

RAE2026

AI-Based Design Customisation of Insoles for Diabetic Patients

Prof Yick Kit Lun

UoA 38

Contents

Section	Contents	Page
1	Project Descriptor	03
2	Researcher Profile	04
3	Research Questions	06
4	Research Outputs	07
5	Research Field and Key References	12
6	Research Methods, Prototypes, and Materials	14
7	Research Outcomes, Findings, and Further Research	27
8	Research Dissemination	28
9	Appendices	42

Descriptor

Funded by a local government investment totalling HK\$3.6 million (2021–2024), this research addresses critical gaps in the design of custom-fabricated insoles for reducing high plantar pressure and preventing foot ulcers in diabetic patients. Prof Yick Kit Lun and her team demonstrate a novel AI-based framework that integrates foot biomechanics, dynamic 4D foot anthropometry data from over 100 diabetic patients, material analyses, pressure information, and AI-driven algorithms to address the complexities of individual foot shapes and enhance the custom fabrication of personalised diabetic insoles. They were all derived from a simple traditional footprint image. Clinicians can, therefore, precisely prescribe insoles with an optimal fit to meet the individual needs of patients and effectively control plantar pressure for rehabilitation treatment. This approach also eliminates the need for expensive sensors and repeated walking tests to assess insole performance.

This research offers a positive long-term impact on the customisation of insole interventions for diabetic patients. A design patent has been filed, and the findings have been disseminated widely, with publications in 12 journals, 5 conferences, 2 workshops, 1 online course, and 8 local and overseas exhibitions. The research garnered attention from various local TV media channels, newspapers, and social media platforms. It was also showcased at the symposium in Japan and the Innovations in Design Summit 2023. Subsequent collaborative research projects and seminars were initiated with Shenzhen University (China), the University of Hong Kong-Shenzhen Hospital, Hong Kong Community College, the local footwear industry, and health centres. In addition to industry sponsorships, two licensing agreements, five in-kind donations, and a contract research project with industry partners were generated. Furthermore, new InnoHK and Sports Science and Research Funding Scheme (SRFS) projects have been established to expand the research into sport-specific insole design, with HK\$4.6 million and HK\$5.2 million in funding secured for 2025-2030, respectively.

Prof Yick Kit Lun

Prof Yick specialises in ergonomic design to improve human well-being, focusing on patient clothing, activewear, and footwear. She integrates 3D anthropometry, biomechanical analysis, and material science to enhance comfort and functionality, particularly for vulnerable populations. Her research involves developing advanced manikin systems for bra evaluation (MCO1) and applying 4D motion analysis to optimise sports bra fit and support for elite athletes (MCO3), translating biomechanical data into a design enabling improved movement and power efficiency. She has also established robust methods to predict pressure distribution and combine foot biomechanics and dynamic anthropometry to design custom orthotic insoles for diabetic patients (MCO2).

Prof Yick's role in research projects is characterised by her ability to define design criteria, propose material innovations, and develop prototypes that address needs in sports, rehabilitation, and personalised care. She maintains scientific rigour by establishing objective assessment frameworks to evaluate prototype performance. In addition to government funding, her collaborative network includes the Hong Kong Intimate Apparel Industries' Association (HKIAIA), the Hong Kong Sports Institute, activewear brands, global testing and certification firms, healthcare institutions, Non-governmental Organizations (NGOs), and the Laboratory for Artificial Intelligence in Design under InnoHK. These partnerships reflect her commitment to interdisciplinary collaboration, ensuring that her work contributes to both academic advancement and practical benefits for the industry and society.

Prof Yick Kit Lun

Multidisciplinary Research

Co-investigators

DR LI NGA WUN |
Academic lead in
seamless knitting
research, University of
Technology Sydney
Knitwear Engineer

DR SHI QIUQIONG |
Research assistant
professor, The Hong
Kong Polytechnic
University

Biomechanical
Engineer

DR LI SABRINA |
Postdoctoral fellow,
The Hong Kong
Polytechnic University

Footwear Ergonomic
Engineer

Supporting and Collaborating Partners

Dr Li NW, a knitwear engineer, designs advanced knitted fabrics and materials, optimising insole properties for effective pressure offloading, comfort, and durability in insole designs for diabetic patients.

Dr Shi Q, a biomechanical engineer, leads the biomechanical design and analysis of the insole performance, ensuring optimal pressure distribution, support, and functionality for diabetic patients through advanced evaluation methods and experiments.

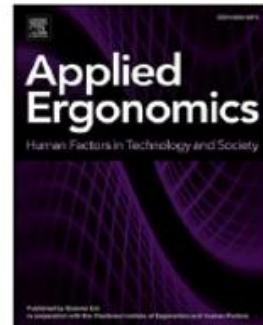
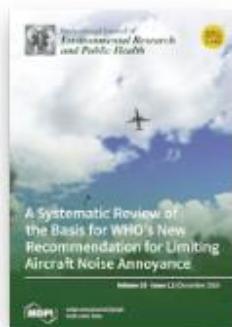
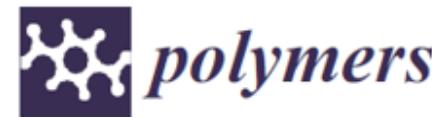
Dr Li S, a footwear ergonomic engineer, specialises in designing insoles and footwear with optimal fit and comfort, ensuring ergonomic support, and addressing the specific needs of diabetic patients.

Research Questions

Although orthotic insoles are recognised as the standard first-line treatment for diabetic foot ulcers, there is a lack of scientific knowledge regarding the design and material parameters that govern dynamic fit and plantar pressure for effective therapy. The intricate anatomical structure of the foot, the specific demands for insole fit, the properties of insole materials, and the pressure distribution under dynamic conditions all pose great challenges in the anatomically engineered design of insoles. The research questions of this project are as follows:

- Compared to the traditional approach of insole prescription, which involves repeated walking tests and subjective assessments, is it possible to objectively predict the offloading performance of insoles?
- How can the 3D geometric features of the foot in dynamic situations be precisely characterised to improve the design and fit of orthotic insoles?
- What potential AI solutions exist for the custom design of insoles that would ensure a personalised fit and the precise control of plantar pressure for rehabilitation treatment?
- Given that traditional insole foams tend to trap heat and moisture within the footwear, what materials and structures could be employed to allow breathability, cushioning, and support for foot protection and wearing comfort?

Research Outputs

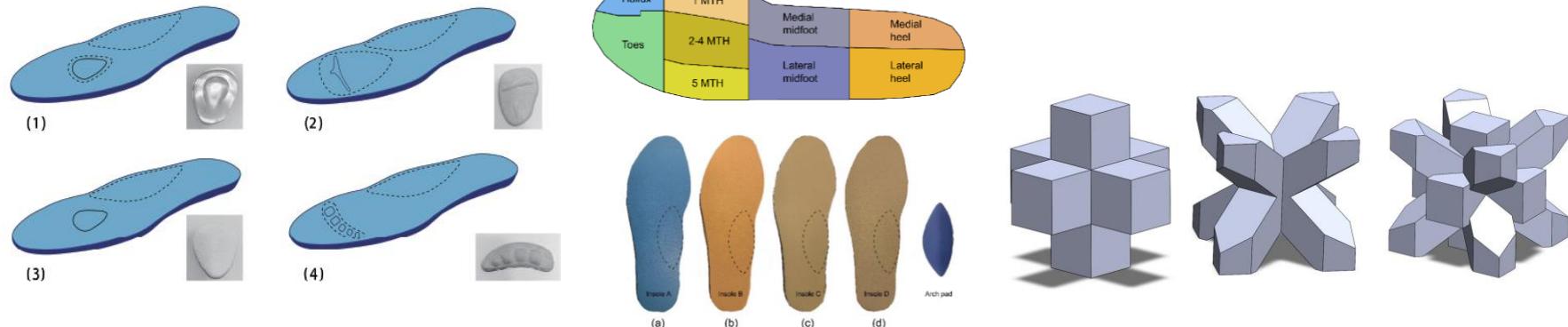




- A new approach to foot image processing, reorientation, and point cloud registration algorithms, enabling the automatic and objective characterisation of the anatomical features and key points of the foot in dynamic situations and the classification of foot types and deformation
- An AI-based method to predict plantar pressure distribution under insole conditions from traditional footprint images, streamlining the insole prescription process and enabling design tailored to individual needs
- The design of 3D knitted spacer inlay structures that offer excellent breathability, force reduction, and compression recovery, thereby improving the footwear microclimate for practical use
- The design of a personalised 3D arch support and heel pad using an auxetic structure and 3D printing technique, which can effectively boost cushioning, energy absorption, and foot protection through biomechanical experiments and finite element modelling

Research Outputs

The research is supported by local government funds (HK\$3.6 million).

Category	Content
Journal Papers	Twelve top-tier journal papers were published.
Conference Papers	Five conference papers were published in international conferences.
Design Patent (China)	One patent of an AI-based framework for the customisation of the insole design was filed on 8th November 2022.



Research Outputs | 01 Journal Papers

Year	Journal Articles
2025	Li, P.L., Xiao, Q.F., Yick, K.L.*, Liu, Q.L., Zhang, L.Y. (2025). A novel deep learning approach to classify 3D foot types of diabetic patients. <i>Scientific Reports</i>, 15(1), 13819-11
2024	Zhang, L.Y., Ma, Z.Q., Yick, Y.L.*, Li, P.L., Yip, J., Ng, S.P., Liu, Q. L. (2024). Prediction of Dynamic Plantar Pressure From Insole Intervention for Diabetic Patients Based on Patch-Based Multilayer Perceptron With Localization Embedding. <i>IEEE Access</i>, 12, 100355-100365
2024	Li, P.L., Yick, K.L.*, Zhang, L.Y., & Keung Y.C. (2024). Evaluation of age-related differences in foot anthropometry among women. <i>AATCC Journal of Research</i>, 11(1) suppl, 54-60
2023	Zhang, L.Y., Liu, Q., Yick, K.L.*, Yip, J., Ng, S.P. (2023). Analysis of diabetic foot deformation and plantar pressure distribution of women at different walking speeds. <i>International Journal of Environmental Research and Public Health</i>, 20 (4), 3688
2022	Zhang, L.Y., Yick, K.L.*, Li, P.L., Yip, J., & Ng, S.P. (2022). Foot deformation analysis with different load-bearing conditions to enhance diabetic footwear designs. <i>PLoS One</i>, 17(3), 0264233
2022	Shi, Q. Q., Li, P. L., Yick, K. L.*, Li, N.W., & Jiao, J. (2022). Effects of contoured insoles with different materials on plantar pressure offloading in diabetic elderly during gait. <i>Scientific Report</i>, 12 (1),15395-10.
2022	Li, N.W., Yick, K.L.*, & Yu, A. (2022). Novel weft-knitted spacer structure with silicone tube and foam inlays for cushioning insoles. <i>Journal of Industrial Textiles</i>, 51(4) suppl, 6463S-6483S
2022	Li, N.W., Yick, K.L.*, Yu, A., & Ning, S. (2022). Mechanical and Thermal Behaviours of Weft-Knitted Spacer Fabric Structure with Inlays for Insole Applications. <i>Polymers</i>, 14(3), 619.
2022	Leung, M. S.H., Yick, K.L.*, Sun, Y., Chow, L., & Ng, S.P. (2022). 3D printed auxetic heel pads for patients with diabetic mellitus. <i>Computers in biology and medicine</i>, 146, 105582-105582
2022	Ning, K., Yick, K.L.*, Yu, A., & Yip, J. (2022). Effects of textile-fabricated insole on foot skin temperature and humidity for enhancing footwear thermal comfort. <i>Applied Ergonomics</i>, 104, 103803-103803
2022	Li, P.L., Yick, K.L.*, Yip, J., & Ng, Z. (2022). Influence of Upper Footwear Material Properties on Foot Skin Temperature, Humidity and Perceived Comfort of Older Individuals. <i>International Journal of Environmental Research and Public Health</i>, 19(17), 10861
2022	Shi, Q. Q., Li, P. L., Yick, K. L.*, Jiao, J., & Liu, Q. L. (2022). Influence of contoured insoles with different materials on kinematics and kinetics changes in diabetic elderly during gait, <i>International Journal of Environmental Research and Public Health</i>, 19(19), 12502

Research Outputs | 02 Conference Papers

Year	Conferences
2023	Zhang, L., Yick, K.*, Yip, J., & Ng, S. (2023). The offloading effects of metatarsal pads: A comparison of metatarsal pad designs. The 92nd Textile World Conference 2023, University of Huddersfield, 3-6 July 2023, Huddersfield, UK.
2022	Zhang, L., Yick, K.*, Yip, J., & Ng, S. (2022). Offloading performance of insole materials during walking for diabetic patients. In: Gianni Montagna and Cristina Carvalho (eds), Human Factors for Apparel and Textile Engineering, AHFE International Conference, AHFE Open Access, vol 32, 24-28 July 2022, New York, USA.
2022	Leung, M.S.H., Yick, K.L.*, Sun, Y., & Ng, S.P. (2022). Numerical simulation of pressure distribution for structural design of diabetic foot insoles. AuxDefense 2022 – 3rd World Conference on Advanced Materials for Defense, 6-7 July 2022, Guimaraes, Portugal.
2022	Ning, K., Yick, K.L.*, Yu, A., & Yip, J. (2022) Thermal Comfort of 3D Spacer Fabric for Footwear Insole Application. The 15th Textile Bioengineering and Informatics Symposium, 5-8 September 2022, Liberec, Czech Republic.
2021	Li, P.L., Zhang, L.Y., Keung Y.C., & Yick, K.L.* (2021). Evaluation of age-related differences in foot anthropometry among women. The 3rd Artificial Intelligence on Fashion and Textile International Conference, 24-25 November 2021, Shanghai.

Research Outputs | 03 Patent

Patent in China

A design patent (202211391068.8) has been filed on 8 November 2022. The invention aims to provide an AI-based framework for plantar pressure detection and the customisation of insole design.

2213106HK01

国家知识产权局

100101

北京市朝阳区慧忠路5号远大中心B座18层
隆天知识产权代理有限公司 郑特强(010-84891188)

发文日: 2022年11月08日

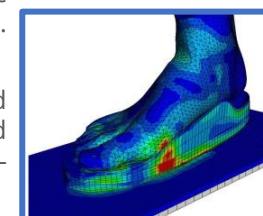
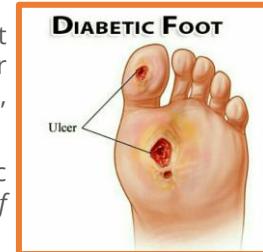
申请号或专利号: 202211391068.8 发文序号: 2022110801684320

专利申请受理通知书

根据专利法第28条及其实施细则第38条、第39条的规定, 申请人提出的专利申请已由国家知识产权局受理。现将确定的申请号、申请日、申请人和发明创造名称通知如下:

申请号: 202211391068.8
申请日: 2022年11月07日
申请人: 人工智能设计研究所有限公司, 香港理工大学, 皇家艺术学院
发明创造名称: 足底压力检测方法及装置、存储介质及电子设备

经核实, 国家知识产权局确认收到文件如下:



专利代理委托书 每份页数:2页 文件份数:1份
说明书摘要 每份页数:1页 文件份数:1份
发明专利请求书 每份页数:5页 文件份数:1份
说明书 每份页数:17页 文件份数:1份
权利要求书 每份页数:2页 文件份数:1份 权利要求项数: 11项
说明书附图 每份页数:8页 文件份数:1份
实质审查请求书 每份页数:1页 文件份数:1份

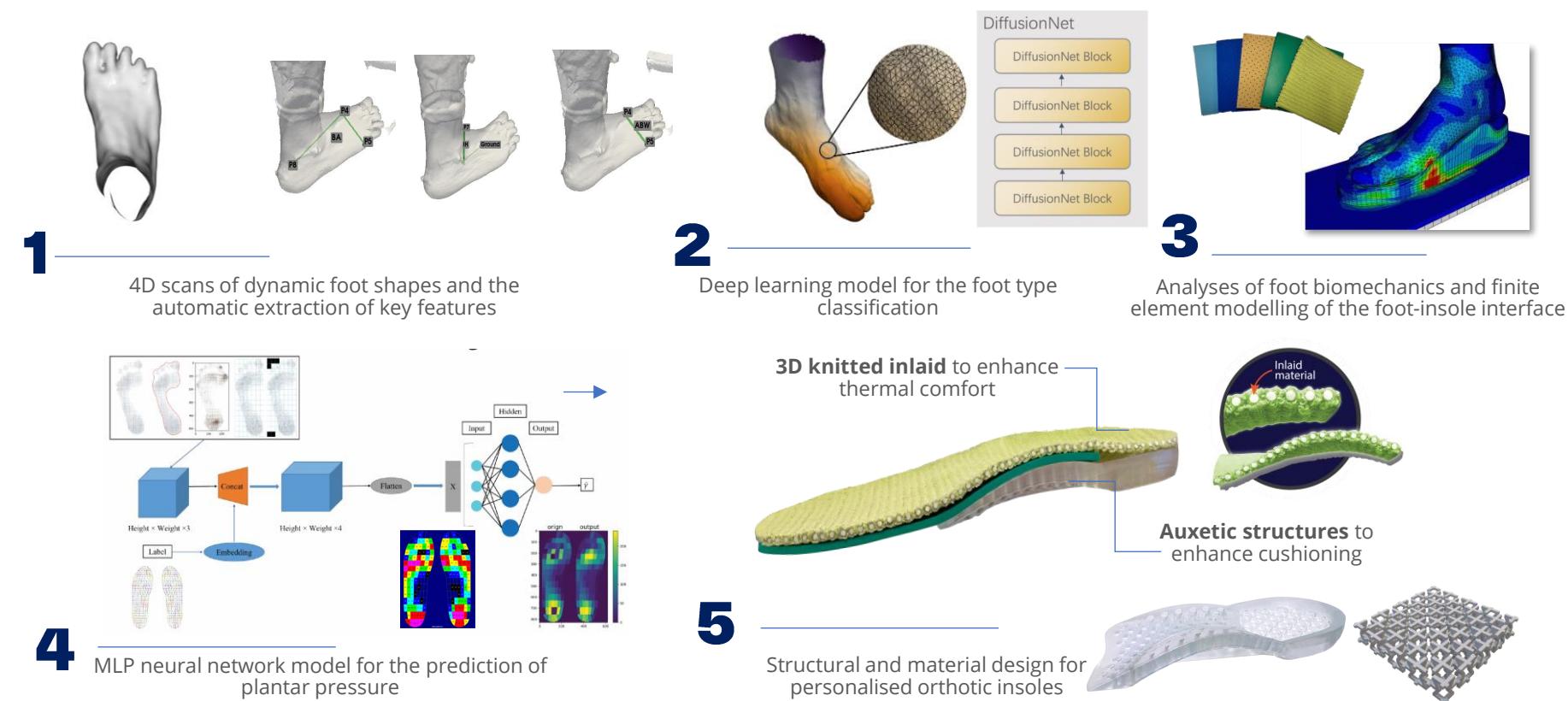
提示:

1. 申请人收到专利申请受理通知书之后, 认为其记载的内容与申请人所提交的相应内容不一致时, 可以向国家知识产权局请求更正。
2. 申请人收到专利申请受理通知书之后, 再向国家知识产权局办理各种手续时, 均应当准确、清晰地写明申请号。
3. 国家知识产权局收到向外国申请专利保密审查请求书后, 依据专利法实施细则第9条予以审查。

Research Field and Key References

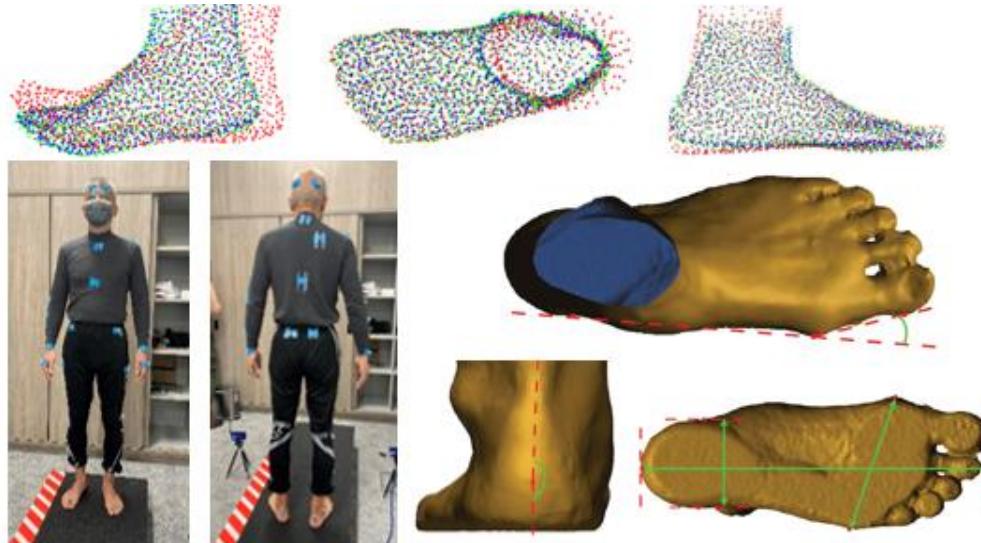
- 537 million people worldwide lived with diabetes in 2021 (IDF 2022).
- Customised insoles are used to accommodate the foot deformation and offload abnormal plantar pressures for diabetic patients (van Netten et al. 2018).
- However, the pressure-relieving performance is still not effectively controlled. In fact, 50–86% of lower limb amputations among patients with diabetes are preceded by foot ulcers (Armstrong et al. 2017).
- Analyses on foot anthropometry and biomechanics have been limited to static conditions and the modelling of plantar pressure to evaluate the fit and performance of orthotic insoles (Xidias et al. 2015; Zhang et al. 2007).
- Insole materials that can increase heat dissipation could reduce the risk of foot ulcers (Messaoud et al. 2015).
- Auxetic structures are increasingly used in personal protection equipment for cushioning and anti-impact purposes (Bhullar et al. 2017; Ho et al. 2014).
- Advanced methods have been proposed to optimise the design of custom orthotics insoles (Anggoro et al. 2021; Ipaki et al. 2021).
- International Diabetes Federation (2022). Diabetes_Aid NG. www.idf.org/diabetes.
- van Netten, J.J., Lazzarini, P.A., Armstrong, D.G., Bus, S.A., et al. (2018). Diabetic foot Australia guideline on footwear for people with diabetes. *Journal of Foot and Ankle Research*, 11(2), 2.
- Armstrong, D.G., Boulton, D.J.M., & Bus, S.A. (2017). Diabetic foot ulcers and their recurrence. *The New England Journal of Medicine*, 376(24), 2367–2375.
- Xidias, E., et al., Foot plantar pressure estimation using artificial neural networks. The 12th IFIP WG 5.1 International Conference on Product Lifecycle Management, PLM 2015, Doha, 19-21 October 2015, Qatar.
- Zhang, M., et al. (2007). Computational modeling the foot-insole interface. *Studies in Computational Intelligence*, 55, 311–321.
- Messaoud, M., et al. (2015). Physical and mechanical characteristics of recyclable insole product based on new 3D textile structure developed by the use of a vertical-lapping process. *Journal of Industrial Textiles*, 44(4), 497.
- Ho, D.T., et al. (2014). Negative Poisson's ratios in metal nanoplates. *Nature Communications*, 5(1), 3255.
- Bhullar, S.K., et al. (2017). Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. *Materials Science & Engineering C*, 81, 334–340.
- Anggoro, P.W., et al. (2021). Advanced design and manufacturing of custom orthotics insoles based on hybrid Taguchi-response surface method. *Heliyon*, 7(3), e06481–e06481.
- Ipaki, B., et al. (2021). Optimal design method for orthopaedic footwear insole customisation based on anthropometric data and NURBS system. *Journal of Design Research*, 19(1–3), 59–81.

Knowledge Gap

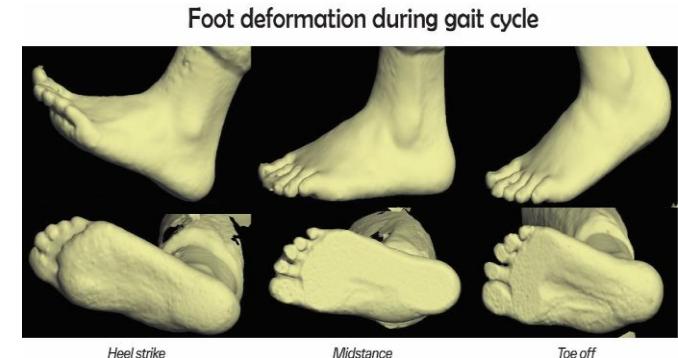

Custom-designed diabetic insoles are essential in hospitals and clinics for reducing high plantar pressure and the risk of foot ulcers. The choice of insole materials is tailored to individual foot shapes, needs, and deformities, making the fabrication process intricate, time-intensive, and error-prone. Evaluating insole performance requires expensive pressure sensors and repeated walking tests. Traditional insole materials often retain heat and moisture, leading to discomfort and increased shear stress.

- The conventional custom design and fabrication of diabetic insoles present significant challenges for clinicians to consider the anatomical and biomechanical differences amongst patients to manage plantar pressure effectively.
- The analyses of foot anthropometry and biomechanics are typically limited to static conditions, resulting in imprecise predictions and modelling of the foot-insole interface, which complicates the 3D engineered design of orthotic insoles.
- The lack of reliable methods for capturing 3D foot images in dynamic situations and measuring the continuous deformation of foot shape during various stances
- Despite the many potential applications of 3D textiles, auxetic materials, and 3D printing technology in personal protective devices for better conformability, improved energy absorption, breathability, and comfort, most of the reported research is still in its infancy. Practical use in customising designs for rehabilitation and meeting individual patient needs is particularly scarce.
- Advanced AI models that incorporate dynamic foot anthropometry and material selection for predicting plantar pressure under insole conditions have yet to be proposed to streamline the customisation of insole design.

Research Methods, Prototypes, and Materials


Framework of the AI-Assisted Customisation of Insole Design

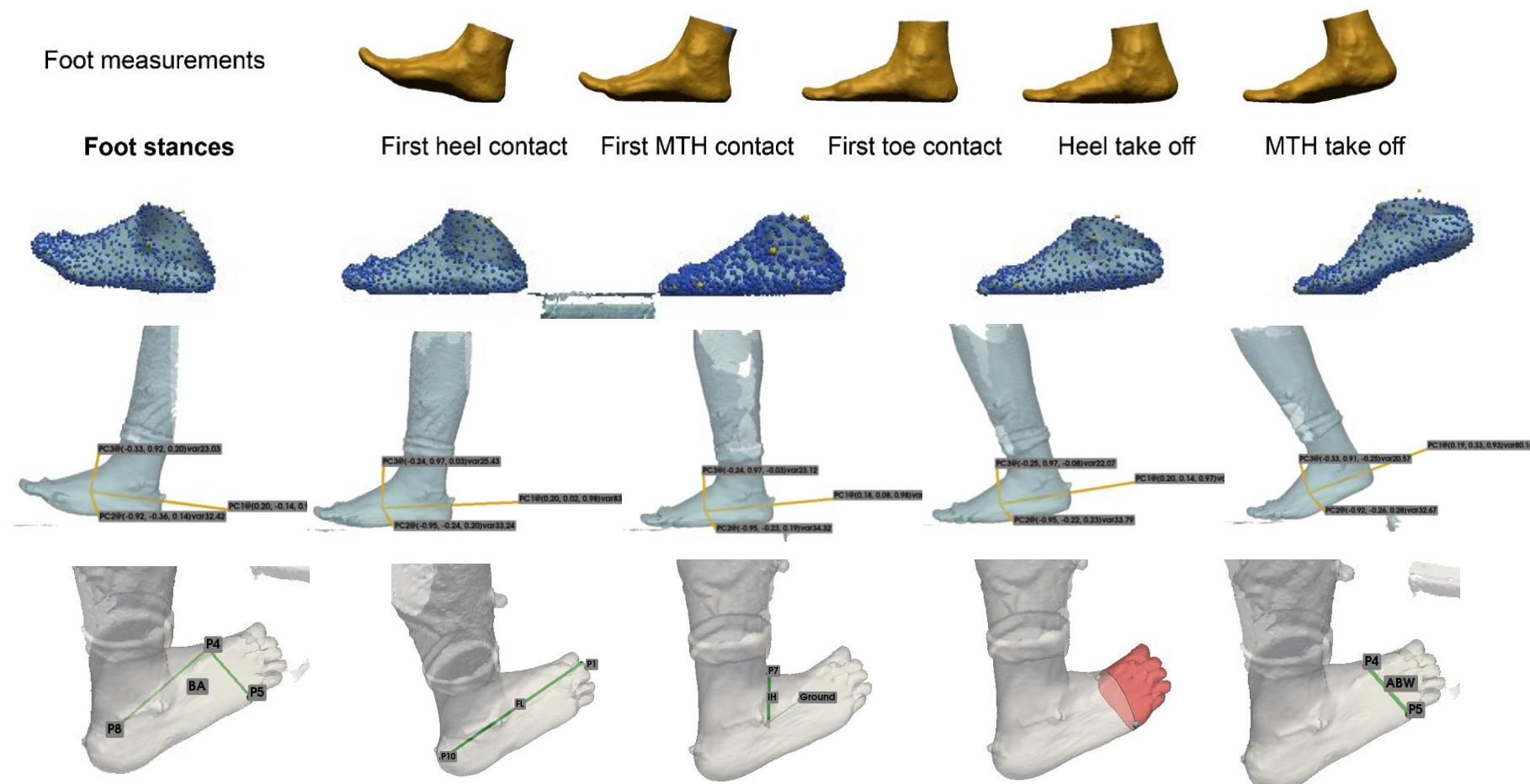
The formation of the framework comprises **five phases**, including **a novel deep-learning model** to classify 3D foot types from dynamic images for customised insole fit and geometry and **a multilayer perceptron (MLP) neural network with an embedding technique** for optimal structural and material design, enabling clinicians to confidently prescribe effective, personalised orthotic insoles for patients.



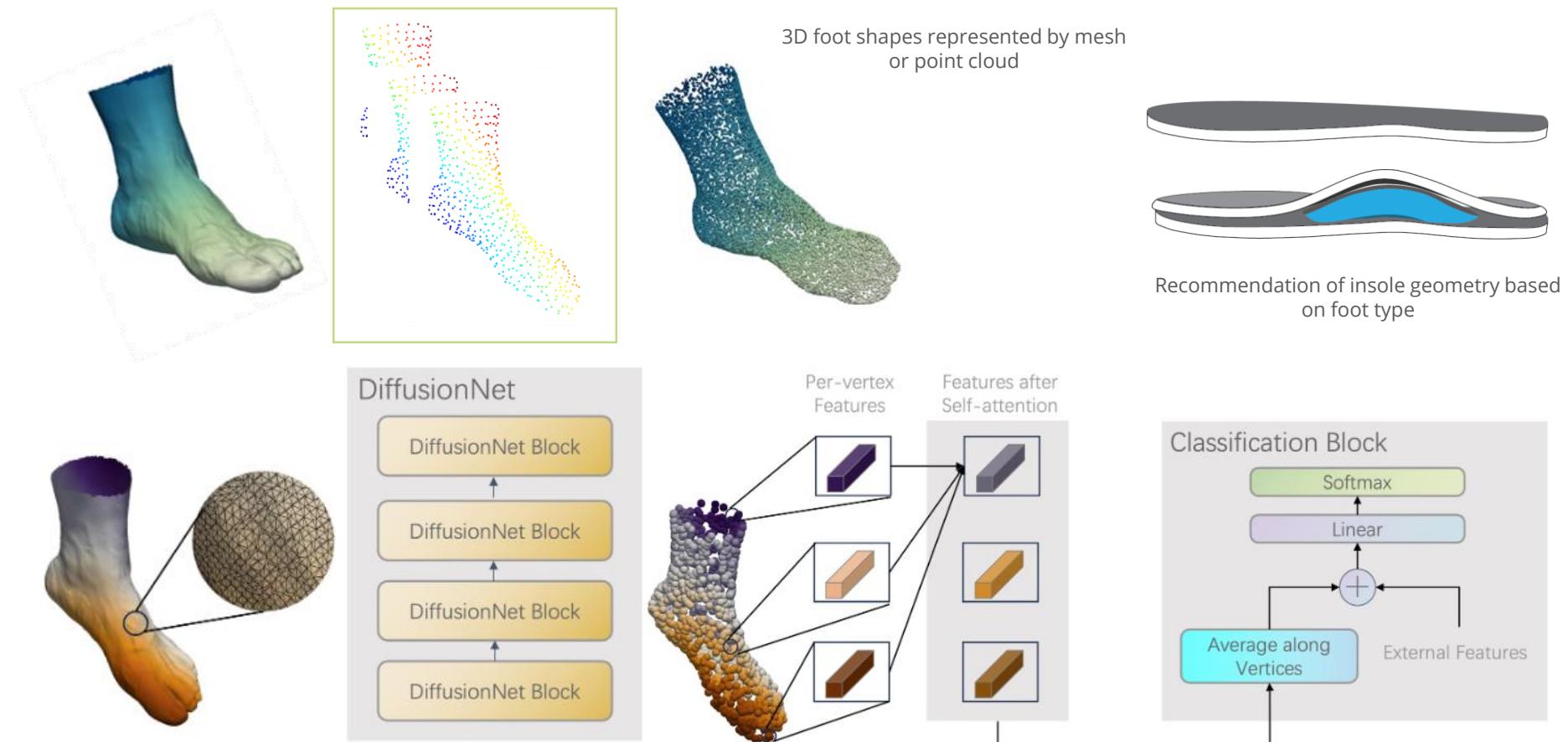
Phase I: 4D Dynamic Foot Scanning for Key Features

The changes in foot shape and anthropometry during walking are analysed to improve the anatomical 3D design of the arch support, heel pads, and the overall fit of insoles.

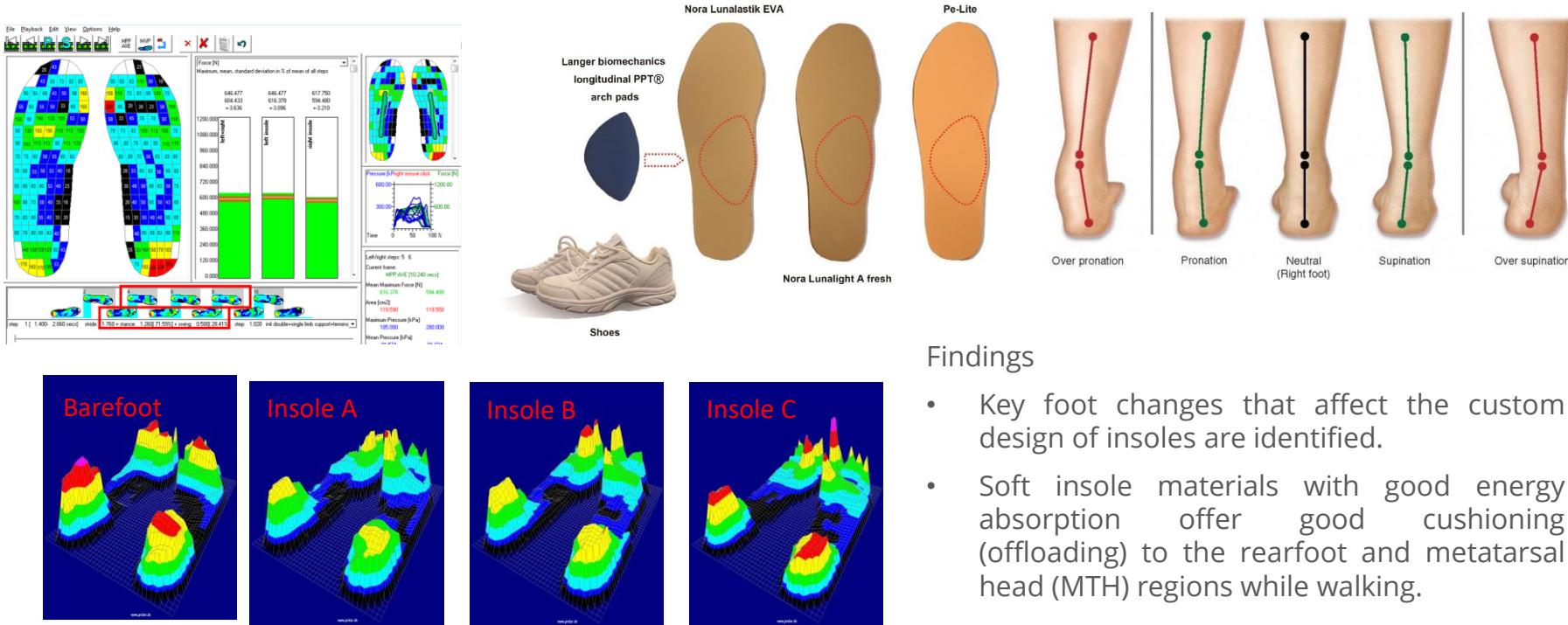
Over **100** diabetic subjects participated in dynamic foot scanning and gait analysis.


Related Publications

- Li PL, Yick KL, Zhang LY & Keung YC. (2024). Evaluation of age-related differences in foot anthropometry among women. AATCC Journal of Research, 11(1) suppl, 54-60.
- Zhang L, Liu Q, Yick KL, Yip J, Ng SP. (2023). Analysis of diabetic foot deformation and plantar pressure distribution of women at different walking speeds. International Journal of Environmental Research and Public Health, 20 (4), 3688.
- Zhang L, Yick KL, Li PL, Yip J, Ng SP. (2022). Foot deformation analysis with different load-bearing conditions to enhance diabetic footwear designs. PLoS One. 17(3): e0264233


Phase I: 4D Dynamic Foot Scanning for Key Features

The **algorithms** are designed to **automatically extract foot measurements and features** from dynamic foot images during a gait cycle.

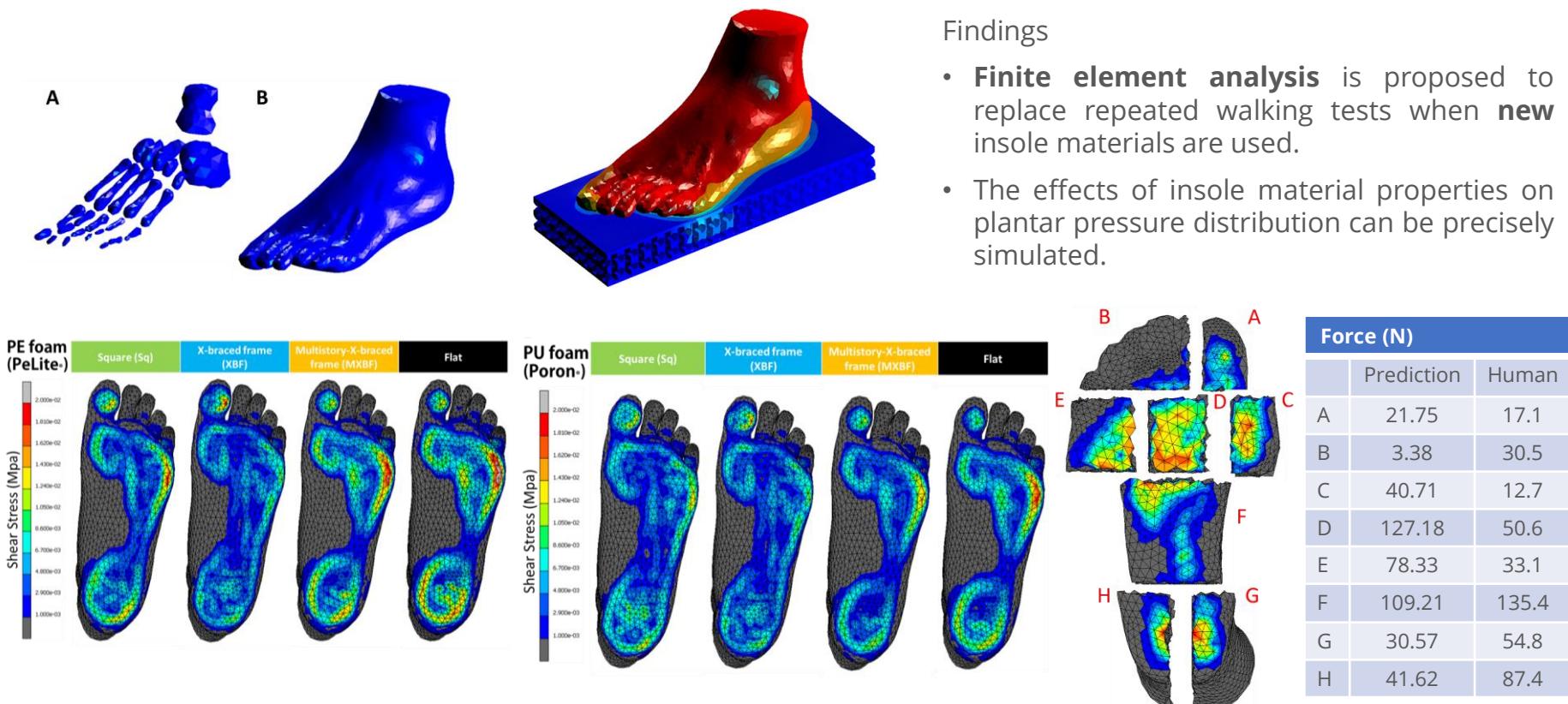

Phase II: Deep-Learning Model for Foot Type Classification

Foot measurements are utilised in a classification model, which offers an accuracy of over 90%, based on **DiffusionNet with a self-attention mechanism**. This model ensures improved fit, comfort, and support for insole designs in both static and dynamic situations.

Phase III: Analyses of Foot Biomechanics and Finite Element Models

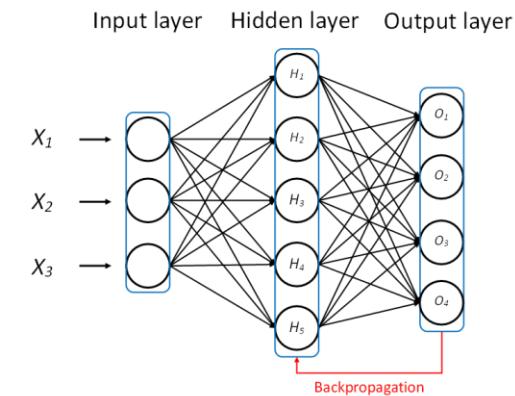
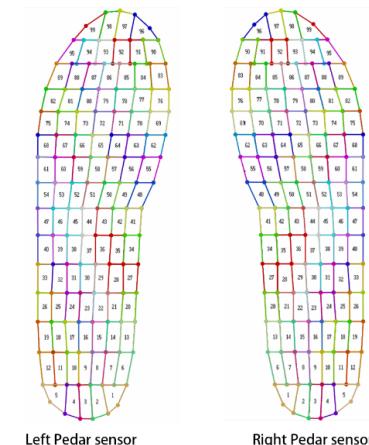
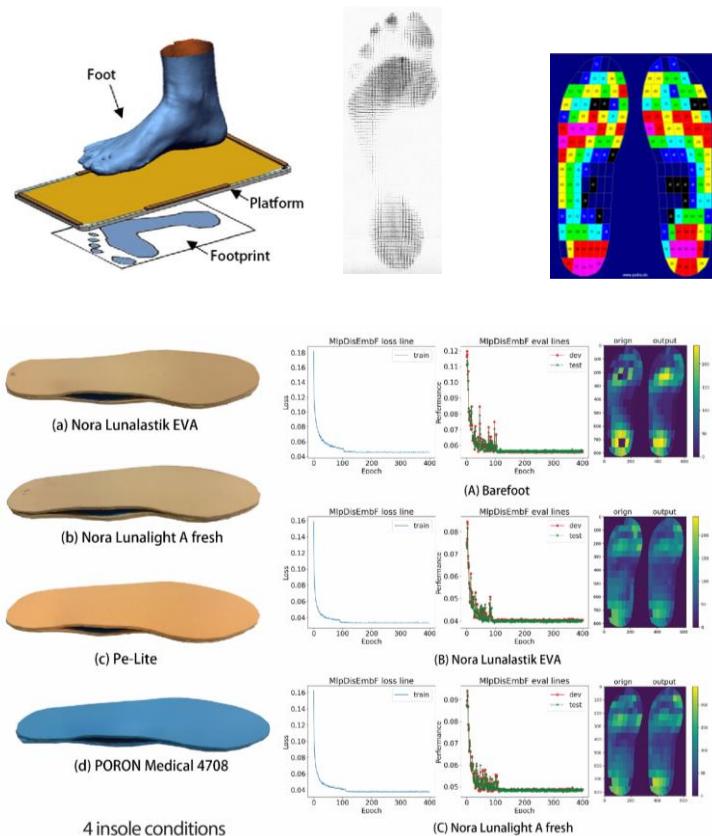
The **distribution of plantar pressures** and **foot biomechanics** in response to different insole materials is systematically investigated for the design and training of an AI-based model to predict the offloading performance of orthotic insoles.

Findings


- Key foot changes that affect the custom design of insoles are identified.
- Soft insole materials with good energy absorption offer good cushioning (offloading) to the rearfoot and metatarsal head (MTH) regions while walking.

Related Publications

- Shi QQ, Li PL, Yick KL, Li NW & Jiao J. (2022). Effects of contoured insoles with different materials on plantar pressure offloading in diabetic elderly during gait. *Scientific Report*, 12(1), 15395-10.
- Shi G, Li PL, Yick KL, Li NW, Jiao J. (2022). Influence of contoured insoles with different materials on kinematics and kinetics changes in diabetic elderly during gait. *International Journal of Environmental Research and Public Health*, 19(19), 12502.




Phase III: Analyses of Foot Biomechanics and Finite Element Models

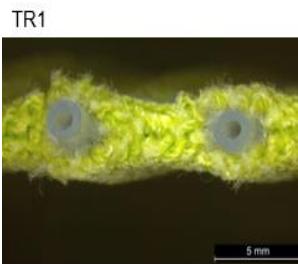
The finite element model has been developed to simulate foot-insole pressure distribution and deformation, considering changes in insole materials and structures. It integrates with the AI-based prediction model to minimise the need for repeated walking tests, enhancing insole design optimisation through advanced computational techniques.

Phase IV: AI-Based Framework for Prediction of Plantar Pressures

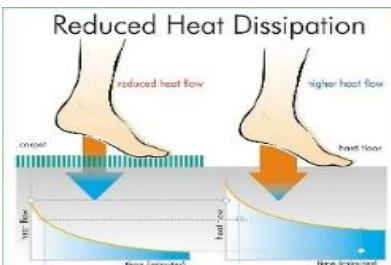
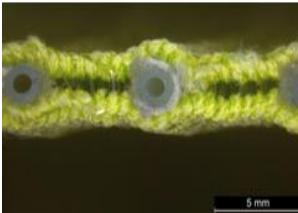
The AI-based framework adopts an **MLP neural network model** with an embedding technique for training. It aims to predict changes in static and dynamic plantar pressures under various insole materials from conventional 2D footprint images.

Patent

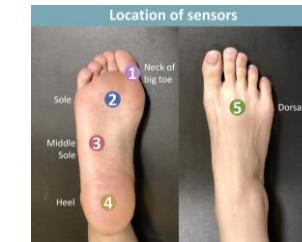
[Yick K.L., Zhang L.Y., Ma Z.Q. & Li P.L. \(Filed 2022\). Plantar pressure evaluation method, design and framework. \(CN Patent No. 202211391068.8\). China National Intellectual Property Administration.](#)


Publication

[Zhang LY, Ma ZQ, Yick YL, Li PL, Yip J, Ng SP, Liu QL. \(2024\). Prediction of Dynamic Plantar Pressure From Insole Intervention for Diabetic Patients Based on Patch-Based Multilayer Perceptron With Localization Embedding. IEEE Access, 12, 100355-100365](#)

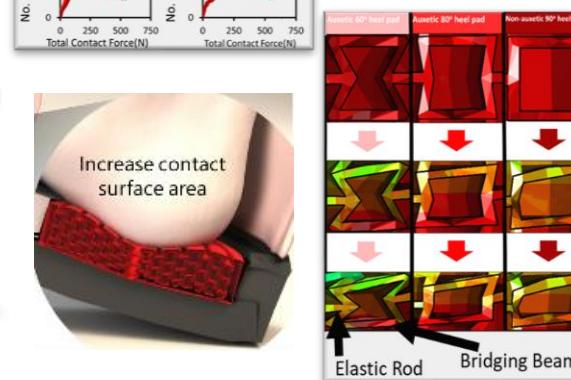
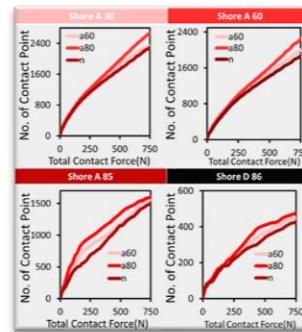
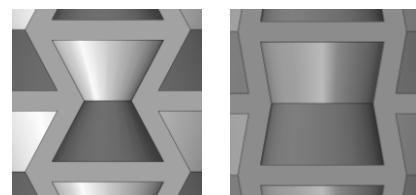


Phase V: Structural and Material Design of Insoles

Insole Top Layer


A **3D spacer knitted structure**, including inlay insertion, has been designed for foot accommodation and comfort. The choice, location, and connective pattern of yarns that control the air gap and cushioning of impact forces can be flexibly changed in response to the needs of patients.

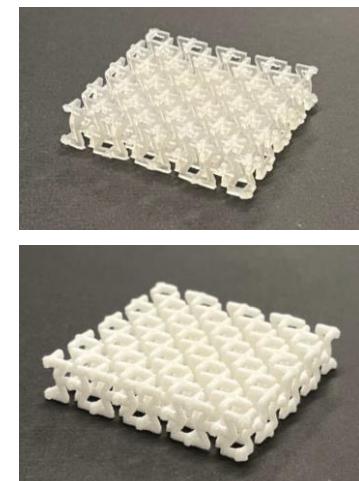
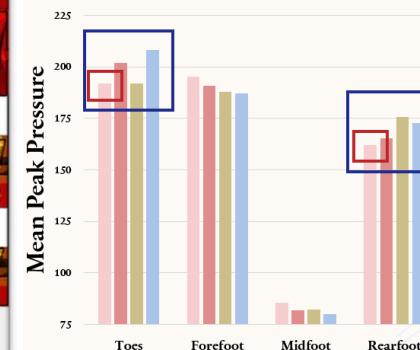
TR2

Fabric	AS1	AS2	BC1	BC2	BS1	BS2
Structure	A	B	C	D	E	F
Knitting notation						
Image						




Related Publications

- [Li NW, Yick KL, Yu A. \(2022\). Novel weft-knitted spacer structure with silicone tube and foam inlays for cushioning insoles. Journal of Industrial Textiles. 51\(4\) suppl, 463S-6483S](#)
- [Li NW, Yick KL, Yu A, Ning S. \(2022\). Mechanical and thermal behaviour of weft-knitted spacer structure with inlays for insole application. Polymers, 14\(3\), 619.](#)
- [Ning S, Yick KL, Yu A, Yip J. \(2022\). Effects of textile-fabricated insole on foot skin temperature and humidity for enhancing footwear thermal comfort. Applied Ergonomics, 104, 103803.](#)
- [Ning, K., Yick, K.L.*, Yu, A., & Yip, J. Thermal Comfort of 3D Spacer Fabric for Footwear Insole Application. The 15th Textile Bioengineering and Informatics Symposium, 5-8 September 2022, Liberec, Czech Republic.](#)

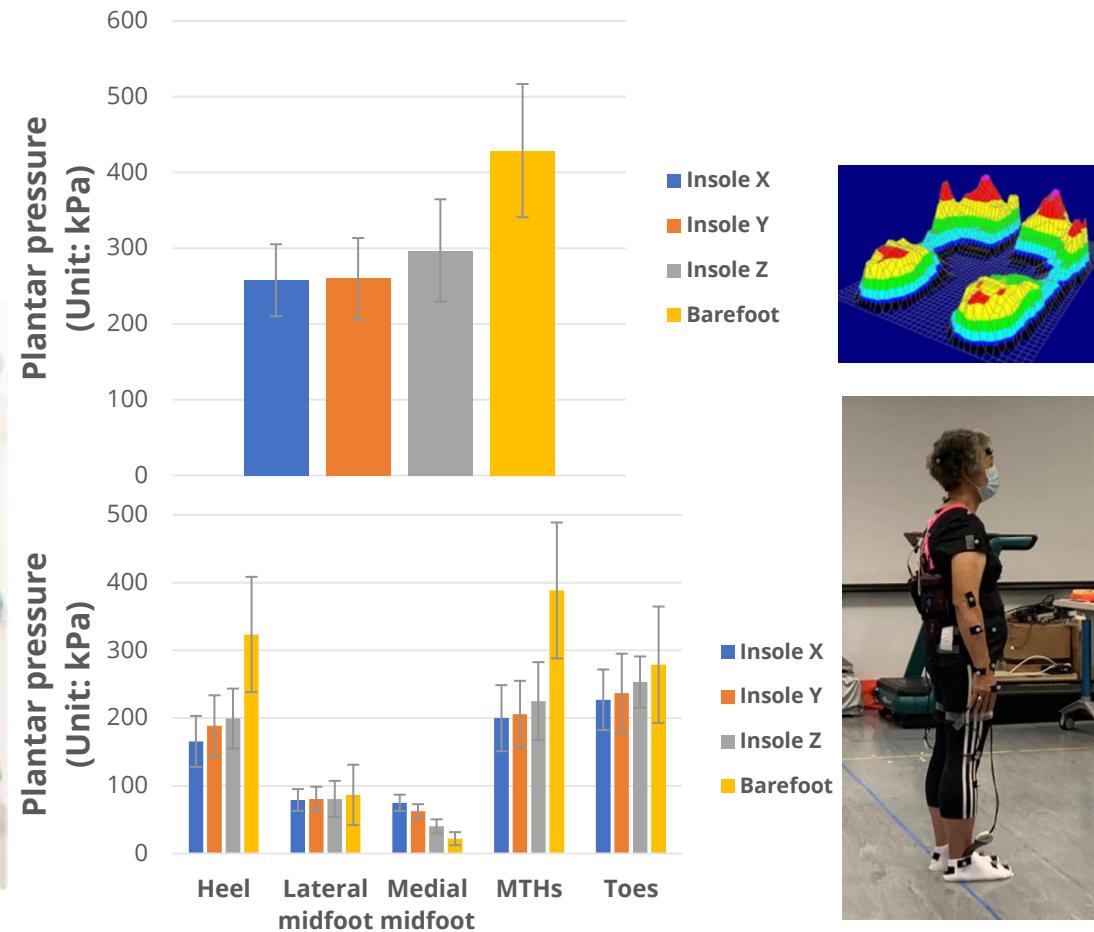
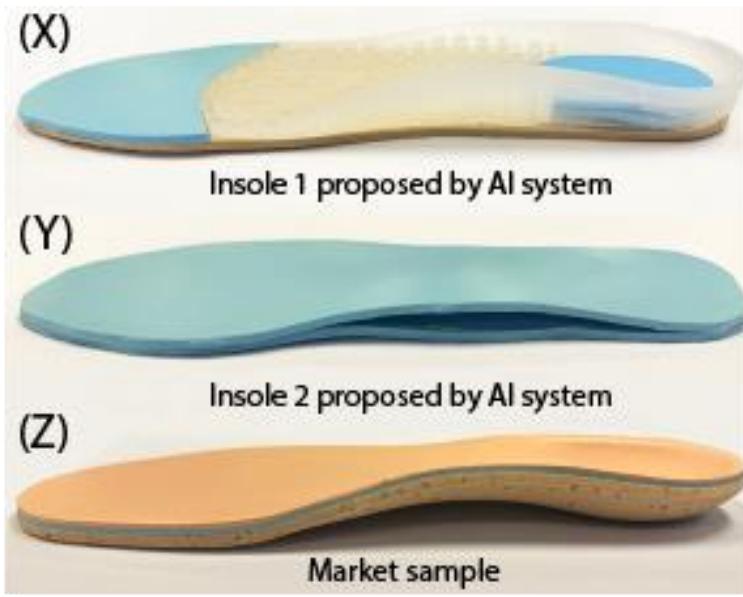
Phase V: Structural and Material Design of Insoles



Heel Pad Design

It features a **3D auxetic structural design, specifically a re-entrant honeycomb structure**, to increase the contact area and reduce peak contact force and plantar pressures.

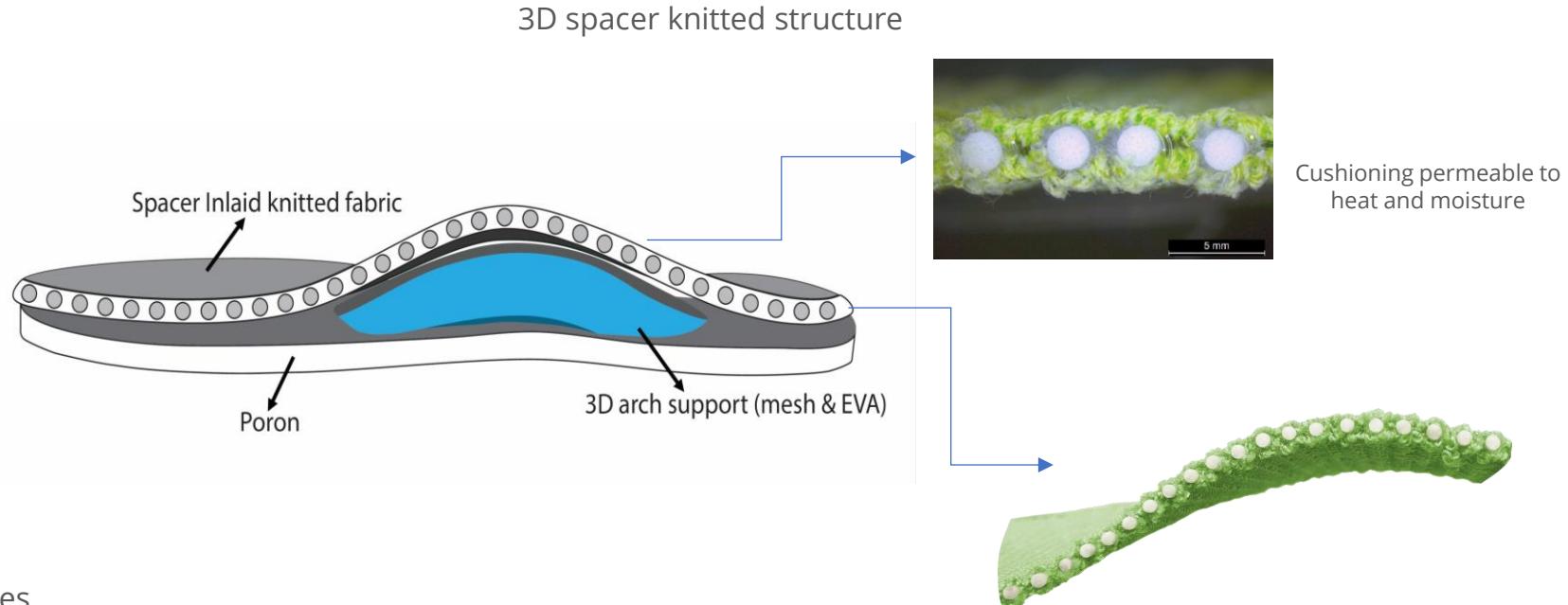
Findings

- **In-shoe foot humidity** is significantly reduced by inlaid spacer fabric.
- The **contact area** in relation to peak contact force and **mean pressure** under auxetic structures is improved in both biomechanical experiments and finite element models.

Related Publications

- [Leung, M.S.H., Yick, K.L., Sun, Y., Chow, L., & Ng, S.P. \(2022\). 3D printed auxetic heel pads for patients with diabetic mellitus. *Computers in Biology and Medicine*, 146, 105582.](#)
- [Leung, M.S.H., Yick, K.L.*., Sun, Y., & Ng, S.P. \(2022\). Numerical simulation of pressure distribution for structural design of diabetic foot insoles. *AuxDefense 2022 – 3rd World Conference on Advanced Materials for Defense*, 6–7 July 2022, Guimaraes, Portugal.](#)


Phase V: Structural and Material Design of Insoles

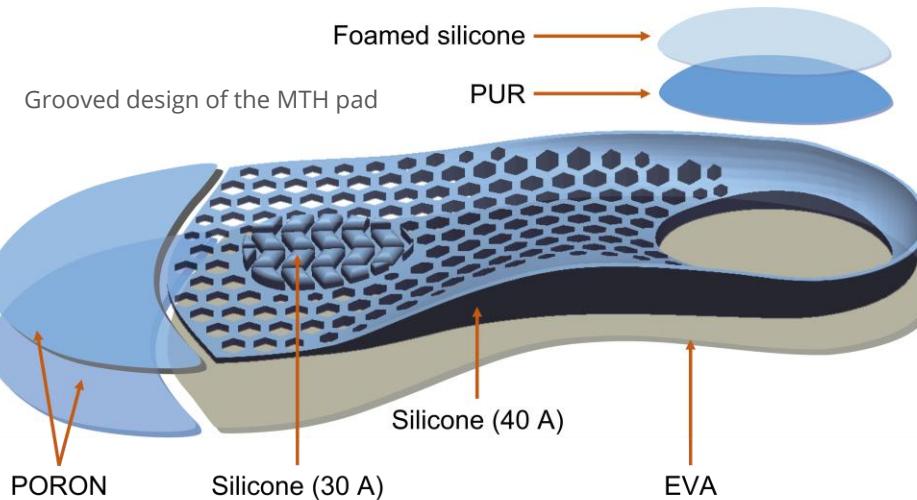
In comparison to conventional diabetic insoles, **insoles created using this AI-assisted approach** demonstrated a significant 40% reduction in peak plantar pressure, along with improved perceived fit and comfort.

Customised Insoles for Diabetic Patients – Prototype I

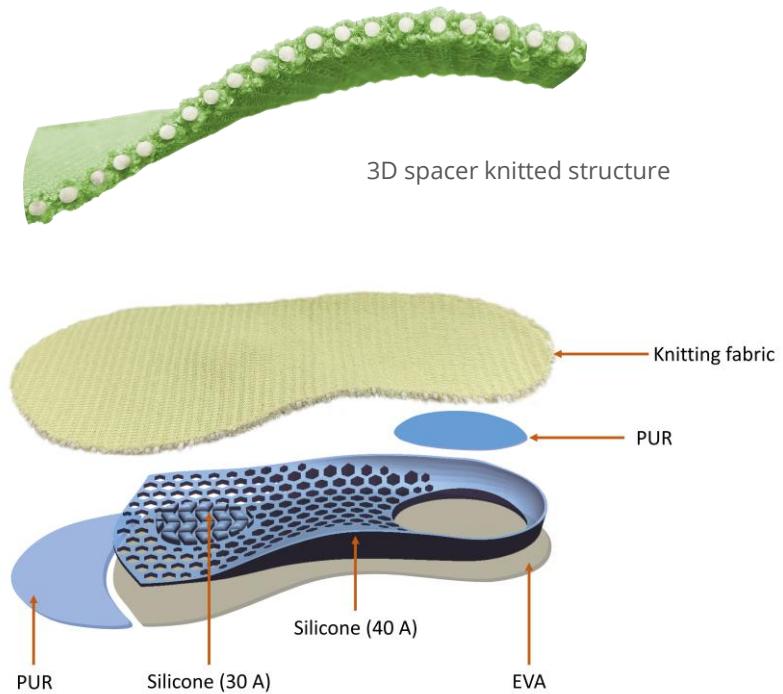
January 2022

Features

- Insole behaviour and plantar pressures are initially predicted by using the AI-assisted system with reference to the patient's footprint image.
- The inlaid spacer fabric of suitable yarn structure and orientation is used to replace traditional foams as the accommodation layer of the insole that offers good air permeability, as well as personalised cushioning and shock absorption.


Customised Insoles for Diabetic Patients – Prototype II

October 2022



Customised Insoles for Diabetic Patients – Prototype III

August 2023

Representative foot shapes identified using deep learning to allow personalised insole design for mass production

Features

- A half insole with the grooved design of the MTH pad and 3D arch support for improved porosity, contact area, and the redistribution of plantar pressure.
- Based on the deep-learning approach, the representative foot shapes are identified to facilitate the personalised design of a half insole with an optimal fit, cushioning, and support for mass production.

Research Outcomes, Findings, and Further Research

Research Outcomes

The AI-based framework developed in this research enables the objective prediction of insole offloading performance, allowing clinicians to confidently select suitable materials and structures for a personalised insole design. By integrating dynamic foot shape classification and pressure prediction, the system supports the prescription of orthotic insoles with optimal fit, comfort, and rehabilitation benefits for diabetic patients.

Findings

The results show that forefoot width increases by 10% while walking, and foot rotation occurs with flattened arches, highlighting the need for soft, stretchable insole materials. Inlaid spacer insoles significantly reduce foot skin humidity, while auxetic heel pads lower peak contact force and mean pressure, enhancing overall foot protection and comfort.

Future Research

Future research will combine dynamic foot scanning, deep learning, and digital twin models in the AI framework to enhance sports insole customisation, offering cost-effective, tailored foot support and effective performance by addressing athletes' unique anatomical and biomechanical needs.

Research Dissemination

Category	Content
Video	Video of AI-based design customisation of insoles
Exhibitions and and International Expos	The research outputs have been showcased in more than 10 exhibitions and international expos.
Industry Visits	An advanced dynamic foot scanning and design approach was introduced to industry and university partners, associations, and NGOs, among others.
Community Workshops or Seminars	1. A foot care seminar for Wong Tai Sin District Health Centre 2. AI x Ergonomics workshops for the community and industry partners
Media Interviews	Research outputs were reported on different TV programmes and social media platforms.
Research Collaborations	1. Research collaboration with the University of Hong Kong-Shenzhen Hospital and Shenzhen University 2. Research project with the Hong Kong Community College, University Grants Committee (Faculty Development Scheme) Funding Scheme (HK\$1 million) 3. Research collaborations and in-kind donations (HK\$330,000) 4. Research project with the Laboratory for Artificial Intelligence in Design under InnoHK (HK\$4.6 million) 5. Research project with the Hong Kong Sports Institute (HKSI) under SRFS (HK\$5.2 million)
Industry Collaboration	Contract research with Legacy Innovation Development Limited
Ideation Meetings	Regular ideation meetings with research teams from the Royal College of Art (RCA) in the UK
Licensing Agreements	A Memorandum of Understanding (MoU) and two licensing agreements with Legacy Innovation Development Limited
Fashion X AI MOOC	A Massive Open Online Course (MOOC) module launched in July 2023
Contacting Local Hospitals and Overseas Collaborators	Research inquiries received from the Podiatry Department of Queen Mary Hospital in Hong Kong and swissbiomechanics AG in Switzerland
Appendices	In-kind sponsorship letters, testimonials, and compliment letters from the local healthcare centre

Research Dissemination | 01 Video

Video of the AI-Based Design Customisation of Insoles

AiDLab
Laboratory for
Artificial Intelligence in Design
人工智能設計研究所

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

Royal College of Art
Postgraduate Art & Design

AI-Based Customisation of Insoles
For Diabetic Patients

Research Dissemination | 02 Exhibitions and International Exhibitions

The research and footwear prototypes were showcased at various exhibitions, such as The Mills Fabrica in July 2022 and the **Asia Summit on Global Health (ASGH)** in November 2022. More than 22,000 onsite and online participants from over 50 countries and regions participated in ASGH.

An online presentation was given at Fibro-Symposium 2022, Kyoto Institute of Technology (Japan).

Research outputs were exhibited at **FASHION X AI: 2022-2023 International Salon** at The Mills Fabrica (Hong Kong) and The Mills (London, UK) in 2023 through AiDLab, PolyU, and the RCA, as well as **The Jinjiang Footwear & Sports Industry Expo** in April 2023.

The Jinjiang Footwear & Sports Industry Expo

The Mills Fabrica

Fibro-Symposium 2022

AiDLab
FASHION X AI
2022-2023 INTERNATIONAL SALON
Check out our new website!
www.FashionxAI.com

FASHION X AI: 2022-2023 International Salon

Asia Summit on Global Health 2022

Research Dissemination | 02 Exhibitions and International Expos

The footwear prototypes were also presented at the **AiDLab Innovations in Design Summit**, **TDC Fashion InStyle Exhibition**, and **Intertextile Shanghai Apparel Fabrics (Autumn Edition)** in August 2023; **Gerontech and Innovation Expo cum Summit** in November 2023; **Culture x AI Hong Kong Fashion Designers Show** in London in July 2024; and **Culture x AI 2024–2025: Culture and Future Mode** in January 2025.

Culture X AI Exhibition

TDC Fashion InStyle Exhibition

Gerontech and Innovation Expo cum Summit

Intertextile Shanghai Apparel Fabrics 2023

AiDLab Innovations in Design Summit 2023

AiDLab Innovations in Design Summit 2023

Research Dissemination | 03 Industry Visits

Dynamic foot scanning technology used in 3D insole design was introduced to industry partners and NGOs, among others.

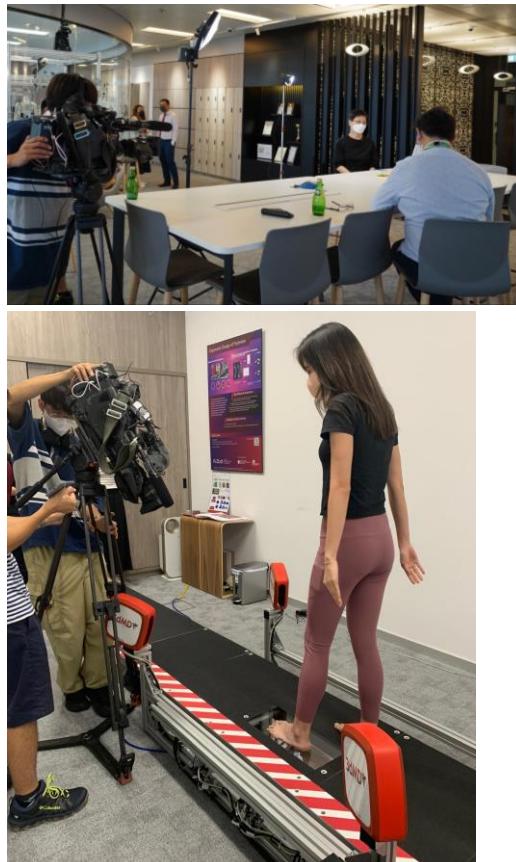
- Hong Kong Sheng Kung Hui Welfare Council
- Esquel Group
- Hong Kong Trade Development Council (HKTDC) Garment Advisory Committee
- Hong Kong Catholic Diocesan Council (Secondary Section) Science Education Committee (HKCDCSEC)
- The Hong Kong Japanese Chamber of Commerce (textile group members)
- CMA Testing Centre
- Royal College of Art (RCA)
- Industry associations, including Hong Kong Intimate Apparel Industries' Association (HKIAIA), Hong Kong Knitwear Exporters & Manufacturers Association (HKKEMA), and so on

Research Dissemination | 04 Community Workshops or Seminars

A foot care seminar was held in the **Wong Tai Sin District Health Centre** in October 2022 to promote orthotic footwear and insoles for diabetic patients and to increase their awareness of daily foot care. In fact, 27 diabetic patients were enrolled in the seminar.

AI x Ergonomics workshops were organised in May 2023, to which over 40 participants were registered.

PROBLEMS


- Diabetes
- Long-lasting health issue
- 422 million people in 2021
- High blood sugar level

Strategic Partners:

HKSTP the mills

Research Dissemination | 05 Media Interviews

Media interviews were invited by **Television Broadcasts Limited (TVB) Innovation GPS** (TV programme) on 3 November 2022 and at **Radio Television Hong Kong** (RTHK's TV programme) in October 2022. Research outputs were also shared on different social media platforms (such as YouTube), newsletters, and newspapers, among others.

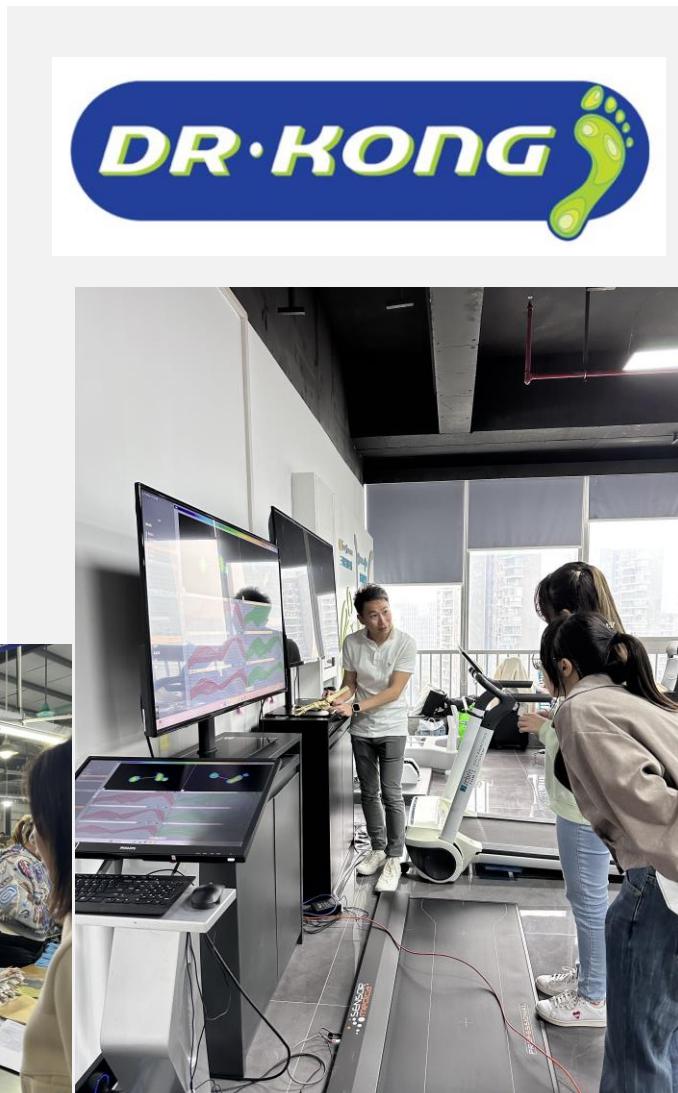
A newspaper from Hong Kong Wen Wei Po
<https://www.tkww.hk/epaper/view/newsDetail/1569385291276488704.html>

Research Dissemination | 06 Research Collaborations

Research collaborations were established with the **University of Hong Kong-Shenzhen Hospital** and **Shenzhen University**. The proposed insole solution is extended to improve in-shoe comfort, breathability, cushioning, and foot protection for soccer and badminton teams.

Granted in collaboration with **the Hong Kong Community College**, research funding (HK\$1 million) was secured to develop mycelium-based composites to enhance the mechanical and thermal properties for diabetic foot insoles, under the support of the UGC (FDS) Funding Scheme (2024-2026).

New InnoHK and SRFS projects have been established to expand the research into sport-specific insole design, with HK\$4.6 million and HK\$5.2 million in funding secured for 2025-2030, respectively.


深圳大学
SHENZHEN UNIVERSITY

Research Dissemination | 06 Research Collaborations

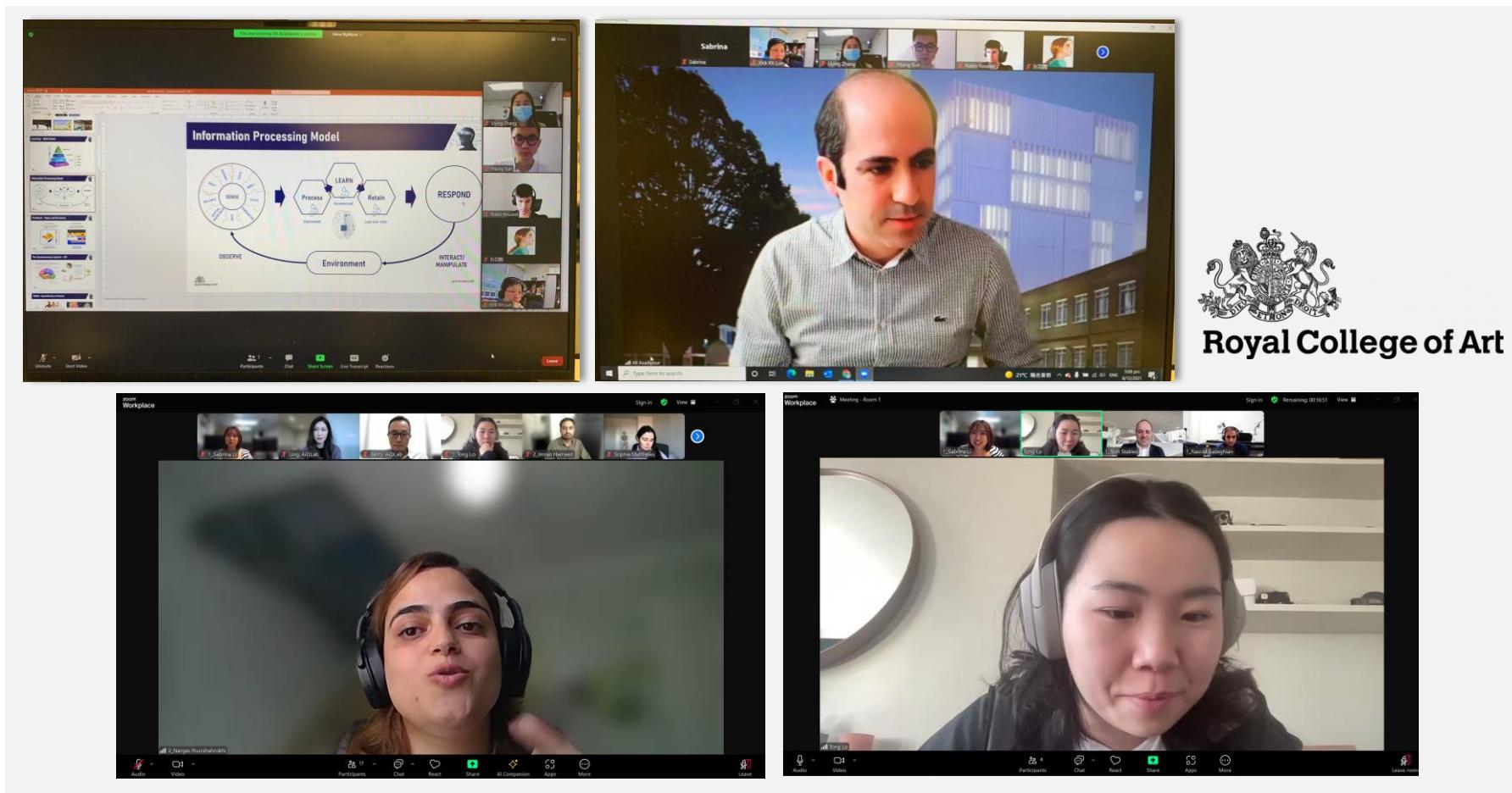
A research collaboration was established with **Dr. Kong Footcare Limited** to support the project on an AI-based approach to designing customised orthotic insoles for children with flat feet.

Dr. Kong Footcare Limited is a global footwear company with retail stores across 12 countries or regions, including about 50 in Hong Kong and 800 in mainland China. The company offers professional footcare, foot-healthy shoes, footcare accessories, and foot assessment services.

In fact, **HK\$330,000 in in-kind donations** was received for insole and footwear research collaborations.

Research Dissemination | 07 Industry Collaboration

Industry Collaboration (February 2024)


Interview from End-users

An industry collaboration was established with **Legacy Innovation Development Limited**, a leading insole manufacturer and material supplier, to support the development of diabetic insoles using the AI-assisted insole design system. The newly developed insoles have been launched in the market through an online shop with positive feedback from end users. Additionally, through foot care workshops, orthotic insoles were donated to diabetic patients via **Po Leung Kuk District Health Centres**. The company is also trying to extend its application to **elite athletes**.

Research Dissemination | 08 Ideation Meetings

Ideation meetings were held regularly with the **RCA in the UK** to exchange research ideas, experiences, and challenges between the teams of PolyU, the RCA, and AiDLab.

Research Dissemination | 09 Licensing Agreement

MoU and Licensing Agreement

An MoU and two licensing agreements were signed with **Legacy Innovation Development Limited** to improve the footwear insole design for individuals with specific footwear needs, such as the development of diabetic insoles and balance-enhancing geriatric slippers. Legacy Innovation Development Limited is a leading supplier of composite materials, offering design and manufacturing services to the sports and consumer product industries.

Memorandum of Understanding (MoU)

Between

Laboratory for Artificial Intelligence in Design (AiDLab)

and

Legacy Innovation Development Limited (Legacy)

The purpose of this MoU is to establish a good-faith foundation between the parties for an upcoming collaborative effort that are mutually beneficial. The parties agree to work together in a cooperative and coordinated manner to achieve each party's individual desires and the collective desires of the partnership. This MoU does not obligate the Parties to provide funds or payment. This MoU does not bind parties to any legal obligations. This MoU sets for the understanding between AiDLab and Legacy to work together to achieve collaborations in the following aspects:

- AiDLab will provide Insole evaluation service to Legacy
- AiDLab in collaboration with Legacy will conduct wearer trials
- AiDLab will sign non-exclusive licence with Legacy by granting the right on use of a patented technology of AiDLab in the scope of "Plantar Pressure detection method and device, storage medium and electronic equipment"

Exact fees, terms and conditions are to be agreed between AiDLab and Legacy, and subject to the final approval by the Innovation and Technology Commission (ITC), HKSAR Government. It is expected the approval process will take around three to four months.

Duration

This MOU is at-will and may be modified by mutual consent of each signing party. This MOU shall become effective upon signature and will remain in effect until modified or terminated by

This agreement ("Agreement") is made effective on 2023

BETWEEN:

(1) **LABORATORY FOR ARTIFICIAL INTELLIGENCE IN DESIGN LIMITED**, a company incorporated with limited liability in Hong Kong and having its registered office address at Units 1613-1615, 16/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong (the "Licensor"); and

(2) **LEGACY INNOVATION DEVELOPMENT LIMITED**, a company incorporated with limited liability in Hong Kong and having its registered office address at (the "Licensee").

Hereinafter, the parties hereof are collectively referred to as the "Parties", each a "Party".

WHEREAS:

(A) The Licensed Materials (as defined below) are jointly owned by the Royal College of Art ("RCA"), the Hong Kong Polytechnic University ("PolyU") and the Licensor. The Licensor has the right to license the Licensed Materials.

(B) The Licensee wishes to obtain a license to use the Licensed Materials specified in Schedule 1, and the Licensor wishes to grant to the Licensee such a license, on the terms and conditions hereinafter contained.

IT IS HEREBY AGREED BY THE PARTIES THAT:

1. DEFINITIONS AND INTERPRETATION

1.1 In this Agreement (including the Recitals above), the following expressions shall, unless the context requires otherwise, have the following meanings:

"Confidential Information" means any and all manuals, procedures, documents, materials and/or information of the parties hereto (i) that is not generally known to the public, whether of a technical, business or other nature including, without limitation, trade secrets, know-how information relating to the technology, customers, vendors, business plans, market activities, finances and other business affairs of such party, (ii) that is disclosed by such party to the other party written, oral, electronic and/or other form, (iii) that is otherwise comes to the knowledge of the other party in the course of its discussions or dealings, (iv) that has been identified as being proprietary and/or confidential and/or (v) that by the nature or circumstances surrounding the disclosures or receipt should reasonably be construed as proprietary or

Recommendation of Licensing Terms

AiDLab Project Code and Title: RP1-2 - Ergonomic Design of Footwear
Principal Investigator: Prof. Kit YICK
Internal Technology Panel: Prof. Calvin WONG, Prof. Kit YICK, Dr. Kelvin Miu and Mr. Barry TAI
Date of Meeting: 20th August, 2024

1. Licence Deliverables
The right on use of the following patent generated from Prof. Kit Yick's AiDLab project (RP1-2)

- Title: Technical Manual for Ergonomic Design of Footwear - Geriatric Slipper Design for Improving Body Balance

2. Relevant Intellectual Properties (IPs)

- No background IPs from PolyU or RCA are involved.

3. Relevant Background Research (such as research projects, research works, etc.)

- No background research works done in PolyU before.

4. Distribution of Commercialisation Revenue (If it is a licence for patent, please refer to the patent ownership ratio on the corresponding Patent Assessment Form)
 PolyU: 40% / RCA: 40% / ADLab: 15% (With background research done / IP owned by PolyU)
 PolyU: 50% / RCA: 35% / ADLab: 15% (With background research done / IP owned by RCA)
 Other: _____

5. Recommendations of Licensing Terms

- Licence Fee: HK\$20,000
- Royalties: No
- Exclusivity: Non-exclusive
- Payment Terms: One-off payment upon signing of the licence agreement
- Duration: 2 Years
- Territory: Worldwide
- Sub-licensing: No

6. Potential Licensee in Discussion (Yes/ No)
Yes. An innovation development materials, manufacturing and solutions company based in Hong Kong.

7. Other Comments
N/A
Signature: _____ Date: _____

Colin Li

Research Dissemination | 010 Fashion x AI: MOOC

AI x Ergonomics: MOOC

A MOOC module of AI and footwear design under Fashion x AI was launched in July 2023. Over **300** people registered for the online courses. Examples of ergonomic designs, the challenges in studying ergonomics, AI-supported ergonomic designs, and the latest technology for footwear design, among other topics, were discussed.

Fundamentals of Artificial Intelligence in Fashion

Design
9/9 steps

3. AI and Textile Design
14/14 steps

4. AI and Ergonomics
13/13 steps

5. AI and Textile Material Quality Control
14/14 steps

6. AI and Fashion Business
14/14 steps

About Fashion Business

Fundamentals of AI Techniques in Fashion Business

4. AI and Ergonomics

Watch Video (2 mins)

Originally, ergonomics meant the study of people's efficiency in their working environment. The context of this lesson demonstrates how the development of technologies recently advances the usage of ergonomics knowledge to unleash its potential and benefits for inclusive design.

The lesson will examine Prof. YICK and her team's project, which aims to deploy AI technologies to develop innovative body measurement and posture correction solution to advance fashion design and wearables for health and well-being. Beyond more comfort, higher productivity and reduced stress, considering human factors in wearable design also improves the daily life of many patients requiring special care in healthcare-related areas such as footwear, headgear etc.

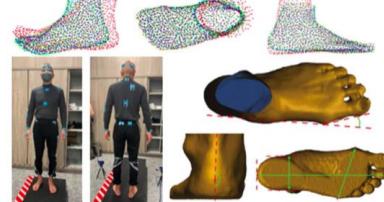
Learning Objectives

- Understand foundation knowledge of human ergonomics and AI-supported ergonomic designs.
- Enhance awareness of ergonomics' roles through daily life examples such as footwear.
- Understand the challenges of studying ergonomics.

Welcome you all to this lesson on AI and Ergonomics.

I am Kit Yick, Team leader of Ergonomic and inclusive Design Research programme at

FASHION X AI


HOME ABOUT PROGRAMMES EVENT HIGHLIGHTS

Fundamentals of Artificial Intelligence in Fashion

Technology and Footwear I

Technology and Footwear I

Watch Video (2 mins)

We aim to analyse the changes in foot shape

FASHION X AI

2022-2023 INTERNATIONAL SALON

MOOC AI x Footwear Design

Research Principal Investigator:
Dr. Kit-lun Yick

Register Now ►►►

www.FashionXAI.com

Research Dissemination | 011 Contacting Local Hospitals, Media, and an Overseas Footwear Company

The project not only attracted interest from local footwear companies but also received research inquiries from the Podiatry Department of **Queen Mary Hospital** in Hong Kong, a **local newspaper (MingPao)** for footwear biomechanics evaluation, and **swissbiomechanics** AG, a Swiss company specialising in biomechanical analysis and orthotic solutions.

經創新意念-匯聚香港網站收到的查詢

Hide message history

From: Innovation Hub <noreply@innovationhub.hk>
Sent: 07 December 2024 4:38 PM
To: AiLab Info <info@ailab.hk>
Subject: 經創新意念-匯聚香港網站收到的查詢

人工智能設計研究所在 2024-12-07 16:37:53 透過 創新意念-匯聚香港 網站收到一個新查詢，以下為相關訊息內容：

技術名稱：人體工學設計的鞋履
姓名：Cynthia Leung
公司名稱：Queen Mary Hospital Podiatry Department
電郵地址：leungcyc@ha.org.hk
電話號碼：852 93171006
查詢內容：AI鞋墊
來源：<https://www.innovationhub.hk/zh-hk/article/ergonomic-d>

請於 3 個工作天內聯絡上述人士跟進此查詢。

THE HONG KONG POLYTECHNIC UNIVERSITY
香港理工大學

Interest in your publications

Hide message history

From: Christian Kryenbühl / swissbiomechanics ag <c.kryenbuehli@swissbiomechanics.ch>
Sent: 11 December 2024 1:16 AM
To: AiLab Info <info@ailab.hk>
Cc: Matthias Zaeh <m.zaeh@swissbiomechanics.ch>
Subject: Interest in your publications

We have read your paper "An exploratory study of dynamic foot shape measurements with 4D scanning system". We are very interested in your field of research, especially in the context of AI „[AiLab - Ergonomic Design of Footwear](#)“. As we work in the field of biomechanics, we are very aware of the strong change in foot shape under load. Would you be interested in an exchange?

We would be very pleased to hear from you.

Best regards
Christian Kryenbühl
Mitglied der Geschäftsführung
Master of Science (M.Sc.) Human Movement Science / Biomechanics ETH Zurich

P.S.: Kennen Sie unsere Mass-Lösung für ein genussvolles und schmerzfreies Skifahren? Jetzt Termin vereinbaren: <https://www.mass-skischuh.ch/>

swissbiomechanics

明報新聞網 news.mingpao.com

《明報》×理大 實測涼鞋拖鞋 雲朵拖鞋藏拗柴陷阱

12/08/2024, 09:55

明報新聞網

【明報專訊】踩屎感拖鞋，雲朵拖鞋，枕頭拖鞋……名字或市井，或詩意，或可愛；統統形容同一類時尚拖鞋，榜樣穿上後猶如踩白雲，柔軟舒適。聽起來美好，實際上卻可能增加肌肉疲勞和關節負擔。

市面涼鞋或拖鞋款式眾多，楔形、粗跟、幼跟等，究竟如何選擇一對舒適安全的好鞋？《明報》健康版聯同香港理工大學時裝及紡織學院，測試不同款式的涼鞋和拖鞋，比較足底壓力分佈及步態穩定度。

鞋底缺款支撑 可拉傷足弓

踩屎感拖鞋的鞋底主要由乙烯（EVA, ethylene vinyl acetate）製成，柔韌且抗衝擊，軟硬度則視乎物料密度。香港理工大學時裝及紡織學院教授易潔潔認為，若鞋底太軟足底缺乏支撑，長時間穿著可致足弓拉傷和疼痛。沒有足弓支撑的鞋子，會使扁平足惡化。高足弓患者也應避免太軟鞋底，以免腳部過度下沉。此外，過軟鞋底無法支撑足踝關節和足底肌肉，降低穩定和動態平衡力，增加拗柴和跌倒風險；而且肌肉更需要發力維持平衡，愈行愈累。

易潔潔認為選擇涼鞋，在追求柔軟舒適的同時，鞋底設計宜兼顧支撑和緩衝，軟硬適中才站得穩。如果鞋底過硬或過厚，行路時前腳掌無法自然彎曲使力，持續以不自然步態行路，會造成腿部肌肉疲勞和關節疼痛。

高厚鞋底不利平衡 楔形前腳掌受罪

另外，高厚鞋底令身體重心升高，不利平衡和步態穩定，足部肌肉需更用力維持平衡，而且影響足部對地面感知，與地面前饋較差，容易跌倒。香港中文大學醫學院環境外科及創傷學系助理教授、骨科專科醫生凌家健補充，有關踩屎感拖鞋穩定度的研究未有一致定論，有研究發現涼鞋鞋底在行走時，足部足弓會變扁。

Appendices I | In-Kind Sponsorships From Industry Partners

Pylon Technology Co. Ltd.

Rm 912, 9/F, Metro Centre II,
21 Lam Hing Street, Kowloon Bay, Kowloon
Tel: 3466-6575 Email: creativepno@gmail.com

Laboratory for Artificial Intelligence in Design (AiDLab)

Units 1613-1615, 16/F, Building 19W
Hong Kong Science Park,
Pak Shek Kok, N.T. HKSAR

Attn: Dr. Kit-lun YICK
Tel: 2766 6551
Email: tcyick@polyu.edu.hk

Prepared by: Mr. CY TSE
Tel: 3466 6575
Email: creativepno@gmail.com

Date: 21st October, 2021

Sponsorship of Lower Limb Prostheses and Orthotic Footwear Materials

Dear Dr. Yick,

It is my pleasure to offer sponsorship of TWO lower limb prostheses for unilateral trans-tibial amputees and a range of orthotic footwear materials (around 1 square meter each) to the Research Programme – Ergonomic Design of Footwear in the Laboratory for Artificial Intelligence in Design (AiDLab) to conduct experimental analysis. It is an in-kind sponsorship that the market value of the lower limb prostheses and orthotic footwear material is HK\$80,000. Items will be delivered by 30th October 2021.

Thank you very much.

Mr. Chi Yung TSE
Pylon Technology Co. Ltd.

Prof. Kit-lun YICK
Laboratory for Artificial Intelligence in Design (AiDLab)
Units 1613-1615, 16/F, Building 19W
Hong Kong Science Park, Pak Shek Kok, N.T. HKSAR

Dear Prof. Yick,

Sponsorship of Insole Materials

On behalf of Legacy Innovation Development Limited, I am pleased to offer in-kind sponsorship of insole materials and technical support to the Research Programme – '4D data-driven sports insole design' at the Laboratory for Artificial Intelligence in Design (AiDLab) for experimental analysis and insole prototyping. This sponsorship, valued at a total market value of HK\$100,000, will begin in July 2025 and be distributed over four consecutive phases, with each phase valued at HK\$25,000 per year. We are eager to support your innovative work and explore collaboration opportunities.

Thank you very much.

Yours sincerely

Mike Lo
Founder
Legacy Innovation Development Limited

Legacy Innovation Development Limited
Room 510, 5/F, Wayson Commercial Bldg, 28 Connaught Rd. West, Sheung Wan, HK

One Measurement Group Ltd.

Unit B, 9/F Fat Lee Ind. Building
17 Hung To Road, Kowloon Tong
Kowloon, Hong Kong

Tel: +852 8208 8723
Fax: +852 8208 8726
sales@otgml.com.cn

Laboratory for Artificial Intelligence in Design (AiDLab)

Units 1613-1615, 16/F, Building 19W
Hong Kong Science Park,
Pak Shek Kok, N.T. HKSAR

Attn: Dr. Kit-lun YICK
Tel: 2766 6551
Email: tcyick@polyu.edu.hk

Prepared by: Jacky Ma
Mobile: 96511747
Email: jacky@otgml.com.cn

Date: 23rd October 2020

Sponsorship of a Vicon Tracker Software and a Dongle for Vicon Tracker

Dear Dr. Yick

It is my pleasure to offer sponsorship of a Vicon Tracker Software and a Dongle for Vicon Tracker to mmne – Ergonomic Design of Footwear in the Laboratory for Artificial Intelligence in 3D motion capture and analysis. It is an in-kind sponsorship that the market value of the software and dongle is HK\$100,000. The software and dongle will be delivered by 30th October

h.

roup Limited

14th January, 2025

Yours sincerely

Alan Kong
Vice General Manager
Dr. Kong Footcare Limited

Dr. Kong Footcare Limited

Unit C, 14/F, Ph 1, Vigor Industrial Building, 49-53 Ta Chuen Ping St, Kwai Chung, NT, Hong Kong

14th January, 2025

Prof. Kit-Lun YICK
Laboratory for Artificial Intelligence in Design (AiDLab)
Units 1613-1615, 16/F, Building 19W
Hong Kong Science Park, Pak Shek Kok, N.T. HKSAR

Dear Prof. Yick,

Sponsorship of Insoles and Footwear

I am pleased to offer in-kind sponsorship of insoles, footwear, and a range of orthotic insole materials to the Research Programme titled '4D data-driven sports insole design' at the Laboratory for Artificial Intelligence in Design (AiDLab) to support experimental analysis and insole prototyping. This sponsorship, valued at a total market value of HK\$200,000, will begin in July 2025 and be distributed over four consecutive phases, with each phase valued at HK\$50,000 per year. We are eager to support your innovative work and explore collaboration opportunities.

Thank you very much.

Dr. Kong Footcare Limited
Unit C, 14/F, Ph 1, Vigor Industrial Building, 49-53 Ta Chuen Ping St, Kwai Chung, NT, HK

Laboratory for Artificial Intelligence in Design (AiDLab)
Units 1613-1615, 16/F, Building 19W
Hong Kong Science Park, Pak Shek Kok, N.T. HKSAR

Attn: Prof. Kit-Lun YICK
Tel: 2766 6551
Email: tcyick@polyu.edu.hk

Prepared by: Ian Leung
Tel: 2744 2638
Email: ian.leung@dr-kong.com.hk

Date: 18th April 2024

Sponsorship of Orthotic Insole and Footwear

Dear Prof. Yick,

It is my pleasure to offer in-kind sponsorship of orthotic insoles and footwear for flat foot children and a range of orthotic insole materials to the Research Programme – Ergonomic Design of Footwear in the Laboratory for Artificial Intelligence in Design (AiDLab) to conduct experimental analysis. It is an in-kind sponsorship that the market value of the materials, orthotic insoles and footwear is HK\$50,000.

Thank you very much.

Yours sincerely
Ian Leung

Dr. Kong Footcare Limited

Appendices II | 02 Testimonials From Industry Partners and a Compliment Certificate From a Local Healthcare Centre

Testimonials

Legacy Innovation Development Limited, as one of the leading providers for Composites Material and Product manufacturing, we are pleased to have had the opportunity to collaborate with Professor Yick Kit Lun, School of Fashion and Textiles, The Hong Kong Polytechnic University, on the AI-based footwear project. This research has revolutionized the way for our company adopt in insole design and development, providing us with invaluable insights into foot biomechanics and plantar pressure distribution in developing and assessing insole designs.

This collaboration allowed our company to objectively evaluate and improve insole designs for optimal fit, support, and comfort, enabling us to make necessary adjustments to insole designs for different foot types of diabetic patients. The project's AI-based approach has been scientifically in enhancing our product design process. This has not only improved the quality of our products, but also enhanced the well-being of the end-users.

The AI-based footwear project has contributed to our business development. Our customers appreciate the quantitative approach to better understanding the performance of the insole designs, and this has led to our customer loyalty and repeat purchases. Moreover, the project has positioned us as a company that seamlessly binds scientific research and customer well-being with aesthetic design.

Yours faithfully,

Mike Lo
Founder
Legacy Innovation Development Limited
7 March 2024

Innovation • Material • Solution

Prof. Kit Lun Yick,
Laboratory for Artificial Intelligence in Design,
Unit 1613-15, 19W,
Hong Kong Science Park,
Pak Shek Kok, NT,
Hong Kong

16 September 2024

Testimonial AI-Based Insole Development System

We are delighted to provide this letter to endorse AI-based insole development system and confirm its value to us as an innovative technology that is enabling the customization of our existing insole design for diabetic patients and improving the quality of our products.

As one of the leading providers for composite material and product manufacturing in Hong Kong, with services to the sports, watch components, Auto parts, 3C parts and consumer products industries. This AI-based method has revolutionized the way for our company adopt in insole design and development, providing us with invaluable insights into foot biomechanics and plantar pressure distribution in developing and assessing insole designs.

In collaboration with Prof. Yick on the AI-based footwear project, we are confident to objectively evaluate and improve the insole designs of our products with optimal fit, support, and comfort, and enabling us to make necessary adjustments to insole designs for different foot types of diabetic patients. The project's AI-based approach has been scientifically in enhancing our product design process. This has not only improved the quality of our products, but also enhanced the well-being of the end-users.

Compared with the traditional method for insole development, this artificial intelligence-based technology has contributed to our business development. Our customers appreciate the quantitative approach to better understanding the performance of the insole designs, and this has led to our customer loyalty and repeat purchases. Moreover, the AI-based system has positioned us as a company that seamlessly binds scientific research and customer well-being with aesthetic design.

Yours Sincerely

Mike Lo
Founder
Legacy Innovation Development Limited
Email: mikelo@legacy-innovation.com

保良局
PO LEUNG KUK

保良局
PO LEUNG KUK

方樹福堂

F.S.F.T. 兒童及青少年發展中心

感謝狀
Certificate of Appreciation

現特頒此狀予
This is presented to

Prof. Yick Kit Lun
School of Fashion and Textiles
The Hong Kong Polytechnic University
RP 1-2 Ergonomic Design of Footwear

以感謝其熱心公益，提供健客講座及糖尿病諮詢服務予保良局方樹福堂兒童及青少年發展中心
Thanks for provide Health talks and diabetes counseling services to
Po Leung Kuk F.S.F.T. Children & Youth Development Centre

二零二四年二月二十九日
29th February, 2024

