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Abstract: This study investigated the effect of wearable ultrasound-imaging-based visual
feedback (UVF) on assisting paretic ankle dorsiflexion training of chronic stroke survivors.
Thirty-three participants with unilateral hemiplegia performed maximal isometric con-
tractions on an isokinetic dynamometer in randomized conditions with and without UVF
that provided by a wearable ultrasound imaging system. Torque parameters (mean, peak,
percentage of maximal voluntary contraction) and tibialis anterior muscle thickness were
analyzed across different contraction phases. Statistical comparisons were conducted using
paired t-tests or Wilcoxon tests. Correlation analyses were performed using Pearson’s or
Spearman’s tests. Results demonstrated that UVF significantly improved torque output, as
evidence by the increased percentage of maximal voluntary contraction (%MVC) during
entire contractions (p = 0.007), increased mean (p ≤ 0.022) and peak (p ≤ 0.044) torque and
the %MVC (p ≤ 0.004) during mid and end phases, and larger muscle thickness during mid
contraction (p = 0.045). Moderate correlations were found between torque and muscle thick-
ness (r ≥ 0.30, p ≤ 0.049). These findings preliminarily supported the positive outcomes
of real-time wearable UVFs in enhancing paretic ankle dorsiflexion strength and force
control during isometric contractions in chronic stroke survivors. While the developed and
validated new training protocol may potentially serve as a practical adjunct to existing
rehabilitation approaches, further investigations emphasizing the functional outcomes and
clinical translations are still needed to verify the clinical utility.

Keywords: muscle training; stroke; tibialis anterior; ultrasound imaging; visual feedback

1. Introduction
Stroke has been a significant global public health challenge, and is ranked as the second

leading cause of morbidity and mortality worldwide [1]. This has warranted the urgent
need for developing and validating effective prevention and intervention strategies. In
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China, the prevalence of stroke has shown a persistent rise in recent years and reached a rate
of 2.58% in 2019 [2], with an incidence of 345.1 per 100,000 person-years [3]. Consequently,
a growing population of stroke survivors have continuously been suffering from significant
consequences, including impaired mobility, cognition, and emotional well-being.

Post-stroke skeletal muscle dysfunction has remained a critical rehabilitation challenge
and is primarily driven by two interrelated pathologies: (1) sarcopenia and (2) spasticity.
Sarcopenia, which is defined as acute and non-age-dependent muscle wasting caused by
neurogenic catabolic signaling from brain lesions [4], affects approximately 33–52% of
stroke survivors [5]. The mechanisms include muscle denervation [6], fast-twitch fiber pre-
dominance [7], and catabolic/anabolic imbalance [8]. Concurrently, spasticity (defined as
velocity-dependent hypertonia) [9] occurs in around 20–40% of patients with stroke [10,11].
It exacerbates motor impairments through the hyperexcitable stretch reflexes [12]. These
conditions synergistically impair muscle strength and motor control, leading to functional
limitations of deteriorated gait stability and increased fall risk [13].

Notably, paretic limb weakness has been a central barrier to the motor recovery
of stroke survivors [14,15]. Previous studies have reported that the ankle dorsiflexor
strength of the paretic limb is approximately 40% to 50% weaker than that of the non-
paretic side [16,17]. The paretic ankle dorsiflexor weakness has also been identified as a
determinant factor of poor walking performance in patients with hemiplegic stroke [18].
Muscle weakness commonly results in a reduced ability to clear the foot over the ground
during the swing phase, leading to an altered gait pattern with decreased stability and
increased risk of falls [18].

Muscle strengthening, or resistance training, involves performing exercises with
resistance against the muscles to counteract the muscles to generate force. It elicits adaptive
changes in both muscle and central nervous system function [19]. It can offer a wide range
of benefits, including improved muscular strength [20], muscle hypertrophy [21], motor
control [22], and overall physical performance [18]. This is why muscle strengthening has
been essential in the rehabilitation of stroke survivors. Several systematic reviews have
provided strong evidence support for the overall effectiveness of lower limb muscle strength
training in enhancing strength and functional ability among stroke survivors [23,24].

Visual feedback training has been extensively researched in stroke rehabilitation. It
can empower stroke survivors with improved overall performance by facilitating the real-
time visualization of actual performance and active comparison to the expected goals.
The reliance on visual feedback tends to increase in stroke survivors [25]. As a result,
the visual feedback accelerates the motor learning process and helps sustain motivation
during motor learning in stroke survivors [26]. Most previous studies on stroke rehabil-
itation have provided visual feedback via pre-recorded or real-time visual graphic cues
that derive from physiological signals, including muscle electrical activity (i.e., electromyo-
graphy or EMG) [27], force generation [28,29], and kinematic information [30]. These
approaches mainly involve external monitoring of muscle activation and contraction out-
puts. Meanwhile, previous studies have reported that measuring the internal structure of
paretic muscles could provide more information and difference between the paretic and
non-paretic limbs than that of the conventional kinetic and EMG measurements in stroke
survivors [31,32]. However, changes in muscles’ internal structures during training have
remained unclear.

Wearable ultrasound imaging has the advantage of providing direct visualization
of the internal structure or morphology of a target skeletal muscle in stroke individu-
als [31,32], enabling more in-depth non-invasive monitoring and examination of muscle
contraction patterns during different activities (or sonomyography (SMG)). The utilization
of ultrasound imaging as a means of visual biofeedback for muscle contraction has been
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explored mainly in muscles that are difficult to control voluntarily. Previous studies have
applied ultrasound imaging to feedback the contraction of pelvic floor muscles in pregnant
women [33], and deep trunk muscles for individuals with low back pain [34–36]. However,
its effect on stroke survivors has remained unclear and warrants further investigation.

Ultrasound-imaging-based visual feedback (UVF) could offer an innovative approach
to directly monitor paretic muscle contraction patterns during the strengthening training
of stroke survivors. It enables the real-time visualization of muscle contraction patterns
through ultrasound imaging [37], such that patients can better control the voluntary con-
traction of targeted/paretic muscles. It is anticipated that UVF could serve as a new
rehabilitative solution for augmenting muscle strengthening of stroke survivors. Previous
studies on healthy adults have supported the efficacy of UVF in enhancing neuromus-
cular control. Specifically, UVF has been shown to enhance precision during isometric
gastrocnemius contractions [38] and increase the force output in isotonic pectoralis major
exercises [39]. These findings suggest its potential for stroke rehabilitation, where sen-
sorimotor and integrative dysfunctions often impair voluntary force generation due to
disrupted neuromuscular control [40]. By providing the real-time visualization of muscle
contraction patterns, UVF could help address these deficits and enable survivors to regain
controlled paretic muscle activation and strengthening. Additionally, UVF may support
motor learning by facilitating the activation of specific muscles and restoring functional
movement in stroke survivors. However, no prior studies have yet explored its application
in stroke rehabilitation.

Thus, this proof-of-concept study aimed to (1) investigate the effects of UVF on ankle
dorsiflexion torque and tibialis anterior (TA) muscle thickness during isometric contractions
in chronic stroke survivors; and (2) explore the relationship between changes in ankle
dorsiflexion torque and TA muscle thickness during contraction. It was hypothesized that
UVF would lead to greater increases in ankle dorsiflexion torque and TA muscle thickness
during isometric ankle dorsiflexion compared with conditions without UVF. The findings
could provide new insights for developing rehabilitation strategies to restore paretic muscle
strength and function in stroke survivors.

2. Materials and Methods
2.1. Study Design

The current proof-of-concept study employed a randomized crossover research design.
The sequence of training with UVF and training without UVF was randomly assigned
to each stroke participant, using a computer-generated number sequence. The generated
random number file was encrypted, securely stored, and kept confidential from all partic-
ipants. All procedures were performed in accordance with the Consolidated Standards
of Reporting Trials (CONSORT) 2010 statement: Extension to Randomized Crossover Tri-
als [41] to ensure comprehensive and transparent reporting of the research process and
findings. The CONSORT checklist for reporting the randomized crossover trials was used
to enhance the reporting quality (Table S1).

2.2. Participants

A total of 33 community-dwelling stroke survivors were recruited through conve-
nience sampling from the local community in Hong Kong, using social media advertise-
ments. Individuals were considered eligible if they fulfilled the following inclusion criteria:
(1) having unilateral hemiplegia; (2) being at least 12 months since stroke onset; (3) living in
the community; (4) being able to walk independently without assistive devices for at least
10 m; and (5) demonstrating adequate cognitive ability to follow experimental instructions.
Individuals were excluded if they had the following: (1) cerebellar or brain stem strokes;
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(2) any peripheral or central nervous system dysfunction; (3) significant ankle muscle
spasticity as indicated by a modified Ashworth scale score greater than 1+; or (4) unstable
medical conditions (i.e., uncontrolled hypertension, arrhythmias, heart disorders, or other
diagnosed serious illnesses).

The sample size was determined using G*Power 3.1 (Erdfelder, Faul, & Buchner, 1996).
Based on the preliminary results from the pilot study on six participants, an effect size
of 0.510 was calculated. The mean differences and standard deviations of dorsiflexion
torque measurements were compared between UVF and non-UVF conditions to calculate
the effect size. With the conventional standards of a 0.05 significance level and 80%
statistical power, the statistical analysis showed that 33 participants were needed to reliably
detect meaningful differences in this study. The actual statistical power of 0.811 based on
33 participants also doubly confirmed the appropriate estimation of the sample size in the
current study.

This study was granted ethical approval by the Institutional Review Board of The
Hong Kong Polytechnic University (Reference No.: HSEARS20230801001; Date: 12 October
2023). Written informed consent was obtained from all participants before the start of
this study. This study was also registered in the World Health Organization International
Clinical Trials Registry Platform (ICTRP) via the Chinese Clinical Trial Registry (ChiCTR,
Reference No.: ChiCTR2300073454; Date: 11 July 2023; Website: https://www.chictr.org.
cn/showprojEN.html?proj=200938).

2.3. Equipment

A wearable ultrasound imaging system (defined as “wearable SMG system” in this
study) was used to allow participants to visualize their internal muscle contraction patterns
in real-time during training, and to capture the muscle thickness changes throughout
the experiment (imaging width: 38.4 mm, depth: 60 mm). The system consisted of a
customized wireless linear ultrasound probe (Bandwidth 7.5 MHz ± 35%; frame rate:
20 Hz) that connected to a laptop via Wi-Fi communication. All the ultrasound images
were captured using the same wearable SMG system (frequency: 20 Hz) in B-mode, with a
depth of 60 mm, a dynamic range of 40 dB, and a pre-set averaged gain of +40 dB.

The test-retest and inter-rater reliability of the mobile SMG system was examined [42]
using the measured tibialis anterior (TA) muscle thickness data from three participants
while performing maximal isometric voluntary contraction (MIVC). Specifically, the test-
retest reliability was evaluated using (1) resting TA muscle thickness (captured continuously
for one second at 20 Hz preceding MIVC initiation, yielding 20 discrete measurement
points) and (2) maximum TA muscle thickness during MIVC from two reproducible trials
(i.e., trials with less than 10% variability). The inter-rater reliability was assessed for the
measurements from two independent researchers, who twice measured the TA muscle
thickness on all ultrasound images following the standardized protocols. The applied
wearable SMG system demonstrated excellent inter-rater (ICC ≥ 0.997) and test-retest (ICC
≥ 0.993) reliability in both analyses, supporting its measurement consistency for this study
(Table S2).

2.4. Protocol of Providing Ultrasound-Imaging-Based Visual Feedback (UVF)

An experienced researcher (with over eight years of experience in medical ultra-
sound imaging) performed and monitored the placement of the wearable ultrasound probe
throughout the experiment for all participants. The ultrasound probe was placed longitudi-
nally on the muscle belly at the proximal 30% of the line connecting the fibular head and
the medial malleolus, with measurements taken in the sitting position [43]. To minimize
artifacts and optimize imaging quality, the ultrasound probe was oriented perpendicular to
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the TA muscle fibers [44]. The gain was systematically stratified during the capture. It was
initially set to a baseline of +40 dB, and then fine-tuned layer by layer by an experienced
researcher to account for the differential signal attenuation between the superficial fascia,
muscle belly, and deep aponeurosis [45]. This adjustment facilitated the simultaneous
clarity of all structural layers during the dynamic contractions of TA muscle. An adequate
amount of ultrasound gel was applied between the probe and skin surface to maintain
optimal imaging quality, before fastening the probe in place using a strap.

A laptop display was placed in front of each participant to provide real-time UVF.
The distance between the screen and the participant’s eyes was approximately 1 m. The
visual target for TA muscle contraction during the UVF training was determined as the
farthest displacement position of the deep aponeurosis that recorded during the MIVC
measurement. This position represented the best muscle contraction performance, as
determined by the largest muscle thickness in the two repetitions.

2.5. Experimental Procedures

Prior to data collection, all participants received a detailed briefing of this study’s objec-
tives and experimental procedures. First, each participant’s demographic information was
collected. Their functional outcomes of independence and mobility were evaluated using
three validated assessments of the Functional Independence Measure (FIM) [46], the Fugl-
Meyer Assessment for Lower Extremity (FMA-LE), and the Short Physical Performance
Battery (SPPB) [47].

2.5.1. Setup and Positioning

Following the baseline assessments, the wearable ultrasound probe was positioned on
the TA muscle belly following the protocol as described above. Participants were instructed
to sit on an isokinetic dynamometer (CSMi, Stoughton, MA, USA) with the paretic foot
securely fastened to the force platform. The ankle joint was fixed in a neutral position,
or adjusted to the maximum achievable dorsiflexion if the neural position could not be
achieved. The thigh of the testing limb was appropriately supported with hip and knee
joints stabilized at 60◦ flexion [48]. The experimental setup is illustrated in Figure 1. Each
participant was reminded again of the safety protocols and procedural requirements before
the next procedure.

Figure 1. Experimental setup of ultrasound-imaging-based visual feedback (UVF) muscle training.
(a) Placement of wearable ultrasound probe and display for UVF; (b) an example of the captured
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ultrasound image showing the TA muscle during resting phase; (c) an example of the captured ultra-
sound image showing the TA muscle during isometric contraction. Note: SMG—sonomyography;
TA—tibialis anterior.

2.5.2. Warm-Up and Familiarization

Each experimental session commenced with a 5 min warm-up, involving assisted
active ankle joint range of motion (ROM) exercises at an angular velocity of 30◦/s [49].
Participants were subsequently instructed to identify the TA muscle thickness on the real-
time ultrasound image as described above. Each participant was then instructed to perform
two submaximal isometric contractions to become familiar with the training task [13,50].

2.5.3. Measurement of MIVC and Maximal TA Thickness

To determine the MIVC and the corresponding maximal TA muscle thickness, each
participant was instructed to perform two consecutive contractions with their greatest
efforts. If the relative difference in both peak ankle dorsiflexion torque and peak TA muscle
thickness between these two MIVCs was within 10%, the two collected MIVCs were con-
sidered reproducible, and no further trials were required. The two trials measuring MIVCs
were then considered as the two MIVC measurement trials in this study. Conversely, if the
difference exceeded 10%, additional trials were conducted until two MIVC measurement
trials were achieved [51].

The largest torque from the two MIVC measurement trials was recorded as the MIVC
torque (MIVCTq). The maximal muscle thickness value (MIVCMT), along with the corre-
sponding position of the deep aponeurosis from the two MIVC measurement trials, was
confirmed by the experienced researcher and recorded as the target of ultrasound-based
visual feedback for each participant. A reference line of the identified position of the deep
aponeurosis was then marked on the laptop display (i.e., predefined visual target), to guide
each participant during the UVF trainings.

To examine the intra-subject reproducibility of the identified target on ultrasound
images, the intra-class correlation coefficient (ICC) was calculated for the peak TA muscle
thickness values of the two MIVC measurement trials from all participants. Excellent intra-
subject reproducibility of the identified peak TA muscle thickness was found (ICC = 0.995)
(Table S3).

2.5.4. Training Protocol

A single session of MIVC training targeting the maximal paretic TA muscle contraction
was then conducted. Participants were instructed to perform MIVC of ankle dorsiflexion
under two conditions with randomized sequence: (1) training with UVF, and (2) training
without UVF. Each condition involved three repetitions of MIVC of ankle dorsiflexion at
the paretic side (i.e., three MIVC training trials for each of the two training conditions).
For training with the UVF condition, each participant was instructed to perform ankle
dorsiflexion with their greatest efforts, to have the deep aponeurosis of TA muscle reaching
the marked reference line on the laptop display. For training without the UVF condition,
each participant was instructed to perform ankle dorsiflexion with their greatest efforts
only, without any visual cues.

Each MIVC training trial was followed by a one-minute rest interval to minimize the
effect of fatigue in participants. To mitigate the potential learning effects, each participant
had a five-minute washout time period between the two training conditions [52]. Additional
rest time was provided upon the participant’s request.
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2.6. Outcome Measurements
2.6.1. Ankle Dorsiflexion Torque

The primary outcome of this study was the paretic ankle dorsiflexion torque, as
recorded using an isokinetic dynamometer (CSMi, Stoughton, MA, USA) with a sampling
frequency of 100 Hz. The torque values were recorded during the two MIVC measurement
trials and the two MIVC training conditions with and without UVF.

2.6.2. TA Muscle Thickness

As shown in Figure 2, the secondary outcome was the difference in paretic TA muscle
thickness between the two experimental conditions of training with and without UVF. The
ultrasound images of TA muscle contraction of each MIVC trial were measured using the
same mobile SMG system for UVF training, and were recorded in a separate video clip.
A total of eight video clips were recorded for each participant, consisting of two MIVC
measurement trials and six MIVC training trials. Each video clip recorded the resting,
MIVC, and re-resting phases of the TA muscle during one MIVC.

Figure 2. An example of (a) the manually tracked aponeuroses of the TA muscle and (b) the calculated
mean thickness of the muscle in the same frame, as determined by the customized software. Note:
TA—tibialis anterior.

TA muscle thickness was measured on each frame of the ultrasound video clips record-
ing TA muscle contraction, using a self-developed SMG software (version 1.0) that was
developed based on a customized synthesizing pipeline. The software has been validated
in a previous study, with high reliability in extracting and measuring the muscle morpho-
logical characteristics (R2 > 0.900) [53]. The superficial, middle, and deep aponeuroses of
the TA muscle were manually labeled on the first frame of the video clip using the software
(Figure 2a).

After labeling and tracking the changes in the superficial, middle, and deep aponeu-
roses, the TA muscle thickness for each frame of the entire MIVC video clip was automati-
cally measured and calculated by the SMG software using the following formula:

MT(i) =
1
|ω| ∑

x∈ω
mi(x)− ni(x) (1)
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where mi(x) and ni(x) refer to the fitted lines of the superficial aponeurosis and deep
aponeurosis in the i-th frame of the video, and ω represents the manually defined region of
interest from the image.

All the captured ultrasound images were analyzed and labeled by the same experi-
enced researcher (with over eight years of expertise in medical ultrasound imaging). When
necessary, the algorithm’s automated myofascial boundary identification function could
and would be manually overwritten by the same researcher to maintain measurement
accuracy and reliability.

2.7. Data Analysis
2.7.1. Ankle Dorsiflexion Torque

The recorded ankle dorsiflexion torque was normalized by dividing it by the body
weight of each participant, and was expressed in the unit of Nm/kg. The mean, peak,
and coefficient of variance of the normalized ankle dorsiflexion torque for each trial were
calculated. The percentage of the ankle dorsiflexion torque relative to the MIVC (%MIVCTq)
was calculated using the following equation:

%MIVCTq(i) =
Torquei
MIVCTq

× 100% (2)

where Torquei refers to the recorded absolute ankle dorsiflexion torque at the i-th time point
(each time point = 0.01 s), and MIVCTq refers to the maximum absolute torque recorded in
the two reproducible MIVC measurement trials.

The %MIVCTq measured participants’ relative torque level in comparison with their
maximum torque/strength capacity. Finally, the mean, peak, and coefficient of variation
of the normalized ankle torque, along with the mean %MIVCTq of the absolute ankle
dorsiflexion torque for each MIVC training trial, were extracted. These results were further
divided into three phases: (1) initial phase (first 1/3 period of the entire contraction), (2) mid
phase (middle 1/3 period of the entire contraction), and (3) end phase (last 1/3 period of
the entire contraction). All the parameters were analyzed for the entire MIVC contraction
and during each of the three phases of contraction.

2.7.2. TA Muscle Thickness

The absolute value of the TA muscle thickness that measured from each frame of the
video clip was used for data analysis. Similar to the ankle dorsiflexion torque, the percent-
age of the MIVC thickness (%MIVCMT) was also calculated using the following equation:

%MIVCMT(i) =
TA thicknessi

MIVCMT
× 100% (3)

where TA thicknessi refers to the recorded TA thickness from the i-th frame, and MIVCMT

refers to the maximum thickness recorded in the MIVC measurement trials.
Finally, the mean, peak, coefficient of variation, and the mean %MIVCMT for each

MIVC training trial were calculated. Similar to the ankle dorsiflexion torque process, all
the TA muscle thickness parameters were analyzed for the entire MIVC contraction and
during each of the three phases of the contraction (i.e., initial, mid, and end phases).

2.8. Statistical Analysis

Statistical analyses were performed using R Statistical Software (version 4.3.0, R Core
Team, 2023). The normality of all parameters was assessed using histogram and Q-Q plot.
Based on the data normality, the effects of UVF on the ankle dorsiflexion torque and the TA
muscle thickness were examined using the Wilcoxon signed rank tests and paired-t tests,
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respectively. The relationship between the normalized ankle dorsiflexion torque and the
absolute TA muscle thickness during contraction was assessed using Pearson’s correlation
coefficient for the normally distributed data, and using Spearman’s correlation coefficient
for the non-normally distributed data. The significant level for the p-value was set at 0.05.

3. Results
3.1. Pariticipants

As shown in Table 1 and Figure 3, a total of 33 eligible participants (age: 60.5 ± 9.3 years;
gender: 39.4% female; BMI: 23.7 ± 2.7 kg/m2) participated in this study and were included
in the analysis. There were 18 cases of ischemic stroke and 15 cases of hemorrhagic stroke
(average post-stroke duration: 6.4 ± 5.5 years). All participants showed a good level of
functional independence in performing various activities of daily living, with an average
FIM score of 90 (out of 126). They also had relatively good mobility function, based on
the FMA-LE and SPPB (sub-)scores on motor function and range of motion of the ankle
joint [47].

Figure 3. CONSORT flow diagram for crossover trial. Note: UVF—ultrasound-imaging-based
visual feedback.
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Table 1. Descriptive information of stroke participants (mean ± SD, n = 33).

Item Value

Gender (female/male) 13/20
Type (ischemic/haemorrhagic) 18/15
Age (year) 60.5 ± 9.3
Height (cm) 164.8 ± 7.8
Weight (kg) 64.3 ± 10.1
BMI (kg/m2) 23.7 ± 2.7
Stroke duration (year) 6.4 ± 5.5
FIM 89.0 ± 7.6
FMA-LE motor 21.1 ± 5.8
FMA-ROM DF 0.7 ± 0.8
FMA-ROM PF 1.7 ± 0.6
SPPB 7.2 ± 3.0

Note: BMI—body mass index; FIM: Functional Independence Measure; FMA-LE—Fugl-Meyer Lower Extremity
motor sub-score; FMA-ROM DF—Fugl-Meyer Lower Extremity range of motion ankle dorsiflexion sub-score;
FMA-ROM PF—Fugl-Meyer Lower Extremity range of motion ankle plantar flexion sub-score; SPPB—Short
Physical Performance Battery; SD—standard deviation.

3.2. Effect of UVF on Ankle Dorsiflexion Torque

The overall effects of UVF on ankle dorsiflexion torque are presented in Table 2. The
%MIVCTq of the entire training condition with UVF was 26% significantly larger than that of
training without UVF (p = 0.007), indicating that contractions with UVF generated an output
closer to that of MIVC. While the normalized mean torque was nearly 27% larger in the UVF
training condition than that without UVF, there was no statistically significant difference
between the two training conditions (p = 0.081). Similarly, no significant difference was
observed between the two training conditions for the normalized peak torque (p = 0.075).

Table 2. Difference in the normalized ankle dorsiflexion torque during MIVC trainings with and
without UVF in stroke participants (mean ± SD, n = 33).

Contraction Phase Without UVF With UVF Percentage
Difference p-Value

Whole contraction
Normalized mean torque (Nm/kg) 0.16 ± 0.11 0.17 ± 0.10 26.7% ± 52.6% 0.081
Normalized peak torque (Nm/kg) 0.20 ± 0.13 0.21 ± 0.11 19.4% ± 37.5% 0.075
Coefficient of variation 35.52% ± 12.20% 33.45% ± 8.04% −1.2% ± 18.1% 0.782
%MIVCTq 66.91% ± 20.41% 77.00% ± 20.82% 26.0% ± 46.8% 0.007 †

Initial (first 1/3 of contraction)
Normalized mean torque (Nm/kg) 0.16 ± 0.11 0.16 ± 0.09 16.3% ± 43.3% 0.851
Normalized peak torque (Nm/kg) 0.19 ± 0.12 0.20 ± 0.10 17.0% ± 37.0% 0.330
Coefficient of variation 30.80% ± 5.62% 33.13% ± 6.32% 8.7% ± 16.5% 0.007 †

%MIVCTq 69.86% ± 19.30% 75.24% ± 16.10% 16.3% ± 43.3% 0.155

Mid (middle 1/3 of contraction)
Normalized mean torque (Nm/kg) 0.17 ± 0.12 0.19 ± 0.11 41.9% ± 103.7% 0.006 †

Normalized peak torque (Nm/kg) 0.19 ± 0.13 0.21 ± 0.11 22.6% ± 39.9% 0.044 †

Coefficient of variation 15.00% ± 23.58% 9.09% ± 8.02% −5.9% ± 87.2% 0.046 †

%MIVCTq 72.23% ± 23.89% 87.89% ± 26.43% 41.9% ± 103.7% 0.001 †

End (last 1/3 of contraction)
Normalized mean torque (Nm/kg) 0.14 ± 0.10 0.15 ± 0.10 36.4% ± 74.0% 0.022 †

Normalized peak torque (Nm/kg) 0.17 ± 0.12 0.19 ± 0.12 31.0% ± 55.8% 0.006 †

Coefficient of variation 36.35% ± 13.73% 35.12% ± 8.82% 2.4% ± 24.4% 0.526
%MIVCTq 58.56% ± 23.66% 68.09% ± 24.32% 36.4% ± 74.0% 0.004 *

Note: UVF—ultrasound-imaging-based visual feedback; MIVC—maximal isometric voluntary contraction; SD—
standard Deviation. Significant differences are represented in bold format. *: significant difference based on
paired-t test; †: significant difference based on Wilcoxon signed rank tests.
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For the three phases of contraction, the normalized peak torque (mid phase: p = 0.044;
end phrase: p = 0.006), normalized mean torque (mid phase: p = 0.006; end phrase:
p = 0.022), and %MIVCTq (mid phase: 87.9% vs. 72.2%, p = 0.001; end phrase: 68.1%
vs. 58.6%, p = 0.004) of mid and end phases were significantly larger when contracting
with UVF than those without UVF. The coefficient of variation during the initial phase was
significantly larger for training with UVF than training without UVF (33.1% vs. 30.8%,
p = 0.007). Conversely, the coefficient of variation during the mid-phase was significantly
smaller for training with UVF than training without UVF (9.1% vs. 15.0%, p = 0.006). There
was no significant difference between the two training conditions during the initial phase
for the rest parameters.

3.3. Effect of UVF on TA Muscle Thickness

Table 3 summarizes the difference in TA muscle thickness between the two MIVC
training conditions with and without UVF. During the mid phase, the peak TA muscle
thickness was significantly larger when training with UVF than without (p = 0.045), but not
for the mean thickness (p = 0.092) or the %MIVCMT (p = 0.095). The coefficient of variation
was also significantly larger when training with UVF during the mid phase than without
UVF (p = 0.044). No other significant difference in TA muscle thickness was found between
the two training conditions.

Table 3. Difference in the TA muscle thickness during MIVC trainings with and without UVF in
stroke participants (mean ± SD, n = 33).

Contraction Phase Without UVF With UVF Percentage
Difference p-Value

Whole contraction
Mean thickness (mm) 28.5 ± 2.4 28.6 ± 2.4 0.4% ± 0.0% 0.164
Peak thickness (mm) 28.8 ± 2.4 28.9 ± 2.4 0.5% ± 0.0% 0.145
Coefficient of variation 0.3% ± 0.4% 0.3% ± 0.4% 8.6% ± 0.6% 0.681
%MIVCMT 99.8% ± 2.4% 100.2% ± 2.3% 0.4% ± 0.0% 0.173

Initial (first 1/3 of contraction)
Mean thickness (mm) 28.4 ± 2.4 28.5 ± 2.4 0.4% ± 0.0% 0.191
Peak thickness (mm) 28.6 ± 2.4 28.7 ± 2.4 0.4% ± 0.0% 0.187
Coefficient of variation 0.3% ± 0.4% 0.3% ± 0.3% 7.5% ± 0.5% 0.860
%MVCMT 99.8% ± 2.4% 100.2% ± 2.4% 0.4% ± 0.0% 0.187

Mid (middle 1/3 of contraction)
Mean thickness (mm) 28.5 ± 2.4 28.7 ± 2.4 0.5% ± 0.0% 0.092
Peak thickness (mm) 28.6 ± 2.4 28.8 ± 2.4 0.6% ± 0.0% 0.045 *
Coefficient of variation 0.1% ± 0.2% 0.2% ± 0.2% 23.0% ± 0.8% 0.044 †

%MIVCMT 99.8% ± 2.5% 100.3% ± 2.5% 0.5% ± 0.0% 0.095
End (last 1/3 of contraction)

Mean thickness (mm) 28.5 ± 2.4 28.7 ± 2.5 0.6% ± 0.0% 0.099
Peak thickness (mm) 28.7 ± 2.5 28.8 ± 2.5 0.6% ± 0.0% 0.096
Coefficient of variation 0.2% ± 0.3% 0.2% ± 0.3% 18.9% ± 0.7% 0.788
%MIVCMT 99.7% ± 2.4% 100.2% ± 2.3% 0.6% ± 0.0% 0.112

Note: UVF—ultrasound-imaging-based visual feedback; MIVC—maximal voluntary contraction; SD—standard
Deviation. Significant differences are represented in bold format. *: significant difference based on paired-t test;
†: significant difference based on Wilcoxon signed rank tests.

3.4. Relationship Between Ankle Dorsiflexion Torque and TA Muscle Thickness

As shown in Table 4, a moderate positive correlation was observed between the mean
normalized ankle dorsiflexion torque and the mean absolute TA muscle thickness during
the entire contraction when combining the two training conditions (r = 0.30, p = 0.016).
Furthermore, moderate positive correlations were found during both the initial (r = 0.37,
p = 0.003) and the mid (r = 0.30, p = 0.013) phases. When the two training conditions were
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separately analyzed, a moderate positive correlation was only observed during the initial
phase of training without UVF in participants (r = 0.36, p = 0.040).

Table 4. Correlation between the mean normalized ankle dorsiflexion toque and the mean absolute
TA thickness during the MIVC trainings with and without UVF in stroke participants (n = 33).

Condition Correlation Coefficient (r) p-Value
Combined two training conditions

Whole contraction 0.30 0.016 †

Initial (first 1/3 of contraction) 0.37 0.003 †

Mid (middle 1/3 of contraction) 0.30 0.013 †

End (last 1/3 of contraction) 0.20 0.100
Training with UVF only

Whole contraction 0.27 0.134
Initial (first 1/3 of contraction) 0.31 0.079
Mid (middle 1/3 of contraction) 0.28 0.111
End (last 1/3 of contraction) 0.21 0.242

Training without UVF only
Whole contraction 0.32 0.072
Initial (first 1/3 of contraction) 0.36 0.040 †

Mid (middle 1/3 of contraction) 0.34 0.051
End (last 1/3 of contraction) 0.20 0.271

Note: TA—tibialis anterior; UVF—ultrasound-imaging-based visual feedback. Significant differences are repre-
sented in bold format. †: significant correlation based on Spearman’s correlation test.

As illustrated in Table 5, moderate positive correlations were found between the peak
normalized ankle dorsiflexion torque and the peak absolute TA muscle thickness during
the entire contraction (r = 0.30, p = 0.014), the initial phase (r = 0.35, p = 0.005), and the mid
phase (r = 0.31, p = 0.011), when combining the two training conditions. When analyzed
separately, moderate positive correlations were found between the peak normalized ankle
dorsiflexion torque and the peak absolute TA muscle thickness during the initial phase of
both training conditions with (r = 0.36, p = 0.039) and without (r = 0.35, p = 0.049) UVF,
and during the mid phase of training without UVF (r = 0.36, p = 0.043). No additional
significant correlations were found.

Table 5. Correlation between the peak normalized ankle dorsiflexion toque and the peak absolute TA
muscle thickness during the MIVC trainings with and without UVF in stroke participants (n = 33).

Condition Correlation Coefficient (r) p-Value
Combined two training conditions

Whole contraction 0.30 0.014 †

Initial (first 1/3 of contraction) 0.35 0.005 †

Mid (middle 1/3 of contraction) 0.31 0.011 †

End (last 1/3 of contraction) 0.24 0.054
Training with UVF only

Whole contraction 0.25 0.157
Initial (first 1/3 of contraction) 0.36 0.039 *
Mid (middle 1/3 of contraction) 0.25 0.155
End (last 1/3 of contraction) 0.23 0.206

Training without UVF only
Whole contraction 0.34 0.054
Initial (first 1/3 of contraction) 0.35 0.049 †

Mid (middle 1/3 of contraction) 0.36 0.043 †

End (last 1/3 of contraction) 0.24 0.172
Note: TA—tibialis anterior; UVF—ultrasound-imaging-based visual feedback. Significant differences are repre-
sented in bold format. *: significant correlation based on Pearson’s correlation test; †: significant correlation based
on Spearman’s correlation test.
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4. Discussion
The present study explored the potential benefits of wearable ultrasound-imaging-

based visual feedback (UVF) in strengthening paretic ankle dorsiflexion in community-
dwelling stroke survivors. The findings generally supported that utilization of the UVF
strategy could generate a larger overall ankle dorsiflexion torque output in stroke par-
ticipants during isometric muscle strength training. This potentially sheds new light on
future stroke rehabilitation research in terms of improving paretic muscle weakness and
motor function through the incorporation of UVF, and explores the potential benefits in
future clinical practice. However, it is important to note that stroke rehabilitation involves
multifaceted challenges, including spasticity and impaired coordination, which may signif-
icantly impact the functional outcomes in patients. Further translational research is needed
to provide more evidence on how to balance muscle strengthening, spasticity management,
and coordination improvement in stroke survivors in future clinical practice.

4.1. Effects of UVF on Ankle Dorsiflexion Torque Magnitude and Variation

This study revealed that the developed wearable UVF training strategy could facilitate
an overall increased and better controlled force output of paretic ankle dorsiflexion in stroke
participants, especially during the mid and end muscle contraction phases. The observed
significant improvements in the force parameters, including higher mean and peak ankle
dorsiflexion torque, lower coefficient of variation, and higher %MIVC torque, indicate
that real-time UVF could improve muscle contraction and enable stroke participants to
better regulate their force output by providing a visual stimulus. This augmented ability to
achieve and maintain the desired level of force output has enhanced stroke participants’
control over force generation during ankle dorsiflexion. This might be explained by the
condition that UVF could allow the stroke participants to have a more precise and straight-
forward awareness and understanding of their real-time muscle contraction status [54],
and to make the necessary adjustments accordingly during the muscle contraction. The
current study has observed an overall increased paretic ankle dorsiflexion torque genera-
tion, which might be due to an improved voluntary activation of muscle contraction [55]
with UVF. This could also be supported by a previous study that has reported a positive
correlation between the deficits in voluntary muscle activation and muscle weakness on the
paretic side in individuals with chronic stroke [56]. The current study has also found that
stroke participants exhibited lower torque variability while training with UVF than without
during the mid-phase of contraction. This finding is in accordance with a previous study
that reported that, with an augmented visual sensory input, stroke participants and healthy
controls had a decreased variability in force output [57]. These findings supported the
improved force control during maximum TA muscle contraction, and could be explained
by the augmented visual input that activated the visuomotor pathway [58]. Such activation
might have influenced the neural signals in motor cortex, either through the projections
from the parietal cortex to the premotor cortex [59,60] or from the visual cortex first with
the visual stimulus from the real-time UVF [61]. The activation of the parietal cortex has
been considered to reflect visuospatial processing [62] and visuomotor error correction [63],
which might help explain the findings of the current study. However, the above proposed
underlying neural mechanisms should be interpreted with caution, as the current study
did not include any neurophysiological measurements to verify. Future research should
incorporate techniques such as functional near-infrared spectroscopy (fNIRS) and electroen-
cephalogram (EEG) to obtain direct measurement results. This would help validate the
current hypotheses and provide a more complete understanding of UVF’s mechanisms in
stroke survivors.
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To the best of the authors’ knowledge, the current study has been the first study to
apply ultrasound imaging as visual feedback in muscle strengthening training of stroke
survivors. Some previous studies have found similar findings in other populations of
healthy young adults and patients with chronic pain using a similar UVF strategy with
conventional cumbersome wired ultrasound imaging equipment; however, none of them
adopted a novel wearable wireless ultrasound probe design. Specifically, a previous study
reported that UVF facilitated a closer approximation to the target force intensity, with
reduced variability, during gastrocnemius contractions in healthy adults [38]. Another
previous study reported an approximate 56% increase in activation levels of the serratus
anterior muscle in patients with shoulder pain with UVF training [64]. While most of
the previous studies have applied UVF to enhance muscle contraction of healthy adults
and patients with shoulder pain, the findings of the current study further supported its
effectiveness in clinically improving the paretic ankle muscle weakness of stroke survivors.
By enhancing the awareness of muscle activation, stroke individuals could better engage
some target muscles. This improved force control could potentially lead to more effective
muscle strengthening and motor re-learning for stroke survivors. Future studies could
consider exploring the changes in brain activity of stroke survivors to further verify the
underlying neurological mechanisms. The long-term effect of UVF on stroke survivors
shall also be investigated.

4.2. Effects of UVF on TA Muscle Thickness Magnitude and Variation During Contraction

While most ankle dorsiflexion torque parameters improved upon receiving UVF, only
the peak TA muscle thickness during the mid contraction phrase significantly improved
in stroke participants in this study. Such results partially deviated from the initial hy-
pothesis that a larger TA muscle thickness was expected to be observed in participants
during the training condition with UVF. It was intriguing to find that the magnitude of
TA muscle thickness during contraction remained relatively consistent among the two
training conditions with and without UVF, even though a greater ankle dorsiflexion torque
was observed for training with the UVF condition in the current study. This finding was
consistent with a previous study, which also reported that, while a significant increase
in muscle strength was achieved, the changes in muscle thickness were not statistically
significant in healthy individuals following conventional muscle training [65]. Similar
findings have also been reported in another previous study, which demonstrated that,
while the ankle dorsiflexion torque produced by chronic stroke participants during a MIVC
test was significantly lower compared with that of healthy adults, there was no significant
difference in TA muscle thickness during contraction between the two subject groups [66].
The non-linear relationship between thickness and activation of the TA muscle may help
explain the findings of the current study. Ultrasound imaging has been shown to effectively
capture muscle morphological changes during isometric contractions, but primarily at
lower intensity levels of under 30% of MIVC [67]. As contraction intensity increased beyond
50% of MIVC, the observed alterations in muscle thickness became relatively minor [67].
This observation has been particularly relevant in the context of the current study, which
involved high-intensity contractions at 100% of MIVC. The underlying mechanisms may be
explained by the fact that the thickening of the pennately arranged fibers in the TA muscle
might be counterbalanced by the changes in fiber angle [68–70]. This counterbalance helped
keep the surfaces of the origin and insert as parallel and equidistant as possible, which
could help maintain a consistent muscle thickness. Previous studies have also reported
a significant increase in the pennation angle of the TA muscle from resting to maximum
or submaximal MIVC [71–73], while no significant changes were observed in TA muscle
thickness [72]. Future studies could consider incorporating ultrasound imaging devices
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with better imaging qualities to verify this. In addition to this, future studies may also
consider using the muscle structure of pennation angle as a visual feedback modality,
and compare whether the positive paretic muscle strengthening outcome could be further
improved to unveil the underlying mechanism.

4.3. Relationship Between Ankle Dorsiflexion Torque and TA Muscle Thickness
During Contraction

A moderate correlation was found between the normalized ankle dorsiflexion torque
and absolute TA muscle thickness during the initial and mid phases of contraction in
this study. This correlation was primarily observed when combining the two training
conditions and when participants trained without UVF. This might be explained by the
previous findings of the counterbalanced changes in Ta muscle fiber angle and thickening
of pennately arranged fibers [68–70]. It is interesting to observe that, with the addition of
UVF, this moderate correlation tended to weaken. This might be because the additional or
augmented visual input and stimulus influenced the neuromuscular regulatory output from
the motor center, which further altered the existing correlation between muscle contraction
and morphological changes. In addition to adopting ultrasound probes with better imaging
qualities, future studies could also verify this and unveil the underlying mechanism by
evaluating the changes in brain activity of stroke survivors in training conditions with
different visual stimuli. Additionally, stroke can lead to various muscle changes in the
paretic side, including contractile tissue atrophy, thickening of connective tissue, and
alterations in passive mechanical behavior [74]. These pathological changes might further
alter the length–force relationship of the impaired muscles [75,76]. Further studies are
needed to verify this. The specific relationship between morphological parameters and force
output of TA muscle in stroke survivors during different intensities of muscle contractions
shall also be further investigated in future studies.

4.4. Implications for Future Research and Clinical Practice

The findings of the current study preliminarily underscore the potential of utilizing
UVF in the rehabilitative training of paretic ankle dorsiflexion in stroke survivors. The
significant improvements in ankle dorsiflexion torque output during isometric muscle
strength training supported the potential benefits of UVF in enhancing muscle activation
and motor control. However, it shall be noted that this pilot study only demonstrated the
positive effect of an isolated muscle, and yet individuals with stroke have multiple joint
neuromuscular problems, including undesired flexor tones when performing repetitive
dorsiflexion. Future studies can and shall be conducted to further evaluate the effect of
UVF on the functional tests of stroke survivors to confirm whether the positive results
of the current study can be further transferred to real clinical practice and lead to better
rehabilitation outcomes.

It is anticipated that the developed UVF training approach of combining strength and
biofeedback training could offer further beneficial effects for stroke survivors in functional
performance. Previous studies have reported improvements in ankle muscle strength,
balance, and gait performance in stroke survivors who received either ankle biofeedback
training [77,78] or ankle muscle strength training [77–79], with those receiving feedback
showing greater improvements [77,78]. The improved ankle muscle strength and force con-
trol after UVF training may help facilitate the effective activation of the TA muscle [80,81]
and increase the duration of the single support phase of the paralyzed leg during walk-
ing [82]. Additionally, it is anticipated that there may also be improvements in the ankle
dorsiflexion angle at heel strike and the toe clearance during the swing phase of a gait
cycle [83], as the improved paretic TA muscle strength and force control could help reduce
the abnormal foot drop position. These muscle-level improvements may also potentially
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lead to more noticeable functional enhancements during walking [82], such as improved
gait symmetry. This could help improve the stroke survivor’s balance and reduce the risk
of falls and associated injuries in daily activities [84]. However, these anticipations should
be interpreted with caution, as further studies are needed to verify the potential functional
benefits of UVF in stroke survivors.

The observed improved ankle dorsiflexion torque also raised intriguing speculations
about the underlying neural mechanisms. Future studies could consider investigating the
changes in brain activity that might be associated with UVF training. Both the augmented
visual stimulation and voluntary muscle contraction shall be considered in the study
design. This may help provide insights on how visual feedback influences the motor
control pathways of stroke survivors, and how such information could be considered to
refine and improve the future rehabilitative strategy and outcomes for stroke survivors.

The application of a wearable ultrasound imaging system presents an opportunity to
expand the evaluated UVF training beyond laboratory settings and into community-based
rehabilitation. The flexible mobility and accessibility of this technology could enable stroke
survivors to engage in guided feedback-driven strength training in outpatient clinics or even
in home environments. This transition may help bridge the gap between isolated muscle
training and functional recovery while addressing the practical challenges of expensive cost
and high technical complexity. Future implementations should prioritize some user-friendly
designs and validate the efficacy of UVF in real-world rehabilitation contexts to promote
scalability. In future studies, standardized questionnaires, such as the System Usability
Scale (SUS) [85,86] and Post-Study System Usability Questionnaire (PSSUQ) [87,88], should
be systematically employed to quantitatively assess user satisfaction and system usability
across different clinical and home-based UVF applications. The collected data would be
essential to optimize the implementation protocols and patient adherence. Additionally,
future studies should investigate the potential rehabilitative benefits of UVF for both
survivors of subacute stroke and those with more severe functional impairments (e.g.,
non-ambulatory patients with minimal ankle dorsiflexion) to establish the intervention’s
broader applicability across stroke populations with various levels of physical disabilities.

Moreover, the current study only observed minor changes in TA muscle thickness,
despite the increased ankle dorsiflexion torque. These findings highlight not only the com-
plexity of muscle adaptation following stroke but also the limitations of two-dimensional
muscle thickness measurements through B-mode ultrasound imaging. The observed
changes in muscle structure from the ultrasound imaging may not be able to fully reflect
the detailed changes in the muscle activity. Multiple factors may contribute to the observed
small changes in muscle thickness, including the narrow width of the ultrasound probe,
tightness of the surrounding tissues, and stiff compartment, etc. It is advised that clinicians
should not solely rely on the muscle thickness parameter as the indicator of changes in
muscle strength or rehabilitation progress. Beyond muscle thickness, previous studies have
identified multidimensional structural adaptations in skeletal muscles following stroke,
including reduced muscle quality [89] and elevated intramuscular adipose tissue [90].
These changes can also be quantified via ultrasound-derived parameters such as grayscale
level [91] and echo intensity [90]. Neuromuscular alterations, such as muscle denerva-
tion [6], have been known to contribute to changes in intermuscular tissue composition,
which have been associated with muscle weakness [4]. The interaction between these neu-
romuscular alterations and the muscle structural adaptations underscores the significance
of combining electrical signals (e.g., surface electromyography) and ultrasound imaging
signals to evaluate the rehabilitation process in the future. In addition to muscle weakness,
spasticity and joint stiffness are also major challenges in most patients with chronic stroke
in clinical practice. Thus, a comprehensive assessment of muscle function should be priori-
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tized. This shall include a thorough evaluation of morphological changes, neuromuscular
control, and functional task performance, with consideration for both short-term and long-
term effects. It may also be helpful to investigate the potential relationship between muscle
morphological changes and muscle function improvements, to further elucidate how UVF
would influence muscle architecture and performance in stroke survivors.

4.5. Limitations of This Study

Despite the authors’ best efforts for a robust study design, the present study still
held several limitations that could be addressed in future studies. Firstly, this pilot study
adopted a randomized crossover design to preliminarily explore the effect of UVF on the
paretic ankle dorsiflexion of stroke participants. A randomized controlled trial with at least
two groups could be conducted in the future to further verify the reported findings of the
developed protocol in stroke survivors.

Secondly, while the immediate changes in TA muscle thickness and torque were
thoroughly analyzed, the absence of neurophysiological measurements, such as fNIRS
and EMG, limited the identification of the underlying neural mechanisms for this study.
Future studies should incorporate these neurophysiological measures to facilitate a more
comprehensive understanding of UVF’s mechanisms in lower limb stroke rehabilitation.

Thirdly, while the sitting isometric task minimized compensatory movements, it also
precluded the evaluation of functional carryover to gait or other daily activities, particularly
given that stroke survivors tend to rely on compensatory strategies of hip/knee flexor co-
activation during walking. Future studies should incorporate some functional assessments
to evaluate the long-term carryover effects of UVF on daily dynamic tasks, including
walking, stair climbing, and sit-to-stand transitions, which could represent more actual
real-world mobility challenges.

Fourthly, although the current proof-of-concept study design prioritized a controlled
training setup, the repetitive isolated ankle dorsiflexion training may lead to some un-
intended abnormal consequences. These include exacerbating flexor tone or disrupting
inter-joint coordination in dynamic tasks.

Last but not least, this study adopted muscle thickness as the sole UVF parameter. This
made it difficult to determine whether some other ultrasound imaging-based parameters
or biomarkers could provide better muscle contraction improvement. Future studies could
consider verifying whether the other parameters of fascicle length or pennation angle could
provide a more comprehensive reflection of changes in muscle architecture and further
enhance positive training benefits.

5. Conclusions
This study has demonstrated that real-time UVF could significantly enhance the output

paretic ankle dorsiflexion force magnitude and control during isometric contractions in
community-dwelling stroke survivors. The findings highlight the great potential of UVF
as a targeted training tool to address the deficits in isolated ankle dorsiflexion, which has
been a critical determinant of functional mobility levels in stroke survivors.

The preliminary positive training outcomes of the introduced UVF protocol support
the feasibility of applying it as an engaging adjunct to conventional rehabilitation in
future clinical practice. However, future studies shall validate whether these positive
outcomes in isolated muscle performance could be translated into functional improvements
in daily activities or not. Further identification and optimization of some additional UVF
parameters (e.g., fascicle length or pennation angle) and the conduct of some longitudinal
trials would also be essential to refine the clinical application and establish some evidence-
based protocols for the long-term recovery of individuals with stroke.
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