97%A5%E5%85%A7%E7%93%A6%E5%9C%8B%E9%9A%9B%E7%99%BC%E6%98%8E%E5%B1%95%E3%80%8D31%E5%80%8B%E7%8D%8E%E9%A0%85-%E7%A0%94%E9%98%B2 Hong Kong Polytechnic University Researchers Win Gold Award for Medical Textile Inventions (PolyU). 4 May 2023. Available online at https://www.mtl-sft.com/news/hong-kong-polytechnic-university-researchers-win-gold-award-for-medical-textile-inventions/ 理大研功能衣矯脊柱側彎 「服裝設計不止靚唔靚」(明報). 5 May 2023. Available online at https://news.mingpao.com/pns/%E6%95%99%E8%82%B2/article/20230505/s00011/1683218695352/%E7%90%86%E5%A4%A7%E7%A0%94%E5%8A%9F%E8%83%BD%E8%A1%A3%E7%9F%AF%E8%84%8A%E6%9F%B1%E5%81%B4%E5%BD%8E-%E3%80%8C%E6%9C%8D%E8%A3%9D%E8%A8%AD%E8%A8%88%E4%B8%8D%E6%AD%A2%E9%9D%9A%E5%94%9D%9A%E3%80%8D

Research Dissemination

Research Dissemination

Media and newspaper reports

Media and newspapers reported on The 48th International Exhibition of Inventions Geneva (Gold Medal with the Congratulations of Jury)

1. **PolyU** : 理大在日內瓦發明展囊括多個最高殊榮大獎冠本港參展團隊。
2. **香港商報網** : 理大日內瓦國際發明展摘31獎為歷年之最
3. **Yahoo** : 理大奪日內瓦國際發明展多個獎項 歷來最多
4. **東網** : 理大研相機登陸火星 防控鏡片助抑近視 功能服裝治療脊柱側彎。
5. **晴報** : 理大獲「日內瓦國際發明展」31個獎項 兒童近視防控鏡奪特別大獎。
6. **PolyU** : Hong Kong Polytechnic University Researchers Win Gold Award for Medical Textile Inventions.
7. **明報** : 理大研功能衣矯脊柱側彎 「服裝設計不止靚唔靚」。
8. **香港經濟日報** : 【揚威海外】理大28項發明奪日內瓦發明展獎項 助治療脊柱側彎、減慢兒童近視加深。
9. **星島網** : 理大PolyImpact 科創理念 日內瓦國際發明展放異彩來源網址 : 理大 PolyImpact科創理念-日內瓦國際發明展放異彩

Research Dissemination

Media reports

10. 文匯報- 郭玲麗關注學童脊柱側彎問題 篩及早識別和治療

郭玲麗關注學童脊柱側彎問題 篩及早識別和治療

2024-05-28 20:43:00 香港

青少年突發性脊柱側彎是發育成長中常見的臨床問題，學童脊柱健康備受社會關注。民建聯教育事務發言人、立法會議員郭玲麗聯同香港理工大學時裝及紡織學院葉曉雲教授及其團隊討論學童脊柱側彎問題。會議上共同探討如何及早識別本港學童脊柱問題、政府支援措施、在校園推廣學童脊柱側彎知識，以及提升社會關注度。

期間，簡介脊柱側彎測試方法，利用脊柱測量儀(Scoliometer)篩查有問題的個案，作出跟進及協作。其後分享學童青春期脊柱健康數據，以及保守治療方法，例如支架和針對脊柱側彎的特定運動。葉教授與其團隊研發全新的功能性服裝，如姿勢矯正束身衣，柔性支架、生物反饋姿勢訓練系統等，目的是為了提供早期干預和提高治療的依從性。

郭玲麗表示，學童脊柱側彎問題對日後成長造成長遠的影響，不少家長和學童都忽視相關問題，建議政府加強宣傳和教育，例如為教師、家長和學生舉辦脊柱健康講座，提升社會對脊柱側彎的認知。

郭玲麗建議，政府可積極鼓勵家長參與學童保健計劃，其中包含脊柱側彎的篩查，以及早識別有脊柱側彎問題的學童。現時，如果學童的側彎角度在 25° 以上，政府會免費提供硬支架。她建議，政府善用本港的科研成果，在醫管局引入柔性支架治療給早期脊柱側彎病人（ 10° 至 25° ），以把握治療的黃金時間，避免脊柱情況惡化，從而守護學童的健康。

葉曉雲表示，及早識別學童脊柱側彎問題，並採取及時治療，能有效減低側彎加劇的可能性。她呼籲，社会各界關注學童脊柱健康問題，本年6月22日舉辦國際關注脊柱側彎日，期盼市民積極參與，提升公眾的關注度。

Prof. Yip stated that early identification of scoliosis in schoolchildren and timely treatment can effectively reduce the likelihood of the condition worsening.

28 May 2024

<https://www.wenweipo.com/a/202405/28/AP6655d156e4b00a6e8c39714f.html>

Research Dissemination

Media reports

Key findings of the scoliosis screening programme in Hong Kong

11. 香港商報網- 議員關注學童脊柱側彎問題 及早識別和治療助改善情況。

12. **Hong Kong PolyU:** PolyU develops innovative soft braces to enhance scoliosis treatment.

13. **Democratic Alliance for the Betterment and Progress of Hong Kong (DAB):** 關注學童脊柱側彎問題 及早識別和治療有助改善情況。

PolyU's research team is committed to leveraging innovative research to capitalise on the golden intervention period for mild scoliosis. Studies confirm that early intervention can effectively control curve progression and safeguard spinal health during children's growth phase.

References

1. Yip, J. (2020). *Development of functional intimate apparel* [Video]. Accessed 28 Feb 2023. https://www.youtube.com/watch?v=3E_Yw0c7Q1s.
2. Fok, Q., & Yip, J. (2021). Applying numerical simulation to predict effect of brace wear for scoliosis. In *Advances in human factors and ergonomics in healthcare and medical devices* (pp. 217-223). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-79763-8_26
3. Wong, S.-H, Yip, J., Yick, K., & Ng, Z. (2020). Preliminary wear trial of anisotropic textile brace for adolescent idiopathic scoliosis. In *International Society for Engineering Research and Development International Conference (ISERD International Conference)*. Zurich, Switzerland.
4. Cheung, H., Yip, J., Yick, K., Ng, S. (2022). Preliminary wear trial of anisotropic textile brace designed for adolescent idiopathic scoliosis. In: Jay Kalra and Nancy Lightner (eds) *Healthcare and Medical Devices*. AHFE (2022) International Conference. AHFE Open Access, vol 51. AHFE International, USA. <https://ira.lib.polyu.edu.hk/handle/10397/115893>
5. Wong, S.-H., Yip, J., Yick, K.-I., and Ng, Z. S-P. (2021). A case study of initial in-brace spinal correction of anisotropic textile brace and boston brace. In: *Advances in Human Factors and Ergonomics in Healthcare and Medical Devices: Proceedings of the AHFE 2021 Virtual Conference on Human Factors and Ergonomics in Healthcare and Med Devices, July 25-29, 2021, USA 2021*, pp.109-115. Springer.
6. Lei, Q. E., Shu, J., Wang, J., Cheung, H. Y., Cheung, J. P., Wong, W. F., Lau, S.C.Y., Yip, J., & Tong, R. K. (2023). Design and characterise of kirigami-inspired springs and the application in vertebrae exoskeleton for adolescent idiopathic scoliosis brace treatment. *Frontiers in Mechanical Engineering*, 9, 1152930. <https://doi.org/10.3389/fmech.2023.1152930>
7. Hresko, M.T. (2013). Idiopathic scoliosis in adolescents. *New England Journal of Medicine* 368, 834-841.
8. McElvenny, R. T. (1953). 11 Structural scoliosis. *Clinical Orthopaedics and Related Research®* , 1, 87-98.
9. Sud, A. & Tsirikos, A. I. (2013). Current concepts and controversies on adolescent idiopathic scoliosis: Part I. *Indian Journal of Orthopaedics*, 47, 117-128.
10. Katz, D. E., Herring, J. A., Browne, R. H., et al. (2010). *The Journal of bone and joint surgery. American volume*, 92(6), 1343-1352. <https://doi.org/10.2106/JBJS.I.01142>
11. Negrini, S., Aulisa, A. G., Aulisa, L., et al. (2012). 2011 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. *Scoliosis*, 7, 1-35.
12. Weinstein, S. L., Dolan, L. A., Wright, J. G., et al. (2013). Effects of bracing in adolescents with idiopathic scoliosis. *New England Journal of Medicine*, 369, 1512-1521.
13. Fok, Q., Yip, J., Yick, K.-I., & Ng, S.-P. (2021). Design and fabrication of anisotropic textile brace for exerting corrective forces on spinal curvature. *Journal of Industrial Textiles*, 51, 1682S-1702S. <https://doi.org/10.1177/15280837211032619>
14. Weiss, H-R. & Turnbull, D. (2020). Brace treatment for children and adolescents with scoliosis. In *Spinal deformities in adolescents, adults and older adults*. London: IntechOpen, 171-188.

References

15. Hui, C.-I., Piao, J., Wong, M. S., & Chen, Z. (2020). Study of textile fabric materials used in spinal braces for scoliosis. *Journal of Medical and Biological Engineering*, 40, 356-371.
16. Wynne, J. H. (2008). The Boston brace and TriaC systems. *Disability and Rehabilitation: Assistive Technology*, 3, 130-135.
17. Bulthuis, G. J., Veldhuizen, A. G., & Nijenbanning, G. (2008). Clinical effect of continuous corrective force delivery in the non-operative treatment of idiopathic scoliosis: a prospective cohort study of the TriaC-brace. *European Spine Journal*, 17, 231-239.
18. Veldhuizen, A., Cheung, J., Bulthuis, G., & Nijenbanning, G. (2002). A new orthotic device in the non-operative treatment of idiopathic scoliosis. *Medical Engineering & Physics*, 24, 209-218.
19. Zeh, A., Planert, M., Klima, S., et al. (2008). The flexible TriacTM-Brace for conservative treatment of idiopathic scoliosis. An alternative treatment option? *Acta Orthopaedica Belgica*, 74: 512.
20. Coillard, C., Circo, A., & Rivard, C. H. (2008). A new concept for the non-invasive treatment of adolescent idiopathic scoliosis: The Corrective Movement© principle integrated in the SpineCor system. *Disability and Rehabilitation: Assistive Technology*, 3, 112-119.
21. Coillard, C., Leroux, M. A., Zabjek, K. F., & Rivard, C. (2003). SpineCor – a non-rigid brace for the treatment of idiopathic scoliosis: post-treatment results. *European Spine Journal*, 12, 141-148.
22. Canavese, F. & Kaelin, A. (2011). Adolescent idiopathic scoliosis: Indications and efficacy of nonoperative treatment. *Indian Journal of Orthopaedics*, 45, 7-14.
23. Wong, M. S., Cheng, J. C., Lam, T. P., et al. (2008). The effect of rigid versus flexible spinal orthosis on the clinical efficacy and acceptance of the patients with adolescent idiopathic scoliosis. *Spine*, 33, 1360-1365.
24. Lonstein, J. E., & Winter, R. B. (1994). The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients. *JBJS*, 76(8), 1207-1221.