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Abstract—The accuracy of sleep posture assessment 
in standard polysomnography might be compromised by 
the unfamiliar sleep lab environment. In this work, we aim 
to develop a depth camera-based sleep posture 
monitoring and classification system for home or 
community usage and tailor a deep learning model that 
can account for blanket interference. Our model included 
a joint coordinate estimation network (JCE) and sleep 
posture classification network (SPC). SaccpaNet 
(Separable Atrous Convolution-based Cascade Pyramid 
Attention Network) was developed using a combination of 
pyramidal structure of residual separable atrous 
convolution unit to reduce computational cost and enlarge 
receptive field. The Saccpa attention unit served as the 
core of JCE and SPC, while different backbones for SPC 
were also evaluated. The model was cross-modally 
pretrained by RGB images from the COCO whole body 
dataset and then trained/tested using dept image data 
collected from 150 participants performing seven sleep 
postures across four blanket conditions. Besides, we 
applied a data augmentation technique that used intra-
class mix-up to synthesize blanket conditions; and an 
overlaid flip-cut to synthesize partially covered blanket 
conditions for a robustness that we referred to as the Post-
hoc Data Augmentation Robustness Test (PhD-ART). Our 
model achieved an average precision of estimated joint 
coordinate (in terms of PCK@0.1) of 0.652 and 
demonstrated adequate robustness. The overall 
classification accuracy of sleep postures (F1-score) was 
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0.885 and 0.940, for 7- and 6-class classification, 
respectively. Our system was resistant to the interference 
of blanket, with a spread difference of 2.5%.  

Index Terms— computer vision; deep learning; human 
activity recognition; image classification; sleep. 

I. INTRODUCTION 

leep is an essential part of our daily lives and has a 

significant impact on our health and quality of life. 

Sleep deprivations and disorders have been associated 

with the development of diabetes, cardiovascular 

diseases, obesity, and depression, whereas sleep apnea may 

induce hypertension, stroke, and coronary heart disease [1]. 

Sleep studies are non-invasive diagnostic tools for sleep 

disorders and help identify the underlying causes of sleep 

deprivation. Sleep studies are typically conducted in 

specialized sleep laboratories, where participants are 

equipped with various instruments, often referred to as PSG 

(polysomnography), to measure brain activity, eye 

movement, heart rate, breathing pattern, etc. During sleep 

tests, participants are required to rest comfortably in a 

controlled sleep laboratory, albeit with perhaps more than a 

dozen sensors physically attached to their bodies to facilitate 

comprehensive data acquisition. The collected data requires 

expertise of trained professionals to analyze.  

In addition to physiological measurements in PSG, sleep 

movement/posture/behaviour is one of the important 
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assessments in sleep test. Common sleep-related movement 

disorders include sleep bruxism and restless leg syndrome, 

while individuals with parasomnia might exhibit aberrant 

sleep behaviours, such as sleepwalking, sleep-talking, 

nightmares, partial awakening and paralysis. One of the most 

prevalent sleep problems is insomnia; more than one-fifth of 

the general population may suffer from insomnia [2]. 

Insomnia is associated with poor sleep quality and poor 

sleeping posture. A good sleep posture could maintain the 

spine at a physiological curvature and enable muscle and soft 

tissue to relax and recover [3]. In contrast poor sleeping 

position/posture may lead to sleep-related musculoskeletal 

disorders or exacerbate existing neck, back, and joint pain 

[3]. Monitoring sleep posture and behaviour can also be used 

for non-medical purposes. For instance, it could be used for 

evaluating the ergonomics of sleep environments and 

mattresses [3], providing boundary conditions to simulate 

sleep and sleep disorders [4], as well as for surveillance of 

nighttime wandering behaviour of older adults [5, 6]. 

Nevertheless, there are some constraints in the sleep 

posture measurements in PSG system. The sleep test in a 

sleep laboratory itself could impact the sleep “performance” 

[7].  Sleeping in a new environment may create the “first 

night effect” that diminishes deep sleep and makes it difficult 

to fall asleep, and unfamiliar beddings (mattress and pillow) 

might cause people to adopt unusual sleep postures, positions 

and result in more turns and restlessness [7]. Traditionally, 

the sleep postures and behaviours are taped by video cameras 

overnight and manually examined. The process is labour-

intensive, requires preparation time, and may violate privacy 

considerations. Intervening blankets or quilts in the dark 

environment can also affect the accuracy of the analysis. 

Some studies switched to the use of wearable devices with 

accelerometers (i.e., actigraphy) [8, 9]. However, they cause 

uncomfortable sleep, affect sleep quality, and introduce 

compliance problems, especially for older adults and those 

with related behavioural issues [10, 11].  

We aim to develop a depth-camera based system with 

deep learning models to classify sleep postures as our first 

milestone. The novelty of this study lies in the development 

of a deep learning model, named as SaccpaNet (Separatable 

Atrous Convolution-based Cascade Pyramid Attention 

Network), that could classify sleep postures under a blanket. 

The core of SaccpaNet is a module for identifying 

musculoskeletal joints and segments based on a cascading 

pyramid attention unit for sleep posture classification. The 

unit could also be applied as the backbone in the subsequent 

classification stage.  

In summary, the main contribution of this study is the 

development of SaccpaNet, which utilizes the concept of 

receptive field to enhance the accuracy of sleep posture 

classification. This is a significant advancement, as existing 

studies often overlook the influence of blankets or only 

consider a single blanket thickness. It is important to note 

that SaccpaNet employs cross-modal training on RGB data 

but uses depth images as input, addressing the issue of lights 

being turned off during sleep. Furthermore, we previously 

proposed a blanket synthetic technique for data augmentation 

to enhance model generalizability. In this study, we 

introduce a post-hoc data augmentation robustness test (Ph-

DART) to assess model robustness using a dataset 

augmented by participants partially covered by blankets.  

II. RELATED WORK 

Non-contact optical sensors, especially depth cameras, 

have overtaken sensor-mattresses as the preferred solution. 

However, a new issue has arisen with these sensors, as they 

can be affected by interference from blankets or quilts, and 

its impact is frequently assessed. Using a Kinetc Artec 

scanner, Ren, et al. [12] achieved an accuracy of 92.5% in 

classifying six sleep postures using Support Vector Machine 

(SVM) on scale-invariant feature transform (SIFT) features. 

Convolutional Neural Networks (CNN) were among the 

most widely used deep learning models for posture 

classification using depth cameras, but a drop of accuracy 

was also observed from sleepers under blankets [13, 14]. 

Besides, Li, et al. [10] applied the CNN on streamlined data 

from Kinetic depth camera and RGB camera to classify 10 

sleep postures and found that the accuracy loss due to blanket 

covering was reduced to 3%. To accommodate the blanket 

issues, Tam, et al. [15] estimated the anatomical landmarks 

using an open-source pose estimator model from non-blanket 

conditions and superimposed these landmark coordinates on 

the data with blanket for model training. Their techniques 

improved the classification accuracy of ECA-Net50 from 

87.4% to 92.2%, with less influence by blanket conditions.  

Some other machine/deep learning models have been 

designed for sleep posture estimations. Yue, et al. [16] 

utilized a multilayer fully connected neural network to 

analyze a snapshot of multipath features of radiofrequency 

signals for predicting sleep postures. Building on the use of 

sleep video data, Li, et al. [17] introduced the SleePose-

FRCNN-Net, a deep multitask learning network that 

combines a ResNet feature extractor with a Region Proposal 

Network. The network is triggered by a motion detector, 

identifying a bounding box to classify upper-body and head 

poses. Another study employed tensor factorization for 

dimensional reduction on infrared images and coupled with 

a pre-trained VGG19 network to classify under-blanket sleep 

postures [18]. Liu, et al. [19] proposed an innovative infrared 

selective image acquisition technique to mitigate the effect 

of lighting variation. In addition, they processed the images 

with a 2-end histogram of oriented gradient rectification to 

extract features accurately from participant locations. To 

estimate postures, they fine-tuned a multi-stage CNN 

structure using three strategies: MANNE-S6, MANNE-AS, 

and MANNE-AS-S2C3, each targeting different layers and 

stages of the network for optimization. Nevertheless, while 

existing studies have tested blanket conditions, they have not 

been dedicated to handle the complexity of blanket problems 

in deep.  
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III. MODEL ARCHITECTURE 

A. Overview 

The overall model framework consists of two parts: the 

joint coordinate estimation (JCE) network for feature 

extraction and the sleep posture classification (SPC) network 

for classification (Fig. 1) 

 
Fig. 1. Overview of the multimodal transfer learning in the 

overall framework. 

 

The JCE network is based on an optimized encoder-

decoder network to predict the positions of body 

joint/segment coordinates through depth images. The SPC 

network is laid by the convolutional residual network to 

classify sleep postures based on the depth images and the 

coordinate information estimated by the JCE network.  

 
Fig. 2. Overview of Model Architecture of SaccpaNet: (a) Joint 

Coordinate Estimating (JCE) network; (b) Sleep Posture 

Classification (SPC) network; (c) stage unit under JCE; (d) block 

unit under stage unit; (e) Saccpa attention unit under block unit; (f) 

RSAC (residual separable atrous convolution) unit under Saccpa 

attention unit. 

 

We apply a cross-modal knowledge transfer scheme on 

JCE (Fig. 1). The JCE is (cross-modally) pretrained with the 

RGB data and labelled coordinates of the COCO dataset 

[20]. Next, the depth images and the RGB-data-driven 

knowledge (i.e., coordinates) of our experiment is paired and 

superimposed to train JCE. The RGB-data-driven knowledge 

is generated by an existing network (OpenPose) [21] that was 

fed RGB data of our experiment to estimate the body 

joint/segment coordinates. In other words, RGB-D data are 

required for model pretraining and training but only depth 

images are needed for deployment.  

B. Joint Coordinate Estimation (JCE) Network 

The JCE network takes reference to SegNeXt [22] but has 

replaced its channel attention to Saccpa unit (Fig. 2a). The 

encoder of JCE enables feature extraction with a pyramid 

structure of 4 stages (Fig 2b). Each stage progressively 

reduces the resolution by half through passing a sequence of 

blocks of equal number of channels (Fig. 2c). Each block 

consists of a patch embedding unit, an attention unit (Saccpa 

unit), and operations resembling the residual bottleneck layer 

(Fig. 2d). The data patches are encoded with overlapping 

bits. Each data patch of N  N pixels are transformed into a 

vector of size 1  N2. The patch embedding is controlled by 

the kernel size (K), stride between two adjacent patches (S), 

and padding size (P). We assigned K = 3, S = 2, and P = 1 

for the 1st stage; K = 8, S = 4, P = 3 for the 2nd stage [22].  

As shown in Fig. 2d, the embedded patch vectors 

subsequently undergo residual batch normalization attention, 

which involves batch normalization and attention (through 

Saccpa unit). Next, the residual batch normalization 

convolution is performed, which involves batch 

normalization, a 11 input channel convolution, a 33 depth 

separated convolution, a GELU activation function, and 

finally a 11 output channel convolution layer. This 

arrangement of residual batch normalization convolution 

configuration resembles the bottleneck layer of ResNet [23]. 

Lastly, the patch merging process reverse-transforms the 

data to patches of N  N pixels. 

The Saccpa unit contains a pyramidal structure of 

residual separable atrous convolution (RSAC) units, average 

pooling, and bilinear upscaling (Fig. 2e), which seek to 

extend the receptive field for generating long range 

relationships while maintaining resolution size. The output is 

then concatenated, followed by a 11 convolution for 

channel reduction.  

There are four convolution processes in the RSAC units 

in the Saccpa unit (Fig. 2f). Fig. 3 explains the structure and 

operation of the convolution process. Both data input and 

kernels could be viewed as a structure with heights, width, 

and channel (H W M). Depthwise (with spatial separation) 

convolutions on height and width kernels, followed by a 

pointwise convolution, are implemented on the kernel, 

illustrated in equation (3) [24]. Atrous convolutions are 

poised on the spatial and depthwise convolutions at different 

dilation rates (Dr = 1, 2, 5, 7) and are summed (Fig. 2f). The 

computed attention weights of the Saccpa unit are element-

wise multiplied with the input, equation (1) and equation (2). 
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Fig. 3. Schematic diagram illustrating the convolution processes within the Residual Separable Atrous Convolution (RSAC) unit. 

 

 𝑤 = 𝑆𝐴𝐶𝐶𝑃𝐴(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑥))  (1) 

𝑦𝑖𝑗 = 𝑥𝑖𝑗 ∗ 𝑤𝑖𝑗  (2) 

𝑂𝑖.𝑗.𝑛 = ∑ ( ∑ ∑ 𝑀𝑑,𝑒,𝑚𝐾𝑑,1,𝑚𝐾1,𝑒,𝑚

𝑗+𝑝

𝑒=1−𝑝

𝑖+𝑝

𝑑=1−𝑝

)𝑃𝑚

𝑛

𝑚=1

 

(3) 

Here, 𝑥  donotes the embedded patch vectors to the 

attention module, 𝑦 donotes the attended output, 𝑤 denotes 

the attention weights which indicates the importance of each 

feature, 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑤𝑖𝑗   denotes the value of 𝑥 , 𝑦 , 𝑤 

respectively. O is the output feature of the separable atrous 

convolution with spatial indices height (i), width (j), and 

channel (n). M is the input feature with spatial indices height 

(d), width (e), and channel (m). K is the kernel while P is the 

pointwise convolution with padding p.  

The attended output is passed to the residual bottleneck 

layers, followed by patch merging. The patch embedding, 

attention unit, residual bottleneck layers and patch merging 

forms a block, and blocks are cascaded to form stages.  

At the end, after the iteration of the process in the four 

stages, the 2nd, 3rd and 4th stages of the encoder is 

concatenated and fed to the decoder (Fig. 2a). The 1st layer is 

excluded, as too much low-level features may reduce model 

performance. The Hamburger decoder [25] is adopted, which 

consists of upper and lower bread layers of linear 

transformation sandwiching a ham layer of matrix 

decomposition. It could factorize the learnt representation 

into sub-matrices in order to retrieve the low-rank signal 

subspace with clean data [25]. The drop rate of the 

Hamburger decoder is set to 0.1. the output of the decoder is 

arranged in form of a two-dimensional heatmap that 

represents the probability distribution of each body 

joint/segment coordinates on each pixel. The predicted 

coordinates for each body joint/segment point (coordinate) 

are established by the Soft-Argmax operation on the 

heatmap. 

C. Sleep Posture Classification (SPC) Network 

The SPC consists of a backbone, followed by a 

classification head, as shown in Fig. 2b. In this study, we 

evaluated different kinds of networks (and number of layers) 

as backbone, including ResNet (layer = 34, 50, 101, 152), 

ECANet (layer = 34, 50, 101, 152), EfficientNet (scaling = 

B0, B2, B4, B7), and ViT (model/patch size = B/16, B/32, 

L/16, L/32). In addition, we introduced another backbone 

that employs channel attention with the Saccpa unit (Fig. 2e) 

in the convolution network (layer = 34, 50, 101, 152). We 

dubbed it as CNN-Saccpa to better distinguish it from the 

overall network (SaccpaNet).  

The outputs from the backbone are incorporated with the 

predicted segment/joint coordinates from JCE in the FCN 

layer of the classification head, followed by a GELU 

activation, and two FCN layers to finalize the seven-posture 

classification (Fig. 2b). Besides, we have utilized 

ResNet152-SVM (without JCE) as the baseline for 

comparison. ResNet152 is pretrained using ImageNet1K and 

trained to produce a feature of 2048 dimensions from depth 

images. Subsequently, SVM is employed as a classifier.  

IV. KNOWLEDGE TRANSFER, HYPERPARAMETER TUNING, 
AND PRETRAINING 

A. Cross-modal Knowledge Transfer 

Cross-modal knowledge transfer is facilitated by 

OpenPose, which is a real-time multi-person human pose 

detection library [21]. It uses a part affinity field to estimate 

the degree of association of human parts [21]. It can estimate 

(output) coordinates of 18 anatomical landmarks, including 

hand, foot, facial, etc., from RGB image data [21]. The 

annotation of the body joint/segment coordinates is then 

superimposed and transferred to the corresponding depth 

image data with and without blankets, since the participants 

maintained the same posture under different blanket 

conditions. The depth image data with labelled coordinates 

are used to train JCE.  

B. Hyperparameter Tuning 

Hyperparameter tuning of the model architecture has 

been performed on JCE based on an existing network search 

space design [26]. Its input are depth images, whilst the 

ground truth (coordinates) is transferred from RGB data 

through OpenPose (Fig. 1). The total number of blocks (i.e., 
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depth) of a particular stage i, is denoted as di, and the total 

number of blocks for all stages is denoted as 𝑑 = ∑ 𝑑𝑖
4
𝑖=1 . 

The width of the jth block (0 ≤ 𝑗 < 𝑑), uj is presented as a 

linear parameterization of initial width, w0 > 0 and the 

coefficient, wa > 0 in the equation (4). uj is then quantized 

into per-block width, wj in equation (5) by computing a width 

multiplier, wm > 0 and ⌊𝑠𝑗⌉ for each block j. 

 𝑢𝑗 = 𝑤0 +𝑤𝑎 ∗ 𝑗 = 𝑤0 ∙ 𝑤𝑚

𝑆𝑗
  (4) 

𝑤𝑗 = 𝑤0 ∙ 𝑤𝑚

⌊𝑠𝑗⌉
  (5) 

 

To re-format the equation per-lock level, each stage i has 

a block width, 𝑤𝑖 = 𝑤0 ∙ 𝑤𝑚
𝑖 ,  and number of blocks, 

𝑑𝑖 = ∑ 𝟏[⌊𝑠𝑗⌉ = 𝑖]𝑗 , where “1” is an indicator function that 

takes one when the condition is met.  

Since the output of JCE are the estimated coordinates of 

the body joint/segment positions, the evaluation is based on 

the accuracy measure, percentage of correct key-points 

transfer (PCK) with a tolerance factor , as shown in 

equation (6). It measures the percentage of predicted 

coordinates with an offset distances less than the tolerance 

factor, which is the percentage length of the diagonal of the 

bounding box of the full pose estimation region. The 

tolerance factor  is often set to 0.1 [4]. 

 

𝑃𝐶𝐾(𝜃) =
∑ 𝟏 [‖(𝑥

𝑦̂
) , (𝑥

𝑦
)‖

2
< 𝜃 ∙ 𝑑𝐵𝐵]

𝑛
𝑘=1

∑ 𝑘𝑛
𝑘=1

 

(6) 

where dBB denotes diagonal distance of bounding box and 

the double stroke denotes Euclidean distance. 

Random search has been conducted over the combinations 

of d, w0, wa, and wm. In total, there are 4 to 14 million of 

hyperparameters in the sample space. Table I represents the 

space for the random search. The model was run for 300 

epochs with a batch size of 16 using the Adam optimizer with 

a learning rate of 5e-5. 

 
TABLE I 

SEARCH SPACE AND RESULTS OF HYPERPARAMETER TUNING 

Parameter Range Interval Sampling 

Distribution 

Tuned 

Results 
d 12 – 28  1 Uniform 17 
w0 8 – 256 8 Log Uniform 8 

wa 8 – 256 0.1 Log Uniform 12.8 

wm 2 – 3 0.001 Log Uniform 2.942 

 

From the results of random search, we found that the 

precision accuracy was unlikely to be associated with the 

change of d and w0. Therefore, we further conducted a grid 

search on the other parameters, wa and wm at a higher 

precision, while keeping d = 17 and w0 = 8. The former (wa) 

was searched from 12.6 to 13.0 at an interval of 0.1, while 

the latter (wm) was searched from 2.9 to 3.0 at an interval of 

0.02. The grid search used the same number of epoch and 

batch size as that of the random search. The tuned 

hyperparameters were shown in Table I. It yielded a 

PCK@0.1 value of 0.6616 on the validation set.  

C. Cross-modal Pretraining 

A cross-model pretraining strategy is applied to pretrain 

our model (JCE) with RGB data and then trains it on depth 

image data based on the assumption that they have 

semantically comparable encoded representations. The 

pretraining is facilitated by the COCO-whole body dataset 

(COCO) [27]. COCO-whole body is a big dataset of 200k 

images with 250k person instances. It consists of in-the-wild 

RGB images of the whole human body labelled with 133 key 

body joint and segment landmarks.   

From the 133 joints, we have extract 18 of them, which 

aligns with that of OpenPose (detailed in Section IV-C). We 

have converted the RGB images of the datasets to greyscale 

to discard the color information that is also unavailable for 

depth images. Images are downsized to 192  256 pixels.  

Data augmentation is conducted to the dataset during the 

pretraining, which included horizontal random flips, random 

half body operations, random bounding box transformations 

(position, rotation, and scale), and affine transformations. 

A separate decoder head is applied on the dataset using the 

MMPose’s implementation of simple deconvolution head 

[28] that could produce a heatmap data of size 48  64 pixels 

with a Gaussian variance () of 2 pixels. The pretraining is 

conducted using Pytorch 1.11.0 and the MMPose library. 

The process is facilitated by an Adam optimizer. A total of 

210 epochs of batch size 32 is trained using an initial learning 

rate of 3.125e-5 for the first 170 epochs, a 10-fold decay for 

the following 30 epochs, and a further 10-fold decay for the 

final 10 epochs.  

V. MODEL TRAINING AND EVALUATION 

A. Experimental Protocol and Data Collection 

We recruited 150 healthy participants with a fair 

distribution of age (mean: 40.6, SD: 21.0, range: 17 – 77) and 

gender (77 males and 73 females) for data collection. Their 

mean height and body weight were 165.6 cm (SD: 9.41 cm) 

and 60.9 kg (SD: 11.53 kg), respectively. Participants were 

excluded if they reported severe sleep deprivation, sleep 

disorder, pain, or musculoskeletal problems. The experiment 

and protocol were approved by the Institutional Review 

Board (reference number: HSEARS20210127007). All 

participants signed an informed consent after receiving oral 

and written descriptions of experimental procedures before 

the start of experiment.  

RGB-D data were collected by an active infrared stereo 

technology depth camera (Realsense D435i, Intel Corp., 

Santa Clara, CA, United States) that incorporated with an 

auxiliary visible light RGB camera and an inertia 

measurement unit (IMU). The IMU was not utilized in this 

study. The resolution of the camera was 848  480 pixels 

with a sampling frequency of 6 fps and installed 1.6 m above 

a standard hospital bed of 55 cm tall.  

The participants were instructed to lie in seven sleep 

(recumbent) postures in the following orders: (1) supine, (2) 
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Fig. 5. Demonstration of experimental protocol of seven postures over four blanket conditions with: (a) optical camera; (b) depth camera overlaid 

with JCE results; (c) demonstration of overlaid flip cut to synthesize partial blanket coverings for data augmentation. 

 

prone with head turned left, (3) prone with head turned right, 

(4) log left, (5) log right, (6) fetal left, and (7) fetal right (Fig. 

5) and were manually labelled in the dataset. The prone 

postures were the same except the head direction (Fig. 5a). 

For each posture, we imposed four blanket conditions by 

covering blankets over the participants (except head) with 

blankets of varying thicknesses (thick, medium, thin, and 

none) in sequence. The participants remained stationary 

when our researchers covered them with different blankets. 

All blankets were sourced from IKEA (Delft, Netherlands), 

which were, respectively, Fjallarnika extra warm duvet (8 

cm thick), Saffero light warm duvet (2 cm thick), and 

Vallkrassing duvet (0.4 cm thick). Participants were given 

time to adjust their self-selected most comfortable position 

for each posture before data collection. Sleep postures and 

blanket conditions were labelled manually. 

B. Model Training  

There were 28 paired sets (4 blanket conditions  7 sleep 

postures) of streamed RGB-D data for each participant, 

resulting in a total of 4,200 RGB-D pairs of images. The 

model training-testing-validation ratio was 64:20:16. The 

validation set was applied for hyperparameter tuning, as 

described in the previous sections. 

The cross-model pretrained learned weights by the COCO 

dataset were transferred to our model (JCE). Our training set 

depth data were used to fine-tune (train) the JCE model with 

transferred ground truth coordinates of RGB data (Fig. 1). 

The depth data and JCE model output of the training set were 

input to SPC for training and used the manually labelled 

posture as ground truth (Fig. 1). Only depth data of the 

testing set were utilized for prediction in model testing of the 

SaccpaNet but not the RGB data. Besides, to evaluate the 

performance of the JCE network alone, we retrieved the 

estimated joint coordinate data of JCE by the depth data of 

the testing set and compared them to the coordinates 

transferred from RGB testing set data through OpenPose.  

Model training was implemented using the PyTorch Deep 

Learning Framework. The model training was conducted 

using Pytorch 2.0.1 with a batch size of 8 and a total of 600 

epochs. Data augmentations with affine transformation, in 

addition to an intraclass mix-up algorithm for blanket 

synthesis [14] were proceeded at batch level during the 

model training. This process generated more blanket 

conditions (thicknesses) based on the available datasets of 

three blanket thicknesses to improve the generalizability of 

the model. Cross entropy loss was used as the objective 

function. Adam optimizer was set at a learning rate of 

0.000025, L2 regularization of 0.00000025. Fig. 4 shows the 

loss curve of the training and testing dataset.  

 

.  
Fig. 4. An illustration of loss curve of SaccpaNet152 on the training 

(orange) and testing (blue) dataset. 

C. Ablation Study  

A unit-by-unit ablation study was conducted to evaluate 

the functions and effects of individual units in the Saccpa 

module. Model training and testing tasks were carried out by 

removing different levels of the model, including 

convolutions inside RSAC unit (Fig. 2f), RSAC units inside 
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Saccpa attention unit (Fig. 2e), and blocks inside stages (Fig. 

2a and 2c). For ablation study on convolutions inside RSAC 

unit, we evaluated the removal of the last 1, 2, and 3, 

separable atrous convolution operations. For that on RSAC 

unit inside Saccpa attention unit, we evaluated the removal 

of last 1, 2, and 3 (all) RSAC units. Regarding the blocks 

within the stages, we evaluated six combinations, each with 

different number of blocks at different stages, while 

maintaining the pyramid structure. F1-scores were calculated 

for the ablation study using the validation subset.  

D. Post-hoc Data Augmentation Robustness Test 
(PhD-ART) 

In addition to using data augmentation to synthesize 

blanket conditions, we proposed and developed another 

augmented dataset to simulate scenarios where blankets were 

partially covering the body. Images of different blankets and 

without blankets were captured at the same position for each 

individual. Therefore, the blanket itself was extracted as a 

separate layer and can overlaid on the condition without a 

blanket. Subsequently, this blanket layer was then randomly 

cut in half, both vertically and horizontally, before being 

placed on the participants’ images (Fig. 5c). We refer to this 

as the overlaid flip-cut technique.  

The augmented dataset served as an external testing set to 

evaluate the robustness of the model that we named it as 

PhD-ART. For each posture and blanket condition, four 

pieces of augmented data were generated. F1-score and 

PCK@0.1 of the external testing was compared to that of 

model testing.  

VI. RESULTS 

Table II presents the network sizes of various models with 

different backbones plus JCE, JCE alone, and the baseline 

model (ResNet152-SVM) without JCE. For the JCE model 

alone, the size of the multiply-accumulate operation (MAC) 

and the trainable parameters were 11.0B and 8.53M, 

respectively. The most lightweight network was the 

EfficientB0 model integrated with JCE, while the heaviest 

network was our proposed CNN-Saccpa152 model, also 

incorporating JCE. The table further illustrates the scalability 

of the CNN-Saccpa model. As the number of layers increases, 

the performance of the CNN-Saccpa model improves, a 

feature not observed in other models. 

For JCE, the precision accuracy of joint coordinates on the 

testing set, in terms of PCK@0.1 value, was 0.6518. In other 

words, more than 65% of the (anatomical landmarks) joint 

coordinates were correctly predicted within 10% diagonal 

distance of the bounding box. The results of PCK are also 

illustrated and visualized in Fig. 5b.  

Table III presents the F1-scores and one-vs-all AUC (area 

under the receiver-operating characteristic curve) for various 

postures and blanket conditions when different deep learning 

models were employed as the backbone of SPC. Fig. 6 shows 

the ROC curves, in which all of them demonstrated good to 

excellent discriminative power with AUC > 0.9 (Table II).  

On the other hand, the baseline model’s performance was 

substantially lower than that of the other models. Notable 

misclassifications were observed between the log and fetal 

postures, as well as among prone postures, which may 

indicate a failure to identify subtle changes in posture. A 

slight improvement was observed (F1 0.5435) when we 

consolidated the classes into left/right and prone postures. 

However, the performance was still not up to the mark.  

Fine-grained analyses on sleep postures and blanket 

conditions were conducted on the best-performing model 

(i.e., backbone using CNN-Saccpa152), as shown in the 

confusion matrices in Fig. 7 and the radial barcharts in Fig. 

8. The subgroup classification performance of SaccpaNet 

using CNN-Saccpa152 as backbone on sleep postures is 

shown in Table III, in addition to the F1-scores across 

different postures and blanket conditions.  

 
TABLE II 

MODEL SIZE AND PERFORMANCE OF MODELS WITH DIFFERENCE 

BACKBONE 

Network  #MACs #Params F1 AUC 

JCE only 11.0B 8.53M - - 
*Baseline without JCE - - 0.4115 0.8560 

EfficientNetB0+JCE 11.4B 14.1M 0.8561 0.9721 

EfficientNetB2+JCE 11.7B 17.9M 0.8611 0.9752 

EfficientNetB4+JCE 12.5B 28.1M 0.8602 0.9756 
EfficientNetB7+JCE 16.2B 75.1M 0.8406 0.9737 

ECANet34+JCE 14.6B 30.6M 0.8541 0.9734 

ECANet50+JCE 15.1B 34.4M 0.8551 0.9722 

ECANet101+JCE 18.7B 53.3M 0.8200 0.9637 
ECANet152+JCE 22.4B 69.0M 0.8388 0.9655 

ResNet34+JCE 14.6B 30.6M 0.8734 0.9760 

ResNet50+JCE 15.1B 34.4M 0.8442 0.9728 
ResNet101+JCE 18.7B 53.3M 0.8431 0.9722 

ResNet152+JCE 22.4B 69.0M 0.8499 0.9755 

ViT-B/16+JCE 22.3B 66.9M 0.8190 0.9683 

ViT-B/32+JCE 14.0B 68.6M 0.8464 0.9801 

ViT-L/16+JCE 50.9B 212M 0.8419 0.9782 

ViT-L/32+JCE 21.2B 214M 0.8521 0.9824 

CNN-Saccpa34+JCE 15.7B 37.3M 0.8221 0.9535 
CNN-Saccpa50+JCE 31.3B 136M 0.8346 0.9590 

CNN-Saccpa101+JCE 52.2B 246M 0.8718 0.9829 

CNN-Saccpa152+JCE 73.1B 337M 0.8849 0.9833 

AUC: Area under receiver-operating characteristic curve; MAC: multiply-
accumulate operation; Params: trainable parameters. 

*Baseline refers to ResNet152-SVM. 

The accuracy (F1-score) of CNN-Saccpa152 in predicting 

supine, log, and fetal postures ranged from 0.897 to 0.970. 

However, the system network had a poor F1-score for prone 

postures (0.753 to 0.756), as shown in Table III. Therefore, 

we attempted to conduct another test that reduced the 

classification to prone position exclusively (i.e., 6 classes). 

In this case, the F1-score increased from 0.8849 (7-class 

average) to 0.9399 (6-class weighted average). The F1-score 

for predicting prone postures rose to 0.9301 (Table III).  

Thick blankets influenced the accuracy of the posture 

prediction. The F1-scores were the lowest among all blanket 

conditions and were 0.8616 and 0.9282, respectively for the 

7-class average and 6-class weighted average (Table III).  

Notably, thin blanket conditions showed the best results 

and performed better than no blanket. The F1-scores were 

0.9083 and 0.9534, respectively for the 7-class average and 

6-class weighted average (Table III). Moreover, the network 

demonstrated resilience against blanket conditions. The 

spread difference of F1-score between blanket conditions 

was small (Fig. 7), 0.047 and 0.025, respectively for the 7-

class average and 6-class weighted average.  
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TABLE III 

PERFORMANCE OF SACCPA152 UNDER DIFFERENT POSTURES AND BLANKET CONDITIONS. 

Posture class 
F1-scores of different blanket conditions Overall blanket conditions 

Null Thin Medium Thick F1-score Precision Recall 

7-class average* 0.8812 0.9083 0.8881 0.8616 0.8849 0.8881 0.8869 
6-class weighted average 0.9388 0.9534 0.9387 0.9282 0.9399 0.9450 0.9393 

Supine 0.9474 1.0000 0.9677 0.8889 0.9504 0.9426 0.9583 
Right log 0.9091 0.8955 0.8788 0.9062 0.8973 0.8252 0.9833 
Left log 0.9231 0.9524 0.9524 0.9677 0.9486 0.9023 1.0000 

Right fetal 0.9286 0.9655 0.9655 0.9492 0.9524 0.9910 0.9167 
Left fetal 0.9474 0.9655 0.9655 1.0000 0.9700 1.0000 0.9417 

Prone (head left & right) 0.958 0.9474 0.9204 0.8929 0.9301 0.9771 0.8875 
Prone (head left) 0.7541 0.7857 0.7451 0.6538 0.7364 0.8100 0.6750 

Prone (head right) 0.7586 0.7931 0.7419 0.6667 0.7395 0.7458 0.7333 

*Seven classes considered both prone postures with head left and right. 

 

The ablation study revealed that the original model, when 

tested with the validation subset, exhibited the best 

performance (Table IV). Eliminating the separable atrous 

convolution operations and the Saccpa attention unit resulted 

in a decrease in the model’s performance. Furthermore, the 

attenuation of the blocks within the stages could potentially 

have an even more significant impact, which decreased the 

F1-score from 0.7706 to a minimum of 0.7203. 

Our robustness test via PhD-ART showed that PCK@0.1 

was slightly decreased from 0.6518 to 0.6378 and the F1-

score was also slightly decreased from 0.8879 to 0.8476. 

This demonstrated that the model was robust against 

adversarial conditions (i.e., conditions where blanket is 

partially covering).  

 
Fig. 6. Receiver-operating characteristics (ROC) curve of: (a) CNN-

Saccpa; (b) ResNet; (c) ECANet; (d) ViT; and (e) EfficientNet. 

 

TABLE IV 

RESULTS OF ABLATION STUDY ON VALIDATION SUBSET 

Ablation 

Level 

Item Removed F1 

Original N/A 0.7706 

RSAC 
Last SAC 0.7550 

Last 2 SAC 0.7502 

Last 3SAC 0.7560 

Saccpa 

Attention 

Last RSAC 0.7588 
Last 2 RSAC 0.7502 

Last 3 RSAC 0.7560 

Stages at 
Blocks 

1 block at stage 3 0.7501 
2 blocks at stage 3 0.7309 

2 blocks at stage 3 & 1 block at stage 4 0.7203 

2 blocks at stage 3 & 2 block at stage 4 0.7370 
2 blocks at stage 3 & 3 block at stage 4 0.7333 

SAC: separable atrous convolution 

VII. DISCUSSION 

In this study, we proposed the SaccpaNet that aimed at 

enhancing context modelling by expanding the receptive 

field (i.e., input space) of attention units. We demonstrated 

that SaccpaNet can be employed as the core for joint 

coordinate estimation via cross-modal training and as the 

backbone for sleep posture classification. The key innovation 

of this network is to integrate different model architecture 

characteristics, including cascade pyramid network, 

separable convolution, and atrous convolution, as the 

attention module, which may ultimately broaden the 

receptive field at a relatively low computational cost. In 

addition, our work might represent one of the first datasets (n 

> 100) of depth camera images of different sleep postures. 

A larger receptive field could enable the investigation of 

long-range spatial dependencies, which relate to the spatial 

relationship between two “points” far apart from each other 

in the input space. A previous study showed that the accuracy 

of posture estimation increased when long-range spatial 

dependencies and a larger receptive field were considered. 

Previous literature modelled contextual information based on 

global information by patching [29-31], pooling strategy 

[32-34], or increasing kernel size for convolutional 

attentions [22, 35]. Nevertheless, pooling strategies (e.g., 

global pooling) resulted in a loss of information, while the 

kernel size was usually pre-assigned and not adaptive to the 

input resolution. The attention mechanism is an adaptive 

selection process based on the input features [35], and our 

proposed attention mechanism was developed by the 

integration of the aforementioned architecture 

characteristics.  
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We combined channel-wise separable convolution and 

spatial sparable convolution to reduce computational cost 

[36-38]. Compared to conventional convolution, our 

approach could reduce the number of parameters from C2 K2 

to 2C2 K H, and the number of flops from C2 K2H W to (C2 + 

2K) H W. 

Atrous operation also enlarges the receptive field through 

inserting gaps between filter values to capture long-range 

dependencies without increasing the number of parameters 

[39]. With atrous operation, the size of the receptive field 

would grow exponentially as additional layers were stacked 

[40]. The gap distances of 1, 2, 5, and 7 were chosen because 

they were coprime numbers and helped reduce the gridding 

effect [41]. The resulting unit (RSAC) of our model covered 

a receptive field of 157 pixels, which is larger than that of the 

Large Kernel Attention (13 pixels) [35]. At last, the RSAC 

units were stacked in a multistage architecture design (a 

cascade pyramid network) [42] to incorporate contextual 

information under different scales.  

With respect to the JCE performance, our hyperparameter 

tunning approach headed for a relatively lightweight model 

for joint coordinate estimation. The tuned model was 

subsequently pretrained by the COCO datasets. We achieved 

an overall PCK@0.1 of 0.652 after model training by our 

own dataset. Comparing to other recent models, ViTPose+-

H has a PCK@0.1 of 0.759 [31], while that of a fine-tuned 

convolutional pose machine achieved a PCK@0.1 of 

approximately 0.62 (by observation of the result Figure) [19]. 

Considering the different in input modalities and blankets not 

fully accounted in other studies, we believed that our model 

performed well. The contribution of JCE on the classification 

performance was also illustrated in the unit-by-unit ablation 

study. The performance was the best when none of the units 

were removed. Table V presents a comparison of similar 

models employing Joint Coordinate Estimation (JCE). 

Utilizing the same classifier architecture for a fair 

comparison, our model exhibits a 4.8% reduction in 

performance relative to the one incorporating OpenPose for 

JCE. However, it is important to note that the latter requires 

both RGB and depth images for input, whereas our model 

operates solely on depth images. Moreover, our model’s 

performance is on par with those not utilizing joint 

estimation. Significantly, our approach offers the advantage 

of providing supplementary information, such as limb 

placement, which can facilitate subsequent analysis. 

Variations in performance are expected due to differences in 

data inputs and model configurations. 

 
TABLE V 

COMPARISON OF MODEL PERFORMANCE (F1-SCORE) FOR SLEEP 

POSTURE CLASSIFICATION WITH JOINT ESTIMATION. 

Study Testing 

dataset 

Joint 

Estimation 

Classifier Backbone 

Effici
entNe

tB4 

ResN
et50 

ECA-
Net50 

This study D  JCE 0.860 0.844 0.885 

[15] RGB+D OpenPose 0.908 0.913 0.922 
[15] D  No 0.873 0.836 0.874 

D: depth images; RGB: red-green-blue images. 

 

With regards to the posture classification performance, our 

best-performing model, Saccpa152 produced an overall F1-

score of 0.8849. From the confusion matrix, we found that 

the model might not easily classify prone postures with head 

turning left and right. If we did not subclassify prone 

postures, the accuracy could be increased to 0.9301 F1-score, 

and the overall weighed-averaged F1-score could reach 

0.938. On the other hand, we also demonstrated that our best-

performing model was resilient against blanket conditions 

with the spread distance of F1-score of 2.5% in classifying 6 

postures and 4.7% in classifying 7 postures. Interestingly, we 

also found that the classification performance for thin 

blanket was better than that of no blanket. The depth camera 

might not have the resolution to capture the abrupt depth 

differences between the boundaries of the body surface and 

the bed level. The thin blanket smoothed the spatial/depth 

discrepancies of the physical form and enhanced the data 

continuity. Besides, the improved performance under a thick 

blanket for particular postures (e.g., left log and fetal), as 

opposed to thinner blankets, may be attributed to the 

regularization-like effect. The thick blanket could serve as 

structural noise to prevent the model from overfitting the 

finer details of the body surface that are more variable and 

less discriminative for classification. The model then can 

focus on more primary patterns that are crucial for 

distinguishing postures.  

In the field of machine learning, generalizability is the 

model’s ability to maintain performance on new, unseen data, 

while robustness pertains to the model’s stability against 

noisy or adversarial inputs. Data augmentation bolsters both 

robustness and generalizability. However, traditional 

methods using affine transformations may fall short in 

complex scenarios, such as varying blanket thicknesses. To 

this end, we have proposed two innovative data 

augmentation processes to this specific challenge. The first, 

an intra-class mix-up technique, was developed to synthesize 

a wider array of blanket data by blending images with 

different blanket thicknesses from the original dataset, 

thereby enhancing the model’s generalizability to unfamiliar 

blanket conditions and reducing the risk of overfitting. The 

second, PhD-ART introduces the overlaid flip-cut technique. 

This approach generates scenarios where the subject is 

partially obscured by a blanket, thereby evaluating the 

model’s resilience to such adversarial conditions. This serves 

as a robustness assessment for real-world applications. 

The scalability of our model was demonstrated by a 

consistent enhancement in performance as additional layers 

are integrated. Our model might effectively utilize 

hierarchical features, which become increasingly abstract 

and informative with each added layer. Moreover, our model 

appears to be particularly well-adapted to the domain of 

under-blanket sleep posture classification, where nuanced 

features are more discernible at greater depths. In contrast, 

backbone models like ResNet experienced a decline in 

performance with added depth. This could be attributed to 

issues such as overfitting or the vanishing gradient problem, 

where the extra layers do not necessarily contribute to 

learning more useful representations.  
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Fig. 7. Confusion matrices of sleep posture predictions of different blanket conditions: (a) overall; (b) no blanket;(c) thin; and (d) medium; (e) thick. 

 
Fig. 8. Radial barcharts comparing classification performance between different blanket conditions overall and on each posture.  

 

There were some limitations in this study. As stated 

previously, the classification accuracy of prone postures with 

head facing left and right was poor. This might be because 

prone postures hindered crucial facial features and the 

resolution of the depth camera may not be sensitive enough 

to account for the remaining features. Such a limitation could 

potentially be alleviated by incorporating handcrafted 

features, i.e. the kinematics of shoulders. Second, our model 

was restricted to detecting discrete events (i.e., static 

postures). A full deployable system shall be built in order to 

account for timeliness data and prediction (full sleeping 

duration) as well as posture changes (toss and turn), 

intermediate postures, and other on-bed behaviors and bed-

exiting events [5, 6]. Future studies may consider 

background removal of the dataset and data augmentation 

using Generative Adversarial Network (GAN) or Generative 
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Artificial Intelligence (AI) to generate different mattress and 

blanket features to improve the robustness of the model. 

Besides, the attention mechanism can function as a tracking 

tool for other modalities, such as radar [43, 44] and 

microphone [45]. This enables these instruments to focus on 

their point of interest, such as apnea sounds, respiratory 

movements of the chest, and restless limb activities. This 

study lays foundation for comprehensive exploration of sleep 

quality studies and could potentially provide an alternative 

approach to conventional polysomnography. 

VIII. CONCLUSION 

We developed a novel model architecture, SaccpaNet, that 

included an attention network to expand receptive field at a 

relatively low computational cost. Even with the interference 

of blankets, SaccpaNet showed a rather high degree of 

precision in finding points of interest (PCK@0.1 = 0.6518). 

In addition, the classification accuracy of sleep postures was 

outstanding, with an overall F1-score of 0.8881 and 0.945, 

for 7-class and 6-class classification, respectively. 

Particularly, the overall F1-score reached 0.954 in thin 

blanket conditions.  
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