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Abstract

Sonomyography (SMG) is a method of controlling upper-limb prostheses through an
innovative human-machine interface by monitoring forearm muscle activity through
ultrasonic imaging. Over the past two decades, SMG has shown promise, achieving over
90% accuracy in classifying hand gestures when combined with artificial intelligence,
making it a viable alternative to electromyography (EMG). However, up to now, there
are few reports of a system integrating SMG together with a prosthesis for testing on
amputee subjects to demonstrate its capability in relation to daily activities. In this study,
we developed a highly efficient human-machine interface algorithm for controlling a
prosthetic hand with 6-DOF using a wireless and wearable ultrasound imaging probe. We
first evaluated the accuracy of our model in classifying nine different hand gestures to
determine its reliability and precision. The results from the offline study, which included
ten healthy participants, indicated that nine different hand gestures could be classified
with a success rate of 100%. Additionally, the developed controlling system was tested in
real-time experiments on two amputees, using a variety of hand function test kits. The
results from the hand function tests confirmed that the prosthesis, controlled by the SMG
system, could assist amputees in performing a variety of hand movements needed in
daily activities.

Keywords: advanced prosthetics; artificial intelligence; prosthetic; human-machine
interface; real-time controlling system; sonomyography; wireless ultrasound

1. Introduction

Hands help to perform the majority of human activities in daily living, and losing one
or both hands results in independence reduction [1]. Even though most artificial limbs used
today are either purely cosmetic or serve a practical purpose with limited functionalities
(such as a hook-like gripper), various multi-fingered prosthetic hands have been developed
and commercialized [2—4], including the i-Limb Hand, KIT hand, Michelangelo Hand,
Bebionic Hand, and Vincent Hand, all of which depend on electrical motors and complex
mechanical components. Moreover, the invention of additive technology revolutionized
manufacturing methods by decreasing the cost of production and the weight of robots,
as well as speeding up the product development process. This invention also affects
the industry of prostheses, encouraging researchers and engineers to create numerous
3D-printed prosthetic hands [5-10].

Sensors 2025, 25, 3968

https://doi.org/10.3390/s25133968


https://doi.org/10.3390/s25133968
https://doi.org/10.3390/s25133968
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3407-9226
https://doi.org/10.3390/s25133968
https://www.mdpi.com/article/10.3390/s25133968?type=check_update&version=2

Sensors 2025, 25, 3968

2 of 20

Despite the advancements in developing novel, dexterous, and state-of-the-art pros-
thetic hands with the ability to assist amputees in performing different daily activi-
ties [11-13], around 50-70% of patients refuse to wear and use current prosthetic hands
due to their poor functionality, high cost [8,14-18], low comfort, lack of sensory feedback,
and most importantly, inaccurate controlling system, not being able to effectively predict
users’ intended movements and provide natural-like control over prostheses [11,19].

To identify the most important features of upper-limb prostheses, several studies have
been conducted. The key factors can be listed as anthropomorphic characteristics (kinemat-
ics, size, weight, and appearance) [3,20], performance (speed, force, and dexterity) [21-23],
and strong and integrative grasping [14,24,25]. Bioinspired motion speeds and adequate
grip force are necessary for the device to be useful for carrying out the activities of daily
living (ADLs) [26]. However, among the most fundamental needs for a robotic prosthesis
is the capability to control the robot with sufficient precision and responsiveness of the
fingers so that it may be used effectively and with sufficient dexterity [14,27-29].

Despite the study of various human-machine interfaces (HMlIs), there is still a lack of
prosthetics with the reliable control of multiple degrees of freedom [11]. For instance, using
biological signals such as electromyography (EMG) or electroencephalography (EEG) as
non-invasive approaches have been studied and proposed as popular HMIs, enabling users
to control rehabilitation devices not only for prostheses but also rehabilitation robots [30]
and exoskeletons [31,32]. However, these techniques are very noisy, and the recorded
signals can be affected by electrode movements as well as sweating [33]. Also, EMG sensors
are not able to monitor deep muscle activities, making this controlling system unable to be
used in predicting more complex hand gestures with acceptable accuracy. For EEG control,
the response time is still relatively slow [34-36]. In addition, the intended hand gestures
performed by robots are limited, and the most commercialized EMG-controlled prostheses
still only have close and open functions, although different approaches for controlling
robots with high dexterity have been proposed at the research level.

In recent years, in order to improve the quality of signals recorded from sensors as
well as decrease the amount of noise, invasive techniques such as implanted EMG, targeted
muscle reinnervation, myoelectric implantable recording arrays (MIRAs) [37], magnetomi-
crometry (MM) [38], and others have been proposed. However, invasive approaches raise
numerous questions regarding safety and efficacy since the electrodes need to be implanted
into the body [33]. The field has been searching for a signal which can represent individual
muscle activation and be collected non-invasively.

Over the last two decades, using signals extracted from the ultrasound images of
muscle during contraction to control prosthetic hands has been a popular research topic.
Zheng et al. first studied the feasibility of controlling robotic hands using an ultrasound
device in 2006, in which the term “sonomyography” (SMG) was proposed by the team
for this non-invasive HMI approach [39]. Basically, SMG refers to the signal representing
architectural changes in a muscle detected via real-time ultrasound images during its
contraction [40]. Since ultrasound imaging can inherently differentiate the activities of both
deep and superficial muscles as well as a group of neighboring muscles simultaneously
and non-invasively, SMG has attracted the attention of a lot of researchers since it was
proposed [41-47]. Recently, a unique mobile SMG system to monitor muscles’ activities
was evaluated regarding its reliability and validity by Ma et al. in 2019, paving the way for
the real-time monitoring of muscle activity throughout both indoor and outdoor activities,
especially for controlling prostheses using a wireless SMG system [48].

A number of SMG-based prosthesis control systems have already been reported in
the literature, which mainly focus on the demonstration of feasibility, including using
single-element transducers [49]. A low-power SMG system designed for wearable use with
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a prosthetic hand was proposed by Engdahl et al. in 2020 [50]. Using Al to classify intended
hand gestures, the authors demonstrated that their suggested technique successfully classi-
fied nine distinct finger motions with an accuracy of around 95%. In 2020, Yang et al. [51]
advocated for the use of wearable 1D SMG (A-mode ultrasound transducer) equipment
in combination with subclass discriminant analysis (SDA) and principal component anal-
ysis (PCA) to predict wrist rotation (pronation/supination) and finger movements. This
research demonstrated that the SDA machine learning method could be used to identify
both finger gesture and wrist rotation concurrently with accuracies of around 99.89% and
95.2%, respectively.

To overcome the difficulties caused by single-element transducers, a number of stud-
ies reported the use of B-mode imaging transducers [49]. In a study published in 2019,
Akhlaghi et al. [52] evaluated the effect of using a sparse set of ultrasound scanlines to
determine the optimal location on the forearm for capturing the maximal deformation of
the primary forearm muscles during finger motions and classifying various types of hand
gestures and finger movements. The results indicated that the ultrasonic probe should
be placed over around 40-50% of the forearm’s length in order to identify distinct hand
motions with greater precision. This is because the largest muscle activation occurs in
this region. In addition, the categorization result demonstrated that employing B-mode
ultrasound to operate a prosthetic hand was a viable option, since the accuracy was almost
95%. In 2019, Li et al. [53] tested the capabilities of M-mode and B-mode ultrasound to
detect 13 various hand and finger movements in eight able-bodied subjects. Using the
Support Vector Machine (SVM) algorithm to classify various hand gestures, the accuracy
of the M-mode classification was determined to be 98.83 & 1.03%, and that of the B-mode
classification was determined to be 98.77 &= 1.02%. On the other hand, the accuracy of the
Backpropagation Artificial Neural Network (BP-ANN) classifier was 98.77% in M-mode
and 98.76% in B-mode. They discovered that M-mode SMG transducers were equally as
accurate as B-mode SMG signals when it came to detecting wrist and finger movements, as
well as in differentiating between a variety of hand gestures, which suggests their possible
utility in human-machine interfaces.

Zheng et al. in 2006 [39] and Guo et al. in 2008 [54] conducted the first experiments to
evaluate the relationship between morphological changes in forearm muscles and wrist
angle. The results of their studies showed that muscle deformation measured by ultrasound
correlated linearly with wrist angle. Moreover, in 2011 and 2012, Castellini et al. [55,56]
conducted exciting experiments to assess the potential of an SMG system in predicting
the position of the fingers using ultrasound images collected from human forearms. The
results of their studies, by discovering a linear relationship between finger position and
the extracted features from ultrasound images, showed that this novel controlling system
had great potential not only for predicting intended hand gestures, but also for provid-
ing information regarding finger position and the amount of flexion, enabling the SMG
controlling system to provide a proportional and natural-like control experience to people
with amputations.

For a more complete understanding of the various systems and techniques developed
using the ultrasound imaging of muscle, or SMG, for controlling upper-limb prostheses,
readers can refer to a review paper recently published by Vaheh et al. in 2023 [57], which
conducted a comprehensive evaluation and comparison of the results and findings of
previously published works on SMG systems as novel human-machine interfaces. The
outcomes of this review paper demonstrated the promise of ultrasonic sensing as a practical
human-machine interface for the control of bionic hands with multiple degrees of freedom.
In addition, this review showed that a variety of machine learning algorithms combined
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with feature extraction models could correctly classify various hand gestures with an
accuracy of about 95% [57].

Building on these insights, and considering other mainstream technologies in-
cluding EMG, we prepared a comparison table (Table S1) that summarized the key
factors—accuracy, latency, weight, and cost—across these leading technologies used in
prosthetic hand control [57-65].

Despite all the feasibilities demonstrated about using SMG together with machine
learning or deep learning methods for detecting hand gestures with the potential for
prothesis control, there are few reports about testing an SMG-control-based robot on
real amputees [66]. Considering that residual muscles after amputation surgery are very
different from those in normal subjects, the promising results demonstrated in earlier
papers may not necessarily stand with residual limbs. In addition, up to now, there is still
no report of a system integrating SMG together with a prothesis for testing on amputee
subjects to demonstrate its performance in daily activities.

In this study, we report the design and performance of a novel SMG controlling system,
a lightweight (360 g), functional, and cost-effective 6-DOF prosthetic hand called ProRuka
(Figure 1). The novel ProRuka was developed and tested by considering anthropomor-
phism, functionality, safety, and comfort, all of which were inspired by the structure of
the human hand. To evaluate the accuracy of the proposed machine learning model in
classifying the different hand gestures needed in daily activities, ten able-bodied volunteers
were recruited to attend our first experiment. For the offline evaluation experiment, data
were first collected from the ten able-bodied participants before being used to train the
model and assess the accuracy of the Al model. Among all the data collected from the
ten volunteers, around 70% of it was used for training and the rest for validation. For
the amputee subjects, data were collected from the individual residual limbs and used to
train their individual models. This step is very similar to the training session for using
conventional EMG-controlled protheses. The trained model, together with the prosthesis
and the controlling system, was evaluated with two amputee subjects, who performed
standardized hand function tests including the Box and Blocks (B&B) test, Targeted Box
and Blocks (TB&B) test, and Action Research Arm Test (ARAT).

Sonomyography (SMG)

Classifying different
Controlling hand gestures using
prosthetic hand J Al

Using recorded data
. to train artificial
Recording muscle intelligence (Al)

activities using A-Mode B-Mode

ultrasound ‘ / q
M—Moae

Figure 1. Sonomyography as a novel HMI method: The overall schematic of the sonomyography
(SMG) setup and control of the prosthetic hand using an ultrasound probe.
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2. System and AI Model Development
2.1. Programming Environment and Tools

In this study, the primary programming language used was Python 3.10. The main
libraries utilized in our code included TensorFlow for deep learning and NumPy for
numerical computations. Additionally, the scikit-learn (sklearn) library was employed for
implementing various machine learning algorithms and model evaluation. All the key
parameters for the models have been specified to facilitate the replication of the results.

2.2. Classification of Different Hand Gestures Using Ultrasound Imaging

For the control part reported in this paper, different classification methods were
studied. The participants were divided into able-bodied and amputee groups. Each
volunteer was asked to sit in a comfortable position and put their hand on a cushion.
Then, the muscle activities in different hand gestures were captured using a palm-sized
wireless ultrasound probe. The collected images were first resized into 32 x 32 pixels (from
912 x 912 pixels) and then normalized from a [0, 255] to [0, 1] pixel intensity. After that, a
convolutional neural network (CNN) was used to extract the features from each image, and
these features were used to train a model with a machine learning or regression algorithm.
We used Random Forest (RF) with 100 estimators and the random state of 100, k-nearest
neighbors (KNN) with 10 neighbors, SVM, and a Decision Tree Classifier (DTC) with a
maximum depth of 10 and a minimum sample split of 2 as the machine learning algorithms
to train the model, while to train the model using a regression algorithm, we used decision
tree regression (max_depth = 3), nearest neighbor regression (n_neighbour = 5), and support
vector regression (C = 100, gamma = 0.1, epsilon = 0.1) with two different kernels, linear
(SVR-L) and polynomial (SVR-P). Then, the accuracy of each machine learning algorithm
was examined and compared.

2.2.1. Feature Extraction

Since the machine learning algorithms could not process all the raw information
contained in the images, a CNN algorithm with pretrained weights was used to extract
the features from the collected data. Then, these extracted features were utilized to train
the Al model. Three different pretrained models including VGG16, VGG19, and Incep-
tionResNetV2 were individually used for feature extraction. To select and extract features,
64 filters from the first convolutional layer were utilized. The features extracted from the
training data were then used for classification. It is important to note that using more
filters increases the number of extracted features, which can increase the accuracy of Al
models. However, more time and GPU memory are required to train models with more
extracted features.

2.2.2. Classification

Figure 2 shows the overall schematic of the whole classification process. After ex-
tracting the features, these data were used for training three different machine learning
classification algorithms, including RE, KNN, DTC, and SVM, as well as four regression
algorithms (decision tree regression, nearest neighbor regression, SVR-L, SVR-P) to classify
different hand gestures and finger movements. Two-thirds of the collected data were used
for training and the rest were applied for validation.
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Figure 2. The overall schematic of the classification process: A transfer learning model was used
to extract features from the images and the extracted features were then utilized to train the model
using machine learning algorithms.

2.3. Replacing Ultrasound Gel and Gel Pad with Sticky Silicone Pad

For the sticky silicone pad, biocompatible silicone liquid (Deping, Guangdong
Province, China) was used to create a pad using the molding technique. In the exper-
iment, two different silicones with hardness ratings of Shore 00-00 and Shore 00-05 were
utilized. Three different silicone pads were created for the experiment. The first one was
a silicone pad with a hardness of 0. The ultrasound images had a good resolution using
this pad, but it was too sticky, and it was difficult to put it on the hand with the prosthesis.
A second silicone pad with a hardness of 05 was created. The resolution was good for
controlling the prosthesis, but the pad was fragile and could be damaged easily during
application and removal. Thus, for the third pad, a combination of silicones with 00 and
05 hardness were mixed together in a 3:1 ratio. The testing results demonstrated that the
image quality provided by this silicone gel pad was good enough for controlling the robot,
and it was sticky enough to minimize transducer movement. Additionally, the flexibility of
the pad was good enough to be used with a socket without any damage (Figure 3).

Silicone
Pad

Image quality with Image quality with
silicone pad ultrasound gel

Figure 3. Utilizing silicone pad instead of ultrasound gel: Image quality using silicone pad (A) and
ultrasound gel (B).



Sensors 2025, 25, 3968

7 of 20

2.4. Designing a Novel Prosthetic Hand

To evaluate the novel SMG controlling system in this study, we developed a low-cost,
lightweight, user-friendly, dexterous, multiple-degree-of-freedom, functional prosthetic
hand (Figure 4A). To make the prosthetic hand resemble a normal human hand, a 3D
model of a normal human hand was first prepared using a portable industrial 3D scanner
(EinScan Pro 2x, Shining 3D, Hangzhou, Zhejiang, China). Then, the hand joints of the
scanned model were replaced with mechanical joints to make the prosthesis functional
(Figure 4B). Moreover, by considering the important role of the abduction and adduction of
the thumb in grasping different types of objects and performing 80% of daily living hand
activities, we considered the rotational movement in the MCP joint in the design of our
prosthetic hand (Figure 4B). In addition, to increase the friction between objects and the
prosthesis and decrease the chance of objects slipping and falling from the prosthesis, the
fingertip of each finger as well as the palm of prosthesis was made of silicone (Platinum
Cure Silicone Rubber Compound with a shore hardness of 00-50, Smooth-On, Macungjie,
PA, USA). Furthermore, 3D printing technology with black nylon material was utilized
(VPrint 3D, Hong Kong, China) to make the prosthesis cost-effective and lightweight.

B

A Fingertips made out of

= Combination of 3D model of real

hand with mechanical joint

Silicone palm for
better grasp

)

/|7

Considering rotational movement in MCP joint of

hand for imitating thumb ion and

Figure 4. The design of ProRuka: (A) The design of ProRuka, a 3D-printed, lightweight, cost-effective,
and multi-degree-of-freedom prosthetic hand; (B) an exploded view of the prosthesis.

3. Experiment and Results
3.1. Participants

Since musculoskeletal anatomy is different between able-bodied people and those with
transradial limb loss, it was important to assess the accuracy of the proposed classification
method for both groups. Consequently, we separated the participants into able-bodied and
amputee groups. The study was approved by the Human Subjects Ethics Sub-committee of
The Hong Kong Polytechnic University (HSEARS20220720001).

Ten able-bodied volunteers (five males and five females, aged between 22 and 33)
were recruited for experiment 1 (the healthy group), and two amputee subjects (both
males aged between 45 and 69, respectively, referred to as Al and A2) were recruited
for experiment 2 (the amputee group). Both amputee subjects had undergone left-hand
transradial amputation, 26 and 45 years after their injury, respectively. Each participant
completed an informed consent form after receiving information about the research and
the experimental design.

3.2. Experimental Setup

The volunteers were asked individually to sit in a comfortable position, put their
hand on a cushion, and keep their palm upwards. A B-mode lightweight (only 67 g)
wireless ultrasound module (Model UL-1C, Beijing SonopTek Limited, Beijing, China)
was fixed on the forearm using a customized case (Figure 5A,B). To collect the maximum
amount of muscle activity, the probe was placed perpendicular (transverse) to the forearm
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within 30% to 50% of the length of the forearm from the elbow (Figure 5B). Moreover, to
minimize the effect of transducer relocation on accuracy, data were collected at different
transducer locations.

Ultrasound probe’s
* hand mounting

30-50 % of the fore
— position

arm length

Figure 5. The experimental setup: (A) The setup for data collection to test the performance of offline
classification (experiment 1) and collect ultrasound images of the main muscles responsible for finger
flexion. (B) The area on the forearm used to capture the best muscle activities to control the robot.
(C) The data collection setup used to train the model for functional testing (experiment 2).

3.3. Experiment 1: Performance of Offline Classification

In the first experiment, an offline classification experiment was conducted in the
able-bodied group to evaluate the potential of SMG as a novel HMI method. The accu-
racy of the classification method with different machine learning classification/regression
algorithms including DTC, nearest neighbor regression (NNR), decision tree regression
(DTR), KNN, SVR-L, SVR-P, SVM, and RF were compared after training and validation
data were collected from 10 able-bodied people. In the final stage, for further evaluation of
the developed model, nested and non-nested cross-validations were utilized.

Data Collection for Offline Testing

In the offline test, the able-bodied group were asked to sit comfortably on a chair and
place their elbow on a pillow, with the palm facing upward. Before collecting data for
training and validation, the position of the ultrasound transducer was first defined and
fixed, making sure that key muscles, including the flexor digitorum superficialis (FDS),
flexor pollicis longus (FPL), and flexor digitorum profundus (FDP), were covered by the
transducer (Figure 5A). Each subject was then asked to perform one of nine different hand
gestures, including rest, individual finger flexion (index, middle, ring, little, and thumb),
fist, pinch, and key pinch, and hold it for 5 s. All nine hand gestures were repeated three
times. To avoid fatigue and spasm in the muscles, there were 15 s of rest between each
hand gesture. In the offline testing of the able-bodied group, in total, 11,625 images were
collected, and 8350 of them were used for training, while 3275 images (384 x 400 pixels)
were used for validation.

3.4. Experiment 2: Real-Time Functional Performance

To evaluate the functionality and performance of ProRuka, the developed controlling
system and prosthetic hand were tested in real-time experiments with two amputees, using
a variety of hand function test kits. In experiment 2, the B&B test as well as the TB&B
test, which is a modified version of the B&B test, and Action Research Arm Test (ARAT)
were utilized to evaluate the functional performance of the prosthesis in daily activities.
Before the evaluation session, the two participants with transradial amputation were asked
to attend two training sessions to improve their skills in controlling the robot as well as
become familiar with the prosthetic hand and the process of the evaluation session.
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Box and blocks test: Gross manual dexterity is often evaluated using a test called
the B&B test [67]. The evaluation kit consisted of a box with two squared compartments
which are separated by a partition (Figure S1). One of the compartments was filled with
150 wooden cubes (25 mm?), combining in such a way that the blocks may be found to rest
in a wide variety of positions. The number of blocks that were moved over the barrier in
the allotted time of 60 s was how the test was scored. The participants were free to carry
the blocks in whatever order they wanted, provided that their fingers passed the partition
between the two compartments before releasing the block into the desired location.

Targeted box and blocks test: The TB&B test was performed with 16 (for 4 x 4 TB&B
Test [68]) and 9 (for 3 x 3 TB&B Test [69]) blocks. The TB&B Test is an upper-limb functional
task designed to elicit ecologically meaningful activities such as movement initiation and
the grasping, transporting, and controlled releasing of items. In addition to its use in
assessing patients’ functional improvement after undergoing rehabilitation, this test may
also be used as an outcome measure in clinical studies of upper-limb transradial prosthetic
devices [70]. A standard grid was placed on both sides of the compartment, and the
volunteers were asked to move each block to the other side of the compartment into its
mirrored location. The box was turned upside down so that the outside area could be used
for the assessment, which made it simpler to complete and also enabled the prosthetic hand
to avoid colliding with the box’s walls (Figure S2).

Action Research Arm Test: The ARAT, which is extensively used to measure arm
function, is one of the most prominent hand function evaluation kits. The testing kit
consists of 19 different items to assess the different grasping types and arm movement
(Figure S3). The whole assessment process takes approximately 10 min, scores are given
based on the participants’ arm movement and functionality, and for each item, the score is
rated between 0 (no movement) and 3 (normal movement) [71,72]. ARAT scores vary from
0 to 57, with 57 indicating higher performance. The final score indicates weak (less than
10), moderate (10-56), or excellent (57) hand function [73].

Data Collection for Real-Time Classification Testing

In the real-time classification experiment (experiment 2), to evaluate the whole SMG
controlling system in the last session, different functional hand gestures including rest,
pinch, key pinch, and cylindrical grip (fist) were classified as useful grasping types to help
the participants use the robot in their ADLs. It is worth mentioning that out of the four
available grips, the Al model was only trained with a cylindrical grip, since the robot was
not able to perform other grips.

During the experiment for real-time classification, data were collected using one static
and two different dynamic strategies, as the ultrasound image for each hand gesture varied
due to hand movements while performing different tasks. In the static strategy, the same
as in the previous experiment, ultrasound images from forearm muscles were collected
while the participant’s hand was placed on the table with the palm upward (Figure 5C). In
the first dynamic strategy, the participants were first asked to extend their hands and keep
their palm in a supination position, then flip their hand without trying to move their wrist
(flipping 90 degrees) while performing and holding one of the hand gestures (Figure S4).
This activity was performed at a moderate speed and repeated three times for each hand
gesture (rest, pinch, key grip, and fist). In the second dynamic strategy, the volunteers were
asked to extend their elbow and then rotate their forearm 180 degrees three times while
performing and holding one of the four hand gestures. They were instructed to perform
the rotations at a moderate speed, defined as 1-2 s per complete rotation (180 degrees).
This speed was monitored to ensure consistency across trials, with a target rotation speed
of approximately 90 degrees per second. The amputee subjects were asked to repeat this
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process twice. The whole process for each hand gesture took 120 s, with a total of 480 s for
the four hand gestures.

3.5. Results
3.5.1. Offline Classification Results

The offline classification results showed that the combining of a transfer learning
model with one of the machine learning classification algorithms (KNN, RF, SVM, DTC)
as well as regression methods, including nearest neighbor regression and decision tree
regression, had the potential to classify the nine different hand gestures with an accuracy
of more than 91% (Figure 6). However, training the model using SVR-L, SVR-P, and MLP
showed significantly poorer performance in classifying the different hand gestures, with
accuracies of 55.96%, 55.38, and 23%, respectively. Tables 1 and 2 summarize the offline
classification results obtained using various machine learning and regression algorithms
and transfer learning approaches.

A B E

KNN Confusion Matrix
Accuracy: 100.0%

Random Forest Confusion Matrix
Accuracy: 100.0%

Decision Tree Confusion Matrix
Accuracy: 99.4%
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Pinch- 0.0% 0.0% 00% 00% 00% 00% 0.0% Pinch - 0.0% 0.0% 00% 00% 00% 00% Pinch - 0.0% 0.0% 0.0%

Soft pinch- 0.0% 00% 00% 00% 00% 00% 00% Soft pinch - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Soft pinch - 0.0% 0.0% 0.0% 6 0.0%
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Figure 6. The results of the offline test: Offline test results for classifying nine different hand gestures
in the 10 able-bodied participants group. VGG16 was used to extract features from the collected
data, and these features were used to train an RF, KNN, or DTC model. The figure shows confusion
matrices for hand gesture classification using the (A) Random Forest, (B) KNN, and (C) decision
tree algorithms.

Table 1. This table summarizes the performance of various machine learning algorithms using
different transfer learning models in classifying nine different hand gestures. Accuracy is presented
as a percentage, indicating the effectiveness of each method.

Machine Learning Algorithm Transfer Learning Model Accuracy
Random Forest (RF) InceptionResNetV2 100%
K-Nearest Neighbors (KNN) InceptionResNetV2 100%
Decision Tree Classifier (DCT) InceptionResNetV2 100%
Support Vector Machine (SVM) InceptionResNetV2 100%
Random Forest (RF) VGG19 100%
K-Nearest Neighbors (KNN) VGG19 100%
Decision Tree Classifier (DCT) VGG19 100%
Support Vector Machine (SVM) VGG19 100%
Random Forest (RF) VGG16 100%
K-Nearest Neighbors (KNN) VGG16 100%
Decision Tree Classifier (DCT) VGG16 100%
Support Vector Machine (SVM) VGG16 100%
Multi-Layer Perceptron (MLP) VGG16 23%
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Table 2. This table displays the performance of various regression algorithms using VGG16 for
transfer learning in classifying nine different hand gestures. Accuracy is shown as a percentage,
reflecting the effectiveness of each regression method.

Regression Algorithm Accuracy
Neural Network Regression (NNR) 100%
Decision Tree Regression (DTR) 91.72%
Support Vector Regression (SVR-L) 55.96%
Support Vector Regression (SVR-P) 55.38%

Figure 7 shows the 2D t-SNE visualization of the extracted features from the transfer
learning model with decision boundaries learned by different classifiers. The t-SNE pro-
jection reveals well-formed clusters corresponding to each hand gesture class, indicating
effective feature extraction. The KNN classifier produces smooth, well-separated decision
regions, reflecting its strong ability to discriminate classes in this reduced space. In contrast,
the Random Forest shows more fragmented boundaries due to its ensemble nature, while
the Decision Tree Classifier creates axis-aligned, blocky partitions that result in less-smooth
class separation. These visualizations provide intuitive insights into the classifiers’ differing
strengths in handling complex feature distributions, with smoother boundaries suggesting
better generalization and more fragmented or blocky boundaries indicating sensitivity to
local patterns or abrupt transitions in the data.

A B C

KNN Decision Boundary on t-SNE Random Forest Decision Boundary on t-SNE Decision Tree Decision Boundary on t-SNE

t-SNE dim 2
t-SNE dim 2

t-SNE dim 2

t-SNE dim 1

t-SNE dim 1 t-SNE dim 1

Figure 7. Two-dimensional t-SNE visualization: 2D t-SNE visualization of extracted features from
transfer learning model with decision boundaries learned by (A) KNN, (B) RF, (C) DTC.

To evaluate the performance and generalizability of our model, we applied a cross-
validation (CV) scheme to the offline experiment. We tested the CV on models trained
using the RE, DTC, or KNN machine learning algorithms, since these models showed
the maximum accuracy in the offline test (100% accuracy). The statistical analysis of the
cross-validation scores revealed a mean performance of approximately 99.8, indicating
strong model effectiveness. The median score of 99.5 and mode of 99.5 further emphasize
consistent performance across evaluations. With a range of 0.6, variance of 0.0712, and
standard deviation of 0.2667, the scores exhibited minimal variability, suggesting the
reliability of the results. The calculated margin of error for a 95% confidence level was
£0.197, leading to a confidence interval of [99.54, 99.94], which indicates that the true mean
performance is likely to fall within this range. These findings collectively highlight the
model’s robustness, with a reliable performance.

It is worth mentioning that more time was needed to train the models using SVR-L,
SVR-P, decision tree regression, nearest neighbor regression, DTR, and SVM, while the
RF and KNN models were the fastest in training using the collected datasets (around
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205 s for the ten able-bodied volunteers, with 8350 images for training and 3275 images
for validation).

3.5.2. Real-Time Performance Results

Based on the offline test results, VGG16 was used to extract features and an RF machine
learning algorithm was utilized to train the model (the accuracy of classifying the different
hand gestures using this method was the highest). The two volunteers were invited to
attend the experiment conducted to evaluate the functionality of the developed prosthesis.
They were asked to complete the different hand function tests with the prosthesis in
addition to their healthy hand to compare the results.

The final scores and results of the hand function test are summarized in Table 3. During
the experiment, it was observed that a minimum of 120 s was needed to collect the training
data for each hand gesture with an accuracy of 100%. It was also observed that the accuracy
of classification was minimally reduced after transducer replacement due to putting on
and taking the prosthesis. However, during data collection for training, data were collected
at different transducer locations to minimize the effect of transducer relocation on accuracy.

Table 3. Result of hand function evaluation using B&B test, TB&B (4 x 4) test, TB&B (3 x 3) test, and
ARAT. Both volunteers were right-handed and had left-hand transradial amputations.

Test Hand Result
B&B Number of blocks

Al A2

Left 12 8

Right 45 47

TB&B (4 x 4) N Time (seconds) .
Left 86.66 136.79
Right 31.31 21.23

TB&B (3 x 3) N Time (seconds) -
Left 41.40 67.18
Right 17.00 12.28

total
ARAT N Score (total) .
Right 57 57

B&B: box and blocks; TB&B: targeted box and blocks; ARAT: Action Research Hand Test.

The results of the B&B and TB&B tests demonstrated that the volunteers were able to
pick up the blocks via pinching and successfully move them to the other side of the box
without any misclassification during hand movements. Both of the participants were able
to easily transfer around 13 blocks within 60 s without any prior training. However, the
prosthetic hand exhibited limited fine dexterity, as evidenced by the relatively low number
of blocks transferred compared to typical healthy hand performance. These limitations are
likely attributable to the lack of sensory feedback and the rigid structure of the prosthetic
hand, which reduce the user’s ability to modulate their grip force and adapt movements
dynamically, thereby contributing to reduced efficiency and increased user fatigue during
task execution.

The outcome of the ARAT demonstrates good performance in grasping and gripping
different objects of different sizes, indicating reliable power and precision grips. Nonethe-
less, ProRuka struggled with fine motor tasks, such as picking up small objects, which
require a delicate pinch gesture. Based on the scores earned by the volunteers, the pros-
thetic hand’s overall functional performance corresponds to that of a hand with moderate
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function. More specifically, individuals can perform basic tasks but may struggle with more
complex or fine motor activities.

3.5.3. Evaluating the Potential of Using a Silicone Pad Instead of Ultrasound Gel or
a Gel Pad

In the experiment conducted to evaluate the potential of the silicone pad to be re-
placed with ultrasound gel in order to control the prosthesis using ultrasound imaging,
we observed that a silicone pad could provide real-time images of the muscle with good
image quality and that the captured data could be utilized to enable real-time control over
the prosthetic hand. Moreover, it was also discovered that the sticky silicon pad did not
only stop transducer relocation but also reduced the stress on the skin by dampening the
transducer’s reaction force.

4. Discussion

SMG is a novel HMI method that allows users to control a prosthetic hand by capturing
the residual muscles” activities using ultrasound imaging. Figure 1 illustrates the SMG
method as a new HMI technique for controlling prostheses with multiple degrees of
freedom. In this study, the potential to control a prosthetic hand using SMG was evaluated.
To classify different hand gestures, a combination of transfer learning models (including
VGG16, VGGI19, and InceptionResNetV2) and machine learning algorithms were utilized.
And the results show that this new method has high potential to be utilized in the control
of prosthetic hands.

The offline classification results showed that combining one of the transfer learnings
with algorithms such as Random Forest, k-nearest neighbors, Decision Tree Classifier,
Support Vector Machine, and regression methods yielded accuracies exceeding 91% for
hand gesture recognition. Conversely, models based on support vector regression (linear
and polynomial) and a multi-layer perceptron demonstrated substantially lower accu-
racy, between 23% and 56%. Cross-validation further validated the robustness of the
top-performing models, with an average accuracy of approximately 99.8% and minimal
variability across evaluations.

In the functional evaluation test, we found that the volunteers who attended our study
were able to control the prothesis and execute the different hand gestures needed for ADLs
without any previous training. We found that collecting data from participants” hands while
they performed movements and rotated their wrists (see Figure S1) significantly reduced
the misclassification errors during changes in arm position. This approach enhances the
reliability of the control system, making it suitable for use in real-world settings beyond the
laboratory. Moreover, the scores achieved by the two volunteers in the ARAT show that the
developed SMG system to control the prosthetic hand has the potential to assist people with
transradial hand amputation to perform different hand gestures needed for ADLs (Figure 8),
and the scores also prove that the functionality of the prosthesis is as good as a hand
with moderate hand function. The B&B and TB&B tests showed the functionality of the
developed robot with this novel controlling system in regard to manipulating objects using
pinching. Moreover, in the experiments, no misclassification during hand movements was
observed when the volunteers wanted to transfer blocks (Supplementary Videos S1-S3).
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Figure 8. ProRuka in activities of daily living: Novel SMG system enabling multi-degree-of-freedom
prosthetic hand to be used in daily activities.

During data collection and the testing of the SMG controlling system, we noticed
that gel pads and ultrasonic gels increased the possibility of probe movement, which
significantly lowered the precision and reliability of the SMG controlling system. In addition
to this, the skin is in jeopardy due to the prolonged contact with moisture. Additionally,
gels contaminate the environment in which the ultrasound probe is mounted. Several
potential solutions to these problems have been proposed and evaluated by researchers
in the last few years. For instance, Wang et al. recently created a bioadhesive ultrasound
(BAUS) device that can provide pictures from organs for 48 h. To securely adhere an array
of piezoelectric elements to the skin without ultrasound gel, they utilized a soft, tough,
anti-drying, and bioadhesive hydrogel-elastomer hybrid couplant layer [74].

In this study, we proposed the utilization of a biocompatible sticky silicone pad as
an alternative to ultrasound gel. It was discovered that a silicone pad has the potential
to be used instead of ultrasound gel or gel pads, avoiding skin contact with moisture
and thereby serious skin problems. We also observed that sticky silicone pads can not
only help to capture images from muscles with good resolutions but also, by increasing
the friction between the transducer and the skin, prevent the relocation of the transducer,
resulting in a decrease in misclassification in real-time control. In addition, during the
offline test, the accuracy of hand gesture classification in the able-bodied group was around
99% when ultrasound gel was used to collect the data. However, when the ultrasound gel
was replaced with a silicone pad, the accuracy increased to 100%.

It is well known that muscles become fatigued under continuous contraction. The
effect of this phenomenon for prothesis control using electromyography has been reported
in previous studies [75,76]. The EMG signal magnitude increases during muscle fatigue,
while the center frequency of the EMG reduces. Therefore, a change in frequency can be
used to compensate the EMG magnitude, as used in Park and Meek'’s study in 1993 [75]. In a
recent study in 2019 [76], the data for training a model also included EMG signals collected
under the fatigue situation; thus, the prediction model for providing prosthesis signals
could work with both un-fatigued and fatigued muscle. Shi et al. (2007) demonstrated that
SMG signals could also be used to evaluate muscle fatigue; i.e., muscle thickness increased
during muscle fatigue [77]. This finding also indicated that muscle architectures change
under the muscle fatigue status. In future studies related to SMG prosthesis control, it is
important to include training images collected under the fatigued status when developing
the model.
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In addition, after the prosthesis is used for a period, the residual muscle of the amputee
subjects may change as time goes by. For example, the residual muscle may become
stronger, leading to morphological changes, after the user continuously uses the prothesis
for a certain period. Under such situations, the originally trained model may not be
able to achieve very high accuracy. We propose two possible solutions for future further
investigations. Firstly, users can periodically collect new images of their forearm muscles
and update their training dataset, retraining the controlling system. Alternatively, the
Al model can be designed to automatically update its dataset by capturing new images
while the user is using the prosthetic hand. Eventually the model can retrain itself with the
updated dataset during the charging process of the prosthetic hand.

Limitations and Future Works

In this study, we used a large number of images collected from each amputee’s hand to
train the model for real-time evaluation. In order to put our focus more on the functionality
of the prosthetic hand and the capabilities of the controlling system, we decided to spend
more time evaluating the functionality of the hand by training the model with the essential
and functional hand gestures. In future studies, the control of more complete sets of hand
gestures can be evaluated.

Even though the volunteers in this study were able to complete the various tasks, they
found it difficult to pick up small objects due to a lack of sensory feedback. In the hand
function test, they tried to control the prothesis only by looking at the hand movements
without sensing the location of each finger, making it difficult for them to exercise excellent
control over the prosthesis. Moreover, to develop a cost-effective prosthetic hand, a mini-
mum number of actuators and electronic items was used. However, in the hand function
test, it was observed that it was difficult for the participants to perform some daily activities
due to the lack of wrist rotation. They could pick up blocks, but they needed to move their
entire body to grasp and hold a glass, especially when simulating the pouring of water
from one glass to another. Furthermore, sometimes the participants complained about
the prothesis blocking their view, making it difficult for them to see the objects that they
wanted to pick up. In addition, based on the test results, it was observed that the prothesis
could perform the pinch gesture, but it was difficult for the subjects to pick up small objects
like coins, paper clips, ball bearings, etc., via pinching. In addition, to control the robot
using the SMG technique, a wireless ultrasound transducer was mounted in the socket.
The ultrasound device used in this study had the dimensions of 110 x 56 x 10 mm?® and
weighed approximately 80 g. To accommodate this device in the socket, we were obligated
to make the entire prosthesis slightly thicker than typical myoelectric prosthetics.

One of the main concerns regarding the SMG system is its long-term feasibility and
power consumption. Although the SMG control system demonstrated promising accuracy,
this performance can be influenced by changes in muscle structure due to fatigue or
alterations in muscle tone over time. Additionally, ultrasound devices typically have
higher power consumption compared to other sensing methods such as electromyography
(EMG), which may limit their battery life and continuous use duration. These factors
could impact the practicality and user comfort of the prosthesis during extended daily use,
underscoring the need for the ongoing optimization of sensor design and improvements in
energy efficiency.

In the future, different non-invasive methods for giving sensory feedback to amputees
will be studied to not only increase the functionality of the hand but also decrease the
occurrence of phantom pain in people with hand amputations [78-81]. Moreover, by
increasing the DOF of the prosthesis and adding one more rotational joint in the thumb and
one in the wrist, we will improve the dexterity, pinching, and wrist rotational movement
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of the prosthetic hand [82-84]. To remedy the limitations caused due to the rigidity of
the prosthetic hand, in the future, a combination of rigid items and soft materials will be
utilized to modify the prothesis and make it more like a human hand, with higher dexterity
and flexibility [10,13,85-87]. Finally, different Al methods will be used to predict not only
the intended hand gestures, but also the amount of intended finger flexion. This will
provide proportional and natural control over prosthetic hands.

5. Patents

US patent, US application no. 18/305,4415, pub. No. US2024/0225861 Al title:
PROSTHETIC HAND DEVICE USING A WEARABLE ULTRASOUND MODULE AS A
HUMAN MACHINE INTERFACE [88]

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s25133968 /s1. Figure S1: The box and blocks test kit; Figure S2:
The targeted box and blocks test; Figure S3: The Action Research Arm Test kit; Figure S4: Flipping
hand without moving wrist; Video S1: Assessing the functionality of the ProRuka using the box and
blocks (B&B) test; Video S2: Evaluating the functionality of the ProRuka using the 4 x 4 targeted
box and blocks (TB&B) test; Video S3: Assessment of ProRuka’s functionality using 3 x 3 TB&B
test; Table S1: Comparison of mainstream prosthetic hand control technologies including SMG and
EMG [57-65].
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HMI Human-Machine Interface
SMG Sonomyography

EMG Electromyography

EEG Electroencephalography

MIRA Myoelectric Implantable Recording Array
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MM Magnetomicrometry

SDA Subclass Discriminant Analysis

PCA Principal Component Analysis

SVM Support Vector Machine

BP-ANN  Backpropagation Artificial Neural Network
DOF Degree of Freedom

B&B Box and Blocks

TB&B Targeted Box and Blocks
ARAT Action Research Arm Test

CNN Convolutional Neural Network
RF Random Forest

KNN K-Nearest Neighbors

DTC Decision Tree Classifier

SVR Support Vector Regression
NNR Nearest Neighbor Regression
DTR Decision Tree Regression

FDS Flexor Digitorum Superficialis
FPL Flexor Pollicis Longus

FDP Flexor Digitorum Profundus
ADL Activity of Daily Living
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