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Abstract: Thanks to advancements in automated driving technology, autonomous trucks (ATs) can
form platoons with minimal inter-vehicle distances on highways, significantly reducing air drag and
fuel consumption for fleets. Given the dispersed distribution and small quantities of cargo, fleet
operators should manage ATs to enable cargo consolidation during platooning. In this way, fleet
operators can enhance operational efficiency and reduce fuel consumption. This study addresses
the AT scheduling and platooning problem considering cargo consolidation. The problem is the
scheduling of ATs to transport cargo while consolidating cargo and forming platoons between two
terminals, all while minimizing operational costs. A mixed-integer linear programming (MILP) model
is formulated for the proposed problem. In addition, we conduct extensive numerical experiments to
evaluate the proposed model. The results show that Gurobi can solve instances with different sizes to
optimality or near-optimality. Impact analysis is also conducted to explore the influences of several
factors, such as maximal platoon size and the load capacity of AT, on the system performance and to
provide managerial insights.

Keywords: autonomous truck; scheduling and platooning; cargo consolidation; MILP model
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1. Introduction

The trucking industry is a cornerstone of the national economy, facilitating cargo
transportation on highways. Emerging autonomous trucks (ATs) promise to revolutionize
the industry by improving cargo transportation efficiency and reducing operational costs
through the maintenance of optimal speeds, as well as controlled acceleration and decel-
eration. Estimates suggest that ATs could lower transportation costs by 25% and increase
truck flow efficiency by 11% [1]. Additionally, advanced automated driving technology
enables ATs to form platoons, traveling closely together to reduce fuel consumption due
to diminished aerodynamic drag. Advanced control systems, real-time communication,
and adaptive mechanisms play a pivotal role in maintaining stability within a platoon
of autonomous trucks. These technologies enable precise coordination, ensuring consis-
tent spacing, smooth acceleration, and braking. By addressing external disturbances and
dynamic maneuvers, such as merging or speed changes, they ensure safe and efficient
platoon operations. Figure 1 presents a truck platoon, where each truck maintains a short
inter-vehicle distance to save fuel consumption. Pilot truck platooning field tests have
shown that, in a two-truck platoon, the follower truck experiences the most fuel savings,
while the lead truck benefits less [2–4]. Ref. [5] demonstrated that 65.6% of the total miles
driven by ATs in the U.S. were platoonable, leading to an annual fuel consumption saving
of 2.7%. With the rapid development of global trade and increasing transport demand,
effectively managing AT fleets to leverage platooning technology is a crucial challenge for
the trucking industry.
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Figure 1. The truck platoon [6].

1.1. Literature Review

Over the past decade, many studies have explored how fleets can manage their ATs to
perform cargo transportation using platooning technology. Ref. [7] was the first to propose
a platoon planning problem aimed at maximizing the platoon opportunities for trucks.
Ref. [8] investigated a general truck scheduling and platooning problem (TSPP) to optimize
a truck fleet’s schedules on a fixed path, minimizing total operational costs given each
truck’s departure time window. Departing earlier than the earliest departure time and
departing later than the latest departure time were not permitted. Each truck was assumed
to be homogenous, consuming the same amount of fuel and benefiting from fuel savings as
either a leading or following truck when traveling along the road link. The truck speed
was assumed constant such that they only optimized the truck departure times at the start
point of the fixed path. They formulated a mixed integer programming (MIP) model and
developed efficient algorithms to address the TSPP. A computational study examined the
effects of platooning, maximum platoon length, and time window tightness on platooning
efficiency from the start to the destination of a fixed path. Ref. [9] addressed the TSPP
with travel time uncertainty, aiming to minimize total costs. They proposed a model and
conducted numerical experiments to evaluate the benefits of truck platooning, providing
valuable insights for transport planners and logistics managers. Additionally, the TSPP has
been extended to a network level, incorporating the truck routing problem. Related studies
have formulated various mathematical models and developed efficient algorithms [10–14].
Additionally, truck platooning has been explored in the container drayage problem, where
carriers use platooning strategies for container pickup and delivery services for shippers
and consignees [15–17].

Although various studies on truck platooning have been conducted, none of them
have considered cargo consolidation. Cargo consolidation by trucks is a strategic move
that can achieve various benefits, especially for long-haul transportation, such as improved
operational efficiency, enhanced service offerings, and cost savings [18]. This process allows
for the consolidation of cargo from various sources, enabling the more efficient use of truck
capacities and reducing the number of trips required. In addition, cargo consolidation
facilitates the better synchronization of vehicle departures, naturally creating opportunities
for platooning as ATs wait to accumulate sufficient cargo. Therefore, fleet operators should
incorporate cargo consolidation into AT scheduling for platooning on highways.

In fact, cargo consolidation has been considered in the classic pickup and delivery
problem (PDP). The problem is to determine the service route and schedule for vehicles to
pick up less-than-truckload cargos from origin locations and deliver them to destination
locations. Various mathematic models have been formulated for the PDP [19–22]. For
example, ref. [22] formulated a multi-objective mixed integer programming model based
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on a time-space network and developed a novel algorithm integrating K-means clustering,
Genetic Algorithm, forward dynamic programming, and an improved Shapley value
method to solve a PDP. However, none of these studies have considered the potential of
vehicle platooning, which requires the temporal and special synchronization of participant
vehicles. As the schedules of different vehicles are interdependent with one another, the
TSPP with cargo consolidation is a nontrivial extension of the PDP for model formulation.

1.2. Objective and Contributions

To address the identified research gap, this study explores the AT scheduling and
platooning problem considering cargo consolidation, thereafter referred to as the TSPP-C.
ATs are required to transport less-than-truckload cargo between two terminals. During the
transportation process, ATs can form platoons with one another by waiting at the origin
terminal. Additionally, ATs can perform cargo consolidation at the origin terminal. We also
assume that truckload change caused by cargo consolidation affects the fuel consumption
of ATs. Given the information of ATs, i.e., self-weight, load capacity, the origin terminals,
destination terminals, and the time windows of the departure times at origin terminals,
and the information of cargo, i.e., quantity, the supplier terminals, customer terminals, and
the time windows for cargo pickup, an optimal schedule and platoon plan of ATs and a
consolidation plan of cargos are determined to minimize the total fuel cost in this study.

To achieve our objective, we develop an MILP model to formulate the TSPP-C. The
contributions of this study are summarized as follows. First, we introduce a new problem
that considers cargo consolidation in the TSPP, which has not been explored in the existing
literature. Second, we propose an effective MILP model to formulate the TSPP-C. Third,
extensive numerical experiments have been carried out to evaluate the effectiveness of the
proposed model, investigate the impacts of several key factors on system performance, and
provide managerial insights.

The remainder of this study is structured as follows. Section 2 outlines the problem
description with assumptions and notations for the TSPP-C. The MILP model is presented
in Section 3. Section 4 analyzes the efficacy of the proposed model and examines the
impacts of two key factors on system performance. Finally, conclusions and future research
directions are discussed in Section 5.

2. Assumptions, Notations, and Problem Description

We consider a fleet operator to manage several ATs providing a cargo transportation
service on a highway between terminal A and terminal B, which is illustrated in Figure 2,
for suppliers and customers. During transportation, ATs can form platoons on the highway
and perform cargo consolidation. We focus on solving the TSPP-C from terminal A to
terminal B since the TSPP-C from terminal B to terminal A can be solved in the same way.
To further describe the TSPP-C, we first present the details of AT and cargo. Afterward, we
will introduce AT platooning.

Figure 2. The terminals and highway.

2.1. AT and Cargo Consolidation

The set of ATs, denoted as V , comprises fully autonomous vehicles that are homoge-
neous in specification and configuration. As we focus on solving the TSPP-C from terminal
A to terminal B, each AT v ∈ V should transport cargo from terminal A to terminal B if
it has cargo to transport. Each AT v ∈ V has self-weight mv, load capacity uv, and a time
window for AT departing from terminal A [τv, τ′v]. AT v ∈ V has to start transporting
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cargo from terminal A no earlier than τv and no later than τ′v if it has cargo to transport,
otherwise the AT should not be put into operation. The ATs are assumed to travel at a
free-flow speed on the highway. The set of cargos is represented as R. Each cargo r ∈ R
has a quantity qr and a time window for cargo pickup at terminal A [ar, br]. All cargos are
less-than-truckload, implying that qr, ∀r ∈ R is always smaller than uv, ∀v ∈ V .

Cargo consolidation refers to the process of aggregating cargos from multiple suppliers
into fewer vehicles to optimize vehicle capacity utilization, reducing the number of trips
and operation costs. As the time window for cargo pickup may conflict with the schedules
of ATs when considering cargo consolidation, the feasibility and flexibility of the AT
schedules may be affected. Therefore, cargo consolidation requires careful coordination
with platooning and scheduling by fleet operators. Furthermore, the natural waiting time
for cargo consolidation allows for the better synchronization of vehicle departures, creating
opportunities for platooning. In addition, cargo should be consolidated at terminal A and
delivered to terminal B by ATs, which satisfies the pickup time windows at terminal A.
Based on the stated information, we can formulate spatial and temporal itineraries of ATs
and cargo. The binary variable xv is defined as 1 if AT v ∈ V departs from terminal A, and
0 otherwise. The continuous time variable tv indicates the time instant at which the AT
v starts transport from terminal A. The binary variable yvr is equal to 1 if cargo r ∈ R is
loaded in AT v ∈ V from terminal A to terminal B, and 0 otherwise. Specifically, if there is
cargo transported by an AT on an arc, this AT must traverse the arc synchronously:

yvr ≤ xv, ∀v ∈ V , r ∈ R. (1)

In addition, the following constraint restricts that the load capacity of ATs should not
be exceeded:

∑
r∈R

qryvr ≤ uvxv, ∀v ∈ V . (2)

2.2. AT Platooning

To maximize fuel savings from platooning, we assume that ATs can wait at terminal A
for an indefinite period to join or form a platoon. As the travel speed of ATs is assumed to
be a constant free-flow speed on the highway, indicating there is no disturbance from other
vehicles during transportation, platoons can be formed by synchronizing the departure
times of ATs at terminal A and the formation of platoons can only occur at terminal A as AT
cannot accelerate or decelerate. In addition, once a platoon is formed, its formation remains
fixed; therefore, ATs in the platoon cannot merge with other vehicles. When ATs form a
platoon, the lead AT will experience a lower rate of fuel savings, whereas all follower ATs
will benefit from a uniform, higher rate of fuel savings. Besides the AT position in a platoon,
many factors like truckload affect the fuel consumption in the TSPP-C. Based on the fuel
consumption model proposed by [23], ref. [24] provided a fuel consumption rate equation
of trucks, which included various parameters such as total vehicle weight, travel speed,
vehicle structure, etc. Later, considering truck platooning, ref. [9] introduced a reduction
factor of air resistance σ in the fuel consumption rate equation as follows:

Fr =
ζ

κη

(
kNeV +

0.5cdρAν3(1− σ) + Mν(g sin α + gcr cos α)

1000εv

)
, (3)

where ζ represents the fuel-to-air mass ratio, κ is the heating value of the fuel, η is a
conversion factor from grams to liters, k is the engine friction factor, Ne is the engine speed,
V is the engine displacement, ρ is the air density, A is the vehicle front area, ν is speed, M
is the total vehicle weight, g is the gravitational constant, α is the road gradient, cd is the
coefficient of aerodynamic drag, cr is coefficient of rolling resistance, ε is vehicle drivetrain
efficiency, and v is the engine efficiency parameter.
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Next, we develop the fuel consumption equation (unit: liter) as F = Fr · D
ν where D is

the length of the highway:

F(M, σ) = f1 − f2σ + f3M, (4)

where σ is the reduction factor of air resistance, f1 = ζDkNeV/κην, f2 = 0.5ζDcdρAν2

(1− σ)/(1000κηεv), and f3 = ζDM(g sin α + gcr cos α)/(1000κηεv) are composite coeffi-
cients for the convenience of presentation.

To formulate AT platooning, we propose additional decision variables. We define
that the binary decision variable pvw is equal to 1 if AT v ∈ V travels somewhere behind
AT w ∈ V in the same platoon on the highway, and 0 otherwise. To further present ATs
with different positions in a platoon, we define two more binary decision variables. We
define binary variable αv as equal to 1 if AT v ∈ V leads a platoon on the highway, and
0 otherwise. Let binary variable βv equal 1 if AT v ∈ V trails behind some truck(s) in a
platoon on the highway, and 0 otherwise. Let σl and σf denote the reduction parameters
of air resistance for lead and follower AT. Given that fuel weight constitutes a marginal
portion of the total vehicle weight, especially for heavy-duty trucks, we assume that the
variations in fuel weight will not influence the fuel consumption of ATs. Therefore, the
transportation cost TCv of AT v ∈ V on the highway can be presented as follows:

TCv = π f1xv − π f2(σlαv + σf βv) + π f3(∑
r∈R

qryvr + mvxv), (5)

where π represents the USD price for fuel per liter.
Therefore, to form a platoon, ATs v and w should simultaneously depart from terminal A:

2pvw ≤ xv + xw, ∀v, w ∈ V , v 6= w, (6)

−M1(1− pvw) ≤ tv − tw ≤ M1(1− pvw), ∀v, w ∈ V , v 6= w, (7)

where M1 is a sufficiently large parameter satisfying M1 ≥ max{τ′v|v ∈ V} −min{τv|v ∈
V}. In addition, to further define the relative position relationship between AT v and AT w
when they are platooned, the following constraints must be satisfied:

pvw + pwv ≤ 1, ∀v, w ∈ V , v 6= w, (8)

∑
k∈V ,k 6=v

pvk − ∑
k∈V ,k 6=w

pwk ≥ 1−M2(1− pvw), ∀v, w ∈ V , v 6= w, (9)

where M2 is a sufficiently large parameter satisfying M2 ≥ |V |. Moreover, the size of a
platoon cannot exceed the maximum limit:

∑
w∈V ,w 6=v

pvw + 1 ≤ s, ∀v ∈ V , (10)

where s is the maximal size of a platoon on the highway.
We calculate the number of ATs traveling ahead of and behind AT v in the same

platoon along the highway, represented by Av and Bv:

Av = ∑
w∈V ,w 6=v

pvw, ∀v ∈ V , (11)

Bv = ∑
w∈V ,w 6=v

pwv, ∀v ∈ V . (12)
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Let M3 be a sufficiently large parameter satisfying M3 ≥ s− 1. For the follower AT,
we have constraints to determine its position in the platoon as follows:

βv ≤ xv, ∀v ∈ V , (13)

Av

M3
≤ βv ≤ Av, ∀v ∈ V , (14)

where constraint (13) ensures that an AT can only be designated as a follower AT in a
platoon if it traverses the highway; constraint (14) indicates that if AT v has at least one
vehicle traveling ahead of it in the same platoon, it must be a follower AT. Otherwise, AT v
cannot be a follower AT.

For the lead AT, we have constraints to determine its position in the platoon as follows:

αv ≤ xv, ∀v ∈ V , (15)

αv ≤ Bv, ∀v ∈ V , (16)

αv ≤ 1− Av

M3
, ∀v ∈ V , (17)

αv ≥
Bv

M3
− Av, ∀v ∈ V , (18)

where constraint (15) ensures that an AT can only be designated as a lead AT in a platoon if
it traverses the highway, constraint (16) represents that if there are vehicles traveling behind
AT v in the same platoon, AT v has the potential to be a lead AT, and constraints (17) and (18)
ensure that AT v can be a lead AT only if it has no vehicle traveling ahead of it and has
vehicles traveling behind it in the same platoon.

The notations in this study are summarized in Table 1.

Table 1. Problem notations.

Parameters

V Set of ATs
R Set of cargos

τv, τ′v Earliest departure and latest departure time for AT v ∈ V
mv Self-weight of AT v ∈ V
uv Load capacity of AT v ∈ V
qr Quantity of cargo r ∈ R

[ar, br] Pickup time window for cargo r ∈ R
D Length of highway

f1, f2, f3 Composite coefficients related to travel speed, engine structure, and road condition
σl , σf Reduction parameters of air resistance for lead and follower AT

π USD price for fuel per liter
s Maximal size of a platoon on the highway

Variables

xv Binary variable indicating whether AT v ∈ V traverses the highway
yvr Binary variable indicating whether AT v ∈ V traverses the highway with cargo r ∈ R
pvw Binary variable indicating whether AT v ∈ V will follow AT w ∈ V over the highway
λv Binary variable indicating whether AT v ∈ V will lead a platoon over the highway
βv Binary variable indicating whether AT v ∈ V follows some truck(s) over the highway
tv Continuous variable indicating the time AT v ∈ V starts traversing the highway
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3. Model Formulation

With the above-mentioned decision variables and parameters, we formulate a MILP
model for the TSPP-C as follows:

[TSPP-C]

min ∑
v∈V

[π f1xv − π f2(σlαv + σf βv) + π f3(∑
r∈R

qryvr + mvxv)] (19)

subject to constraints (1) and (2), (6)–(18), and

xv ≤ 1, ∀v ∈ V , (20)

∑
v∈V

yvr ≥ 1, ∀r ∈ R, (21)

τvxv ≤ tv ≤ τ′vxv + M4(1− xv), ∀v ∈ V , (22)

aryvr ≤ tv ≤ bryvr + M4(1− yvr), ∀v ∈ V , r ∈ R, (23)

xv, αv, βv, pvw, yvr ∈ {0, 1}, ∀v, w ∈ V , r ∈ R, (24)

tv ≥ 0, ∀v ∈ V . (25)

Constraint (20) indicates that ATs are not compulsory to depart from terminal A.
Constraint (21) indicates that each cargo must be transported from terminal A to terminal B.
Constraint (22) indicates that ATs must depart from terminal A within the departure time
window if required to transport cargo, where M4 is a sufficiently large parameter satisfying
M4 ≥ max

v∈V
{τ′v} −min

v∈V
{τv}. Constraint (23) implies that there must be an AT to pick up

the cargo at terminal A in the pickup time windows. Constraints (24) and (25) define the
domains of the decision variables.

4. Numerical Experiments

This section presents the results of extensive numerical experiments on randomly
generated instances. The mathematical model proposed in this study is implemented
in Gurobi 11.0 via C++. We first give the experiment settings, including the values of
parameters and details of instance generation. Then, we evaluate the proposed model
[TSPP-C] on instances with different sizes. Finally, we provide an impact analysis to
investigate the impact of two influential factors: maximal platoon size (platoon capacity)
and the load capacity of AT. Numerical experiments are implemented in C++ and executed
on a personal computer equipped with an Intel(R) Xeon(R) W-2102, 2.90 GHz CPU, and
16 GB of RAM.

4.1. Instance Generation

We generate a highway with a length of 240 km from terminal A to terminal B. We set
the free-flow speed of ATs as 80 km/h. The self-weight and the load capacity of each AT are
assumed to be 1.5× 104 kg and 3× 104 kg, respectively. The values of other parameters in
Equation (3) are chosen from a previous study by [15]. The load of each cargo is randomly
distributed in the range of [1 × 103, 5 × 103] (unit: kg), safely within the typical load
range for less-than-truckload transportation to terminals [25]. The fuel price per liter is
assumed to be USD 1.3. The maximal size of a platoon on each road link is set to be 3. The
reduction factors of air resistance for the lead and follower AT are assumed to be 0.1 and
0.5, respectively.

To reflect the general performance of the proposed model, we randomly generate
five instances for each group with the same number of ATs and cargos. We set the length of
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scheduling time for instances as 12 (unit: hour). The time windows for ATs are set with a
relatively large gap. To test the general performance of the proposed model, for each AT
v ∈ V , τv is randomly distributed in the first three hours, while τ′v is randomly distributed
in the last three hours, which aligns with the morning departures and evening arrivals
of trucks in cargo transportation [26,27]. For the time window of cargo, we randomly
set the earliest departure time and the latest departure time in the interval of [0,12 −ST]
(unit: hour), where ST denotes the travel time across the highway. The instance groups
are labeled by the number of ATs |V |, the number of cargos |R|, and the identification
number ID, named by “|V |-|R|-ID”, e.g., “5-10-3” means No.3 instance group with 5 ATs
and 10 cargos.

4.2. Computational Performance

Tables 2 and 3 display the computational results of small-size and large-size instances
computed by Gurobi. The maximum computation time for Gurobi is 3600 s. The column
“Obj (USD)” indicates the objective value of the best solution computed by Gurobi. The
column “Time (s)” indicates the computation time of Gurobi for obtaining the best solution.
The column “Gap” gives the solution gap computed by Gurobi. Note that Gap = 0 means
the optimal solution is found by Gurobi.

Table 2. Computational results for small-size instances.

Instance Group Obj (USD) Time (s) Gap Instance Group Obj (USD) Time (s) Gap

5-10-1 505 1 0.00% 10-40-1 804 42 0.00%
5-10-2 586 1 0.00% 10-40-2 872 79 0.00%
5-10-3 678 1 0.00% 10-40-3 684 22 0.00%
5-10-4 554 1 0.00% 10-40-4 676 19 0.00%
5-10-5 554 1 0.00% 10-40-5 772 6 0.00%
5-20-1 623 1 0.00% 10-60-1 989 2810 0.00%
5-20-2 530 2 0.00% 10-60-2 893 2110 0.00%
5-20-3 439 1 0.00% 10-60-3 868 618 0.00%
5-20-4 535 2 0.00% 10-60-4 947 1411 0.00%
5-20-5 535 1 0.00% 10-60-5 868 853 0.00%

Table 3. Computational results for large-size instances.

Instance Group Obj (USD) Time (s) Gap Instance Group Obj (USD) Time (s) Gap

15-80-1 1276 3600 1.83% 30-200-1 2860 3600 4.04%
15-80-2 1140 3600 1.90% 30-200-2 2750 3600 2.98%
15-80-3 1140 3600 1.96% 30-200-3 2769 3600 3.89%
15-80-4 1156 3600 1.73% 30-200-4 3012 3600 3.43%
15-80-5 1173 3600 1.90% 30-200-5 2746 3600 3.43%
15-100-1 1563 3600 1.57% 30-240-1 3325 3600 4.60%
15-100-2 1408 3600 1.53% 30-240-2 3415 3600 3.05%
15-100-3 1402 3600 1.51% 30-240-3 3452 3600 4.58%
15-100-4 1461 3600 2.26% 30-240-4 3406 3600 4.14%
15-100-5 1456 3600 2.40% 30-240-5 3402 3600 3.34%

According to computational results in Table 2, we can see that Gurobi can solve
the instances to optimality within 3600 s due to the manageable problem size and fewer
decision variables. This demonstrates that Gurobi reliably finds optimal solutions for
small-scale problems. As the number of ATs and cargo increases, the required computation
time grows correspondingly. The instances with 5 ATs and 10 cargos consume the least
computation time, with an average time of 1 s. The rapid computation times make this
approach highly practical for real-time decision-making in small-scale applications. For
instance, such efficiency could be beneficial in logistics systems requiring dynamic and
frequent re-optimization. However, when the number of ATs increases to 10 and the
number of cargos increases to 60, although Gurobi can solve them to optimality within
3600 s, the average computation time becomes around 1560 s. Moreover, according to
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computational results in Table 3, none of the instances were solved to optimality within
the 3600 s time limit using Gurobi, highlighting scalability challenges as the problem size
increases. The rise in the instance size significantly impacts Gurobi’s performance. For
example, the "30-240” group consistently shows larger gaps, indicating that solution quality
deteriorates as problem complexity increases. However, the relatively small Gap values
for large-scale instances, ranging from 1.53% to 4.14%, suggest that near-optimal solutions
are achieved even for complex problems and the proposed methodology can be effectively
applied to practical problems. It is worth noting that the fixed time limit of 3600 s may only
allow Gurobi to reach near-optimal solutions for larger problem instances.

As Gurobi may encounter difficulties with larger problem instances due to their com-
plexity, heuristic and metaheuristic approaches, such as Genetic Algorithms (GA) and
Simulated Annealing (SA), can be used. For example, in the case of a Genetic Algorithm
(GA), each individual in the population, referred to as a “chromosome”, represents a poten-
tial solution to the problem. This solution may encode key elements, such as the sequence of
trucks, cargo assignments, and platooning groups. Specifically, a chromosome could define
the order in which trucks pick up and deliver goods, as well as the specific platooning
schedule to minimize fuel costs. The selection process in a GA involves evaluating each
chromosome’s fitness, which is determined by how well the solution meets the problem’s
objectives (e.g., minimizing fuel consumption). Solutions that perform well are given a
higher probability of being selected to produce offspring. The crossover operator is then
used to combine features from two parent chromosomes, generating offspring that may
exhibit improved performance compared to their parents. This process allows the algorithm
to explore a wider solution space and potentially find better solutions. To further enhance
exploration and avoid converging prematurely on local optima, the GA introduces random
mutations, such as reordering the truck schedule or reassigning cargo. These small random
changes help to diversify the search process, ensuring that the algorithm does not become
stuck in suboptimal solutions.

4.3. Impact Analysis

We conduct an impact analysis on two influential factors in the TSPP-C: the maximal
size of the platoon (i.e., platoon capacity) and the load capacity of AT. The number of
platoons, the number of ATs in operation, and the transportation cost are presented. We
apply the Gurobi to test the instances with 30 ATs and 240 cargos.

To examine the effects of platoon capacity on the system performance, we analyze
the solutions for the TSPP-C with varying platoon capacities by setting s ∈ {1, 2, 3, 4} in
constraint (10). The results are shown in Figure 3. Note that platooning is not permitted
in the TSPP-C if the platoon capacity is 1. It is evident that increasing platoon capacity
reduces operational costs, underscoring the fuel-saving benefits of platooning. We observe
that there exists a threshold (s = 2) beyond which further increases in platoon capacity
will not result in additional cost savings and the platoon number increasing. Therefore,
for instances involving up to 30 ATs and 240 cargos, a platoon capacity of two should be
sufficient to minimize total fuel cost.

For the load capacity of AT, we will examine the solutions for the TSPP-C with
different load capacities of AT by setting uv ∈ {2.5, 3, 3.5, 4} (unit: 104 kg). The results are
displayed in Figure 4. It can be seen that increasing the load capacity leads to a reduction
in transportation costs, suggesting that a larger load capacity improves transportation
efficiency. This is consistent with our expectation that a larger load capacity results in a
higher degree of cargo consolidation. In addition, there is a declining trend in the number of
ATs in operation as the load capacity increases. It starts from about 27 ATs at a load capacity
of 2.5 × 104 kg and decreases to approximately 20 ATs at a load capacity of 4.0 × 104 kg,
implying that cargo consolidation leads to transportation resource savings. Moreover, the
platoon number remains constant across different load capacities, indicating that changes
in load capacity do not affect the number of platoons.
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Figure 3. Impact analysis on platoon capacity.

Figure 4. Impact analysis on load capacity.

5. Conclusions

This study investigates the AT scheduling and platooning problem while considering
cargo consolidation. ATs transport less-than-truckload cargo from supplier terminals to
customer terminals on a highway, forming platoons and performing cargo consolidation to
minimize the total operation cost. An effective MILP model is proposed for the problem,
which is implemented by Gurobi. Extensive numerical experiments are performed to
validate the effectiveness of the model. The results show that small-scale instances (less
than 10 cargos and 60 ATs) are solved to optimality within 3600 s while large-scale instances
(more than 10 cargos and 60 ATs) are solved to near-optimality, with an average gap of less
than 5%. An impact analysis is conducted to assess the effects of several key factors on
system performance and to provide managerial insights.

We provide a detailed analysis of the associated costs and benefits. Costs associated
with this method include capital investments. Autonomous vehicles require advanced
sensors, computing systems, and specialized maintenance, leading to elevated capital
expenditures. The establishment of platooning systems necessitates communication in-
frastructure to ensure precise vehicle synchronization. Additionally, integrating cargo
consolidation systems requires further financial investment. On the operational side, ongo-
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ing costs include regular maintenance, software updates, and personnel training, as human
oversight remains indispensable for monitoring and managing the system. Despite the
upfront costs, the benefits of this method are substantial. The elimination of driver require-
ments in autonomous trucking significantly reduces labor costs. Platooning decreases fuel
consumption by minimizing aerodynamic drag, while cargo consolidation improves trans-
portation efficiency and further reduces operational expenses. Environmentally, the method
lowers fuel consumption, thereby reducing greenhouse gas emissions. Furthermore, the
system enhances safety by reducing human error and creating predictable traffic patterns,
lowering the risk of accidents. In conclusion, while the upfront costs are high, the long-term
benefits—such as labor savings, fuel efficiency, and environmental sustainability—make
autonomous truck scheduling and platooning systems a potentially transformative solution
for the logistics industry. Proper implementation and pilot programs will be crucial for
realizing these benefits effectively.

Future research directions include the following. First, efficient algorithms need to be
developed to address instances involving large numbers of cargo and ATs. Second, given
that cargo transportation often spans large areas with multiple intersections and road links,
the TSPP-C can be extended to a network-based AT routing and platooning framework.
Third, to address fluctuations in cargo transportation demand, future research can explore
dynamic planning for truck platooning combined with cargo consolidation using real-time
optimization methods.
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