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Abstract— Robot learning has attracted an ever-increasing
attention by automating complex tasks, reducing errors, and
increasing production speed and flexibility, which leads to signif-
icant advancements in manufacturing intelligence. However, its
low training efficiency, limited real-time feedback, and challenges
in adapting to untrained scenarios hinder its applications in
smart manufacturing. Introducing a human role in the training
loop, a practice known as human-in-the-loop (HITL) robot
learning, can improve the performance of robots by leverag-
ing human prior knowledge. Nonetheless, the exploration of
HITL robot learning within the context of human-centric smart
manufacturing remains in its infancy. This study provides a
holistic literature review for understanding HITL robot learning
within an industrial context from a human-centric perspective.
A united structure is presented to encompass different aspects
of human intelligence in HITL robot learning, highlighting
perception, cognition, behavior, and notably, empathy. Then, the
typical applications in manufacturing scenarios are analyzed to
expand the research landscape for smart manufacturing. Finally,
it introduces the empirical challenges and future directions for
HITL robot learning in the next industrial revolution era.

Note to Practitioners—This review is motivated by the emer-
gence of the next generation of smart manufacturing, which
emphasizes the coexistence of humans and robotics in the
manufacturing workstation to mitigate inherent limitations of
each. It presents an overview of HITL robot learning-related
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works to identify state-of-the-art and significant focuses for
human-centric smart manufacturing. It classifies representative
studies into detailed sub-categories based on various facets of
human intelligence, highlighting perception, cognition, behavior,
and empathy, providing a complete and detailed survey of this
field. The applications in manufacturing scenarios are analyzed,
and we discuss the possible challenges and future directions. This
paradigm has the potential to revolutionize manufacturing oper-
ations, enhancing flexibility, and resilience in supply chains, and
efficiency for self-organizing collaborative intelligence and cyber-
physical systems toward human-robot coevolution. The goal is to
attract scholars in broader research fields to contribute to the
development of HITL robot learning for smart manufacturing.

Index Terms— Robot learning, smart manufacturing, human-
in-the-loop, human guidance.

I. INTRODUCTION

THE design and development of manufacturing systems
has undergone a significant transformation with the inte-

gration of state-of-the-art technologies such as robotics and
artificial intelligence (AI) [1]. The integration and deployment
of advanced technologies foster the development of systems
that are intelligent, interconnected, and highly automated while
providing a significant impact on smart manufacturing [2].
Especially, robots are regarded as a fundamental pillar in
achieving outstanding efficiency and capacity, but conventional
robots are proficient at performing repetitive and predefined
tasks, they lack the ability to adapt to dynamic and unstruc-
tured environments [3]. Due to their limited capabilities and
intelligence, traditional learning-based methods cannot fully
satisfy production needs and handle diverse scenarios in smart
manufacturing [4], thereby precluding their ability to entirely
supplant human roles in real-world applications. Therefore,
it is crucial to incorporate human intelligence into the training
loop of robot learning, leveraging human expertise to enhance
learning-based algorithms, as humans demonstrate remarkable
robustness and adaptability in complex scenarios [5].

As a promising learning paradigm in the fields of robot
systems, human-in-the-loop (HITL) robot learning can inte-
grate human intelligence, creativity, and adaptability with the
strength and accuracy of robotics to achieve superior perfor-
mance in manufacturing tasks [6], [7], [8]. By integrating
their expertise into automation, smart manufacturing systems
can adapt to changing production requirements and handle
variability in product specifications. This approach lever-
ages the intelligence of human workers to provide guidance,
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Fig. 1. Overview of the brief categorization of HITL robot learning in this review.

supervision, and feedback to robots, to further advance current
abilities of automation systems [9].

The integration of HITL robot learning in smart manufactur-
ing has the potential to revolutionize the way manufacturing
operations are conducted [10], [11]. These approaches play
a crucial role in facilitating robotics to obtain human prior
knowledge, especially in HITL robot systems, allowing
humans to focus mainly on higher-value cognitive tasks such
as decision-making and problem-solving [12]. This not only
improves the overall work environment for human workers
but also enhances the degree of informational advancement,
manufacturing automation, and digital transformation [13],
[14].

Some review papers about similar topics have been pub-
lished [15], [16], [17], but most concentrate on studies of
the characteristics of control and learning methods, often
neglecting the critical role and intelligence of human beings
in the closed-loop system. To address this shortage, we will
present recent works on learning methods, taking into account
human intelligence, and summarize domain knowledge beyond
previous reviews by presenting a new perspective. The cate-
gorization of HITL robot learning in this review is based on
different aspects of human intelligence [18], [19], [20], such as
perception, cognition, behavior, and empathy (see Fig. 1). Col-
lectively, these elements can help the robotic system become
safe, efficient, intelligent, and empathy under the guidance
of human in the training loop to achieve ergonomic and
self-organizing human-robot coevolution. Although primarily

applied within the industrial context, this review extends
beyond the limit of the manufacturing sector and sprawls
across fields such as healthcare, surgery, intelligent construc-
tion, smart agriculture, and social service.

The rest of this paper is organized as follows: Section II
outlines an overview and introduces our literature search
approach. Section III introduces perception methodologies
and technologies, enabling robotics to learn from human
guidance. Section IV focuses on facilitating the robots to build
cognitive intelligence. Section V summarizes physical skill
transfer based on human guidance. Section VI concentrates
on how to incorporate the capacity of empathy into HITL
robot learning. Section VII delves into HITL robot learning
application in smart manufacturing. The current challenges
and future perspectives are given in Section VIII. Section IX
concludes the main contributions of this review.

II. OVERVIEW

A. Robot Learning for Smart Manufacturing

Robotic equipment has been crucial since the first integra-
tion of robot manipulators into industrial production lines,
presenting infinite potential for industrial automation evolu-
tion [21], [22]. Robots like collaborative manipulators, soft
robots, automated guided vehicles (AGVs), and unmanned
aerial vehicles (UAVs) are widely used to empower the
manufacturing system. Towards the next generation of smart
manufacturing, the industrial system positions individuals at
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Fig. 2. Workflow illustration of imitation learning.

the epicenter of the production ecosystem, utilizing a syn-
ergistic combination of humans and robots to augment the
well-being and safety conditions of the workforce [23]. There-
fore, robots should be released from the limits of old-fashioned
hard-programmed solutions and point at more complicated
and flexible environments to cater to personal necessities and
uphold the manufacturing landscape’s imperative for adapt-
ability, nimbleness, and resilience [15], [24].

As the synthesis of diverse machine learning methodologies
with robot systems, robot learning is becoming the dominant
approach, facilitating robots to learn physical skills with the
assistance of humans and enhance their intelligence [25], [26].
While common machine learning pays attention to identifica-
tion and prediction, robot learning focuses more on generating
accurate motions or reactions as the output through perceiving
the environment. Concretely, the leading technologies in robot
learning consist of two aspects: imitation learning (IL) [17]
and deep reinforcement learning (DRL) [27]. For IL, it is
also called behavior cloning or learning from demonstration.
In this process, a human expert demonstrates the desired
skills to robots by providing examples via motion capture,
teleportation, or video without programming. The outcome is
a policy that guides the robot’s actions, aiming to replicate
the demonstrated behavior with as much accuracy as possible
(see Fig. 2). As for DRL, it combines deep learning (DL) with
reinforcement learning (RL) principles to enable autonomous
systems to learn optimal behaviors through trial-and-error
interactions with the environment or humans in Fig. 3 [28].

In smart manufacturing, robot learning has already demon-
strated its initial strength to enable robots to handle more
complex industrial operations with a higher degree of col-
laborative intelligence and natural human-robot interaction
(HRI) [19]. Towards more dynamic and stochastic manufac-
turing environments, robot systems are expected to behave and
think more like human beings to relieve humans from heavy
workloads significantly [29].

B. Human-in-the-Loop Robot Learning

Since the limited abilities of robot learning are unable
to handle various situations and provide personalized pro-
duction, it is vital to introduce human intelligence into
the learning cycle of AI, leveraging human intelligence for
further advanced robot learning algorithms to improve the
robustness and adaptability of the robot systems in complex
scenarios [30], [31].

Fig. 3. Learning framework of deep reinforcement learning.

By classifying different roles, individuals can identify their
main works in the training loop for more efficient and effective
learning of robots. Human roles in the training loop, cate-
gorized into supervisor, operator, and collaborator, have been
adapted from past research [5], [32] (see Fig. 1):

• Operator: The operator can demonstrate the correct way
to perform a task or adjust the parameters of data-driven
algorithms, enabling robots to learn more effectively.

• Collaborator: The collaborator can cooperate along-
side robots and provide real-time feedback during joint
actions, helping the robot to learn contextually appropri-
ate behaviors and cooperative strategies.

• Supervisor: The supervisor can monitor the training pro-
cess and score the robots’ performance, adjusting learning
towards better outcomes.

In Fig. 1, HITL robot learning is broadly classified as
follows, including levels 0-3:

• Level 0–Perception: The robot can comprehensively
understand human instructions through a precise sens-
ing and perception system for efficient HRI and
communication.

• Level 1–Cognition: Leveraging human cognitive intelli-
gence to improve robot learning, the robot can conduct
complex reasoning and make appropriate decisions.

• Level 2–Behavior: Humans can transfer physical skills
or motion to the robot accurately by incorporating their
demonstration, collaboration, and supervision.

• Level 3–Empathy: Humans can help robots learn how to
respond to human emotions appropriately, enhancing the
capacity for social empathy with humans.

Level 0 emphasizes providing an overview of the different
strategies and interfaces to endow the robot with interaction
capabilities, which is regarded as the crucial and preliminary
prerequisite to learning from human behavior and intelligence.
With the development of learning-based methods, robots are
expected to learn from human thought, such as reasoning
and decision-making, which is also what Level 1 concentrated
on. Level 2 focuses on physical skill transfer to create more
intuitive ways for robots to learn from human examples, which
is regarded as the expression of cognitive processes. In the last
two decades, there have been numerous research contributions
for it to achieve precise and dexterous operation. For Level 3,
robots could involve an understanding of users’ moods and
the capacity to provide human-like empathy to improve user
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Fig. 4. Searching process and filtering result in this review.

enjoyment and human-robot teaming. In this way, human-robot
agents can provide bi-directional learning and co-exploration
experiences to promote the human-robot relationship towards
coevolution.

C. Literature Review Process

To achieve the systematic literature search and collec-
tion of relative research papers, Web of Science (WOS)
(https://webofscience.com), Scopus (http://www.scopus.com/)
and Institute of Electrical and Electronics Engineers (IEEE)
Xplore (https://ieeexplore.ieee.org/) are chosen since they
index the high-quality and peer-reviewed publications com-
prehensively in the engineering field.

Over 20 top-tier journals are highlighted according to their
relevance to human factors/intelligence and robot learning,
screened based on the Journal Citation Reports in Web of
Science. These journal publications include various research
areas, such as information science, automation, robotics, and
industrial manufacturing. In addition, some significant works
should be spotlighted, with published in prominent AI and
robotic conferences, like the IEEE International Conference
on Robotics and Automation (ICRA) and the Conference on
Robot Learning (CoRL).

The initial paper collaboration and the searching process
is demonstrated in Fig. 4. In this review paper, two key
dimensions are covered: human factors/intelligence and robot
learning. Specifically, the search phrase can be duplicated with
the following search sentence (WOS version): (TS = (vision
OR haptic OR touch OR tactile OR physio* OR emo-
tion OR cognitive OR empathy) AND (human-robot OR
“human robot” OR “human factors” ) AND (robot learn-
ing) AND (industry OR manufacturing OR production) AND
(AGV OR UAV OR manipulation OR exoskeleton) AND
(PY = 2019 AND 2020 AND 2021 AND 2022 AND 2023
AND 2024))’ (The review only embraces publications avail-
able online before May 2024).

According to preliminary searching from databases, WOS,
Scopus, and IEEE Xplore provide 198, 289, and 177 papers,
respectively. To systematically narrow the scope and generate a
high-value review, we identified and excluded working papers,

preprints, and duplicates. Then, we screened all the peer-
reviewed papers and filtered out works that were off the
objective scope based on the abstract. Until this step, there
were initially 216 papers in the scope or correlated to our topic.
Finally, the main contributions of these papers were evaluated
through the methodology and experiment details browsing in
articles, leading to only 143 journals and conferences as the
reference for our review.

D. Preliminary Results

The gathered literature performed an analysis of HITL
robot learning for smart manufacturing. The extended findings,
as depicted in Fig. 5 (a), show the number of research works
related to HITL robot learning published over the past decade.
It can be easily identified that this area has obtained popularity
among scholars in recent years due to the consistent rise in
the volume of research publications.

Fig. 5 (b) highlights the top three countries in publica-
tions’ number ranking: China, the USA, and Germany. It is
worth mentioning that all three countries are manufacturing
powerhouses and have their own promising blueprints for
the next generation of industrial automation. Thus, there is
a higher demand for robotics and a growing interest in smart
manufacturing in these countries. Besides, Fig. 5 (c) presents
the distribution of different human roles for the robot training
process in the last five years of studies. Operator used to
be the predominant role since kinesthetic teaching was the
key approach to the early stage of imitation learning. How-
ever, from 2021, supervisor has obtained more attention and
increased significantly since imitation learning hardly fulfills
the requirements of training long-horizon tasks. It also stems
from the fact that numerous DRL-based or hybrid learning-
based methods have been applied to assist robots in learning
dexterous manipulation in recent years.

III. PERCEPTION

Perception plays a critical and basic role in HITL robot
learning, as it enables the robot to receive and interpret
inputs from a human trainer. It contains awareness of the
environment, humans, and objects and communication with
task-related information accurately and efficiently. As a cor-
nerstone of human-robot coevolution, the ability of robots to
perceive objects and human factors provides the sensory foun-
dation necessary for safe, effective, and natural interactions
between humans and robots.

Object recognition and classification, including workpieces,
tools, etc, can provide the necessary tools for environmen-
tal understanding, decision-making, and adaptive learning in
manufacturing scenes. It enables robots to operate in dynamic
environments where conditions and requirements change
rapidly [33], [34]. Advanced methods in object recognition
and classification often leverage deep learning techniques, par-
ticularly Convolutional Neural Networks (CNNs) [35], which
excel in handling visual data and can identify intricate patterns
and features in images far beyond traditional algorithms.
Additionally, techniques such as transfer learning enable these
models to apply knowledge gained from one task to improve
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Fig. 5. Preliminary results: (a) Number of annual relative publications;
(b) Distribution of literature by countries; (c) Percentage of publications of
human roles related to HITL robot learning.

performance on new, but similar tasks, significantly enhancing
both the efficiency and accuracy of object recognition systems
in diverse environments [36]. Some relative review papers
about object and scene perception can be found in [3], [37],
and [38].

Since this paper is centered on introducing human intelli-
gence into the robot training loop, our focus in this section is
robot perception of human motion, intentions, and emotions,
rather than the environment and objects. Humans, as the most
important participants of HITL robot learning, have been

considered the key research subject by numerous research
findings. The following discussion of robot perception to
humans in HITL robot learning is divided into two key aspects:
Recognition and Parsing.

A. Recognition

In the context of HITL robot learning, recognition plays an
essential role and lays the foundation for the robot’s ability to
interact with humans and adapt to complex working environ-
ments. Multimodal recognition via diverse sensory modalities,
such as vision, audio, and haptics, allows a robot to identify
human factors and gain detailed human guidance for better
performance. A comprehensive summary of recent multimodal
recognition studies in HITL robot learning is compiled in
Table I and Fig. 6.

1) Vision-Based Technologies: In recent years, vision-
based technologies based on machine learning have received
unprecedented attention. The typical visual devices include
RGB-D camera, event camera, and opti-track system for robot
vision. They are instrumental in teaching robots how to adapt
accurately to complex environments, interact with humans
and other objects, and rapidly obtain new skills under human
guidance according to high-resolution and multidimensional
visual information.

For instance, Algabri and Choi [49] designed a new human-
following framework for mobile robots in HRI. Through
this framework, the robot can detect humans and follow the
target via an RGB-D camera, according to CNNs and Single
Shot Detector (SSD). A hand-action recognition solution is
presented in [39] extracting from human skeleton activity
sequences. The skeleton activity representation model applied
a Temporal Convolutional Network (TCN) that describes
actions and generalizes to invisible target motion domains.
As for human gestures, Zhang et al. [50] proposed a dynamic
recognition method for natural robot perception. Hand gestures
are acquired by video input, and outputs are fed into long
short-term memory (LSTM)-CNN. According to this method,
humans can communicate with robots in a more natural and
intuitive way, reducing the need for complex programming or
control devices. Some useful technologies only apply digital
images as input. Hwang et al. [51] created a facial emotion
recognition for human-robot collaboration (HRC) using an
omnidirectional service robot. It achieves a higher recognition
rate of dynamic mapping of human mood and prevents the
overfitting issue in a noisy environment effectively by sequen-
tial recurrent convolution network (SRCN). Another novel
recognition approach is introduced by Islam and Iqbal in [52]
to enable seamless HRC. LSTM-recurrent neural network
(RNN) is employed to capture learning robust features for
recognizing human motion accurately. In [53], Gao et al.
proposed a feature-map-fused single-shot detector (FF-SSD)
to deal with complex gesture detection. Mounted into the
assistant robot, it can achieve satisfactory recognition accuracy
while ensuring high efficiency. Different from the RGB-D
camera, the OptiTrack system is a classic tool for motion
capture by a series of high-speed cameras positioned around
an area to track the movement of reflective markers. Based
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Fig. 6. Diverse recognition methodologies of perception. (a) Vision-based Technologies. (a1) Hand-action recognition by TCN using RGB-D camera [39].
(a2) Facial microexpression identification using CNN and LSTM with event camera [40]. (b) Haptics-based Technologies. (b1) Force recognition and reaction
based on F/T sensors with GPM [41]. (b2) Force control impedance skills transferring to robots by F/T sensors and Haption Virtuose 6D device [42].
(c) Auditory and Language-Based Technologies. (c1) Guiding tasks with natural language instructions [43]. (c2) Speech analysis for performing predefined
tasks with microphones [44]. (d) Physiological sensing Technologies. (d1) Interaction with mobile robot based on EEG signal [45]. (d2) Gesture recognition
by EMG signal with SVM [46]. (e) Multimodal sensing technologies. (e1) Gesture recognition with sEMG and A-Mode ultrasound sensing [47]. (e2) Gesture
recognition through hybrid vision and wearable systems [48].

on this device, Khadivar and Billard [54] built a coupled
dynamical system to track fingers’ desired velocity for dex-
terous manipulation. They regulated the hierarchical Dirichlet
process (HDP)- hidden Markov models (HMM) to identify the
segments of the task to improve the robustness of grasping.
The event camera is a bio-inspired and dynamic vision sensor,
unlike the traditional camera. Instead of capturing frames at
a fixed rate, it emits a series of spatio-temporally localized
events. Becattini et al. [40] utilized it to detect human micro-
expressions to evaluate if humans are mentally and physically
fit to work. CNN and LSTM are used to generate frame
representations, leading to better recognition of underlying
sentiments of human faces.

Although vision-based technologies are increasingly being
used in HITL robot learning, where humans provide direct or
indirect input to help robots acquire new skills or adapt to new
environments, they come with certain limitations in this con-
text, including occlusions, complex backgrounds, and limited
fields of view. Additionally, the ambiguity of human gestures

and the need for generalization across different settings pose
difficulties if robot recognition of humans only relies on vision
sensors.

2) Haptics-Based Technologies: Haptics offer crucial value
in HITL robot learning by providing tactile feedback to
humans and enhancing the active and bidirectional interaction
between humans and robots (see Fig. 6(b)). This kind of
technology can facilitate the transfer of skills from humans
to robots, where the robot learns the nuances of a task by
recording the force and motion patterns applied by the human
user.

For example, Force/Torque (F/T) sensors enable robots
to feel and react to physical forces, leading to smoother
and more natural movements. Haninger et al. [41] devel-
oped a novel approach for physical human-robot interaction
(pHRI) that models the human force as the Gaussian process
model (GPM) in collaborative assembly. The largest functional
value of this approach is in the human model, in staying
the robot near the training data from F/T sensors. Besides,



11068 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

TABLE I
RECOGNITION

Al-Yacoub et al. [55] applied haptic information captured from
human guidance interpreting human motion and generating
equivalent robot trajectory. Weighted Random Forest (WRF)
with stochastic regression is proposed to enhance the gener-
alization capabilities of the approach for co-assembly tasks.
With the development of advanced haptic sensing technolo-
gies, mixed reality (MR) is becoming an important tool to offer
the user with more natural HRI. Park et al. [57] implemented
the wearable MR equipment to capture human gestures and
eye gaze. In this way, RetinaNet [61] in this system can
generate more effective and intuitive task assistance according
to the precise perception of humans and environments. In addi-
tion, Ge et al. [42] designed a compliant dynamical system
to transfer users’ variable force control impedance skills to
robots according to F/T sensors and Haption Virtuose 6D
device. Lyapunov theory in this work ensures force control
stability for dual-arm manipulation transportation. with the
realms of bionic and soft materials witnessing exponential
advancement, a kind of bionic skin equipped with robots is
invented to improve the robot perception in [56]. By using a
novel deep neural network (DNN), this system can recognize
touch stimulus and tactile modalities for natural HRI.

Haptic-based technologies in HITL robot learning provide
immersive feedback but face limitations such as finite resolu-
tion and sensitivity, potential latency issues, high complexity,
and costs that restrict widespread adoption. Despite these
limitations, ongoing technological advancements are antici-
pated to mitigate many of these issues, thereby enhancing

the effectiveness and applicability of haptic systems in HITL
applications.

3) Auditory and Language-Based Technologies: Audio or
language, as ubiquitous in daily human communication, is an
invaluable asset for HITL robot learning due to its roles in
facilitating perception, instruction, and interaction. These tech-
nologies enable intuitive and natural interactions with humans
in the robot training loop, allowing for real-time feedback
and adaptation and facilitating the understanding of complex
commands. Besides, human audio or language recognition
enhances a robot’s ability to follow vocal commands, learn
from human dialogue, and adapt to social and cultural contexts
(see Fig. 6(c)). In [58], the method can generate motions in
real-time for robots based on language instruction. Description
Long Short-Term Memory with Parametric Bias (dLSTMPB)
is employed to train a time series of language information
and extract the location information of the object. Following
the above language interface, another novel framework is
presented in [43] to enable users to interact with robots. A new
Transformer-based model in this work can ensure humans
guide a robot manipulator by a 3D multi-step operation
task with natural language commands. Besides, Bingol and
Aydogmus [44] focus their work on natural speech/audio
extraction and parsing for robot control without any prior
knowledge or experience of robotics. People who are not
experts can use microphones to take direct voice commands
based on DNN for efficient HRI. As for dialogue systems,
they enable robots to answer human queries accurately and
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maintain friendly interactions. Suddrey et al. [59] introduced
a well-built control architecture of robotics for the Pick-and-
place task. They showed how behavior trees, can be utilized in
conjunction with language instruction in this system to provide
a robust control strategy for autonomous agents. Although
language or audio instructions can support the development
of robots that are more relatable and capable of providing
personalized responses by grasping the nuances, intent, and
sentiment behind spoken words, it also presents several limita-
tions when integrated into robot systems, including ambiguity
and variability in speech, difficulties in noise discrimination,
and the dynamic nature of language that requires continuous
learning.

4) Physiological Sensing Technologies: Physiological sens-
ing technologies enrich the interaction between humans and
robots by providing real-time, objective signals on the human
physiological state, such as Electroencephalography (EEG)
and Electromyography (EMG) signals (see Fig. 6(d)). These
data allow for adaptive learning, performance optimization,
and enhanced safety through the detection of stress, fatigue,
and emotional states. By enabling robots to respond to human
cognitive and physical cues, these technologies foster a more
intuitive and personalized learning experience. Lu et al. [45]
created an online brain-computer interface (BCI) system by
EEG signals to detect human intention. The system based on
CNN with residual block model realized the accurate control
of the TurtleBot mobile robot for efficient HRI. Another
pattern recognition system was developed in [46] on the basis
of the design of wrist-based EMG. Support vector machine
(SVM) is set as the classification model for hand gesture
extraction from EMG signals. However, physiological signals
can be noisy and subject to artifacts from movement, electri-
cal interference, or other sources. While many physiological
sensors are non-invasive, they may still be uncomfortable for
users to wear for extended periods. This can affect the quality
of data and the user’s willingness to participate in HITL tasks.
Despite these limitations, ongoing advancements in sensor
design, data analysis, and adaptive algorithms offer prospects
for overcoming these hurdles and enhancing the symbiosis
between humans and robots in collaborative environments.

5) Multimodal Sensing Technologies: Multimodal sensing
technologies bring together diverse sensing inputs, such as
visual, auditory, tactile, and physiological data, to create a
well-rounded perception of both human beings and the sur-
rounding environment. Wei et al. [47] illustrated a multimodal
gesture recognition method through A-mode ultrasound (AUS)
and surface electromyography (sEMG) signals. CNN can
extract the hidden features of the AUS signal, and CNN-LSTM
can extract some spatial-temporal features from the sEMG sig-
nal to generate hybrid features of different modalities. In [48],
Fiorini et al. combined vision with haptic information to recog-
nize human gestures by RGB-D camera and a wearable device,
SensHand. K-Nearest Neighbor (KNN) and LSTM are used
to process multimodal signals to gain precise classification.
Indeed, the cameras could get the obvious motions of the body,
whereas the SensHand can catch subtle movements of the
hand, especially when they are not within the vision sensor’s
field of view in this method. To enrich data for learning

algorithms, Yan et al. [60] designed a mixed interaction inter-
face with augmented reality (AR) and haptic equipment for
safe HRC. In this framework, dynamic movement primitives
(DMPs) assisted robots in learning the user’s demonstration
from multimodal sensing input. Despite of numerous merits
of multimodal sensing technologies, integrating and making
sense of heterogeneous data from different modalities can be
challenging. Besides, it is very difficult to ensure that all
sensors are properly calibrated and synchronized, which is
critical for accurate data collection.

B. Parsing

Unlike recognition, extraction and parsing implies a deeper
level of robot perception, referring to the ability of a robot
to not only detect and identify human guidance and features
within its environment but also to comprehend their signifi-
cance, purpose, and context in which they exist. Bolstered by
advances in relevant algorithms, the parsing of human factors
is discussed from three critical aspects: human activity, human
intention, and human emotion, which is compiled in Table II
and Fig. 7.

1) Human Activity: By analyzing human activity, robots can
achieve a higher level of perceptual intelligence that allows for
more fluid and adaptable interactions in complex and dynamic
environments. By incorporating motion perception, robots can
offer more intuitive and effective services, particularly in col-
laborative, social, and healthcare settings (see Fig. 7(a)). For
example, Hara et al. [63] applied end-to-end (E2E) learning to
develop a haptic-based control system of humanoid Robots for
the cloth folding/unfolding task. Geomagic Phantom Omni is
used to demonstrate human motion for teleoperation and skill
learning through Gaussian mixture models (GMMs), leading
to higher task execution efficiency. In [68], Latifee et al.
also employed a similar haptic device to extract and analyze
human activity with kinesthetic coupling between humans
and robots by Dynamic Authority Distribution (DAD). Some
research works pay more attention to human motion analysis
by multimodal sensing. Zhang et al. [62] adapt sENG signal
and F/T sensors to identify human motion for collaborative
saw work. Deep Deterministic Policy Gradient (DDPG) RL
is proposed for human-centric collaborative control, perform-
ing satisfied coordination ability between precise tracking
and comfortable collaboration. In addition, Shao et al. [69]
reported one new idea that agents are endowed to learn
a single multi-task policy by leveraging large-scale vision
demonstration of humans performing operation motion and
natural language instructions according to the integration of
DDPG and the cross entropy method (CEM). However, similar
movements might have different meanings depending on the
context, cultural background, or individual preferences. This
can lead to misinterpretation by robots that do not have the
capability to extract these nuances completely.

2) Human Intention: Human intention for robot perception
refers to the ability of a robot to recognize and analyze
the goals or desired outcomes that a human has in a given
context. Robots can observe and learn from human behavior
by analyzing the intentions behind actions in HITL systems,
where human feedback helps to shape and refine robot learning
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Fig. 7. Parsing different human factors for robot systems. (a) Human Activity. (a1) HRC based on human activity recognition and estimation by sEMG
signal [62]. (a2) Flexible object manipulation with haptic shared control by human motion guidance [63]. (b) Human Intention. (b1) Drone teleoperation system
supported by an MR user interface to demonstrate human intention [64]. (b2) Learning from human intention and action advice in interactive reinforcement
learning [65]. (c) Human Emotion. (c1) Categorical and continuous human emotion parsing with face alignment by EmoFAN [66]. (c2) Robot body-language
expressions with multimodal emotional HRI [67].

TABLE II
PARSING

to ensure the alignment of robot actions with human goals
and preferences (see Fig. 7(b)). A human intention analysis
system was established by spoken language in [70]. In the
intent parsing part, bidirectional LSTM (Bi-LSTM) encodes
the shared tokenwise representations with a language model
BERT. Zein et al. [64] developed a solution for the teleopera-
tion of robots based on the combination of CNNs and Gated
Recurrent Units (GRUs). The training was built on a dataset
of motion primitives for drones with the MR headset and the
PS3 joystick demonstrating human intention. Broad et al. [71]
focus on the problem of how automation can be used to adjust
to the specific capabilities of a human partner for control
allocation. Koopman operator-based control is used to allocate
control authority for higher efficiency of HITL paradigm.

In [65], human intention about motion preference is potentially
inaccurate human input, so learning from unreliable action
advice (LUNAA) is developed to evaluate human uncertainty
in the training cycle for the robotic sorting skill.

3) Human Emotion: Parsing human emotion in robot per-
ception refers to the process by which a robot interprets and
understands human emotional states through facial expres-
sions, vocal tones, body language, or other sensory inputs.
Robots can distinguish between positive reinforcement, frus-
tration, or satisfaction through parsing human emotion and
precise human feedback interpretation, allowing for more
nuanced and effective learning from human inputs (see
Fig. 7(c)). In [72], an adaptive interactive attention network
(AIA-Net) was developed to analyze human emotion with
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TABLE III
REASONING

linguistic instruction and audio input as multimodal parsing.
This architecture adjusted textual and acoustic features and
learned multimodal interactive relations based on the auxiliary
structure, which provides a novel emotional representation.
Toisoul et al. [66] paid more attention to facial affect parsing
to better analyze a person’s emotional state. The proposed
method applied the features extracted by a face-alignment
network (FAN) to analyze both categorical and continuous
human moods in a single pass with face alignment in a
high level of accuracy. Hong et al. [67] proposed a new
emotional HRI framework to achieve bidirectional emotional
communications. A multimodal affect classification system
focused on the combination of body language and vocal
intonation using a Bayesian network to determine the robot’s
emotional behavior.

IV. COGNITIVE INTELLIGENCE

Cognitive intelligence refers to the human mental abili-
ties involved in reasoning, decision-making, abstract thinking,
complex idea comprehension, and learning from experience.
Through human-centric data-driven methods, the integration of
cognitive intelligence from humans can significantly enhance
the capabilities of robots with the development of human-
inspired brains in HITL systems, allowing robots to learn
in a manner similar to humans, which includes understand-
ing concepts, generalizing from examples, and learning from
less structured data. These abilities not only enable robots
to learn new skills from humans but also allow them to
make appropriate adjustments in different environments and
changes, thereby achieving higher levels of autonomy and
functionality. Ultimately, it is crucial to develop robots that
can seamlessly integrate into human environments, making
them more intuitive and effective partners to boost self-
fulfillment goals and collaborative intelligence in human-robot
coevolution.

A. Reasoning

To bridge the gap between scenario understanding and
proactive decision-making, robots must have a reasoning

mechanism for higher-level cognitive intelligence. Robot rea-
soning ability in HITL environment refers to a robot’s capacity
to process information, draw inferences, and judge better
solutions that are not explicitly programmed but derived from
the logical processing of data, experiences, and human input.
This cognitive capability is essential for robots to operate in
complex, unpredictable environments and perform tasks that
require more than just mechanical execution. Related works
about introducing the capacity for reasoning into the training
loop are listed in Table III.

Reasoning allows robots to navigate and solve complex
problems that require logic and understanding beyond sim-
ple rule-following, such as identifying causal relationships
and planning a sequence of actions to achieve a goal.
To finish partially-observed gripping tasks amidst occlusion,
Du et al. [77] proposed one interactive learning policy via
audio-vision modalities and corrections from users. The robot
applies memory to encode the history of observations for
completing these complex tasks. In [73], an embodied rep-
resentation and reasoning architecture (ERRA) is presented
to enhance the ability of reasoning in robotic systems for
long-horizon manipulation tasks (see Fig. 8(a)). Through
this system, robots can reason in the scenes with diverse
basic cues between objects under semantics understanding
in language-conditioned instructions. Zhang et al. [78] an
intelligent BCI-controlled robot system with the prediction
of users’ intention by few-shot learning. In this system,
their brain signals assist robots in completing diverse tasks,
consisting of cooking, table cleaning, personal care, and
entertainment. Another closed-loop control strategy is demon-
strated in [79] with the natural language instructions as the
reasoning model. Therefore, the robot platform can accomplish
complex and unseen tasks with pre-trained robot skills in a
kitchen scene. Likewise, Blukis et al. [80] designed a series
of persistent representations for bridging the gap between
language commands and long-horizon robot motion. It also
can empower robots with the ability of hierarchical reason-
ing to finish complex tasks effectively with spatial semantic
understanding.
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Fig. 8. The improvement for robot learning leveraging human cognitive intelligence. (a) Long-horizon language-conditioned manipulation tasks based on
the representation and reasoning architecture [73]. (b) Visual navigation based on optimal control of humans as a supervisor in the loop [74]. (c) RL method
with sim-to-real transfer for autonomous driving [75]. (d) Prioritized experience-based RL strategy with human supervision [76].

Robots equipped with reasoning abilities can generalize
learned knowledge to new and unforeseen situations, adapt-
ing their behavior in dynamic environments without explicit
instructions. Tolani et al. [74] focused on how to visual nav-
igation in an unfamiliar dynamic environment and proposed
an autonomous navigation system by self-supervised training
loop, which achieves zero-shot transfer from simulation to the
real context (see Fig. 8(b)). Bobu et al. [81] formalized how
to reason about how well human inputs can be explained and
introduced a novel framework to quantify the dynamic scene
misspecification to help robots understand when they cannot
explain human guidance. In [82], Sun et al. established the
Planning Transformer network(PlaTe) for procedure planning
with learning cross-modal correspondence to achieve intelli-
gent reasoning.

B. Decision-Making

The ability to learn the human decision-making process in
HITL brings substantial value by leveraging human cognitive
strengths to train robotic systems. The process harnesses
human judgment and intuition to inform and shape the
decision-making capabilities of robots, resulting in machines
that are more intuitive, context-aware, and capable of con-
forming to the complex fabric of human-centric environments.
Some typical frameworks are provided in Table IV for
reference.

Robots can learn to make judgments that emulate human
decision-making processes, allowing them to handle complex
tasks and reducing their reliance on constant human supervi-
sion and intervention. Chen et al. [83] applied deterministic
learning to control an unmanned ground vehicle (UGV) with

probabilistic analysis for human intention by testing the strat-
egy inside a maze. In [84], a bidirectional translation model
is utilized to transform the pre-trained semantic embeddings
to generate some precise actions from unseen words. In [75],
the RL policy applied a denoised representation for spatial
adaptation to bridge the sim-to-real gap with the most relevant
and informative features from robot perception to enhance
the ability of decision-making in navigation (see Fig. 8(c)).
Lombardi et al. [85] presented a minor game with action
coordination of cyber-players based on Markov chains to build
one agent to finish complex human-like motion or virtual
games cooperated with other agents or individuals.

By learning from human decisions, robots become more
flexible and can adapt to a variety of situations. In this way,
this kind of ability enables robots to navigate unforeseen risks
more effectively. Jin et al. [86] developed a method based on
the cutting plane method with clear geometric representations
to enable a robot to train around an objective function using
human directional corrections. Taniguchi et al. [87] proposed
a method to enable a mobile platform to learn complex spatial
concepts in a domestic context. They combined probabilistic
inference in the Bayesian model and RL for decision-making
in navigation. In [5] and [88], Wu et al. leveraged human-
guidance-based (Hug)-DRL to optimize the performance and
efficiency of agent training to achieve intelligence transfer
between humans and automation in an end-to-end self-driving
case.

V. PHYSICAL SKILL TRANSFER

Skill transfer in human-centric robot learning is a learning
paradigm where robots acquire new skills through human
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TABLE IV
DECISION-MAKING

guidance. In this context, “Physical skill” refers to actions
that require movement and manipulation, such as handling
tools, assembling parts, or performing delicate maneuvers.
The transfer of these skills involves a process where the
robot learns to mimic or reproduce human movements and
actions to perform a specific task. By integrating advanced
perception and cognitive capabilities, robots can improve the
accuracy and efficiency of skill learning, improve adaptability
to various tasks, and enable robots to adjust and optimize
their actions in complex environments in real-time. Instead of
programming every potential action and decision, a robot can
learn from human examples, which is often more efficient and
effective, especially for complex or artful tasks that require a
level of dexterity and adaptability that is difficult to achieve
through traditional programming methods. Skill transfer for
robots in HITL systems will be discussed in this section
regarding different human roles in the training cycle described
in Section II-B specifically.

A. Human Role: Operator

In HITL robot learning, the human operator is pivotal
in bridging the gap between complex human skills and a
robot’s ability according to precise demonstration. Operators in
HITL robot systems, regarded as proactive roles, can convey
the task objectives clearly and interact with the robot in a
way that promotes efficient learning with their expertise and
skill, ensuring that the machine adapts to new challenges and
variations in the environment (see Fig. 9(a)).

Physically demonstrating the correct way to perform a
skill by operators involves manually guiding the robot’s
limbs (kinesthetic teaching), operating the robot remotely
via joysticks, gloves, or VR interfaces (teleoperation), and
performing the task themselves while being monitored by the
robot’s sensors (observational learning). Through this direct
demonstration, the robot can learn the desired movements

and actions by imitating the human operator, which is the
main function of IL. As shown in Table V, Su et al. [90]
presented a novel methodology for robot-assisted minimally
invasive surgery to deal with the kinematic constraint for
the remote center of motion (RCM) in laparoscopic surgery.
Combining dynamic time warping (DTW) with GMM-based
DMP, the developed strategy enables surgical manipulation
skill modeling after many demonstrations. Similarly, Zhang
et al. [108] utilized DMP and GPR to facilitate efficient
surgical performance, which is tested on the da Vinci Research
Kit. In [97], a spatial iterative learning control (sILC) is
proposed to train a precise task execution path according to
online human corrections when meeting uncertainties in the
environment. This control method is applied on a Sawyer robot
for robot-assisted welding, with a better path-tracking property
and training efficiency. To ensure that robots can reproduce
behavior by visual imitation with inconsistent contexts, Qian
et al. [99] applied three different models that transform human
demonstration from coarse to fine and imitate motions after
aligning the robot and human at the current state. As for
kinesthetic teaching, Duan et al. [103] developed a structured
prediction method for trajectory imitation via direct physical
guidance. To address the limitations of learning complex
skills for kinesthetic demonstration, Guo and Bürger, [106]
presented a HITL coordination framework to improve the flex-
ibility of new scenes while teaching complex industrial tasks.
According to the incorporation of spatial and temporal demon-
stration modulation; it facilitates adaptation to the difference
in working environments. In [104] and [107], these works
both used DMP due to the high calculation efficiency and the
excellent ability of generalization to improve the trajectory
accuracy for uncertainty in domestic tasks respectively.

Besides physical skill teaching, operators can also adjust
the training factors in the DRL-based framework, such as
tuning reward functions and data labeling. There are some
examples of combining IL-based and DRL-based methods to
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Fig. 9. Physical skill transfer for robots in HITL robot learning. (a) Human Role: Operator. (a1) Kinesthetic teaching for minimally invasive surgery [90].
(a2) Multifingered robot hand learning by vision-based demonstration [91]. (b) Human role: Collaborator. (b1) Skill learning with HRI based on DMP [92].
(b2) HRC framework for disassembly based on YOLOv5+CNN [93]. (c) Human Role: Supervisor. (c1) Interactive sim-to-real learning for surgical robots in
SurRoL simulator [94]. (c2) Modified bilateral active estimation for robotic tele-control [95].

TABLE V
HUMAN ROLE: OPERATOR

enhance adaptability and robustness. Chen et al. [98] used
a BiLSTM-based method to identify and segment motion
primitives after kinesthetic teaching to reconstruct the move-
ment information. Zeng et al. [91] focused on how to get
compliant behaviors for dexterous manipulation and showed
a markerless vision-based learning system that an end-to-end
neural network model (TeachNet) is trained to reflect the
hand poses to the joint angles of the multi-fingered robot
hand. In [100], human behavior imitation can be provided by
2D vision images According to CNNs, human pose can be

estimated and transferred to robot space for IL via DTW and
Locally Weighted Regression (LWR).

B. Human Role: Collaborator

The role of a collaborator in HITL robot learning can
teach robots how to interact and cooperate with humans in
dynamic environments. This collaborative learning approach
is particularly relevant in fields such as healthcare, edu-
cation, manufacturing, and service industries where robots



CHEN et al.: HITL ROBOT LEARNING FOR SMART MANUFACTURING: A HUMAN-CENTRIC PERSPECTIVE 11075

TABLE VI
HUMAN ROLE: COLLABORATOR

are expected to work in close proximity with humans (see
Fig. 9(b)). Real-time human feedback helps the robot to
develop a nuanced understanding of varying contexts and to
adjust its actions accordingly.

As delineated in Table VI, the robot learns by working
alongside humans on tasks, adapting to their actions, and learn-
ing from the collaboration in some learning scenarios. One
of the most typical examples is the exoskeleton-based robot.
Relative data-driven methods, such as DMP-GMM [109] and
proximal policy optimization (PPO) [110], perform well in
collaborative settings through a learning and control system
that responsively adapts to compliant interactions between the
robot and the human participant. Besides, multimodal data
fusion technologies can enable a robot to adapt and react to a
human’s actions and intentions during the collaboration pro-
cedure via deep convolutional neural network (DCNN) [114]
and Hidden Semi-Markov Models (HSMMs) [118] separately.
Yu et al. [116] paid more attention to how to learn human-
like adaptive impedance behavior. Regarding movement and
impedance features, DMPs are employed to estimate human
upper limb stiffness via EMG signals to achieve diverse
impedance skill learning.

In addition, humans engage with the robot as equals in a
shared task, with the robot learning from the joint activity as a
collaborator. Luo et al. [111] developed a blended human-robot
coordination method based on Bayesian clustering with fewer
collision accidents for safe HRC. In another article [119],
Target-Referred DMP (TR-DMP) is exploited for training
bimanual skills of telemanipulation to enhance generalization
capacities for different scenes.

Besides, collaborators can provide context-rich and real-
time feedback and guidance, which can significantly speed
up the learning process for robots. Halim et al. [112] created
one method for no-code robotic teaching. Depending on the
vision system, spatial movement information can be trans-
ferred through hand gestures to the robot for intuitive robot
control in natural HRI. In [115], efficient corrections of the
learning strategy can be provided from kinesthetic real-time

feedback. Thanks to this policy, the user can demonstrate
single arms’ motion and fine-tune them before transferring
the training onto a bimanual task. Zhao et al. [120] applied
an admittance-type physical approach to get simplified human
teachings and GMMs to model human motion for providing
desired trajectories to meet the task requirements.

C. Human Role: Supervisor

A supervisor in HITL robot learning brings human exper-
tise, safety, and ethical considerations into the robot’s learning
process by overseeing the training process and evaluating
the robot’s performance. They can assign scores or ratings
based on predefined criteria to measure how well the robot is
accomplishing its tasks. With human evaluation, the supervisor
can identify areas where the robot’s performance is lacking
and direct the learning process toward improvements. Humans
can steer the robot’s development towards better outcomes
by providing additional data, and modifying the learning
algorithm, ensuring that the robot’s behavior becomes more
refined, efficient, and aligned with human expectations (see
Fig. 9(c)).

Specifically, the supervisor actively watches the robot’s
actions, ensuring that it follows the correct procedures and
behaves as human anticipation. The recent relative research
works are indicated in Table VII. Sun et al. [121] proposed
a motion planner to generate a path following kinematics and
human behavioral norms under human monitoring. An open-
loop strategy for teleoperation is introduced in [95], with
the user as a passive supervisor in this system. This method
can cope with the problem of high latencies with unstable
trajectories. Shridhar et al. [129] presented a framework for
learning a mapping from vision-language training to action
primitives of household tasks. Humans can watch the robots’
real-time motion in this environment, which narrows the
difference between agents in simulation and robot movement
in the real world.

The supervisor assesses the robot’s performance against a
set of criteria or benchmarks to improve motion accuracy.



11076 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

TABLE VII
HUMAN ROLE: SUPERVISOR

Stepputtis et al. [124] designed a model for language-based
robot control. This strategy, combining vision and language,
results in more fine-grained control with decreasing situational
ambiguity. In [94], an interactive learning paradigm is used
to improve training accuracy for surgical robots. High-quality
human interaction can accelerate the process of trial-and-
error in the DRL-based method. The learning policies can
be used in the real world to achieve sim-to-real transfer
In the open-source simulator SurRoL, where humans may
provide reward signals or additional examples that help guide
the robot’s learning process. Nair et al. [122] deal with the
problem of learning a series of vision-based tasks from a
large offline dataset by crowd-sourced language annotation
which provides a reward function for multi-task training.
The knowledge in pre-trained models can efficiently learn
grounded language in this framework. Wang et. al [127]
developed an immersive teleoperation system for skill/task
auto-correction. According to predicting human intention, the
model tweaks the relative parameters for the precise pick-and-
place task. In [128], a DRL-based method endows the UAV
for avoidance automatically with reward functions based on
relevant domain knowledge. In this training loop, humans can
dynamically adjust reward functions for better performance on
obstacle avoidance. Lynch and Sermanet [130] applied free-
form natural language instruction into IL. Although lots of
language-condition commands were added to this system, the
cost of language annotation takes up less than 1% of the total
data to improve the feasibility and efficiency.

VI. EMPATHY

Incorporating the capacity of empathy into HITL robot
learning augments the quality of human-robot interactions
by enabling robots to recognize, understand, and respond
to human emotions, which fosters a more intuitive, socially
harmonious, and user-friendly experience. For example, this
empathetic approach can lead to increased trust and acceptance
of robotic systems, as people tend to respond positively to
entities that appear to understand and consider their emo-
tional states. It stands as a critical component in advancing

the sophistication and societal integration of robotic sys-
tems within HITL paradigms, offering significant benefits for
human-robot coevolution. Table VIII outlines a compendium
of papers proposing learning-based methods to develop the
ability for empathy in HITL robot systems.

First of all, robots that can exhibit or interpret emotional
cues are more likely to gain trust and acceptance from human
users. Narayanan et al. [132], [134] introduced an affect-
aware social robot navigation algorithm among pedestrians to
keep safe and conformable (see Fig. 10(a)). A new obstacle
profile representation is used in this scheme with dynamical
adjustment through human pose and affect. For collaborative
tasks, one new approach [135] facilitates robots to understand
human moods and generate some assisting actions based on
the transfer learning to build the trust human-robot partnership.

HITL learning that incorporates empathy allows robots to
adjust their learning process based on the user’s emotional
feedback. Ko et al. [136] developed a method to provide
nonverbal social behavior after human motion is understood
and emotionally cared for. Two metrics are added to compare
the similarity between the generated output and the ground-
truth behavior. Cui et al. [137] focus on the issue of learning
from implicit human feedback, with mapping hidden human
feedback to relative task statistics. In this network, it can
judge relative reward ranking from pre-trained human facial
reactions. In another work [138], the affective states of humans
can be perceived, and the more proper robot motion can be
provided by Q-value learning, leading to participants being
more comfortable and confident. Yu et al. [139] designed the
trust-aware learning-based strategy for multiagent interaction
settings. The theory of mind model is applied to predict
the human’s trust beliefs with the flexible trust-aware reward
function to avoid human trust collapse in the human-robot
agent.

Besides, robots with empathy can achieve more natural
and effective interactions that align with the emotions of
humans. In [140], the new behavior transformation model
according to human motion is introduced in that robots’
gestures reflect users’ moods, establishing a positive and
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Fig. 10. The enhancement for the capacity of empathy in HITL robot learning. (a) Gait-based emotion learning for socially-aware robot navigation [132].
(b) An emotionally expressive robot interaction with humans by TDRL [133].

long-lasting HRI system. Broekens and Chetouani [133] pre-
sented a temporal difference reinforcement learning (TDRL)
theory to develop an emotionally expressive robot interaction
with humans (see Fig. 10(b)). In this learning loop, appropriate
expressions can be chosen to interact with humans for person-
alized emotion interpretation. To provide affect-driven motion
for communicating with humans of social robots, Churamani
et al. [141] investigated a framework consisting of intrinsic
emotion description and interaction behavior training with self-
organizing neural models.

VII. HITL ROBOT LEARNING APPLICATION IN
SMART MANUFACTURING

HITL robot systems in smart manufacturing, which leverage
human intelligence into the learning cycle of robots, thus not
only optimize operational efficiency and product quality but
also play a crucial role in workforce development and the
sustainable evolution of manufacturing practices.

Fig. 11 encapsulates a typical HITL system in smart
manufacturing for the human-robot co-carrying task. In this
framework [142], the main content includes three blocks:
human-human demonstration, ergo-interactive module, and
HRC. In the first step, one worker first finished the co-carry
work with another human partner. The trajectories of human
joints were captured by the MoCap system. Then, the
Riemannian-based DMP is applied to encode the correspond-
ing trajectories in Cartesian space and define reference position
and orientation. In the HRC block, a mobile manipulator
executed such reference trajectories and completed the task
with workers with online adaption with human ergonomics.

With the features of generalization, few-shot learning, and
low-code programming in HITL systems, the robots can
finish intricate tasks such as inspection in industrial sce-
narios, co-carrying heavy mechanical components, and robot

Fig. 11. An illustration showcasing the application of HITL robot learning
in the human-robot co-carrying task [142].

trajectory planning for complex surfaces in welding, thereby
actualizing human-centric smart manufacturing in an intelli-
gence factory. In the section, the value of HITL robot learning
is explicated in detail following the above three key features
in smart manufacturing applications.

A. Generalization

Generalization refers to the robot’s ability to apply learned
knowledge or skills to new and unseen situations or tasks that
were not part of its original training set, which determines the
adaptability and usefulness of a robot in varied and dynamic
real-world environments. Essentially, it’s the measure of how
well a robot can adapt its responses to changes in its contexts
or to new tasks that it has not explicitly been programmed
to perform [143]. In HITL, generalization facilitates robots
to extend their intelligence and skills by integrating human
insight and corrective feedback which enables autonomous
systems to learn from less data, recognize broader patterns,
and establish a human-inspired capacity for problem-solving
(see Fig. 12).
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TABLE VIII
EMPATHY

In manufacturing systems, the strength of generalization in
robot learning is multifaceted. As the diversity of product
offerings expands and the complexity of manufacturing tasks
escalates, there is an imperative need for robots to possess
the capacity for rapid adaptation to these variations, thereby
obviating the necessity for reprogramming or extensive human
intervention. Moreover, the array of assembly components,
each necessitating unique assembly techniques, demands that
robots be endowed with the ability to generalize their learned
skills to suit varying assembly requirements effectively. Addi-
tionally, within the context of unstructured work environments,
robots may be required to navigate and operate absent prede-
fined pathways. This necessitates a robust capability in robots
to comprehend and adapt to the inherent randomness and
uncertainty characteristic of such environments, to perform
tasks efficaciously. Collectively, these factors highlight the
critical importance of enhancing the generalization abilities
of robots, thus ensuring their capability to execute diverse
tasks efficiently in the dynamically evolving and technically
demanding landscape of smart manufacturing. In [142], the
generalized trajectories were computed online through the
robot’s current positions and orientations, target pose, and
phase variables. Pearson’s correlation coefficient is used to
evaluate the similarity between the generalization and the
demonstration trajectories for the human-robot co-carry task.
Every generalization can be achieved from different starts and
targets without extra robot teaching. Pérez-Dattari et al. [144]
developed a novel contrastive loss for obtaining globally
steady motion in dynamical systems, which is verified by the
hammer hanging experiment. In this method, actions provided
in certain regions with no teaching smoothly generalize the
motions generated in the demonstrations. Huang et al. [107]
designed an object-level constrained (OLC)-DMP model for
the box flipping task, which focused on the improvement
of the ability of generalization. Baxter flipped three boxes
successfully and steadily with different sizes to verify the skill

generalization capability. In addition, the skill generalization
ability is widely valuable in many applications in indus-
trial automation, such as robotic grasping [145], industrial
HRC [146], and assembly [41].

However, skills or knowledge learned in one task or
environment may not always transfer seamlessly to another,
particularly when the tasks are very dissimilar or the envi-
ronments have distinct characteristics. Even with successful
transfer, the performance of a robot may vary significantly
from one task to another, necessitating additional tuning
or training to achieve the desired level of performance.
Kim et al. [147] proposed a transfer learning policy based
master-to-robot (M2R) system. However, the camera had to
be mounted in a fixed position in this system, which means
the method could be useless if the manufacturing context is
changed with a lack of skill generalization ability.

B. Few-Shot Learning

In traditional machine learning, particularly in DL, models
typically require large datasets to generalize well from the
training data to unseen data. However, in many real appli-
cations, such as in the context of manufacturing systems,
obtaining large datasets can be impractical, expensive, or time-
consuming. Despite the implementation of Digital Twin (DT)
technology, which partially reconstructs real-world scenarios
in virtual environments, and the ability of robots to utilize
simulations with extensive datasets for improved training,
the virtual models may not fully and accurately replicate
all physical and environmental details [148], [149], [150].
If the foundational models of DTs are inaccurate, the resultant
training or acquired skills could be unsatisfactory, with a rela-
tively high demand for computing resources and data storage
for generating large amounts of data through simulation to
train models. Few-shot learning, on the other hand, refers to
training a model on a small number of examples to quickly
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Fig. 12. The application of the skill generalization for robotic grasping in
industrial scenarios.

adapt to new scenarios, relying on quickly generalizing from
these examples to perform tasks accurately. This approach
significantly reduces the time and effort required for traditional
robot training methods, relieving the burden on human users.
The robot can learn from these few examples with few
demonstrations, making the training process more efficient and
less time-consuming.

In manufacturing scenarios, few-shot learning enables man-
ufacturing systems to quickly adapt to new or updated
production tasks with minimal training data, minimizing the
need for extensive data collection and annotation. Based on
this paradigm, robots can rapidly learn new tasks with just
a few teachings from human guidance, which is essential in
dynamic industrial environments where robots need to adapt
to new tasks frequently. Furthermore, this approach facilitates
the transfer of skills or capabilities from generalized con-
texts to specific manufacturing settings through the utilization
of limited datasets, which effectively addresses the intricate
industrial tasks prevalent within manufacturing environments.
In this context, this learning-based method can address the
issue that products and processes can change rapidly and allow
for the swift integration of new instructions or tasks into a
robot’s repertoire without the need for extensive retraining,
making it a flexible approach for customized manufacturing
processes in HITL setups. In [151], Zhu et al. focused on
learning task-parameterized behaviors with few-shot demon-
strations for deformable objects. Instead of solely learning

from the expert’s teaching, this method makes the generaliza-
tion of synthetic demonstrations by augmenting the raw dataset
to decrease ambiguous demonstrations in the total dataset.
Jang et al. [152] proposed a vision-language framework for
few-shot generalization to new tasks for dynamic pick-and-
place. A command in the form of language or a video of a
user can allow robots to learn a new task quickly without
any extra robot data for those tasks, according to this IL
policy. A vision-based HRI approach is designed in [153] for
indoor goal communication. In this article, metric learning is
employed for data augmentation and passive diversification
to enhance the training ability of a classifier with few-shot.
Besides, many contexts, like navigation [76], collision-free
path planning [154], and muti-industrial robot control [155],
pay more attention to this few-demonstration method to make
robotic systems more adaptable and cost-effective.

Few-shot learning, while powerful, comes with inevitable
limitations that can affect its performance. For example, the
success of few-shot learning can be sensitive to the choice of
model architecture and hyper-parameters, and the quality and
extent of the pre-training can significantly impact the model’s
ability to learn from a small number of examples. Sheidlower
et al. [156] developed an interactive RL policy for action-
space environments. However, the strategy needs to learn
independently from the environment and a teacher, leading
to more high-quality demonstration data for this process.
If combining both training processes, the model should be
selected carefully for better performance.

C. Low-Code Programming

Low-code programming is an approach that simplifies the
process of programming robots by reducing the amount of
traditional text-based code that needs to be written. Instead,
it relies on visual programming interfaces, pre-built templates,
user-friendly configuration tools, and multimodal natural HRI
that enable developers and even non-technical users to cre-
ate and customize robotic applications with minimal manual
coding. Low-code platforms support iterative development
processes, making it easier to refine and optimize robot behav-
iors based on real-world performance and feedback, which
provide a high-level, user-friendly interface that can trans-
late visual and model-driven programming into underlying
code [112].

For industrial production, this method opens up robot
programming to a broader range of users, decreasing the
reliance on specialized programming expertise to gain cost-
effectiveness in this process. With low-code platforms, robots
can be quickly reconfigured to handle new tasks, supporting
an agile manufacturing environment. Besides, engineers and
operators on the manufacturing floor can take an active role
in programming and fine-tuning robot operations, leading to
solutions that are closely tailored to the actual needs and
nuances of the manufacturing process. The framework empha-
sizes the smooth process and generates execution code from
the scheduled and optimized manufacturing process, providing
significant enhancements to the flexibility and resilience of
production processes with the ability to adapt to a variety
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Fig. 13. The application of low-code programming for smart manufacturing.

of tasks swiftly and changing industrial demands. A human-
like compliant movement primitives (HL-CMPs) is introduced
in [157] to learn compliant behaviors, encoding motion tra-
jectories with task-specific parameters. After the kinematic
demonstration, the compliant details are trained according to
a biomimetic control policy in the muscle space and tested by
the insertion and cutting tasks. Bechtle et al. [101] designed
a self-supervised learning strategy from vision-based potential
representations. The extended kinematic chain can be applied
as a visual predictive model with multimodal keypoint detector
on the grasped object placing task with a 7-DoF iiwa Kuka
arm. In [158], Du et al. proposed a multimodal learning frame-
work based on EMG and inertial measurement unit (IMU) in
human-robot co-sorting. This interface serves to record the
real-time poses and grasp forces of human hands so that the
robotic limb can mimic the forces for reliable sorting. Beyond
the above applications, low-code programming is regarded as
one key role in robotic process control [159], robot-assisted
welding [97], and co-disassembly [160] (see Fig. 13).

Nevertheless, a robot trained via low-code programming
might perform well on tasks that closely mimic the training
scenarios but may struggle to generalize to slightly different
situations or to handle unforeseen circumstances that were not
present in the training data in real-world manufacturing sys-
tems, which often involve a degree of variability and noise not
present in a controlled learning environment. Lee et al. [161]
designed a visual interaction force prediction method for
teleoperation systems. In this policy, the generalization of this
method for diverse objects or unseen objects is lacking, so it
is feasible for online teleoperation in complex manufacturing
contexts.

VIII. CHALLENGES AND FUTURE PERSPECTIVES

In this section, some challenges and future directions for
robot learning technologies based on HITL systems will be
discussed.

A. Sim-to-Real Transfer

Sim-to-real transfer is to transfer predictive control and
learning strategies obtained in simulation directly to the real
world. It provides a unique opportunity to train robotic systems

in a controlled, risk-free environment before deploying them
in the real world in the context of HITL robot learning [162].
When robots learn new tasks, especially complex or potentially
dangerous ones, mistakes can have serious consequences.
These can range from damage to the robot or its surroundings
to potential harm to human operators or bystanders. Training
the robot in a simulated environment can significantly reduce
the risk of such incidents. However, the challenge of address-
ing the dynamic domain gap between a simulated environment
and the real world remains essential [163]. Looking ahead, the
sim-to-real transfer could enhance human guidance to train
robotic systems safely and cost-effectively and ensure that
robots can generalize their learning effectively. The advent
of transfer controllers like OpenAI’s Rubik’s cube [164]
promulgates rapid development in this field.

B. Multi-Agent Learning

Multiple learning agents interact or collaborate to solve a
problem in industrial scenarios where every agent is regarded
as an independent learner with its method and agents work
together to achieve a common goal, such as in team sports or
swarm robotics [165]. This allows humans to train multiple
robots simultaneously, saving time and resources compared to
training each robot individually. Furthermore, it enables human
experts to provide high-level guidance to the group of robots
as a whole rather than having to micromanage each robot’s
actions. Na et al. [166] designed a collision avoidance behavior
for swarm systems based on a virtual pheromone, making
robot navigation and collision avoidance tasks in different
scenarios. However, as the number of agents increases, the
complexity of the learning problem grows exponentially, and
coordinating these robots can be a complex task, especially in
dynamic or unpredictable manufacturing environments. Nev-
ertheless, the potential substantial impact on manufacturing
systems makes this an inspiring research frontier.

C. Human-Cyber-Physical Systems

Human-cyber-physical systems (HCPS) integrate humans,
cyber systems, and physical systems to satisfy the prerequisite
of Industry 5.0, which states that humans are placed at the
core of the manufacturing system [167]. Besides, HCPS facil-
itates the customization of robot learning to individual users’
or tasks’ specific needs and preferences since it enhances
workers’ abilities to interact with robots via intelligent human-
machine interfaces and techniques designed to assist robots
in understanding and adapting to the workers’ physical and
cognitive demands. Nevertheless, increasing acceptance, trust,
and transparency between humans and robots is currently
crucial under human-centered thought. The coexistence of
nonlinearity, large delays, and compliance control amplifies
the complexity of the system. Augmented reality (AR) and
the metaverse can establish a virtual shared space created by
converging virtually enhanced physical and digital reality with
the real-world scene [168]. Cloud computing-based AR could
give more prominence to the role of humans in robot learning.
The next generation of HCPS is supposed to empower further
human-robot symbiosis for smart manufacturing.
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D. BCI-Controlled Robot

BCI allows robots to be controlled directly by brain neural
signals. A BCI is a system that communicates between the
brain and a computer mutually [169]. BCIs can capture
human intention, emotion, or motion planning and convey this
information to robots, enabling them to mimic some specific
movements or learn cognitive abilities according to deducing
actions the human imagines or positive/negative feedback
from brain neural activities. There are a set of challenges to
combining BCIs with learning processes. For example, safety
is paramount since most brain-robot systems lack natural
acceptance. The adaptation of BCIs in robotics, applying
brainwaves to guide robots, also requires seamless compatibil-
ity of the robot by the brain [170]. Referring to section IV-A,
as the recent advance, steady-state visually evoked potential
(SSVEP) and motor imagery (MI) are employed to capture the
spontaneous activity of the brain under the safety approach
with muscle tension from jaw clench [78]. The interplay
between BCI and robot learning boosts the development of
safe and ergonomic robotic systems.

E. Industrial Embodied Intelligence

Based on the current shortages and outstanding abilities
of large language models (LLMs), the opinion of “embodied
intelligence” in robotics plays a transformative role in achiev-
ing truly smart systems in the Industry 5.0 era [19]. when
empowered with multimodal perception, LLMs are regarded
as AI agents capable of interacting and learning from humans
and the environment. The combination of robot skill training
with LLMs has shown that robots can execute precise trajec-
tories and perform complex operational tasks directly from
human language guidance. In this context, GPT-4 presents
a pioneering opportunity to narrow the bridge gap between
human instruction and robotic skill/cognition learning with
multi-domain knowledge understanding and reasoning [171].
However, manufacturing scenarios are confined by diverse
industrial constraints and standards, so the advancement of
industrial embodied intelligence meets unique challenges. For
instance, it lacks zero-shot and few-shot learning capabilities
when parameters and task-specified configurations are insuf-
ficient for providing a complex toolpath for manufacturing
processes. Despite the above challenges spanning HRC, tra-
jectory planning, and force control, it is believed to be a
promising research direction to satisfy multiple requirements
of personalized manufacturing. This concept significantly
enhances the coevolution of humans and robots by creating
more intelligent, responsive, and efficient industrial systems.

IX. CONCLUSION

To provide a holistic scene perspective, this paper provides
a recent survey paper of HITL robot learning for smart
manufacturing. The main contributions of this paper, which
set it apart from other review papers, are three-fold: (1)
this paper is the first that comprehensively reviewed HITL
robot learning-related works from a human-centric perspective,
identifying cutting-edge advancements and key areas of focus
for human-centric smart manufacturing according to surveying

and classifying over 140 representative studies; (2) we present
a thorough review from different aspects of human intelli-
gence, such as perception, cognition, behavior, and empathy,
and provide the categorization of human roles in the learning
cycle; (3) five topics practically limited by certain challenges
are discussed in detail to improve the current approaches
and seek promising future directions. It is hoped that the
insights in this paper will be valuable to both scholars and
industry professionals and offer a comprehensive resource to
advance HITL robot learning in future human-centric smart
manufacturing.
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