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Abstract: Myopia requires visual correction. The complications associated with myopia affect
a large population of schoolchildren around the world. Nanostructured myopia control spectacle
lenses (NMCSLs) containing nano surface features are commonly used as a non-invasive approach
for slowing down the progression of myopia. However, the effective segmentation of surface
defects generated in the precision manufacturing of the NMCSL heavily relies on highly efficient
and effective defect detection and characterization methods. As a result, this paper presents
an enhanced transformer method coupled with the transfer learning (E2Trans) method, which
combines the powerful feature extraction abilities of the transformer and the knowledge re-usage
abilities of transfer learning to realize high-efficiency and high-accuracy defect segmentation. To
further improve the segmentation performance, two auxiliary decoders are added to adjust the
training loss. To validate the model’s performance, a lens defect dataset is built, and a series of
experiments are conducted. The results show that our proposed model can segment five lens
defects, including notches, black spots, bubbles, fibers, and scratches with high segmentation
accuracy and speed. In addition, a detection system is developed for real-time lens defect
detection.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

1.1. Myopia control

Holden et al. [1] reported that approximately 1.4 billion people had myopia in 2000, and projected
that the number of myopic people will increase to 4.8 billion by 2050. Among them, about 0.9
billion people will have high myopia. The increase in myopia among school children has become
a major public health issue globally. This could result from the significant amount of time children
spend reading and using computers or smartphones while spending inadequate time outdoors
[2,3]. The socio-economic consequence of myopia is enormous because myopia permanently
alters the structure of the posterior segment of the eye, increasing the risk of developing blinding
diseases such as myopic macular degeneration and glaucoma [4]. In particular, myopic macular
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degeneration is the second leading cause of low vision in Hong Kong [5], the fourth in Singapore
[6] and the fifth in the US [7].

Vision health is closely related to the quality of people’s daily lives, and the formation of
myopia is irreversible. During childhood and adolescence, the eyes are in a sensitive period of
rapid development. It is particularly effective and critical to actively prevent and intervene in the
formation and progression of myopia at this stage. Biologists found that excessive ocular growth
can be controlled through a physiological feedback mechanism termed “emmetropization” by
imposing a defocused optical image onto the retina [8]. The defocused image, often referred to
as “Myopic Defocus”, is the underlying principle for conventional myopia interventions such
as orthokeratology, which involves the overnight application of a rigid gas permeable contact
lens; or the day-wear defocus incorporated soft contact lens (DISC), as shown in Fig. 1(a),
developed by Lam [9]. However, contact lenses are often contra-indicated for many school
children due to hygiene, safety concerns, and their limited capacity to correct astigmatism.
Consequently, spectacle lenses that incorporate a myopia control function would be a user-
friendly option appealing to all patients. Accordingly, nanostructured myopia control spectacle
lenses (NMCSLs), as shown in Fig. 1(b), have been developed by the authors of The Hong
Kong Polytechnic University. They proposed a novel optical power distribution design and
ultra-precision mold-processing method to realize the mass production of NMCSLs. However,
controlling the quality of NMCSLs in the manufacturing process is difficult, resulting in high
scrap rates and low efficiency. Therefore, a fast and accurate defect detection technique is urgently
required in NMCSL manufacturing.

 

Fig. 1. Myopia control lenses

1.2. Defect detection in injection molding

Injection molding is the most popular technique to manufacture lenses, especially lenses with
micro or nanostructures. To improve the quality of products and enhance the efficiency of
processes, there are many studies focused on detecting and analyzing defects. Obregon et
al. [10] proposed a rule-based explanation (RBE) framework to detect sink mark defects in
the injection molding process. They predicted defects through ensemble methods and then
RBE was used to combine the decision trees and extract the rules from them. Some plot
studies have depicted the relationships between features and predictive models. Bianchi et al.
[11] developed a thermal control system to avoid premature solidification, in which a particle
swarm optimization-based finite element method was used to make the cooling rate of molded
components uniform. The results showed that time delay neural networks have better detection
accuracy. Chen et al. [12] developed an artificial neural network (ANN) to conduct online
defect detection. They trained the ANN using the real-time temperature and pressure data to
predict the part diameter. The proposed method showed better performance compared with
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the multilinear linear regression model. Anguraj [13] adopted a support vector machine to
classify the qualified and unqualified injection-molded components online based on the data
from temperature and pressure sensors. The Bayesian regularization approach was used to make
the classification more refined. Khosravani et al. [14] applied a case-based reasoning method
to conduct fault detection in the injection molding process. The occurrence weight of faults’
causes was used to define similarity measurement and case retrieval. The experiments showed
that the proposed method can reduce the machine breakdown time. Although many studies have
been conducted, little attention is paid to classifying and recognizing defects on inject-molded
workpieces simultaneously, which plays an important role in understanding the inject-molding
process and performing further process optimization.

As a result, we aim to improve the quality and efficiency of NMCSL production. We propose
a deep learning-based segmentation method, and an enhanced transformer method coupled with
transfer learning (E2Trans) to detect surface defects on NMCSLs. In the model, two auxiliary
decoders are added to decode the learned feature into different segmentation masks. Then
the auxiliary loss is added to the loss function to adjust the feature learning so as to improve
segmentation performance. In addition, to accelerate the training speed and reduce the data
collection cost, a transfer learning technique is used to transfer the knowledge from a public
dataset to NMCSL detection. Then the dataset is collected for model performance validation.
The main contributions of this work can be summarized as follows.

a) An enhanced transformer method coupled with transfer learning is proposed.

b) Five types of defects can be segmented by the proposed method.

c) The method yields better segmentation performance compared with other models.

d) A detection system is developed for real-time lens defect detection.

2. Related work

2.1. Deep learning-based segmentation methods

Deep learning-based segmentation methods have been used in many industries, such as medicine
[15], agriculture [16], electronics [17], and manufacturing [18,19] since they push the detection
problem down to the pixel level. There are many types of deep learning methods proposed
in recent years [20], which can be roughly divided into convolutional neural networks (CNN)-
based models, recurrent neural network (RNN)-based models, generative adversarial network
(GAN)-based models and transformer-based models.

CNN-based models. Liu et al. [21] proposed a deep learning-based method, ParseNet, in
which global context is added through the average feature based on a fully convolutional network.
The experimental result on SiftFlow and Pascal-Context showed that the segmentation accuracy
increased consistently. Lin et al. [22] combined CNNs with conditional random fields (CRFs) to
improve the segmentation accuracy, where a CRF was used to capture the contextual information
from the neighboring patches of images. The piecewise training technique was adopted to achieve
efficient learning. Paszke et al. [23] proposed an efficient neural network (ENet) to enable
segmentation to be used in mobile applications. They designed an initial block to obtain 16
feature maps. An ENet bottleneck module was carefully designed to learn the features. The
performance on benchmark datasets showed that ENet can yield similar accuracy but 18× faster.

RNN-based models. Shuai et al. [24] developed a directed acyclic graph-RNN to capture the
contextual dependencies of image patches, which can aggregate the context of neighboring feature
maps. In addition, a class-weighted loss was added in the training process to deal with the class
occurrence imbalance issue. Liang et al. [25] proposed a graph long short-term memory network
(LSTM), in which an undirected graph was established for each image with the arbitrary-shaped
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superpixels as nodes. In addition, a confidence-driven scheme was introduced to update the
states of the LSTM. Xiang et al. [26] proposed data-associated RNNs (DA-RNN) for RGB-D
video semantic labeling. A new block diagram, a data-associated recurrent unit was proposed
to update the hidden state. The outputs of DA-RNN were combined with a mapping technique,
KinectFusion, to reconstruct 3D scenes.

GAN-based models. Luc et al. [27] combined CNN with GAN models to improve segmenta-
tion accuracy. They used the CNN to perform per-pixel class predictions, and the GAN was used
to distinguish whether the segmentation map comes from the CNN or ground truth. Souly et
al. [28] proposed a semi-supervised segmentation method based on the GAN to mitigate the
shortage of labeled data. They used the generator to generate fake images. Hence, the fake data,
unlabeled data, and labeled data were fed into a discriminator which can obtain confidence maps
of each class and classify fake or real data simultaneously. Xue et al. [29] proposed an end-to-end
trainable network, SegAN, for medical segmentation. The fully convolutional encoder-decoder
network served as the segmentor to produce label maps. And the predicted label maps and
the ground truth label maps were fed into a critic network. These two networks were trained
alternately to maximize the multi-scale loss.

Transformer-based models. Transformers have become more and more dominant in vision
tasks since they can provide simple, unified, and robust solutions [30]. There are many studies
proposed recently. Liu et al. [31] developed a new vision transformer, which uses shifted
windows to compute representations in a hierarchical way. The proposed transformer, Swin
Transformer, is suitable for not only any image scales, but also many vision tasks, such as
classification, detection, and semantic segmentation. Xie et al. [32] proposed SegFormer for
semantic segmentation, which combines transformers and a lightweight multilayer perceptron
(MLP) as an encoder-decoder network. Transformers were hierarchically concatenated to avoid
positional coding, and a simple MLP was used to combine the representation from different
layers so that it is powerful and efficient. Cheng et al. [33] proposed a masked-attention mask
transformer (Mask2Former), which can be applied to any segmentation task, including panoptic
segmentation, instance segmentation, and semantic segmentation. The designed mask-attention
can limit the cross-attention in a predicted mask region to learn local features. Similarly, Jain et
al. [34] tried to deal with three kinds of segmentation tasks in one framework. They designed a
novel training strategy to jointly train a network for each segmentation task. In addition, a task
token was introduced to enable the model to dynamically perform various tasks’ training and
prediction.

2.2. Deep learning-based segmentation methods

Defect segmentation is a challenging issue in many industries, such as material, civil infrastruc-
tures, textile, agriculture, and manufacturing. Neven et al. [35] introduced a multi-task model
based on U-Net to segment surface defects on sheet steel and predict severity. In addition, they
improved the model’s performance by adding process parameters and a sensor fusion technique,
whereby the segmentation accuracy increased by 6.8% in mIoU. Wang et al. [36] segmented
defects on sewer pipes through a unified neural network, which combined a convolutional neural
network with a conditional random field. The experiments showed that the proposed method
achieves better segmentation accuracy and speed. Huang et al. [37] proposed a convolutional
neural network to segment fabric defects using a few labeled data, which includes a segmentation
network and a decision network. The proposed method can achieve high accuracy with almost
50 defect samples. Marino et al. [38] adopted a weakly supervised learning approach to detect
potato skin defects. A deep convolutional neural network was first used to detect six types of
defects, and then on a defect activation map, a segmentation method was applied to obtain the
morphology of potatoes. In the end, the support vector machine was used to classify damaged or
greened potatoes. Wang et al. [39] proposed an unsupervised defect segmentation method to
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segment the defects on a 3D-printed workpiece. They introduced a self-attention mechanism into
a CNN-based feature learning network to capture more global features.

Although many deep learning-based segmentation methods have been proposed and applied in
defect segmentation in many industries, few studies focus on lens defect segmentation. In addition,
transformer-based methods show better performance in many computer vision tasks. Therefore,
in this study, we aimed to segment lens defects through a transformer-based segmentation method.

3. Enhanced transformer method coupled with transfer learning for defect seg-
mentation

3.1. Overall framework

The proposed method is shown in Fig. 2. E2Trans is an encoder-decoder network based on
Segformer [32], which is a simple and efficient segmentation network. Since defects with
different sizes, in the encoder, we adopted four hierarchically stacked transformer blocks to learn
the different scale features from overlap patch embedding. For the number of transformer blocks,
deeper transformers capture long-range dependencies but increase computational costs, and
shallower networks focus on local features but lack global context. To achieve local and global
context balance and reduce computation cost, we use four transformer blocks. In each block,
efficient multi-head self-attention layers and mixed feed-forward network layers are adopted to
learn the features from image patches. The main decoder combines coarse to fine features learned
by each transformer block by a designed MLP block; then, an MLP layer is used to predict the
segmentation mask. To enhance the segmentation performance, two auxiliary decoders with
the same structure as the main decoder are added to compute auxiliary loss. For the weight of
auxiliary decoders, higher weights on early layers can encourage low-level feature learning and
higher weights on deep layers can ensure high-level semantic consistency. In this paper, we
use different weights to balance the low-level and high-level feature learning. This framework
includes two stages. In the first stage, the network without auxiliary decoders is trained on a
public dataset. Then, in the second stage, the learned basic features are transferred to a lens
domain, and the network with auxiliary decoders is further trained to predict lens defects. In the
whole training process, images are first converted into overlapping patch embeddings through a
convolutional layer with different input sizes, patch sizes, and embedding dimensions.

Fig. 2. The overall framework of E2Trans

3.2. Enhanced transformer-based segmentation method

Assume an input image as x ∈ RH×W×3, where H, W are the height and width of the image.
Through a convolutional layer with different settings in kernel size (Ke), stride size (S), and
padding size (P), the input image is divided into 4 × 4 patches and multi-level feature maps
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Fi ∈ RHi×Wi×Ci are obtained, where Hi =
H

2i+1 , Wi =
W

2i+1 , i = {1, 2, 3, 4}. The {Ke, S, P} are set
as {7, 4, 3} and {3, 2, 1} to produce overlapping patches with the same size as the non-overlapping
process. In each transformer block, there are T feature extraction blocks followed by an overlapped
patch merging layer, in which each block is composed of an efficient self-attention layer and a
mixed feed-forward network layer. Since the self-attention layer is a computation bottleneck, the
sequence reduction (SeqRe) process [40] is adopted to achieve efficient self-attention (EAttn),
which can be defined as Eqs. (1) and (2).

xEAttn = EAttn(Q, K, V) = Softmax
(︃
Q · SeqRe(K)

√
Ah

)︃
(1)

SeqRe(K) = Linear(Ci · Ri, Ci)

(︃
Reshape

(︃
Ni

Ri
, Ci · Ri

)︃
(K)

)︃
(2)

where Q, K, and V are query, key, and value in self-attention with the same size of Ni × Ci and
Ni = Hi × Wi, Ah is the number of attention heads, Ri is the reduction radio, Reshape aims to
reshape the size of K to

(︂
Ni
Ri

, Ci · Ri

)︂
, and Linear aims to output a tensor with Ci dimensions

with the Ci · Ri-dimensional input. In the mixed feed-forward network (MFFN) layer, a 3 × 3
convolutional layer is applied to provide position information, which can be expressed as Eq. (3).

xMffn = MFFN(xEAttn) = MLP(GELU(Conv3×3(MLP(xEAttn)))) + xEAttn (3)

where GELU is the activation function called Gaussian Error Linear Units, and xEAttn is the
output of the efficient self-attention layer. Then, the xMffn is fed into an overlapped patch merging
layer, which is a linear layer to shrink features from Hi × Wi × Ci to Hi+1 × Wi+1 × Ci+1.

In the main decoder, only MLP layers are applied to obtain the final segmentation masks. An
MLP block aims to make all feature maps into feature map F̂i ∈ R H

4 ×
W
4 ×C and another MLP layer

is adopted to combine the multi-level features from four transformer blocks to perform mask
prediction. In the MLP block, it is composed of an MLP layer and an up-sampling layer. The
MLP layer firstly maps the feature map Fi with Ci dimensions of each transformer block to a
feature map with C dimensions. Then an up-sampling layer is adopted to up-sample the feature
maps to H

4 × W
4 . It can be expressed as Eq. (4).

F̂i = Upsample
(︃
H
4
×

W
4

)︃
(Linear(Ci, C)(Fi)) (4)

In the end, another MLP layer is applied to fuse the features of four transformer blocks, in
which the feature maps F̂i are contacted first and a linear layer is applied to output a feature map
with the size of H

4 × W
4 × C, as shown in Eq. (5):

F = Linear(4C, C)(Concat(F̂i)) (5)

The final prediction layer is a linear layer to generate segmentation mask M ∈ R H
4 ×

W
4 ×Ncls . In

this paper, we add two auxiliary decoders which have the same structure as the decoder but with
different weights to participate in loss function computation so as to improve the segmentation
accuracy.

3.3. Loss function

Cross-entropy loss is a common loss function used in segmentation tasks [41,42,43] to estimate
the difference between input logits and target. Assume that z is the output of the model, c is the
ground truth, and the loss function can be expressed as Eq. (6):

l(z, c) = −log
exp(zc)∑︁Ncls−1

i=0 exp(zi)
(6)

where z = [z0, · · · , zNcls−1] is the output of an image and exp(∗) = e∗.
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To improve the segmentation performance, we added two auxiliary losses, and the input logits
z1, z2 are obtained by two auxiliary decoders. Assume that zmain is the output of the main decoder;
then the whole loss function ltotal can be defined in Eq. (7):

ltotal(zmain, z1, z2, c) = lmain + w1laux1 + w2laux2s.t. lmain = l(zmain, c)laux1 = l(z1, c)laux2 = l(z2, c)
(7)

Here, auxiliary decoder loss plays an important role in improving gradient flow, multi-scale
feature learning and generalization. When deetermining the gradient during the training process,
as shown in Eq. (8),

∂ltotal

∂Fi
=
∂ltotal

∂Fi
+ w1

∂laux1
∂Fi

+ w2
∂laux2
∂Fi

(8)

laux1 and laux2 can provide additional gradients to ensure that earlier feature maps are well-trained
so as to stabilize optimization and prevent early layer degradation. These additional gradients can
provide supervision at multiple feature levels Fi so as to ensure all feature levels are useful. In
addition, in the loss function, auxiliary decoder loss also acts as a regularizer, reducing overfitting.
This regularizer can prevent deep layers from over-specializing in the final prediction while
neglecting intermediate features.

3.4. Evaluation metrics

Three types of evaluation metrics, which are commonly used in segmentation research, were
applied to assess the model’s performance: intersection over union (IoU), pixel accuracy (PA),
and mean pixel accuracy (mPA) [44,45,46]. IoU means the overlapping ratio between the
predicted segmentation mask and the ground truth, which is defined as Eq. (9):

IoU =
|A ∩ B|
|A ∪ B|

(9)

where A and B stand for the ground truth mask and the predicted segmentation mask, respectively.
The average IoU throughout all classes is known as mIoU. PA attempts to calculate the ratio
between the amount of correctly classified pixels and the total number of pixels so as to realize
the pixel-level performance evaluation for all classes. The pixel accuracy of Ncls classes (Ncls − 1
foreground classes and the background) is defined by Eq. (10):

PA =
∑︁Ncls−1

i=0 pii∑︁Ncls−1
i=0

∑︁Ncls−1
j=0 pij

(10)

where pij is the number of pixels of class i predicted as belonging to class j.
Similar to MIoU, PA also has an extension metric through average PA through all classes,

named Mean Pixel Accuracy (mPA) as shown in Eq. (11), in which the ratio of correct pixels is
computed in a per-class manner and then averaged over the total number of classes.

mPA =
1

Ncls

Ncls−1∑︂
i=0

pii∑︁Ncls−1
j=0 pij

(11)

4. Experimental

4.1. Experimental setting and dataset collection

To train the proposed model, a labeled lens defect dataset is necessary. Firstly, many NMCSLs,
shown in Fig. 3(b), were manufactured by an injection molding machine, Toyo Si-80, which is
shown in Fig. 3(a). The entire injection molding experiment consisted of three steps: filling,
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packing, and cooling, as shown in Fig. 3(e). A pile of plastic pellets was first heated, far above
the transition temperature of the polymer. Then the appropriate injection pressure and speed
were set to ensure that enough melt can be injected into the mold cavity to complete the filling.
Once the cavity was filled, the pressure was maintained to maintain the cavity and compensate
for the volume shrinkage of the lens. Finally, a cooler is used to cool the molded assembly to
room temperature to ensure that the lens is solidified and can be successfully ejected. When
cooling was completed, the mold was opened, and the finished lenses were released. Therefore,
the process is difficult to control since too many process parameters and physical processes are
involved in it. In this experiment, the parameter settings are shown in Table 1, where the melt
temperature, mold temperature, injection pressure, holding pressure, holding time, and injection
time were carefully set to fabricate NMCSLs so as to meet the requirements of glasses as shown
in Fig. 1(b). Hence, NMCSLs that have defects were selected for the next step. The defect images
were captured by a vision system (Fig. 3(c)), which is composed of a camera, a lens, a light source,
and a computer. The detailed information is listed in Table 2. Then the five types of defects were
labeled by labelme [47] and preprocessed for model training. As shown in Fig. 4, notches, black
spots, bubbles, fibers, and scratches on the lens were labeled. In the dataset, compared with other
defects, bubbles are the most frequent defects. Since bubbles are too small to be detected, we did
not conduct undersampling to let the model learn more. The dataset has a total of 220 images,
and the ratio of training and validation dataset is 0.9:0.1, where data enhancement techniques,
including random resizing with a ratio range from 0.5 to 2.0, random cropping with a ratio of
0.75, and random flipping with a probability of 0.5 were adopted in each training epoch so that
model does not see same images to learn more features. In addition, in each image, there are
20-50 defects, therefore we have around 10000 defects to learn the features. Furthermore, we
first train the model on the public dataset with 5000 images to learn basic features from a large
dataset. Since there are some limitations of train-test split in the small dataset, such as the risk
of overfitting and unrepresentative validation data, 10-fold cross-validation experiments were
conducted to show the segmentation performance on each defect class of the proposed model.

Fig. 3. The experimental mechanism and data collection.



Research Article Vol. 33, No. 6 / 24 Mar 2025 / Optics Express 13856

Fig. 4. The five types of lens defects.

Table 1. The parameter setting of the injection-molding process

Parameters Values

Precision injection molding machine Toyo Si-80

Melt Temperature 235-250 C◦

Mold Temperature 146 C◦

Injection Pressure 1600 kgf /cm2

Holding Pressure 1600-1450 kgf /cm2

Holding Time Injection Time Cooling Time 70s 21s 75s

Table 2. The parameter settings of the image capturing system

Camera model RZSP-4KCH-IV

Resolution 3840*2160

Pixel size 2.0µm*2.0µm

Frame rate 60 FPS

Lens model SPZ0745-ZC1.0

Objective magnification 0.75-5X

Light source LED ring light
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4.2. Implementation details

The input image size was set as 2048 × 640. The number of self-attention heads, Ah, in each
transformer block was set to {1, 2, 5, 8}. The numbers of feature extraction blocks, T, in four
transformer blocks were set to 3,6,40, and 3, respectively. The reduction ratios {Ri |i = 1, 2, 3, 4}
and the numbers of feature dimensions {Ci |i = 1, 2, 3, 4} of four transformer blocks were set to
{8, 4, 2, 1} and {64, 128, 320, 512}, respectively. The weights, w1, w2, of two auxiliary decoders
were set to 0.4 and 0.4, respectively. The optimizer was AdamW, which is the Adam with weight
decay. Here, the rate of weight decay was set to 0.01 and the learning rate was 6 ∗ 10−5. The
learning rate started from 1 ∗ 10−6 and linearly changed in the first 1,500 iterations. Then the
polynomial learning rate decay was adopted from 1,500 iterations until the training process ended.
The model was first trained on the Cityscapes dataset [48], and then our lens defect dataset
was fed into the proposed model to fine-tune the model. The model was trained using 16,000
iterations. In this study, all experiments were conducted on a computer with an i9-12900 H 5.1
GHz CPU with 16 Cores and NVIDIA GEFORCE RTX A4500 GPU with a memory of 20GB.

4.3. Results and discussion

As shown in Fig. 5, all the types of defects on lenses can be segmented although they have different
morphologies and sizes which are marked by different colors. Since some bubbles and black spots
are too small, we highlighted them with color boxes. Each class segmentation accuracy is listed
in Table 3, which is the average accuracy of 10-fold cross-validation experiments. The results
show that fiber defects can be segmented easier than other kinds of defects with an accuracy of
47.48 in IoU and 72.41 in PA. The reason is that fiber defects have distinct features in both bright
field and dark fields. Notch defects have lower segmentation accuracy, reaching 37.89 of IoU
and 47.37 of PA. The segmentation performance on bubble defects is low since it is so small, and
the features of them are similar to the background.

Table 3. The performance of E2Trans in each class

Class IoU PA

Background 99.89 99.96

Notches 37.89 47.37

Black Spots 27.25 34.96

Bubbles 7.44 8.38

Fibers 47.48 72.41

Scratches 28.89 40.95

Transfer learning effect. To explore the transfer learning influences on the proposed model,
we compared the model performance under three conditions, including no transfer learning,
transfer learning from the ADE dataset [49], and transfer learning from the Cityscapes dataset. All
the experiments were conducted with the model with four transformer blocks, and the auxiliary
decoder weights were set to 0.4. According to the results listed in Table 4, the segmentation
performances of transfer learning from the Cityscapes dataset on mPA and mIoU were both better
than the other kinds of conditions.

Table 4. Transfer learning performance comparison

Transfer learning Dataset PA mPA mIoU

None 99.93 52.48 43.51

ADE Dataset 99.91 50.07 40.07

Cityscapes Dataset 99.92 53.90 44.02
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Fig. 5. The defect segmentation results of E2Trans.

Auxiliary decoder effect. Comparison experiments with different auxiliary decoder (AD)
settings were also conducted to explore the segmentation accuracy of our model. Firstly, we
compared the performance of the model without ADs (w/ TL_4 w/o AD), the model with ADs
when the weights were set to 0.4 (w/ TL_4 w/ AD_0.4), and the model with ADs when the
weights were set to 0.6 (w/ TL_4 w/ AD_0.6). All these three models were pretrained on the
Cityscapes dataset and with four transformer blocks. From the results listed in Table 5, we
can see that the best performance was achieved when the weights of ADs were set to 0.4. To
further explore the weights of Ads’ influence on segmentation performance, we conducted two
experiments on the model without transfer learning in which the number of transformer blocks
was 6. The weights of ADs in these experiments were set to 0.4 and 0.6, separately. As shown in
Table 5, the performance of w/o TL_6 w/ AD_0.6 model had better performance. Therefore, the
weights of ADs had a significant effect on the segmentation performance, and the value settings
will depend on the model structures.

Transformer block effect. Since the transformer blocks play an important part in the
segmentation performance, we conducted a series of experiments to explore the segmentation
accuracy of different numbers of transformer blocks. As shown in Table 6, we compared the
performance of the model with four, five, and six transformer blocks. All the experiments were
conducted on the model without transfer learning, and the weights of ADs were set to 0.4. The
results showed that the model with six transformer blocks had the best segmentation performance.
The worst performance was obtained when the number of transformer blocks was set to five.
Therefore, the number of transformer blocks needs to be carefully set.



Research Article Vol. 33, No. 6 / 24 Mar 2025 / Optics Express 13859

Table 5. The auxiliary decoder performance comparison

Model PA mPA mIoU

w/ TL_4 w/o AD 99.92 50.68 42.36

w/ TL_4 w/ AD_0.4 99.92 53.90 44.02

w/ TL_4 w/ AD_0.6 99.92 50.56 42.11

w/o TL_6 w/ AD_0.4 99.92 49.48 42.06

w/o TL_6 w/ AD_0.6 99.92 50.40 41.10

Table 6. The transformer block performance comparison

#Transformer Blocks PA mPA mIoU

6 99.92 49.48 42.06

5 99.91 51.08 40.42

4 99.93 52.48 43.51

Other types of lenses. To show the generalizability of our model, we evaluated segmentation
performance on glass molded lenses with a molding temperature of 590 C°, molding speed of
0.4 mm/s, and molding time of 10 s. As shown in Fig. 6, the results show that our model can be
extended to different processes for producing lenses.

Fig. 6. The defect segmentation results on glass molded lenses.

In the end, we compared the performance of E2Trans with state-of-the models, such as
Segformer series models, Mask2Former [33], PSPNet [50], DeepLabv3+ [51], SETR [52], and
STDC2 [53] in regard to segmentation accuracy and inference time. Here, the backbone of
DeepLabv3+ is ResNet-101; the decoder of SETR is the naive decoder. The results listed in
Table 7 show that our model achieved good segmentation accuracy while maintaining a high
inference speed, reaching 53.90 mPA and 0.214 seconds. The segmentation accuracy of Segfomer
series models becomes better and better as the network depth increases. The Mask2Former
achieved better performance, but the segmentation inference time was long. In contrast, SETR
had the shortest inference time but suffered from low segmentation performance. As a result, our
model is more suitable for lens defect defection since mass production needs a highly efficient
detection method.

4.4. Lens defect detection system

To show the performance of the detection system, we conducted a lens defect segmentation
experiment on a developed detection system, as shown in Fig. 7. The vision system consists of a 4
K high-definition camera (RZSP-4KCH-IV), a high-magnification zoom lens with a zoom range
of 0.7-5 and the working distance of 175, a ring LED light source, and a server with GPU. The
computer was connected to the camera through a GigE interface and obtained real-time video



Research Article Vol. 33, No. 6 / 24 Mar 2025 / Optics Express 13860

Table 7. The performance comparison with state-of-the-art models

Model PA mPA mIoU Inference Time (s)

Segformer-B0 99.92 35.29 31.63 0.0836

Segformer-B1 99.92 35.45 32.60 0.0799

Segformer-B2 99.92 38.66 33.52 0.0776

Segformer-B3 99.92 39.53 33.88 0.0977

Segformer-B4 99.85 41.89 28.82 0.1543

Segformer-B5 99.92 52.24 35.10 0.1622

Mask2Former 99.93 66.79 53.95 0.5577

PSPNet 99.91 36.63 30.46 0.1797

DeepLabv3+ 99.90 41.57 33.70 0.2549

SETR 99.89 35.15 29.20 0.0146

STDC2 99.91 39.66 33.75 0.2610

E2Trans 99.92 53.90 44.02 0.2014

stream information through an IP address. Here, category 6 cable was adopted. The algorithm
was then deployed on the server for platform calling. The monitor is used to show the detection
results. On the platform, as shown in Fig. 8, the hardware device was connected by clicking the
‘connect camera’ button to achieve real-time photo acquisition, while the ‘capture’ button is used
to take and save photos, and the ‘detection’ button is used to call the algorithm and output the
results. The ‘Logs’ shows the details of operations. The ‘Result’ provides the final decision.
The ‘Defect Details’ gives each defect’s name and location. The ‘Reasons’ provide the possible
reasons for defects. This study shows that our algorithm can segment defects correctly, and the
defection system is running smoothly.

Fig. 7. The configuration of the lens detection system.
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Fig. 8. The detection results of the lens detection system.

5. Conclusions

In this paper, a defect segmentation method, named E2Trans is presented to defect five myopia
control spectacle lens defects, including notches, black spots, bubbles, fibers, and scratches, in
which two auxiliary decoders are added to improve the segmentation performance. It utilizes the
powerful feature extraction ability of transformers and the knowledge transfer ability of transfer
learning to achieve highly efficient defect segmentation with good segmentation accuracy. To
train the model, the lens defect dataset was collected by manufacturing many myopia control
spectacle lenses via injecting molding. The images were captured by an electric microscope
system and labeled by hand. A series of experiments were conducted to show our model’s
superiority in regard to segmentation accuracy and speed with 53.90 mPA, 44.02 mIoU, and
0.2014 s inference time. A case study was conducted to show that the developed system is
capable of detecting defects smoothly.
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