

RAE2026

Analysis of 3D and 4D Body Surfaces for Design of Sport- Specific Activewear

Prof. Yick Kit-lun

SFT PolyU – UoA38

Contents

Section	Contents	Sub-section	Page
1	Descriptor		03
2	Researcher Profile		04
3	Research Questions		06
4	Research Outputs		07
5	Research Field & Key References		20
6	Research Methods, Prototypes & Materials		22
7	Research Outcomes, Findings & Further Research		33
8	Research Dissemination		34

Title: Analysis of 3D and 4D Body Surfaces for Designing Sport-Specific Activewear

Descriptor

Following a pilot study of dentist bra design in 2020, this research is supported by grants from Innovation and Technology Fund (ITF), General Research Fund (GRF) and Sports Science and Research Funding Scheme (SRFS), totaling HK\$5 million (2021-2025). The project integrates 4D scanning technology to add a time-based dimension, addressing the extent of body movement for sport-specific activewear design that conforms to human anatomy by analyzing the dynamic deformation of the body surface during exercise. This approach equips designers with precise material properties and appropriate compression for target support, significantly enhancing the prediction for tailored, sports-specific support and performance across various sports.

By applying 4D dynamic body mapping and biomechanical analysis, the project has formulated data-driven activewear solutions that address the unique needs of different athletic populations. This innovation enables the creation of running leggings and sports bras that precisely accommodate movement patterns, muscle oscillations, breast kinematics, and growth variations, ensuring optimal support and comfort for elite athletes, recreational athletes and adolescent girls.

This work has resulted in publications in 16 peer-reviewed journals and conferences, garnered awards at international conferences, including the Outstanding Research Paper Award at TBIS 2024 in Korea and the Best Paper Award at ICTEAA 2024 in Italy. Over 600 custom-fitted sports bras for elite racket sports athletes were used during the 2024 Paris Summer Olympics and the 2025 National Games. A collection of tailored sports bra designs for cycling, softball, hockey, and tennis, incorporating fashion into 3D and 4D breast shape analysis, was showcased in a Paris exhibition in June 2024. The study has been shared through educational workshops at the Hong Kong Sports Institute and interactive sessions in secondary schools, fostering dialogue between researchers, practitioners, and the public on the importance of science-based sportswear design.

Prof. YICK Kit-lun

Prof. Yick specialises in ergonomic design to improve human well-being, focusing on patient clothing, activewear and footwear. She integrates 3D anthropometry, biomechanical analysis and material science to enhance comfort and functionality, particularly for vulnerable populations. Her research involves developing advanced manikin systems for bra evaluation (MCO1) and applying 4D motion analysis to optimise sports bra fit and support for elite athletes (the current MCO3), translating biomechanical data into improved movement and power efficiency. She has also established robust methods to predict pressure distribution and combine foot biomechanics and dynamic anthropometry to design custom orthotic insoles for diabetic patients (MCO2).

Prof. Yick's role in research projects is characterised by her ability to define design criteria, propose material innovations and develop prototypes that address sports, rehabilitation, and personalized care needs. She maintains scientific rigor by establishing objective assessment frameworks to evaluate prototype performance. In addition to government funding, her collaborative network includes the Hong Kong Intimate Apparel Industries' Association, Hong Kong Sports Institute, activewear brands, global testing and certification firms, healthcare institutions, NGOs, and the Laboratory for Artificial Intelligence in Design under InnoHK. These partnerships reflect her commitment to interdisciplinary collaboration, ensuring that her work contributes to both academic advancement and practical benefits for industry and society.

Prof. YICK Kit-lun

Multi-disciplinary Research

Co-investigators

DR. YU ANNIE
Assistant Professor, PolyU

Apparel Ergonomic
Designer

DR. SUN YUE
Lecturer, Zhejiang Sci-
Tech University

Biomechanical Engineer

PROF. YIP JOANNE,
Professor, PolyU

Materials Scientist

Supporting & Collaborating Partners

AiDLab

Laboratory for
Artificial Intelligence in Design
人工智能設計研究所

SHIMA SEIKI

Weathy Step
International Ltd.

Innovation and Technology Commission
The Government of the Hong Kong Special Administrative Region
of the People's Republic of China

Dr. Yu, applies ergonomic principles to activewear design, leading the integration of 3D and 4D scanning data to create functional, supportive designs tailored to athletes' movement and performance needs.

Dr. Sun, a biomechanical engineer, conducts biomechanical modeling and analyses human movement and mechanics, providing essential data to optimise activewear design for improved support and comfort.

Prof. Yip, a material scientist, develops innovative material structures for activewear, focusing on aesthetics, structural integrity, and optimal body support to enhance both garment performance and user experience.

Research Questions

Activewear design and evaluation primarily rely on 3D body shape analysis. However, the human body is a complex structure formed by various tissues, which undergoes continuous changes in shape, volume and behavior during physical activities. The scientific understanding of body motion and 4D body surface deformations during different sports remains limited. Understanding the biomechanics of the human body in relation to body position, planes of motion and body support is crucial for designing activewear that accommodates the unique characteristics and needs of individuals in each sport. The research questions of this project are as follows:

- a) How does the human body deform during various physical activities and high-impact exercises?
- b) What are the areas of high stress and strain within the body soft tissue during sports, and how can activewear design reduce these factors?
- c) Can changes in body surface and deformations be scientifically quantified, predicted and validated using finite element modelling or motion capturing techniques?
- d) Can the results of 3D and 4D body surface changes and deformations be used to design activewear corresponding to individual sports for optimal fit and support?

Research Outputs

- During physical activities, significant changes occur in body shape geometry, with deformations of soft tissues. Activewear design must account for varying fit, support and compression needs across motion planes and postures, influenced by age, body geometry, sizes and the type and intensity of the activity.
- Understanding body region-specific stress and strain enables new insights in activewear design and material selection, reducing excessive stress by offering targeted support and compression in critical areas, thus providing precise protection against high stresses and impact forces during sports.
- Body surface changes and deformations can be scientifically quantified and validated by using finite element modeling and motion capturing techniques. A nonlinear, multi-component dynamic finite element model has been developed to provide a clear picture of the breast biomechanical behavior during motion.
- 3D and 4D body surface data help determine geometric features, hyper-elastic parameters and regional movements of the human body. A series of sport-specific activewear has been designed for a tailored fit and support, catering to specific sports and individual athlete needs

Research findings were published in 16 journals and conferences from 2022 to 2025. Custom-fitted sports bras, designed for elite athletes on tennis, squash and badminton teams, are intended for use during the 2024 Paris Summer Olympics. More tailored sports bra designs integrating fashion with 3D and 4D breast shape analysis are set to be further showcased at a Paris exhibition in June 2024, highlighting PolyU's research strength and creativity. Collaborations have included research on supportive bra designs for female dentists, featured in an interview with Dental Tribune (Germany), contract research on running-specific leggings and seminars with leading lingerie and sportswear companies as well as engagements with the Hong Kong Intimate Apparel Industries' Association. Knowledge transfer efforts continued with workshops at the Hong Kong Sports Institute and interactive sessions at secondary schools, aiming to educate and engage younger audiences.

Research Outputs

This research is supported by local government funds & the Sports Science and Research Funding Scheme (HK\$6M)

Category	Details
01	<p>Journal Papers</p> <ul style="list-style-type: none"> Yick KL, Keung YC, Yu A, Wong KH, Hui KT, Yip J. (2022). Sports bra pressure: Effect on body skin temperature and wear comfort. <i>International Journal of Environmental Research and Public Health</i>, 19, 15765 Chan, MK, Li PL, Yick KL, Yip J, Ng, SP. (2024). Exploration of textile–silicone composites and materials for personal impact-resistant protection. <i>Materials</i>, 17, 1439. Chen J, Sun Y, Liu QL, Yip J, Yick KL. (2024). Construction of multi-component finite element model to predict biomechanical behaviour of breasts during running and quantification of the stiffness impact of internal structure. <i>Biomechanical & Modelling in Mechanobiology</i>, 23, 1679–1694. Kwan MY, Tu YF, Yick KL, Yip J, Li NW, Yu A, Lo K-W. (2024). Enhancing force absorption, stress-strain and thermal properties of weft-knitted inlay spacer fabric structures for apparel applications. <i>Polymers</i>, 16(21), 3031. Liu Q, Yick KL, Sun Y, Yip J. (2024) Ultra-dense motion capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D. <i>PLOS ONE</i> 19(2), e0299040. Kwan MY, Yick KL, Yip J, Li NW, Yu A, Lo KW. (2024). Breast geometry and sports bra design study for adolescent girls. <i>Journal of Fiber Bioengineering and Informatics</i>. 17(4), 233-243 Chen J, Zhong Z, Sun Y, Yip J, Yick KL. (2025). Dynamic simulation of breast behaviour during different activities based on finite element modelling of multiple components of breast. <i>Scientific Reports</i>, 15, 3659 Chen J, Keung YC, Sun Y, Yip J, Yick KL. (accepted). Exploration of breast motion under different activities and intensities. <i>Journal of Engineered Fibers and Fabrics</i>.

Research Outputs

Category	Details
02	<p>Conference Papers</p> <ul style="list-style-type: none"> Keung YC, Yick KL, Yip J, Yu A. (2023). Ergonomic design of badminton-specific sports bras for athletes. The 92nd Textile Institute World Conference 2023, Jul 3-6, 2023, University of Huddersfield, Huddersfield, UK. Keung YC, Yick KL. (2024). Exploring the impact of body shape on bra fit: integrating 3D body scanning and traditional patternmaking methods. International Conference on Textile Engineering and Applied Arts, Aug 22-23, 2024, Rome, Italy. Chen J, Sun Y, Yip J, Yick KL. (2024). Optimizing 3D shape parameters of sports bra pads in motion by finite element dynamic modelling with inverse problem solution. International Conference on Textile Engineering and Applied Arts, Aug 22-23, 2024, Rome, Italy. Zhong Z, Kwan MY, Yick KL. (2024). Novel seamless sports bra designs for adolescent girls. The Symposium on Sports Science & Technology 2024, Hong Kong. Kwan MY, Yick KL, Yip J, Li NW, Yu A, Lo KW. (2024). Breast anthropometry measurements of Chinese adolescent girls for sports bra design. 17th Textile Bioengineering and Informatics Symposium (TBIS), 2024, Daegu, Korea. Zhang LY, Zhou X, Yick KL. (2024). Impact of bra usage on upper body measurements and biomechanical performance in tennis athletes. The Symposium on Sports Science & Technology 2024, Hong Kong. Chan MK, Yick KL, Yip J, Ng SP. (2024). Breast protective equipment usage and perception among female contact sports players. The Symposium on Sports Science & Technology 2024, Hong Kong. Liu Q, Zhang LY, Xiao Q, Yick KL. (2024). Quantifying breast regional deformation during fast walking with 4D scanning. The Symposium on Sports Science & Technology 2024, Hong Kong.

Research Outputs

Category		Details
03	Patents	<ul style="list-style-type: none">能適應胸型變化、一體成型的無縫運動內衣 China Patent filed on 5 November 2024運動文胸 China Patent filed on 18 June 2025
04	Designs	<ul style="list-style-type: none">Sport-specific leggingsSport-specific sports bras

Research Outputs | 01 Journal Papers

Journal
PapersConference
Papers

Patents

Designs

Article

Exploration of Textile–Silicone Composites and Materials for Personal Impact-Resistant Protection

Mei-Ki Chan ¹, Pui-Ling Li ¹, Kit-Lun Yick ^{1,*}, Joanne Yip ¹ and Sun-Pui Ng ²

¹ School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China; meiki-0125.chan@connect.polyu.hk (M.-K.C.); pulling-sabrina.li@polyu.edu.hk (P.-L.L.); tcyip@polyu.edu.hk (J.Y.)

² School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; zerance.ng@cpce.polyu.edu.hk

* Correspondence: tcyick@polyu.edu.hk

Chan, MK, Li PL, Yick KL, Yip J, Ng, SP. (2024). Exploration of Textile–Silicone Composites and Materials for Personal Impact-Resistant Protection. *Materials*, 17, 1439.

Original article

Exploration of breast motion under different activities and intensities

Jiazen Chen¹, Yin ChingDoris Keung¹, Yue Sun², Joanne Yip¹ and Kit-Lun Yick¹

Journal of Engineered Fibers and Fabrics

Volume 20: 1–11

© The Author(s) 2025

DOI: 10.1177/15892505251352192

journals.sagepub.com/home/jef

Chen J, Keung YC, Sun Y, Yip J, Yick KL. (2025). Exploration of breast motion under different activities and intensities. *Journal of Engineered Fibers and Fabrics*. 20:1-11.

Article

Sports Bra Pressure: Effect on Body Skin Temperature and Wear Comfort

Kit-Lun Yick ^{1,*}, Yin-Ching Keung ¹, Annie Yu ², Kam-Ho Wong ¹, Kwok-Tung Hui ³ and Joanne Yip ¹

¹ School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; 22038535@connect.polyu.hk (Y.-C.K.); joanne.yip@polyu.edu.hk (J.Y.)

² Department of Advanced Fibre Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; annieyiu@kit.ac.jp

³ Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong; kamhwong@aidlab.hk (K.-H.W.); kwoktunghui@aidlab.hk (K.-T.H.)

* Correspondence: tcyick@polyu.edu.hk

Yick KL, Keung YC, Yu A, Wong KH, Hui KT, Yip J. (2022). Sports bra pressure: effect on body skin temperature and wear comfort. *International Journal of Environmental Research and Public Health*, 19, 15765.

[Article]

Original screen capture removed for copyright reasons.
Please refer to the citation provided.

Chen J, Sun Y, Liu QL, Yip J & Yick KL. (2024). Construction of multi-component finite element model to predict biomechanical behaviour of breasts during running and quantification of the stiffness impact of internal structure. *Biomechanics and Modeling in Mechanobiology*, 23, 1679-1694.

Research Outputs | 01 Journal Papers

Journal
PapersConference
Papers

Patents

Designs

RESEARCH ARTICLE

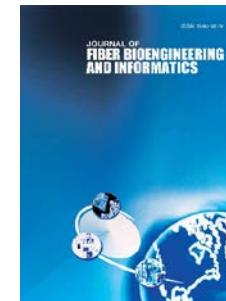
Ultra-dense Motion Capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D

Qi-long Liu^{1,2}, Kit-lun Yick^{1,2*}, Yue Sun³, Joanne Yip¹

1 School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China, **2** Laboratory for Artificial Intelligence in Design, Hong Kong, China, **3** School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China

* kit-lun.yick@polyu.edu.hk

[Liu Qi, Yick Kl, Sun Y, Yip J \(2024\) Ultra-dense Motion Capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D. PLOS ONE 19\(2\): e0299040.](#)


scientific reports

OPEN

Dynamic simulation of breast behaviour during different activities based on finite element modelling of multiple components of breast

Jiazheng Chen¹, Zejun Zhong², Yue Sun³, Joanne Yip¹ & Kit-lun Yick^{1,2}

[Chen, J., Zhong, Z., Sun, Y., Yip, J., Yick, K.L. \(2025\). Dynamic simulation of breast behaviour during different activities based on finite element modelling of multiple components of breast. *Scientific Reports*. 15, 3659.](#)

Breast Geometry and Sports Bra Design Study for Adolescent Girls

Mei-Ying Kwan, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu & Ka-Wai Lo

DOI: 10.3993/jfbm01572

Journal of Fiber Bioengineering & Informatics, 17 (2024), pp. 233-243.

Published online: 2024-12

[Preview](#) [Purchase PDF](#) [23](#) [221](#) [Cited by](#) [Export citation](#)

[Kwan MY, Yick KL, Yip, J, Li NW, Yu A, Lo KW. \(2024\). Breast Geometry and Sports Bra Design Study for Adolescent Girls. *Journal of Fiber Bioengineering and Informatics*. 17 \(4\). 233-243.](#)

Enhancing Force Absorption, Stress–Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications

by Mei-Ying Kwan¹, Yi-Fan Tu¹, Kit-Lun Yick^{1,*}, Joanne Yip¹, Nga Wun Li², Annie Yu¹ and Ka-Wai Lo¹¹ School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China² Faculty of Design, Architecture and Building, University of Technology Sydney, Sydney, NSW 2007, Australia

* Author to whom correspondence should be addressed.

[Polymers 2024, 16\(21\), 3031; <https://doi.org/10.3390/polym16213031>](#)

Submission received: 3 September 2024 / Revised: 26 October 2024 / Accepted: 27 October 2024 /

Published: 29 October 2024

[Kwan MY, Tu YF, Yick KL, Yip J, Li NW, Yu A, Lo KW. \(2024\). Enhancing Force Absorption, Stress–Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications. *Polymers*. 2024; 16\(21\):3031.](#)

Research Outputs | 02 Conference Papers

Journal
PapersConference
Papers

Patents

Designs

The 92nd Textile Institute World Conference 2023

The 92nd Textile Institute World Conference 2023, University of Huddersfield, Huddersfield, UK

ERGONOMIC DESIGN OF BADMINTON-SPECIFIC SPORTS BRAS FOR ATHLETES

Vin-Ching Keung¹, Kit-Lun Yick¹

¹School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China

Presenting author E-mail: 22038535r@connect.polyu.hk; Corresponding author email: tcyick@polyu.edu.hk

Today, sports bra designs for an elite level of sport with consideration of vigorous body motion, posture changes and prolonged wearing are largely neglected. Bra discomfort, displacement and fit problems negatively affect sporting performance. This study therefore aims to offer a new scientific approach that precisely identifies breast and bra displacements from movements during badminton sport.

Keung, Y.C., Yick, K.L., Yu, A. & Yip, J. (2023). Ergonomic design of badminton-specific sports bras for athletes. The 92nd TIWC 2023, July 3-6, 2023, University of Huddersfield, Huddersfield, UK.

Reproduction by kind permission of The Textile Institute

International Conference on Textile Engineering and Applied Arts

Paper title:

Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs.

[Chen, J., Sun, Y., Yip, J. & Yick, K.L. \(2024\). Optimizing 3D shape parameters of sports bra pads in motion by finite element dynamic modelling with inverse problem solution. International Conference on Textile Engineering and Applied Arts, Aug 22-23, 2024, Rome, Italy.](#)

Exploring the Impact of Body Shape on Bra Fit: Integrating 3D Body Scanning and Traditional Patternmaking Methods

Yin-Ching Keung, Kit-Lun Yick

Abstract—The issue of bra fitting has persisted throughout history, despite advancements in molded bra cups. To gain a deeper understanding of the interaction between the breast and bra pattern, this study combines the art of traditional bra patternmaking with 3D body scanning technology. By employing a 2D bra pattern drafting method and analyzing the effect of body shape on the desired bra cup shape, the study focuses on the differentiation of the lower cup among bras designed for flat and round body shape breasts. The results shed

uniqueness of every individual. The interplay between body shape and breast shape is a crucial factor to consider in bra design, as it directly influences the fit, support, and the comfort of the garment.

Understanding and appreciating the diversity in breast shape is essential in bra design. As the breast tissues are mounted on the rib cage, it is important to recognize that the shape of the rib cage directly impacts the distribution of the breast tissues [8].

[Keung, Y.C. & Yick, K.L. \(2024\). Exploring the impact of body shape on bra fit: integrating 3D body scanning and traditional patternmaking methods. International Conference on Textile Engineering and Applied Arts, Aug 22-23, 2024, Rome, Italy.](#)

Research Outputs | 02 Conference Papers

Journal
PapersConference
Papers

Patents

Designs

Symposium on Sports Science & Technology 2024

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

PolyU Academy for Interdisciplinary Research (PAIR) 聚理理工大學多學科研究實驗室

RISports 運動科學及技術研究室 運動科學及技術研究室

2024 Symposium on Sports Science & Technology

Date : 30 Nov – 2 Dec 2024 (Sat – Mon)

Symposium on Sports Science & Technology 2024

Poster No. T2-02

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

PolyU Academy for Interdisciplinary Research (PAIR) 聚理理工大學多學科研究實驗室

RISports 運動科學及技術研究室 運動科學及技術研究室

Novel Seamless Sports Bra Designs For Adolescent Girls

Ze-jun Zhong¹, Mei-ying Kwan¹, Kit-lun Yick¹
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong¹

BACKGROUND

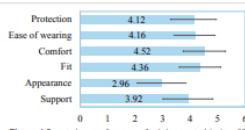
- Current sports bra designs often overlook the evolving breast development of adolescent girls during puberty.
- Sports bras can cause excessive compression.
- Seamless knitted structures for extensibility and breast protection was explored.

METHODS

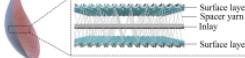
- Surveys were distributed to 25 adolescent girls in Hong Kong to understand their bra preferences.
- Various stretchable knitted structures were developed using a 15L Shima Seiki SWO-XS WholeGarment knitting machine.
- Fabric shape conformity and stretchability are systematically analyzed and compared to conventional foam and spacer fabrics.

RESULTS

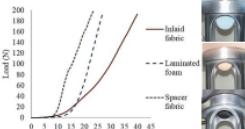
- Survey results indicate that comfort and fit are the top priorities for adolescent girls in bra selection (Figure 1).
- A weft-knitted inlay spacer structure was developed that exhibits outstanding shape conformity, providing a snug and supportive fit to the breasts (Figures 2 & 3).
- To accommodate the dynamically changing breasts of adolescent girls, stretchable knitted structures, including pointelle and links, were strategically incorporated in the seamless sports bras (Table 1).


DISCUSSION

- A novel seamless sports bras that fits cup sizes AA to B was specifically designed to cope with the changes in breast size, providing a comfortable fit (Figure 4).
- Future research should involve larger, more diverse samples to better understand the needs of adolescent girls.


IMPACT STATEMENT

- The findings will have a positive impact on adolescent girls pursuing a healthy and active lifestyle through physical activity by wearing comfortable and well-fitting sports bras.
- The bra accommodates a wide range of sizes and promotes sustainable consumption patterns.


Figure 1 Sports bra preference of adolescent girls (n = 25)

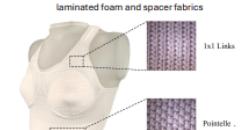

Figure 2 Visualization of inlay spacer fabric

Figure 3 Shape conformity for inlaid fabric versus laminated foam and spacer fabrics

Figure 4 3D scanned seamless sports bra prototype

Figure 5 Proposed seamless sports bra designs

CONTACT INFORMATION
Professor Kit-lun Yick
Email: kit-lun.yick@polyu.edu.hk

[Zhong Z, Kwan MY, Yick KL. \(2024\). Novel Seamless Sports Bra Designs for Adolescent Girls. The Symposium on Sports Science & Technology, Hong Kong.](#)

Research Outputs | 02 Conference Papers

Journal Papers

Conference Papers

Patents

Designs

Symposium on Sports Science & Technology 2024

Symposium on Sports Science & Technology 2024

Poster No. T1-09

Impact of Bra Usage on Upper Body Measurements and Biomechanical Performance in Tennis Athletes.

Zhang Li-ying¹, Zhou Xia¹, Yick Kit-lun¹School of Fashion and Textiles, The Hong Kong Polytechnic University¹

BACKGROUND

- Objective:** To investigate the impact of sports bras on dynamic deformations and kinematic changes of the upper body during tennis.
- Sports bras are essential for providing support and comfort to female athletes. In tennis, the asymmetrical movements of the dominant arm can lead to discomfort and reduced performance if excessive pressure from the bra is applied.**
- Research Questions:** How do sports bras affect upper body measurements and kinematic performance in tennis athletes?
- Hypotheses:** Wearing a sports bra will reduce breast movement but may limit shoulder and elbow motion.
- Gaps:** Limited understanding of how sports bras can be optimized for performance in racket sports.

METHODS

- 6 female tennis athletes were recruited for 4D body scanning and motion capture under 2 conditions: braless and wearing a commercial sports bra. Related anthropometric measurements and kinematic performance were analyzed during serve, forehand, and backhand strokes.

RESULTS

- Measurements:** Both breast-related measurements (D1, D2, D3) and shoulder-related measurements around the dominant side (D8, D9) decreased with the sports bra.
- Kinematic Parameters:** The range of elbow and shoulder angles was reduced by 3.3-11.7 degrees, and power decreased by 0.3-10.8% with the sports bra.

DISCUSSION

- Sports bras provide necessary breast support, but also limit the motion range and power of the dominant shoulder and elbow during tennis strokes.
- Future research should explore a larger sample size and investigate different sports bra designs tailored for racket sports to enhance performance without compromising comfort and support.

IMPACT STATEMENT

- The findings highlight the need for sports bras that balance effective breast support with minimal restriction on upper body motion, which is crucial for optimizing performance in tennis and similar sports.
- This research can guide the design of more effective sports bras for athletes, enhancing both comfort and performance.

9

Symposium on Sports Science & Technology 2024

Poster No. T2-01

Breast Protective Equipment Usage and Perception Among Female Contact Sports Players

Mei Ki Chan¹, Kit-lun Yick¹, Joanne Yip¹, and Sun-pui Ng²School of Fashion and Textiles, The Hong Kong Polytechnic University¹, School of Professional Education and Executive Development, The Hong Kong Polytechnic University²

BACKGROUND

- Breast pain and injuries caused by excessive breast motion have been reported by female athletes especially in combat and ball sports.
- Awareness of breast safety amongst remains low (Brisbane et al., 2019).
- This study aimed to investigate the usage of breast protective equipment by female athletes, the causes of breast injuries, and their perceptions on breast protective equipment.

METHODS

- Survey was delivered to 21 female athletes (aged ≥ 18), participated in contact or combat sports at any competitive level for over 1 year (Table 1).

DISCUSSION

- Conventional breast inserts have caused significant discomfort from heat and perspiration and limit the free movement of the wearers.
- It is necessary to develop sport-specific protective bras that offer effective control of breast motion, adequate breast impact resistance against motions and acute contact forces during high intensity exercises.
- This study is limited by small sample size.

IMPACT STATEMENT

- The study highlight the limitations and design directions in developing more advanced chest protective equipment.

ACKNOWLEDGEMENT

This research was funded by the Research Grant Council (project account PolyU 150069/22) and the C.C. Lee Scholarship for funding this research project.

RESULTS

- 71% of the participants ($n=15$) reported incidents of breast pain or injuries, while 80% ($n=12$) agreed that their sports performance was negatively affected.

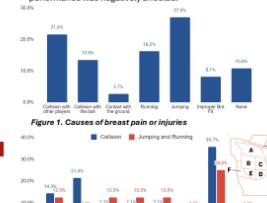


Figure 1. Causes of breast pain or injuries

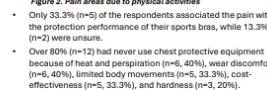


Figure 2. Pain areas due to physical activities

ACKNOWLEDGEMENT

This research was funded by the Research Grant Council (project account PolyU 150069/22) and the C.C. Lee Scholarship for funding this research project.

Symposium on Sports Science & Technology 2024

Poster No. T3-03

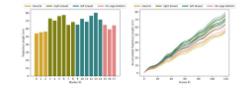
Quantifying Breast Regional Deformation During Fast Walking with 4D Scanning Sequences

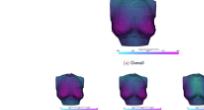
Qilong Liu^{1,2}, Liying Zhang^{1,2}, Qinfeng Xiao^{1,2} and Kitlun Yick^{1,2}School of Fashion and Textiles, PolyU¹, Laboratory for Artificial Intelligence in Design (AiDLab)²

BACKGROUND

- Sports bras are designed to minimize these deformations, but high pressure from these bras can have negative effects. Therefore, understanding the dynamics of breast deformation is important for developing more effective sports bras.

- Recent developments in motion capture (MoCap) technology have allowed for the study of breast dynamics based on sparse landmarks, offering three-dimensional measurements.


However, these studies have been limited to static movements and deformations, and it's unclear whether these sparse landmarks can truly capture the complex patterns of breast movement.


Figure 3. 4D scanning with sequence captured in the experiment.

RESULTS

Based on this dataset, the regional deformation intensity of the breast was investigated, including overall deformation and directional displacement, representing the magnitude of deformation as a measure of deformation intensity, revealing two patterns of breast deformation.

- The deformation intensity increases gradually from the chest to nipple areas.
- Soft issues are significantly more deformable than the rigid torso area.

- The entire breast area and the chest area are subjected to large medial-lateral deformations (x-axis), while only the soft tissues of the breasts are subjected to obvious vertical deformation (y-axis).
- Both medial-lateral and vertical deformations are more pronounced on the front side of the body.
- In contrast, significant deformations in the forward and backward directions are observed on the side-parts of the torso.

DISCUSSION

- The dataset was constructed from a single participant, which may not be representative of the general population.
- Only the front side of the body was captured, which may not capture the full range of breast motion during other activities.
- When the movement involves large rotation, the accumulated displacement may not be appropriate to represent the regional deformation intensity.

IMPLICATION STATEMENT

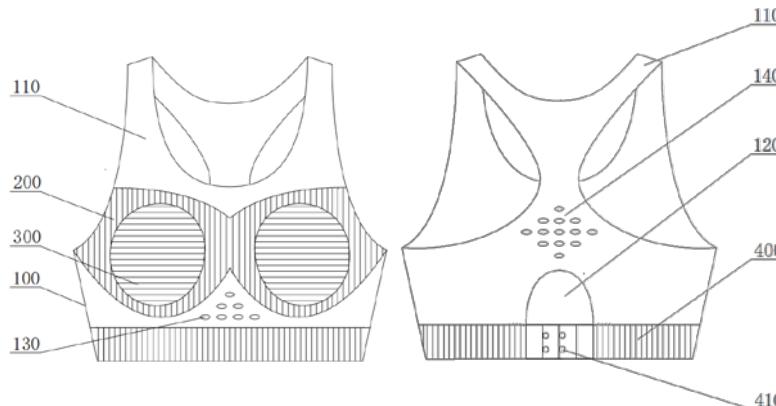
- This study demonstrates the potential of 4D scanning technology for capturing dynamic deformations of the breast during physical activities.
- The results provide valuable insights into the complex nature of breast motion and deformation, which can inform the design of sports bras and other supportive garments.
- Future research could focus on expanding the dataset to include a larger sample size and different activities to further enhance our understanding of breast biomechanics.

12

Zhang LY, Zhou X, Yick KL. (2024). Impact of Bra Usage on Upper Body Measurements and Biomechanical Performance in Tennis Athletes. The Symposium on Sports Science & Technology 2024, Hong Kong.

Chan MK, Yick KL, Yip J, Ng SP. (2024). Breast Protective Equipment Usage and Perception Among Female Contact Sports Players. The Symposium on Sports Science & Technology 2024, Hong Kong.

Liu Q, Zhang LY, Xiao Q, Yick KL. (2024) Quantifying Breast Regional Deformation During Fast Walking With 4D Scanning. The Symposium on Sports Science & Technology 2024, Hong Kong.


Research Outputs | 03 Patents

Journal
PapersConference
Papers

Patents

Designs

A design patent entitled: An inlaid seamless one-size-fits-more sports bra design 能適應胸型變化、一體成型的無縫運動內衣, filed on 5 November 2024 (China).

国家知识产权局

5118034

深圳市福田区莲花街道紫荆社区深南大道 6008 号深圳特区报业大厦
33 层 深圳中一联合知识产权代理有限公司
咨询(0755-82094518)

发文日:

2024年11月15日

申请号或专利号: 202411218992.5

发文序号: 2024103100848400

申请人或专利权人: 香港理工大学

发明创造名称: 能适应胸型变化、一体成型的无缝运动内衣

发明专利申请初步审查合格通知书

上述专利申请, 经初步审查, 符合专利法实施细则第 50 条的规定。

根据专利法第 34 条的规定, 专利申请自申请日起满十八个月即行公布。

初步审查合格的上述发明专利申请是以:

2024 年 9 月 2 日提交的说明书摘要

2024 年 9 月 2 日提交的权利要求书

2024 年 9 月 2 日提交的说明书

2024 年 9 月 2 日提交的说明书附图为
为基础的。

提示:

1. 发明专利申请人可以自申请日起 3 年内提交实质审查请求书、缴纳实质审查费, 申请人期满未提交实质审查请求书或者期满未缴纳或未缴足实质审查费的, 该申请被视为撤回。

2. 专利费用可以通过网上缴费、银行/邮政汇款, 直接向代办处或国家知识产权局专利局缴纳。缴费时应当写明正确的申请号/专利号、费用名称及分项金额, 未提供上述信息的视为未办理缴费手续。了解缴费更多详细信息及办理缴费业务, 请登录国家知识产权局官方网站。

审查员: 吴楠
联系电话: 010-62088313

审查部门: 初步审查部

210304 专利申请, 国函请费: 100008 北京市海淀区西直门桥西土城路 6 号, 国家知识产权局专利局受理处
2023.03 电子申请, 应当通过专利业务办理系统以电子文件形式提交相关文件。除另有规定外, 以纸件等其他形式提交的
文件视为未提交。

Research Outputs | 03 Patents

Journal
PapersConference
Papers

Patents

Designs

運動文胸, filed on 18 June 2025 (China).

专利申请受理通知书

根据专利法第28条及其实施细则第43条、第44条的规定，申请人提出的专利申请已由国家知识产权局受理。现将确定的申请号、申请日等信息通知如下：

申请号：202512513651

申请日：2025年06月17日

申请人：香港理工大学

发明人：姜彦青,易洁伦,余芷慧,叶晓云

发明创造名称：运动文胸

经核实，国家知识产权局确认收到文件如下：

权利要求书 1 份 2 页,权利要求项数： 10 项

说明书 1 份 10 页

说明书附图 1 份 8 页

说明书摘要 1 份 1 页

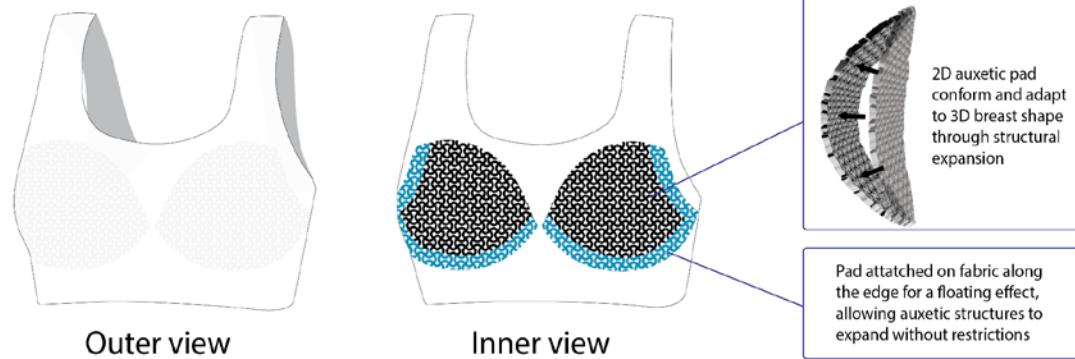
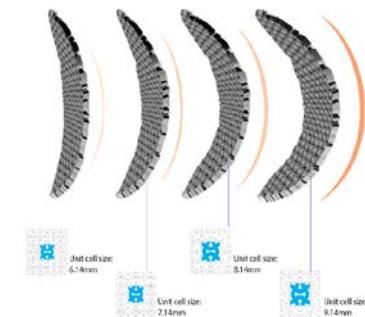
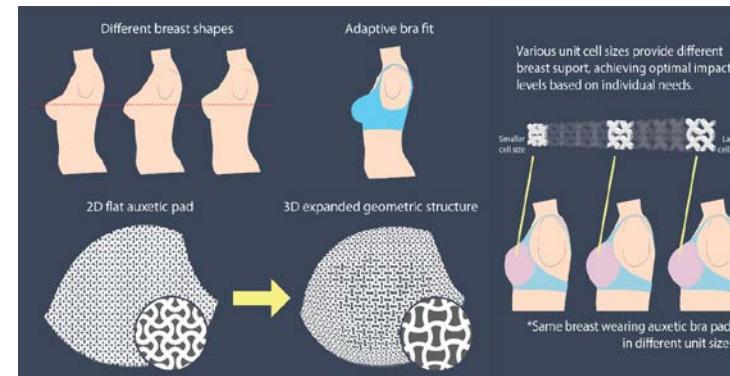
实用新型专利请求书 1 份 5 页

向外国申请专利保密审查请求书 文件份数：1 份

申请方案卷号：ZS2505606-2

提示：

1. 申请人收到专利申请受理通知书之后，认为其记载的内容与申请人所提交的相关内容不一致时，可以向国家知识产权局请求更正。

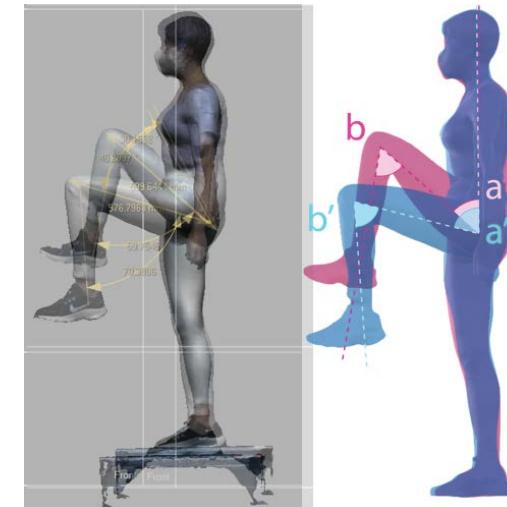



2. 申请人收到专利申请受理通知书之后，再向国家知识产权局办理各种手续时，均应当准确、清晰地写明申请号。

3. 国家知识产权局收到向外国申请专利保密审查请求书后，依照专利法实施细则第 9 条予以审查。

审查员：伦燕生
联系电话：010-62356655

200101 纸质申请，回函请寄：100088 北京市海淀区复兴路6号，国家知识产权局专利局受理处
2023.03 电子申请，应当通过专利业务办理系统以电子文件形式提交相关文件。除另有规定外，以纸件等其他形式提交的文件视为未提交。

Research Outputs | 04 Sport-Specific Leggings


Journal
PapersConference
Papers

Patents

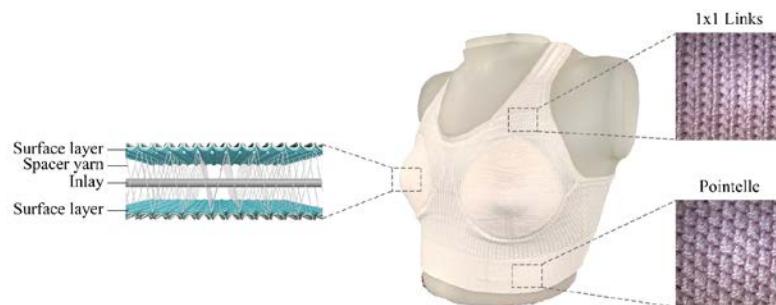
Designs

Engineered with advanced 3D and 4D scanning, **running-specific leggings** are designed to accommodate the dynamic movement and muscle expansion of the lower limbs, including quadriceps, gluteus maximus and hamstrings during movements. This ensures a supportive, flexible fit that enhances performance and comfort by adapting to the runner's natural motion.

Research Outputs | 04 Sport-Specific Sports Bras

Journal Papers

Conference Papers


Patents

Designs

Sports bra designs tailored for **elite athletes in racket sports teams**, including badminton, tennis and squash, facilitating upper body movement, particularly of the arms and shoulders. Given the asymmetrical nature of these sports, the incorporation of wide shoulder straps with **specialised designs for left-handed or right-handed players** enhances performance.

Novel seamless sports bra designs with tailored, stretchable knitted structures to offer a snug and supportive fit for adolescent girls.

Tailored sports bra designs for cycling, hockey, softball, and tennis meticulously account for the range of body movements, postures, and region-specific stress and strain, utilizing advanced 3D and 4D scanning techniques.

Research Field & Key References

Research Field

Research Context & Intellectual Positioning

- Human body dynamics significantly affect body measurements, making dynamic body surface analysis vital for optimal garment fit. (1-2)
- Despite increasing demands for fit, comfort and support in activewear, scientific understanding of design and material parameters for improved fit, comfort and protection against injuries during sports is lacking. The body's complex shape, regional movements and soft tissue deformations, which varies with the type of physical activity, present significant challenges for anatomically engineered activewear design.

Design Limitations

- Due to the lack of suitable technology and research design, significant challenges persist regarding body surface changes during natural continuous movement and trunk movements related to various sports modalities. (3-4)
- Conventional 3D body scanning systems, which capture only static postures, inadequately characterise the pliable and diverse geometry of body and breast tissue, as they fail to account for its dynamic deformability. (4-5)
- Insufficient dynamic 4D data hampers activewear design, as traditional 3D body scanning and motion capture systems cannot measure continuous body shape changes during motion.

Key References

- Sohn MH & Bye E. (2014). Exploratory study on developing a body measurement method using motion capture. *Clothing & Text Res J*, 32(3), 170-185.
- Wu Y, Li Y, Liu AM, Xiao F, Wang YZ, Hu F, Gu DY. (2016). Effect of active arm swing to local dynamic stability during walking. *Human Movement Science*, 45, 102-109.
- Herr H & Popovic M. (2008). Angular momentum in human walking. *J of Exp Biology*, 211, 467-81.
- McGhee DE, Steele JR. (2020). Biomechanics of breast support for active women. *The Amer Coll of Sports Med*. 48(3), 99-109.
- Chi L, Kennon R. (2006). Body scanning of dynamic posture. *Int. J Clothing Sci & Tech*, 18(3), 166-78.

Research Field & Key References

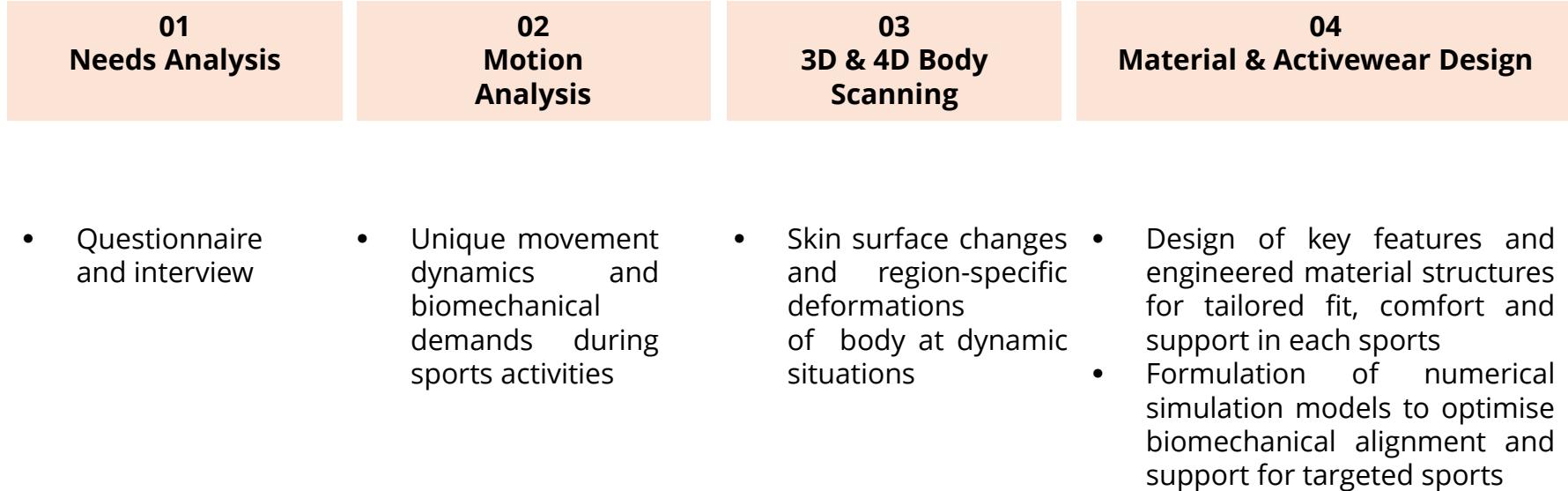
Research Field

Methodological Constraints

- Motion capture systems offer limited spatial resolution and surface geometry information, and they require a large number of body landmarks for motion analysis, which is time consuming. (1, 4, 6-7)

Original Contribution

- This study uses 4D scanning technology to capture 3D point clouds of the human body surface at high frame rates to better understand the dynamic surface changes, regional deformations, skin stretching and geometric changes of the human body, as well as to advance the design and development of sports-specific sportswear. (8-9)


Key References

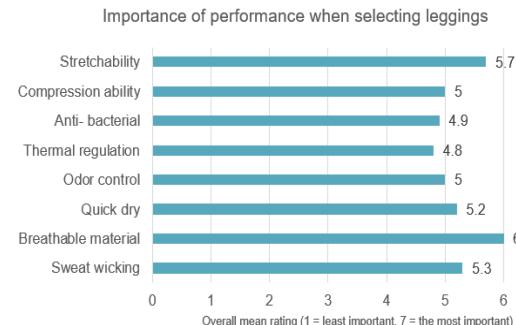
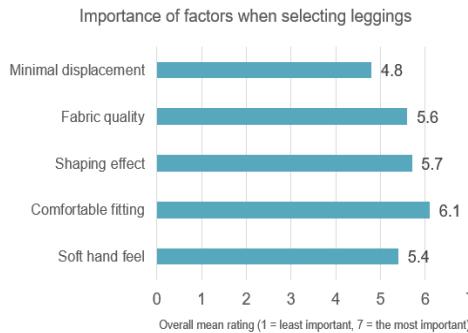
1. Sohn MH & Bye E. (2014). Exploratory study on developing a body measurement method using motion capture. *Clothing & Text Res J*, 32(3), 170-185.
2. Wu Y, Li Y, Liu AM, Xiao F, Wang YZ, Hu F, Gu DY. (2016). Effect of active arm swing to local dynamic stability during walking. *Human Movement Science*, 45, 102-109.
3. Herr H & Popovic M. (2008). Angular momentum in human walking. *J of Exp Biology*, 211, 467-81.
4. McGhee DE, Steele JR. (2020). Biomechanics of breast support for active women. *The Amer Coll of Sports Med*, 48(3), 99-109.
5. Chi L, Kennon R. (2006). Body scanning of dynamic posture. *Int. J Clothing Sci & Tech*, 18(3), 166-78.
6. Scurr J, White J, Hedger W. (2008). 3D displacement, velocity and acceleration of the breast during a running gait cycle. *Med & Sci in Sports & Exercise*, 40(S221).
7. Haake S, Scurr J. (2011). A method to estimate strain in breast during exercise. *Sports Engrg*, 14, 49-56.
8. Pons-Moll G, Romero J, Mahmood N, Black MJ. (2015). Dyna: A model of dynamic human shape in motion. *ACM Transactions on Graphics*, 34(4), 120.
9. Pei J, Griffin L, Ashdown SP, Fan J. (2021). Monitoring dynamic breast measurements obtained from 4D body scanning. *Int J Clo Sci & Tech*, 0955-222.

Research Methods, Prototypes & Materials

Sports-Specific Activewear Design Protocol

WORKFLOW

Research Methods, Prototypes & Materials



Needs Analysis

Motion Analysis

3D & 4D Body Scanning

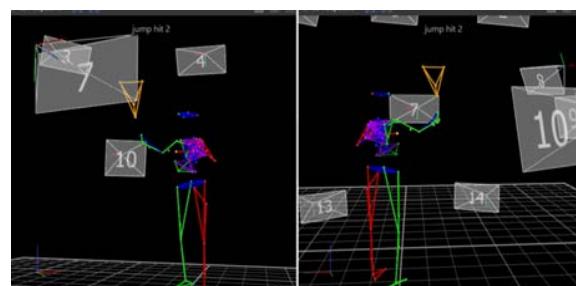
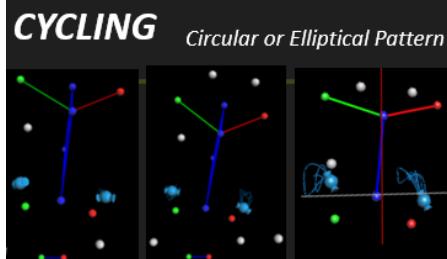
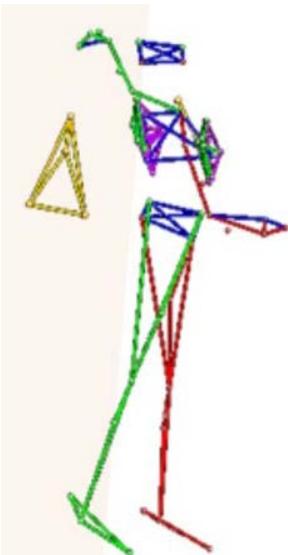
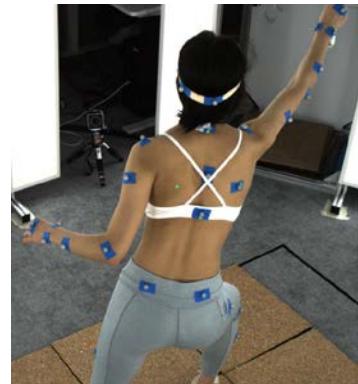
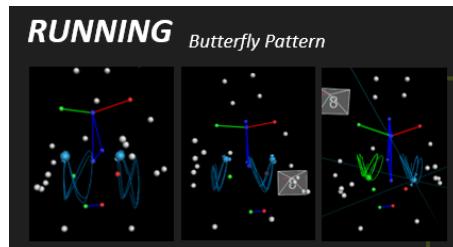
Material & Activewear Design

Surveys and interviews were conducted to understand the specific needs of athletes and wearers, in areas of support, style preferences, issues of fit, motion and the preferred design features across different sports activities. The design features of commercially available sports bras and leggings were systematically compared and analysed.

Research Methods, Prototypes & Materials

Needs Analysis

Motion Analysis






3D & 4D Body Scanning

Material & Activewear Design

Motion capture analysis enables precise characterisation of unique movement dynamics and biomechanical demands during sports activities, providing valuable insights for improving athletic performance, injury prevention and activewear design.

Distinct differences in **nipple displacements** between running and cycling.

Compression shorts - CS

Research Methods, Prototypes & Materials

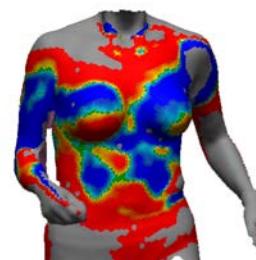
Needs Analysis

Motion Analysis

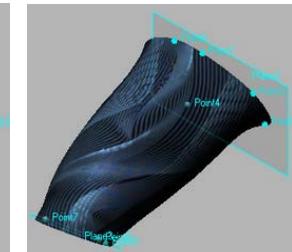
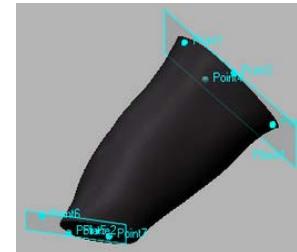
3D & 4D Body Scanning

Material & Activewear Design

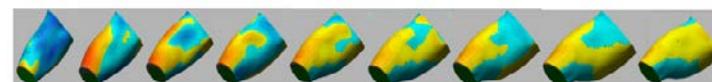
4D scanning, combined with time-based dimensional analysis, offers valuable insights into the dynamic deformation of the body surface during running. It yields crucial information for identifying specific body regions that require compression and support to protect the underlying tissues and muscles, thereby helping preventing muscular oscillations and potential injuries, particularly in high-intensity and endurance sports, including marathon running.

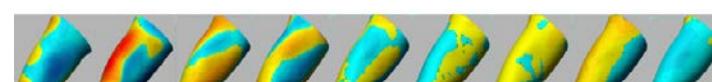


Related publications:



[Liu Q, Yick KL, Sun Y, Yip J \(2024\) Ultra-dense Motion Capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D. *PLOS ONE* 19\(2\): e0299040.](#)

[Liu Q, Zhang LY, Xiao Q, Yick KL. \(2024\) Quantifying Breast Regional Deformation During Fast Walking With 4D Scanning. The Symposium on Sports Science & Technology 2024, Hong Kong.](#)


0.5ms VS 2ms


2ms VS 3.5ms

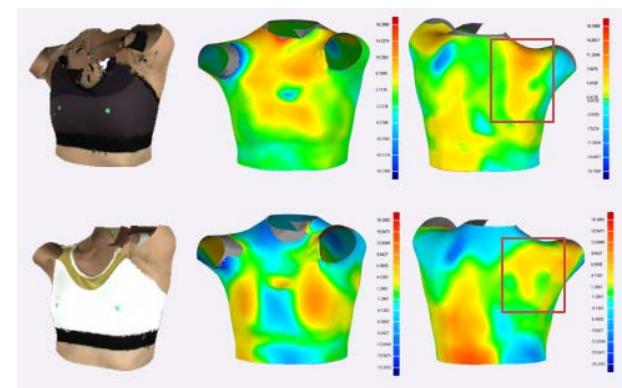
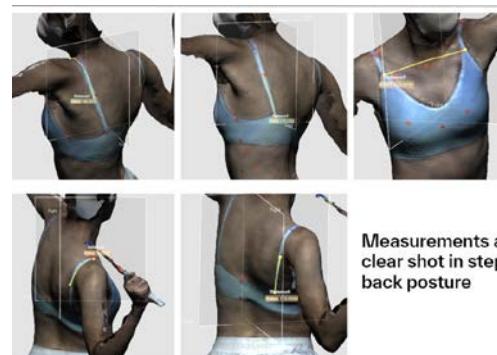
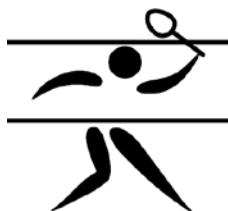
0.03s 0.06s 0.09s 0.12s 0.15s 0.18s 0.22s 0.26s 0.3s

Thigh region without leggings

Thigh region with a high-impact leggings

Research Methods, Prototypes & Materials

Needs Analysis




Motion Analysis

3D & 4D Body Scanning

Material & Activewear Design

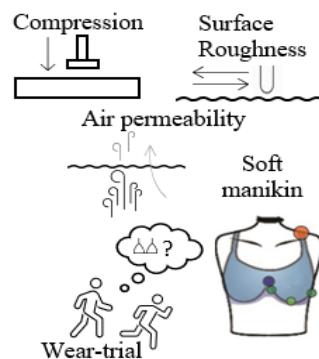
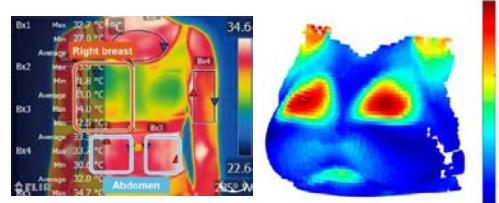
Through 3D and 4D scans, uneven stresses were identified at shoulder straps, between the front and the back and between the left and the right at various poses.

Findings: Length changes in shoulder straps ranged from -0.6% (lower back of the non-dominant side) to 4.6% (upper back of the dominant side). Asymmetry design of shoulder straps can effectively reduce arm restriction on the dominant side.

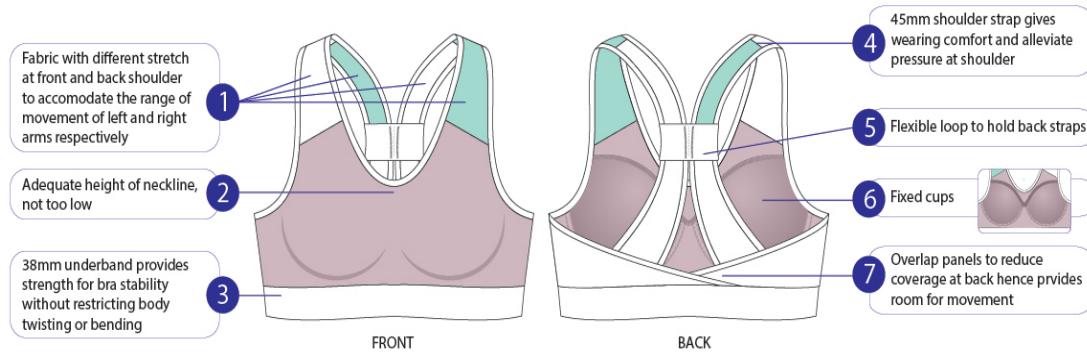
Related publications:

Zhang LY, Zhou X, Yick KL. (2024). Impact of Bra Usage on Upper Body Measurements and Biomechanical Performance in Tennis Athletes. The Symposium on Sports Science & Technology 2024, Hong Kong.

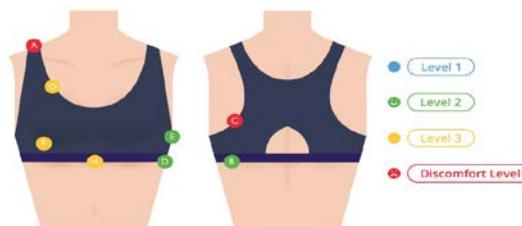
Research Methods, Prototypes & Materials



Needs Analysis

Motion Analysis


3D & 4D Body Scanning

Material & Activewear Design


Design of Badminton-Specific Sports Bras (2022)

A **badminton-specific sports bra** was designed to improve stretch and flexibility at the shoulder and the back to allow free range of motion, less compression and comfort.

Analysis of fabric elasticity, thermal behaviour & bra pressure to improve wear comfort and free flexible movement of shoulders, arms and torso.

Please use "O" to indicate

1 The overall comfort level of the bra	
1 indicates "very uncomfortable", 7 indicates "very comfortable"	
2 The overall stickiness of the bra after the wear trial	
1 indicates "very sticky", 7 indicates "not-sticky"	
3 The overall tightness of the bra	
1 indicates "very loose", 7 indicates "very tight"	
4 The stretchability of the shoulder strap	
1 indicates "rigid", 7 indicates "very stretchy"	
5 The convenience of wearing the bra	
1 indicates "inconvenient", 7 indicates "very convenient"	
6 How much restriction to the range of your arms movement	
1 indicates "no restriction", 7 indicates "a lot of restrictions"	

Bra A (Market sample)

Bra B (Prototype)

Related conference paper:

Keung, Y.C., Yick, K.L., Yu, A. & Yip, J. (2023). Ergonomic design of badminton-specific sports bras for athletes. The 92nd TIWC 2023, July 3-6, 2023, University of Huddersfield, Huddersfield, UK.

Research Methods, Prototypes & Materials

Needs Analysis	Motion Analysis	3D & 4D Body Scanning	Material & Activewear Design
----------------	-----------------	-----------------------	------------------------------


Design of Running-Specific Leggings (2023)

4D scans yield useful information about the geometry of the anatomical zones and the radius of the curvature of the body parts. Additionally, they inform the choice of fabrics, which is a critical prerequisite for precisely determining the garment-skin interface pressure and the contract conditions of compression garments in relation to different body parts and joints.

Findings: A series of **running-specific leggings** have been custom-designed, offering unique support to protect the underlying tissues and muscles from excessive muscular oscillations during running.

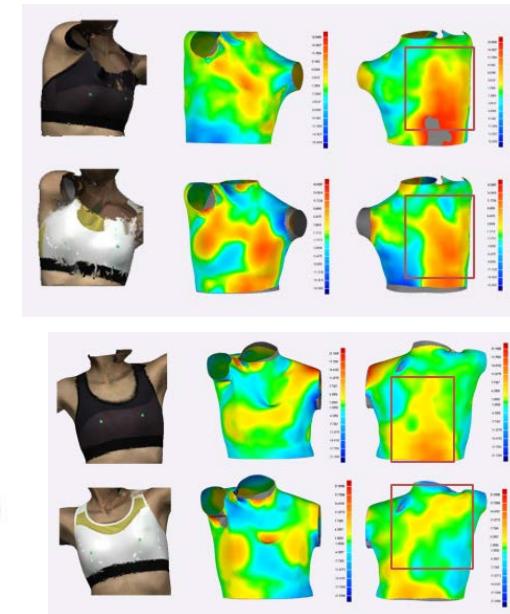
Fabric No.	Summer
Fabric 1 (2110252H1)	37% polyester + 37% nylon + 26% lycra (59" X 210 gsm; 0.4mm)
Fabric 2 (2110264H1)	37% polyester + 37% nylon + 26% lycra (59" X 210 gsm; 0.5mm)
Fabric 3 (2110262H1)	37% polyester + 37% nylon + 26% elastane (59" X 210 gsm; 0.45mm)
Fabric 4 (2110260H1)	37% polyester + 37% nylon + 26% elastane (59" X 210 gsm; 0.48mm)
Fabric 5 (2110253H1)	37% polyester + 37% nylon + 26% Roica (59" X 210 gsm; 0.39mm)
Fabric 6 (2110258H1)	37% polyester + 37% nylon + 26% Roica (59" X 210 gsm; 0.38mm)
Fabric 10 (2110256H1)	37% polyester + 36% nylon + 27% Roica (59" X 215 gsm; 0.42mm)
Fabric 11 (2110254H1)	37% polyester + 36% nylon + 27% Roica (59" X 215 gsm; 0.56mm)

Research Methods, Prototypes & Materials

Needs Analysis

Motion Analysis

3D & 4D Body Scanning


Material & Activewear Design

Design of Sports Bras for Elite Athletes (Racket Sports Teams) (2024)

Asymmetric front panel and back panel design

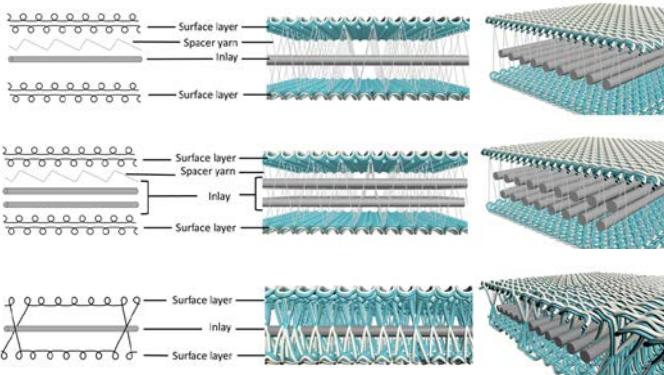
Two sports bra designs have been tailored specifically for **elite athletes on racket sports teams**, ensuring unrestricted shoulder and arm movement on the dominant side while simultaneously providing improved support and fit on the non-dominant side to prevent the shoulder strap from slipping.

Related conference paper:

Zhang LY, Zhou X, Yick KL. (2024). Impact of Bra Usage on Upper Body Measurements and Biomechanical Performance in Tennis Athletes. The Symposium on Sports Science & Technology 2024, Hong Kong.

Stresses on the right side of the back and shoulder during backswing were relieved by the custom-designed sports bras.

Research Methods, Prototypes & Materials


Needs Analysis

Motion Analysis

3D & 4D Body Scanning

Material & Activewear Design

Design of Seamless Sports Bras for Adolescent Girls (2024/25)

Stretchable inlaid fabric has been developed to offer a realistic 3D effect for bra cups. This design ensures adequate support, along with enhanced air and moisture permeability.

Sports bras were anatomically designed for adolescent girls with flexible bra cups and supportive fit by using spacer knitting techniques and inlay yarns.

It accommodates growth and size changes during adolescence and provide suitable breast protection.

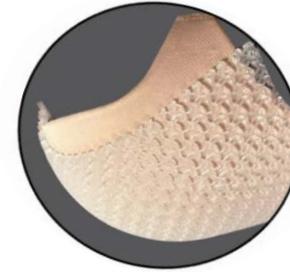
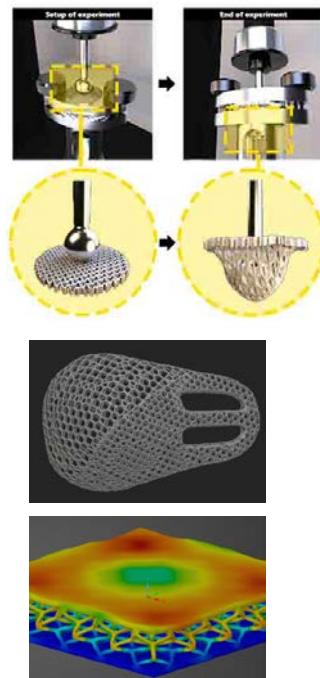
Related publications:

[Kwan MY, Yick KL, Yip J, Li NW, Yu A and Lo KW. \(2024\). Breast Geometry and Sports Bra Design Study for Adolescent Girls. *Journal of Fiber Bioengineering and Informatics*. 17 \(4\), 233-243.](#)

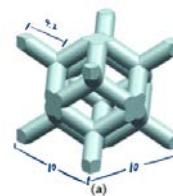
[Kwan MY, Tu YF, Yick KL, Yip J, Li NW, Yu A, Lo KW. \(2024\). Enhancing Force Absorption, Stress-Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications. *Polymers*, 16, 3031.](#)

[Zhong Z, Kwan MY, Yick KL. \(2024\). Novel Seamless Sports Bra Designs for Adolescent Girls. *The Symposium on Sports Science & Technology, Hong Kong*. 能適應胸型變化、一體成型的無縫運動內衣 \(2024112189925\) China Patent filed on 5th November 2024](#)

Research Methods, Prototypes & Materials



Needs Analysis

Motion Analysis


3D & 4D Body Scanning

Material & Activewear Design

Design of Sports Bras for Cycling and Hockey (2024/25)

Findings: Bra pads with auxetic structures offer excellent shape-forming behaviour, allowing for a flexible fit and support in various body orientations, such as forward-leaning during cycling.

Silicone-textile composites, combined with lattice structures, provide excellent cushioning and protection against high-impact forces encountered in sports like hockey.

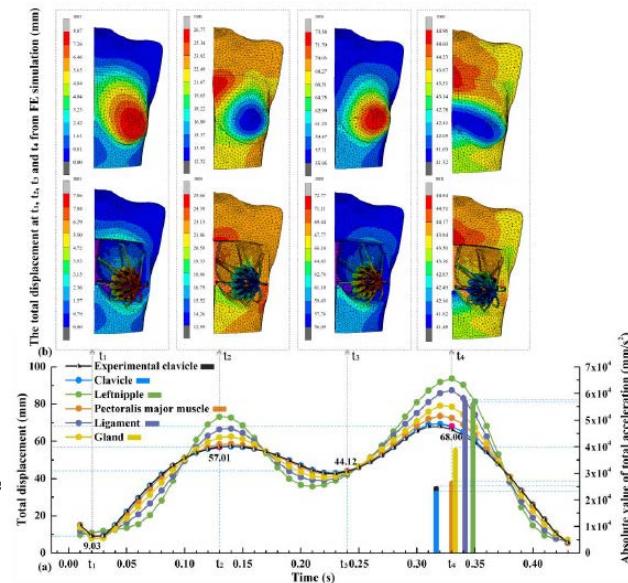
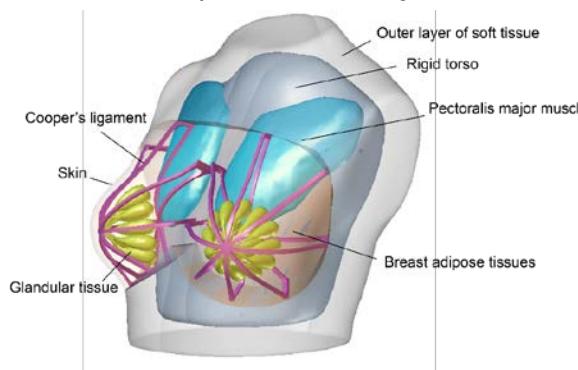
Related publications:

Chan MK, Li PL, Yick KL, Yip J, Ng SP (2024). Exploration of textile-silicone composites and materials for personal impact-resistant protection. *Materials*, 17, 1439.

Research Methods, Prototypes & Materials

Needs Analysis

Motion Analysis



3D & 4D Body Scanning

Material & Activewear Design

Design of Sports Bras based on Biomechanical Simulations (2024/25)

Findings:

- 4D scans capturing dynamic surface changes of the body provide clarity on soft tissues and boundaries during movement, effectively validating FE simulated models.
- The stress experienced by the breast components, in ascending order of magnitude, affects the **glandular tissues**, pectoralis major muscle, adipose tissues and ligaments.

Related journal paper:

Chen J, Sun Y, Liu QL, Yip J & Yick KL. (2024). Construction of multi-component finite element model to predict biomechanical behaviour of breasts during running and quantification of the stiffness impact of internal structure. *Biomechanics and Modeling in Mechanobiology*, 23. 1679-1694.

Chen, J., Zhong, Z., Sun, Y., Yip, J., Yick, K.L. (2025). Dynamic simulation of breast behaviour during different activities based on finite element modelling of multiple components of breast. *Scientific Reports*, 15, 3659.

Chen J, Keung YC, Sun Y, Yip J, Yick KL. (2025). Exploration of breast motion under different activities and intensities. *Journal of Engineered Fibers and Fabrics*. 20:1-11.

Research Outcomes, Findings & Further Research

Research Outcomes:

The proposed 3D and 4D scanning techniques for body surface analysis can successfully visualise major changes in body shape and deformations that occur during various physical activities and high-impact exercises. These techniques provide valuable information on body region-specific stress and strain, enabling new insights into activewear design and material developments with targeted support, compression and protection to wearers.

Findings:

The multi-component dynamic finite element models provides a clear picture of body and breast behavior across various sports. The proposed approach also provides a scientific and practical guideline to enhance the activewear design process, empowering designers to create custom designs that address the needs and muscle control requirements corresponding to individual sports.

Further Research:

Future research will delve deeply into specific breast sizes, particularly focusing on larger-breasted females, and will further categorise breast shapes to design personalised sports bras. By analysing breast motion trajectories and boundaries during physical activities, tailored solutions that enhance support, comfort and performance for each breast type will be addressed.

Research Dissemination

Category	Details
01	Video of customised sports bra designs for elite athletes of racket sports teams
02	'Flying High' exhibition in Paris, France, 2024. https://www.polyu.edu.hk/rio/event-calendar/
03	A collaborative project with the German Academy of Dental Ergonomics (AGEZ) and an interview report in the Dental Tribune
04	Contract research of running-specific legging design (HK\$416,000).
05	Outstanding Research Paper Award & Outstanding Presentation Award (TBIS 2024) Best Paper Award (ICTEAA 2024)
06	Education Workshops <ul style="list-style-type: none"> Educational workshops and fit assessments for elite athletes at the Hong Kong Sport Institute Education workshops for adolescent girls in secondary schools, Shenzhen University and the Junior Researcher Mentoring Programme
07	Appendix <ul style="list-style-type: none"> Feedback from elite athletes and testimonials from schoolgirls Presentations at the Symposium on Sports Science & Technology NIKE visits of Hong Kong office and US R&D team PolyU Alumni Sports and Wellness Day

Research Dissemination / 01 Video

Media Player

SRFS PROJECT FINAL REPORT (Jul 2023 - Dec 2024)

Ergonomic Design of Sport-specific Sports Bras and Customisation for Female Athletes

Completion Project Report

PI: Prof. YICK K.L.
Co.I: Prof.Yip Yiu Wan, Joanne
Prof. Tan Jeanne
Prof. Wong Wai Keung
Dr. Zhang Shichen

Scope: Science and research project: Further

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

AiDLab

HONG KONG SPORTS INSTITUTE 香港體育學院

YICK KL

Badminton player in action

[HKSI Sport Bras Design.mp4](#)

Research Dissemination | 02 Exhibition

'Flying High' exhibition in Paris, France

Sport-specific sports bra designs for cycling, softball, hockey and tennis were developed to provide targeted support, compression and protection to wearers.

Date: 25 June – 1 July 2024

Time: Paris (GMT +2) 10:00 am – 7:00 pm

Location: 7 Rue Notre Dame des Victoires,
75002 Paris, France

[VIDEO](#)

Research Dissemination | 03 Media Report & Bra design for Dentists

A collaborative research was established with the **German Academy of Dental Ergonomics (AGEZ)** to design and develop a supportive bra aimed at facilitating a healthy, neutral and balanced working posture with optimal comfort and protection for female dentists. Apart from an international survey with more than **50 dental professionals**, the performance of the proposed bra designs made of various bra features and materials was assessed and compared.

An interview was conducted and reported in **Dental Tribune** in Dec 2020 (in both German and English).

Interview Report:

<https://www.dental-tribune.com/news/it-was-my-intention-to-break-this-taboo-researchers-develop-ergonomic-bra-for-female-dentists/>

Haben Sie BH-Probleme?

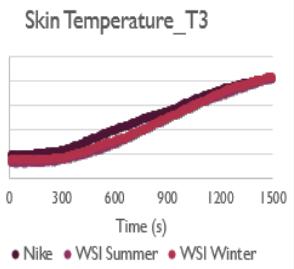
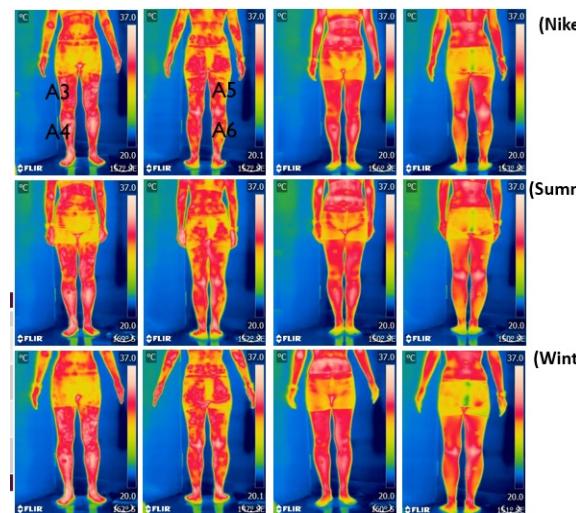
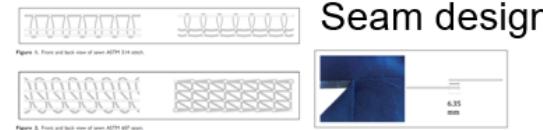
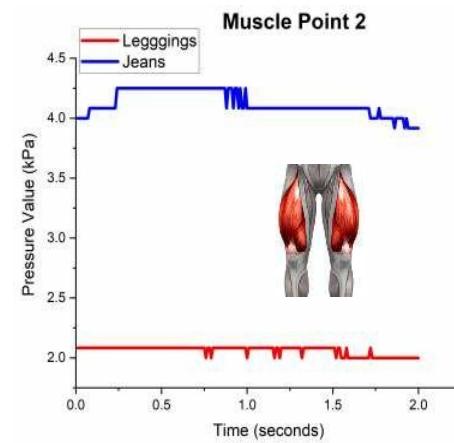
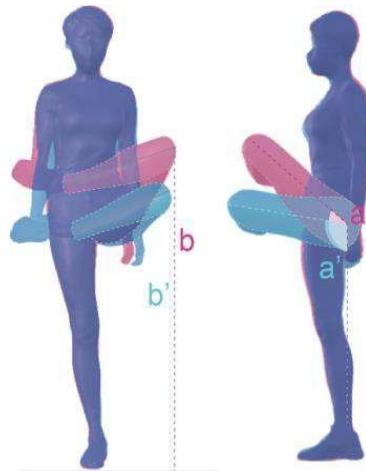
Schulterschmerzen?

Ägerisse?

“Die Ultimative Ergonomische BH für Zahnärztinnen”

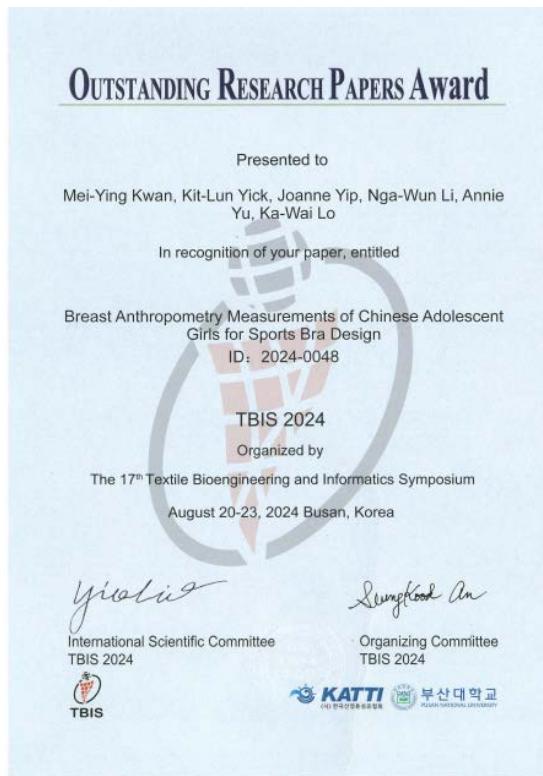
Online Befragung

Scan it!






Eine Umfrage für ein Projekt über die Entwicklung eines ergonomischen ArbeitsBHs für Zahnärztinnen. Es geht um die Erfahrungen, die Sie täglich von Ihrer BH erfüllt haben möchten und Ihre Ansichten über die unterschiedlichen Weisen, wie BHs während der Arbeit getragen werden.

INSTITUTE OF TEXTILES & CLOTHING
纺织及服装学系

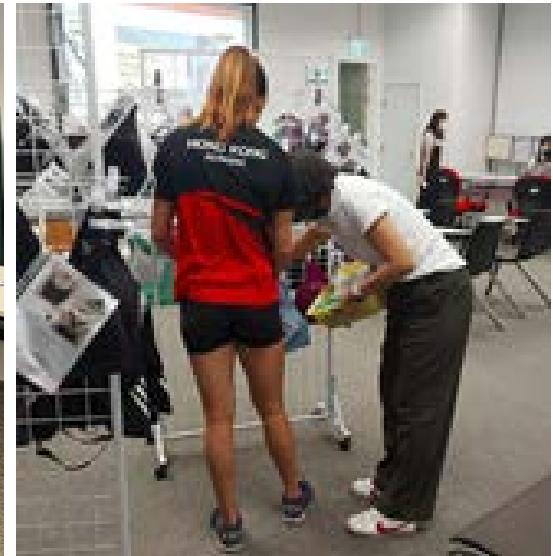
AGEZ
Arbeitsgemeinschaft "Ergonomie in der Zahnheilkunde" in der DGZMK


Research Dissemination | 04 Contract Research

A contract research on the ergonomic design of running specific leggings with a new activewear brand was conducted in 2022.

Research Dissemination | 05 Awards

Outstanding Research Paper Award and Outstanding Presentation Award at TBIS 2024 in Korea


Best Paper Award at ICTEAA 2024 in Italy

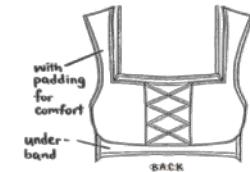
Research Dissemination | 06 Educational Workshops

An educational workshop for adolescent girls in **secondary schools** was conducted to impart essential knowledge on selecting a well-fitting bra. The workshop introduced methods of determining bra size and covered the features and functions of sports bras. After the workshop, 100% athletes agreed the workshop was helpful, and 59% of the bra fit problems or issues were solved.

Additionally, sports bra educational workshops were organised at the **Hong Kong Sports Institute** from July 2023 to October 2023. This workshop facilitated discussions on bra-related issues with a total of 40 elite athletes from various sports teams.

Research Dissemination | 07 Appendix

Feedback from elite athletes


Leung, Elite badminton athlete: 'I noticed marked differences in my shoulder and right-back movements.'

[Full project report](#) with feedback from elite athletes

Feedback from schoolgirls

Aimer, Secondary school student: 'The project opened my eyes to the perfect fit of activewear, sparking my enthusiasm to move and exercise like never before! It is amazing to see how high-performance designs are driven by cutting-edge innovation and research.'

[Junior Research Mentoring Programme, Media Report](#)

Research Dissemination | 07 Appendix

Presentations at Symposium on Sports Science & Technology

NIKE visits of Hong Kong office and US R&D team

PolyU Alumni Sports and Wellness Day

