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Abstract—The accuracy of sleep posture assessment
in standard polysomnography might be compromised by
the unfamiliar sleep lab environment. In this work, we aim
to develop a depth camera-based sleep posture
monitoring and classification system for home or
community usage and tailor a deep learning model that
can account for blanket interference. Our model included
a joint coordinate estimation network (JCE) and sleep
posture classification network (SPC). SaccpaNet
(Separable Atrous Convolution-based Cascade Pyramid
Attention Network) was developed using a combination of
pyramidal structure of residual separable atrous
convolution unit to reduce computational cost and enlarge
receptive field. The Saccpa attention unit served as the
core of JCE and SPC, while different backbones for SPC
were also evaluated. The model was cross-modally
pretrained by RGB images from the COCO whole body
dataset and then trained/tested using dept image data
collected from 150 participants performing seven sleep
postures across four blanket conditions. Besides, we
applied a data augmentation technique that used intra-
class mix-up to synthesize blanket conditions; and an
overlaid flip-cut to synthesize partially covered blanket
conditions for arobustness that we referred to as the Post-
hoc Data Augmentation Robustness Test (PhD-ART). Our
model achieved an average precision of estimated joint
coordinate (in terms of PCK@0.1) of 0.652 and
demonstrated adequate robustness. The overall
classification accuracy of sleep postures (F1-score) was
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0.885 and 0.940, for 7- and 6-class classification,
respectively. Our system was resistant to the interference
of blanket, with a spread difference of 2.5%.

Index Terms— computer vision; deep learning; human
activity recognition; image classification; sleep.

I. INTRODUCTION

leep is an essential part of our daily lives and has a
significant impact on our health and quality of life.
Sleep deprivations and disorders have been associated
with the development of diabetes, cardiovascular
diseases, obesity, and depression, whereas sleep apnea may
induce hypertension, stroke, and coronary heart disease [1].
Sleep studies are non-invasive diagnostic tools for sleep
disorders and help identify the underlying causes of sleep
deprivation. Sleep studies are typically conducted in
specialized sleep laboratories, where participants are
equipped with various instruments, often referred to as PSG
(polysomnography), to measure brain activity, eye
movement, heart rate, breathing pattern, etc. During sleep
tests, participants are required to rest comfortably in a
controlled sleep laboratory, albeit with perhaps more than a
dozen sensors physically attached to their bodies to facilitate
comprehensive data acquisition. The collected data requires
expertise of trained professionals to analyze.
In addition to physiological measurements in PSG, sleep
movement/posture/behaviour is one of the important

Ye-Jiao Mao, Derek Ka-Hei Lai, Andy Chi-Ho Chan, and Duo Wai-
Chi Wong are with the Department of Biomedical Engineering, Faculty
of Engineering, The Hong Kong Polytechnic University, Hong Kong
999077, China (yejiao.mao@connect.polyu.hk;
derekkh.lai@connect.polyu.hk;  andy-chi-ho.chan@connect.polyu.hk;
duo.wong@polyu.edu.hk).

Daphne Sze Ki Cheung is with the School of Nursing, The Hong Kong
Polytechnic University, Hong Kong 999077, China, and Research
Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong
Kong 999077, China (daphne.cheung@polyu.edu.hk).

William Kearns is with the College of Behavioral and Community
Sciences, Department of Child and Family Studies, University of South
Florida, Tampa, FL 33612, USA (kearns@usf.edu).

The source code and depth image dataset are publicly available at
https://github.com/bmeailabhkpu/SaccpaNet [available upon publish].

Digital Object Identifier [DOI



This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3432195

assessments in sleep test. Common sleep-related movement
disorders include sleep bruxism and restless leg syndrome,
while individuals with parasomnia might exhibit aberrant
sleep behaviours, such as sleepwalking, sleep-talking,
nightmares, partial awakening and paralysis. One of the most
prevalent sleep problems is insomnia; more than one-fifth of
the general population may suffer from insomnia [2].
Insomnia is associated with poor sleep quality and poor
sleeping posture. A good sleep posture could maintain the
spine at a physiological curvature and enable muscle and soft
tissue to relax and recover [3]. In contrast poor sleeping
position/posture may lead to sleep-related musculoskeletal
disorders or exacerbate existing neck, back, and joint pain
[3]. Monitoring sleep posture and behaviour can also be used
for non-medical purposes. For instance, it could be used for
evaluating the ergonomics of sleep environments and
mattresses [3], providing boundary conditions to simulate
sleep and sleep disorders [4], as well as for surveillance of
nighttime wandering behaviour of older adults [5, 6].

Nevertheless, there are some constraints in the sleep
posture measurements in PSG system. The sleep test in a
sleep laboratory itself could impact the sleep “performance”
[7]. Sleeping in a new environment may create the “first
night effect” that diminishes deep sleep and makes it difficult
to fall asleep, and unfamiliar beddings (mattress and pillow)
might cause people to adopt unusual sleep postures, positions
and result in more turns and restlessness [7]. Traditionally,
the sleep postures and behaviours are taped by video cameras
overnight and manually examined. The process is labour-
intensive, requires preparation time, and may violate privacy
considerations. Intervening blankets or quilts in the dark
environment can also affect the accuracy of the analysis.
Some studies switched to the use of wearable devices with
accelerometers (i.e., actigraphy) [8, 9]. However, they cause
uncomfortable sleep, affect sleep quality, and introduce
compliance problems, especially for older adults and those
with related behavioural issues [10, 11].

We aim to develop a depth-camera based system with
deep learning models to classify sleep postures as our first
milestone. The novelty of this study lies in the development
of a deep learning model, named as SaccpaNet (Separatable
Atrous Convolution-based Cascade Pyramid Attention
Network), that could classify sleep postures under a blanket.
The core of SaccpaNet is a module for identifying
musculoskeletal joints and segments based on a cascading
pyramid attention unit for sleep posture classification. The
unit could also be applied as the backbone in the subsequent
classification stage.

In summary, the main contribution of this study is the
development of SaccpaNet, which utilizes the concept of
receptive field to enhance the accuracy of sleep posture
classification. This is a significant advancement, as existing
studies often overlook the influence of blankets or only
consider a single blanket thickness. It is important to note
that SaccpaNet employs cross-modal training on RGB data
but uses depth images as input, addressing the issue of lights
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being turned off during sleep. Furthermore, we previously
proposed a blanket synthetic technique for data augmentation
to enhance model generalizability. In this study, we
introduce a post-hoc data augmentation robustness test (Ph-
DART) to assess model robustness using a dataset
augmented by participants partially covered by blankets.

Il. RELATED WORK

Non-contact optical sensors, especially depth cameras,
have overtaken sensor-mattresses as the preferred solution.
However, a new issue has arisen with these sensors, as they
can be affected by interference from blankets or quilts, and
its impact is frequently assessed. Using a Kinetc Artec
scanner, Ren, et al. [12] achieved an accuracy of 92.5% in
classifying six sleep postures using Support Vector Machine
(SVM) on scale-invariant feature transform (SIFT) features.
Convolutional Neural Networks (CNN) were among the
most widely used deep learning models for posture
classification using depth cameras, but a drop of accuracy
was also observed from sleepers under blankets [13, 14].
Besides, Li, et al. [10] applied the CNN on streamlined data
from Kinetic depth camera and RGB camera to classify 10
sleep postures and found that the accuracy loss due to blanket
covering was reduced to 3%. To accommodate the blanket
issues, Tam, et al. [15] estimated the anatomical landmarks
using an open-source pose estimator model from non-blanket
conditions and superimposed these landmark coordinates on
the data with blanket for model training. Their techniques
improved the classification accuracy of ECA-Net50 from
87.4% to 92.2%, with less influence by blanket conditions.

Some other machine/deep learning models have been
designed for sleep posture estimations. Yue, et al. [16]
utilized a multilayer fully connected neural network to
analyze a snapshot of multipath features of radiofrequency
signals for predicting sleep postures. Building on the use of
sleep video data, Li, et al. [17] introduced the SleePose-
FRCNN-Net, a deep multitask learning network that
combines a ResNet feature extractor with a Region Proposal
Network. The network is triggered by a motion detector,
identifying a bounding box to classify upper-body and head
poses. Another study employed tensor factorization for
dimensional reduction on infrared images and coupled with
a pre-trained VGG19 network to classify under-blanket sleep
postures [18]. Liu, et al. [19] proposed an innovative infrared
selective image acquisition technique to mitigate the effect
of lighting variation. In addition, they processed the images
with a 2-end histogram of oriented gradient rectification to
extract features accurately from participant locations. To
estimate postures, they fine-tuned a multi-stage CNN
structure using three strategies: MANNE-S6, MANNE-AS,
and MANNE-AS-S2C3, each targeting different layers and
stages of the network for optimization. Nevertheless, while
existing studies have tested blanket conditions, they have not
been dedicated to handle the complexity of blanket problems
in deep.
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I1l. MODEL ARCHITECTURE

A. Overview

The overall model framework consists of two parts: the
joint coordinate estimation (JCE) network for feature
extraction and the sleep posture classification (SPC) network
for classification (Fig. 1)
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Fig. 1. Overview of the multimodal transfer learning in the
overall framework.

The JCE network is based on an optimized encoder-
decoder network to predict the positions of body
joint/segment coordinates through depth images. The SPC
network is laid by the convolutional residual network to
classify sleep postures based on the depth images and the
coordinate information estimated by the JCE network.
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Fig. 2. Overview of Model Architecture of SaccpaNet: (a) Joint
Coordinate Estimating (JCE) network; (b) Sleep Posture
Classification (SPC) network; (c) stage unit under JCE; (d) block
unit under stage unit; (e) Saccpa attention unit under block unit; (f)
RSAC (residual separable atrous convolution) unit under Saccpa
attention unit.

We apply a cross-modal knowledge transfer scheme on
JCE (Fig. 1). The JCE is (cross-modally) pretrained with the
RGB data and labelled coordinates of the COCO dataset
[20]. Next, the depth images and the RGB-data-driven
knowledge (i.e., coordinates) of our experiment is paired and
superimposed to train JCE. The RGB-data-driven knowledge
is generated by an existing network (OpenPose) [21] that was
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fed RGB data of our experiment to estimate the body
joint/segment coordinates. In other words, RGB-D data are
required for model pretraining and training but only depth
images are needed for deployment.

B. Joint Coordinate Estimation (JCE) Network

The JCE network takes reference to SegNeXt [22] but has
replaced its channel attention to Saccpa unit (Fig. 2a). The
encoder of JCE enables feature extraction with a pyramid
structure of 4 stages (Fig 2b). Each stage progressively
reduces the resolution by half through passing a sequence of
blocks of equal number of channels (Fig. 2c). Each block
consists of a patch embedding unit, an attention unit (Saccpa
unit), and operations resembling the residual bottleneck layer
(Fig. 2d). The data patches are encoded with overlapping
bits. Each data patch of N x N pixels are transformed into a
vector of size 1 x N2. The patch embedding is controlled by
the kernel size (K), stride between two adjacent patches (S),
and padding size (P). We assigned K=3,S=2,andP =1
for the 1% stage; K = 8, S = 4, P = 3 for the 2" stage [22].

As shown in Fig. 2d, the embedded patch vectors
subsequently undergo residual batch normalization attention,
which involves batch normalization and attention (through
Saccpa unit). Next, the residual batch normalization
convolution is performed, which involves batch
normalization, a 1x1 input channel convolution, a 3x3 depth
separated convolution, a GELU activation function, and
finally a 1x1 output channel convolution layer. This
arrangement of residual batch normalization convolution
configuration resembles the bottleneck layer of ResNet [23].
Lastly, the patch merging process reverse-transforms the
data to patches of N x N pixels.

The Saccpa unit contains a pyramidal structure of
residual separable atrous convolution (RSAC) units, average
pooling, and bilinear upscaling (Fig. 2e), which seek to
extend the receptive field for generating long range
relationships while maintaining resolution size. The output is
then concatenated, followed by a 1x1 convolution for
channel reduction.

There are four convolution processes in the RSAC units
in the Saccpa unit (Fig. 2f). Fig. 3 explains the structure and
operation of the convolution process. Both data input and
kernels could be viewed as a structure with heights, width,
and channel (H xWx M). Depthwise (with spatial separation)
convolutions on height and width kernels, followed by a
pointwise convolution, are implemented on the kernel,
illustrated in equation (3) [24]. Atrous convolutions are
poised on the spatial and depthwise convolutions at different
dilation rates (Dr =1, 2, 5, 7) and are summed (Fig. 2f). The
computed attention weights of the Saccpa unit are element-
wise multiplied with the input, equation (1) and equation (2).
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Fig. 3. Schematic diagram illustrating the convolution processes within the Residual Separable Atrous Convolution (RSAC) unit.

w = SACCPA(BatchNorm(x)) 1)
Vij = Xij * Wij 2
n i+p  j+p
L]n=z Z Z MdemKdlmKlem B
=1 -pe=1-p
®)

Here, x donotes the embedded patch vectors to the
attention module, y donotes the attended output, w denotes
the attention weights which indicates the importance of each
feature, x;; , y;;, w;; denotes the value of x, y, w
respectively. O is the output feature of the separable atrous
convolution with spatial indices height (i), width (j), and
channel (n). M is the input feature with spatial indices height
(d), width (e), and channel (m). K is the kernel while P is the
pointwise convolution with padding p.

The attended output is passed to the residual bottleneck
layers, followed by patch merging. The patch embedding,
attention unit, residual bottleneck layers and patch merging
forms a block, and blocks are cascaded to form stages.

At the end, after the iteration of the process in the four
stages, the 2", 3™ and 4" stages of the encoder is
concatenated and fed to the decoder (Fig. 2a). The 1% layer is
excluded, as too much low-level features may reduce model
performance. The Hamburger decoder [25] is adopted, which
consists of upper and lower bread layers of linear
transformation sandwiching a ham layer of matrix
decomposition. It could factorize the learnt representation
into sub-matrices in order to retrieve the low-rank signal
subspace with clean data [25]. The drop rate of the
Hamburger decoder is set to 0.1. the output of the decoder is
arranged in form of a two-dimensional heatmap that
represents the probability distribution of each body
joint/segment coordinates on each pixel. The predicted
coordinates for each body joint/segment point (coordinate)
are established by the Soft-Argmax operation on the
heatmap.

C. Sleep Posture Classification (SPC) Network
The SPC consists of a backbone, followed by a
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classification head, as shown in Fig. 2b. In this study, we
evaluated different kinds of networks (and number of layers)
as backbone, including ResNet (layer = 34, 50, 101, 152),
ECANet (layer = 34, 50, 101, 152), EfficientNet (scaling =
B0, B2, B4, B7), and ViT (model/patch size = B/16, B/32,
L/16, L/32). In addition, we introduced another backbone
that employs channel attention with the Saccpa unit (Fig. 2e)
in the convolution network (layer = 34, 50, 101, 152). We
dubbed it as CNN-Saccpa to better distinguish it from the
overall network (SaccpaNet).

The outputs from the backbone are incorporated with the
predicted segment/joint coordinates from JCE in the FCN
layer of the classification head, followed by a GELU
activation, and two FCN layers to finalize the seven-posture
classification (Fig. 2b). Besides, we have utilized
ResNet152-SVM  (without JCE) as the baseline for
comparison. ResNet152 is pretrained using ImageNet1K and
trained to produce a feature of 2048 dimensions from depth
images. Subsequently, SVM is employed as a classifier.

IV. KNOWLEDGE TRANSFER, HYPERPARAMETER TUNING,
AND PRETRAINING

A. Cross-modal Knowledge Transfer

Cross-modal knowledge transfer is facilitated by
OpenPose, which is a real-time multi-person human pose
detection library [21]. It uses a part affinity field to estimate
the degree of association of human parts [21]. It can estimate
(output) coordinates of 18 anatomical landmarks, including
hand, foot, facial, etc., from RGB image data [21]. The
annotation of the body joint/segment coordinates is then
superimposed and transferred to the corresponding depth
image data with and without blankets, since the participants
maintained the same posture under different blanket
conditions. The depth image data with labelled coordinates
are used to train JCE.

B. Hyperparameter Tuning

Hyperparameter tuning of the model architecture has
been performed on JCE based on an existing network search
space design [26]. Its input are depth images, whilst the
ground truth (coordinates) is transferred from RGB data
through OpenPose (Fig. 1). The total number of blocks (i.e.,
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depth) of a particular stage i, is denoted as d;, and the total
number of blocks for all stages is denoted as d = ¥, d;.
The width of the j block (0 < j < d), ujis presented as a
linear parameterization of initial width, wo > 0 and the
coefficient, wa > 0 in the equation (4). u; is then quantized
into per-block width, w; in equation (5) by computing a width
multiplier, wy > 0 and |s;| for each block j.

Sj

U = Wy +Wg *j = wy - w,, 4
<
w; = W -ern’] (5)

To re-format the equation per-lock level, each stage i has
a block width, w; = w, - w),, and number of blocks,

d; = %;1]|s;| = i], where “1” is an indicator function that
takes one when the condition is met.

Since the output of JCE are the estimated coordinates of
the body joint/segment positions, the evaluation is based on
the accuracy measure, percentage of correct key-points
transfer (PCK) with a tolerance factor 6, as shown in
equation (6). It measures the percentage of predicted
coordinates with an offset distances less than the tolerance
factor, which is the percentage length of the diagonal of the
bounding box of the full pose estimation region. The
tolerance factor @is often set to 0.1 [4].

k:1{[6)-G)

n
k=1k

< 9 " dBB]
PCK(0) = 2

(6)
where dgs denotes diagonal distance of bounding box and
the double stroke denotes Euclidean distance.

Random search has been conducted over the combinations
of d, wo, Wa, and wp. In total, there are 4 to 14 million of
hyperparameters in the sample space. Table | represents the
space for the random search. The model was run for 300
epochs with a batch size of 16 using the Adam optimizer with
a learning rate of 5e™°.

TABLE |
SEARCH SPACE AND RESULTS OF HYPERPARAMETER TUNING
Parameter Range  Interval Sampling Tuned
Distribution Results
d 12-28 1 Uniform 17
Wo 8 -256 8 Log Uniform 8
Wa 8 -256 0.1 Log Uniform 12.8
Wi 2-3 0.001 Log Uniform 2.942

From the results of random search, we found that the
precision accuracy was unlikely to be associated with the
change of d and wo. Therefore, we further conducted a grid
search on the other parameters, w, and wy, at a higher
precision, while keeping d = 17 and wo = 8. The former (ws,)
was searched from 12.6 to 13.0 at an interval of 0.1, while
the latter (wm) was searched from 2.9 to 3.0 at an interval of
0.02. The grid search used the same number of epoch and
batch size as that of the random search. The tuned
hyperparameters were shown in Table 1. It yielded a
PCK@0.1 value of 0.6616 on the validation set.
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C. Cross-modal Pretraining

A cross-model pretraining strategy is applied to pretrain
our model (JCE) with RGB data and then trains it on depth
image data based on the assumption that they have
semantically comparable encoded representations. The
pretraining is facilitated by the COCO-whole body dataset
(COCO) [27]. COCO-whole body is a big dataset of 200k
images with 250k person instances. It consists of in-the-wild
RGB images of the whole human body labelled with 133 key
body joint and segment landmarks.

From the 133 joints, we have extract 18 of them, which
aligns with that of OpenPose (detailed in Section 1V-C). We
have converted the RGB images of the datasets to greyscale
to discard the color information that is also unavailable for
depth images. Images are downsized to 192 x 256 pixels.

Data augmentation is conducted to the dataset during the
pretraining, which included horizontal random flips, random
half body operations, random bounding box transformations
(position, rotation, and scale), and affine transformations.

A separate decoder head is applied on the dataset using the
MMPose’s implementation of simple deconvolution head
[28] that could produce a heatmap data of size 48 x 64 pixels
with a Gaussian variance (o) of 2 pixels. The pretraining is
conducted using Pytorch 1.11.0 and the MMPose library.
The process is facilitated by an Adam optimizer. A total of
210 epochs of batch size 32 is trained using an initial learning
rate of 3.125e for the first 170 epochs, a 10-fold decay for
the following 30 epochs, and a further 10-fold decay for the
final 10 epochs.

V. MODEL TRAINING AND EVALUATION

A. Experimental Protocol and Data Collection

We recruited 150 healthy participants with a fair
distribution of age (mean: 40.6, SD: 21.0, range: 17 — 77) and
gender (77 males and 73 females) for data collection. Their
mean height and body weight were 165.6 cm (SD: 9.41 cm)
and 60.9 kg (SD: 11.53 kg), respectively. Participants were
excluded if they reported severe sleep deprivation, sleep
disorder, pain, or musculoskeletal problems. The experiment
and protocol were approved by the Institutional Review
Board (reference number: HSEARS20210127007). All
participants signed an informed consent after receiving oral
and written descriptions of experimental procedures before
the start of experiment.

RGB-D data were collected by an active infrared stereo
technology depth camera (Realsense D435i, Intel Corp.,
Santa Clara, CA, United States) that incorporated with an
auxiliary visible light RGB camera and an inertia
measurement unit (IMU). The IMU was not utilized in this
study. The resolution of the camera was 848 x 480 pixels
with a sampling frequency of 6 fps and installed 1.6 m above
a standard hospital bed of 55 cm tall.

The participants were instructed to lie in seven sleep
(recumbent) postures in the following orders: (1) supine, (2)
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Fig. 5. Demonstration of experimental protocol of seven postures over four blanket conditions with: (a) optical camera; (b) depth camera overlaid
with JCE results; (c) demonstration of overlaid flip cut to synthesize partial blanket coverings for data augmentation.

prone with head turned left, (3) prone with head turned right,
(4) log left, (5) log right, (6) fetal left, and (7) fetal right (Fig.
5) and were manually labelled in the dataset. The prone
postures were the same except the head direction (Fig. 5a).
For each posture, we imposed four blanket conditions by
covering blankets over the participants (except head) with
blankets of varying thicknesses (thick, medium, thin, and
none) in sequence. The participants remained stationary
when our researchers covered them with different blankets.
All blankets were sourced from IKEA (Delft, Netherlands),
which were, respectively, Fjallarnika extra warm duvet (8
cm thick), Saffero light warm duvet (2 cm thick), and
Vallkrassing duvet (0.4 cm thick). Participants were given
time to adjust their self-selected most comfortable position
for each posture before data collection. Sleep postures and
blanket conditions were labelled manually.

B. Model Training

There were 28 paired sets (4 blanket conditions x 7 sleep
postures) of streamed RGB-D data for each participant,
resulting in a total of 4,200 RGB-D pairs of images. The
model training-testing-validation ratio was 64:20:16. The
validation set was applied for hyperparameter tuning, as
described in the previous sections.

The cross-model pretrained learned weights by the COCO
dataset were transferred to our model (JCE). Our training set
depth data were used to fine-tune (train) the JCE model with
transferred ground truth coordinates of RGB data (Fig. 1).
The depth data and JCE model output of the training set were
input to SPC for training and used the manually labelled
posture as ground truth (Fig. 1). Only depth data of the
testing set were utilized for prediction in model testing of the
SaccpaNet but not the RGB data. Besides, to evaluate the
performance of the JCE network alone, we retrieved the
estimated joint coordinate data of JCE by the depth data of
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the testing set and compared them to the coordinates
transferred from RGB testing set data through OpenPose.

Model training was implemented using the PyTorch Deep
Learning Framework. The model training was conducted
using Pytorch 2.0.1 with a batch size of 8 and a total of 600
epochs. Data augmentations with affine transformation, in
addition to an intraclass mix-up algorithm for blanket
synthesis [14] were proceeded at batch level during the
model training. This process generated more blanket
conditions (thicknesses) based on the available datasets of
three blanket thicknesses to improve the generalizability of
the model. Cross entropy loss was used as the objective
function. Adam optimizer was set at a learning rate of
0.000025, L2 regularization of 0.00000025. Fig. 4 shows the
loss curve of the training and testing dataset.
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Fig. 4. An illustration of loss curve of SaccpaNet152 on the training
(orange) and testing (blue) dataset.

C. Ablation Study

A unit-by-unit ablation study was conducted to evaluate
the functions and effects of individual units in the Saccpa
module. Model training and testing tasks were carried out by
removing different levels of the model, including
convolutions inside RSAC unit (Fig. 2f), RSAC units inside
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Saccpa attention unit (Fig. 2e), and blocks inside stages (Fig.
2a and 2c). For ablation study on convolutions inside RSAC
unit, we evaluated the removal of the last 1, 2, and 3,
separable atrous convolution operations. For that on RSAC
unit inside Saccpa attention unit, we evaluated the removal
of last 1, 2, and 3 (all) RSAC units. Regarding the blocks
within the stages, we evaluated six combinations, each with
different number of blocks at different stages, while
maintaining the pyramid structure. F1-scores were calculated
for the ablation study using the validation subset.

D. Post-hoc Data Augmentation Robustness Test
(PhD-ART)

In addition to using data augmentation to synthesize
blanket conditions, we proposed and developed another
augmented dataset to simulate scenarios where blankets were
partially covering the body. Images of different blankets and
without blankets were captured at the same position for each
individual. Therefore, the blanket itself was extracted as a
separate layer and can overlaid on the condition without a
blanket. Subsequently, this blanket layer was then randomly
cut in half, both vertically and horizontally, before being
placed on the participants’ images (Fig. 5¢). We refer to this
as the overlaid flip-cut technique.

The augmented dataset served as an external testing set to
evaluate the robustness of the model that we named it as
PhD-ART. For each posture and blanket condition, four
pieces of augmented data were generated. F1-score and
PCK@0.1 of the external testing was compared to that of
model testing.

VI. RESULTS

Table 11 presents the network sizes of various models with
different backbones plus JCE, JCE alone, and the baseline
model (ResNet152-SVM) without JCE. For the JCE model
alone, the size of the multiply-accumulate operation (MAC)
and the trainable parameters were 11.0B and 8.53M,
respectively. The most lightweight network was the
EfficientBO model integrated with JCE, while the heaviest
network was our proposed CNN-Saccpal52 model, also
incorporating JCE. The table further illustrates the scalability
of the CNN-Saccpa model. As the number of layers increases,
the performance of the CNN-Saccpa model improves, a
feature not observed in other models.

For JCE, the precision accuracy of joint coordinates on the
testing set, in terms of PCK@0.1 value, was 0.6518. In other
words, more than 65% of the (anatomical landmarks) joint
coordinates were correctly predicted within 10% diagonal
distance of the bounding box. The results of PCK are also
illustrated and visualized in Fig. 5b.

Table 111 presents the F1-scores and one-vs-all AUC (area
under the receiver-operating characteristic curve) for various
postures and blanket conditions when different deep learning
models were employed as the backbone of SPC. Fig. 6 shows
the ROC curves, in which all of them demonstrated good to
excellent discriminative power with AUC > 0.9 (Table I1).

On the other hand, the baseline model’s performance was
substantially lower than that of the other models. Notable
misclassifications were observed between the log and fetal
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postures, as well as among prone postures, which may
indicate a failure to identify subtle changes in posture. A
slight improvement was observed (F1 0.5435) when we
consolidated the classes into left/right and prone postures.
However, the performance was still not up to the mark.

Fine-grained analyses on sleep postures and blanket
conditions were conducted on the best-performing model
(i.e., backbone using CNN-Saccpal52), as shown in the
confusion matrices in Fig. 7 and the radial barcharts in Fig.
8. The subgroup classification performance of SaccpaNet
using CNN-Saccpal52 as backbone on sleep postures is
shown in Table Ill, in addition to the F1-scores across
different postures and blanket conditions.

TABLE Il
MODEL SIZE AND PERFORMANCE OF MODELS WITH DIFFERENCE
BACKBONE

Network #MACs #Params F1 AUC
JCE only 11.0B 8.53M - -
*Baseline without JCE - - 04115  0.8560
EfficientNetBO+JCE 11.4B 14.1M 0.8561 0.9721
EfficientNetB2+JCE 11.7B 17.9M 0.8611 0.9752
EfficientNetB4+JCE 12.5B 28.1M 0.8602 0.9756
EfficientNetB7+JCE 16.2B 75.1M 0.8406  0.9737
ECANet34+JCE 14.6B 30.60M 0.8541 09734
ECANet50+JCE 15.1B 34.4M 0.8551 0.9722
ECANet101+JCE 18.7B 53.3M 0.8200 0.9637
ECANet152+JCE 22.4B 69.0M 0.8388  0.9655
ResNet34+JCE 14.6B 30.6M 0.8734  0.9760
ResNet50+JCE 15.1B 34.4M 0.8442  0.9728
ResNet101+JCE 18.7B 53.3M 0.8431 0.9722
ResNet152+JCE 22.4B 69.0M 0.8499  0.9755
ViT-B/16+JCE 22.3B 66.9M 0.8190  0.9683
ViT-B/32+JCE 14.0B 68.6M 0.8464  0.9801
ViT-L/16+JCE 50.9B 212M 0.8419 0.9782
ViT-L/32+JCE 21.2B 214M 0.8521  0.9824
CNN-Saccpa34+JCE 15.7B 37.3M 0.8221  0.9535
CNN-Saccpa50+JCE 31.3B 136M 0.8346  0.9590
CNN-Saccpal 01+JCE 52.2B 246M 0.8718  0.9829

CNN-Saccpal52+JCE 73.1B 33’M 0.8849  0.9833

AUC: Area under receiver-operating characteristic curve; MAC: multiply-
accumulate operation; Params: trainable parameters.
*Baseline refers to ResNet152-SVM.

The accuracy (F1-score) of CNN-Saccpal52 in predicting
supine, log, and fetal postures ranged from 0.897 to 0.970.
However, the system network had a poor F1-score for prone
postures (0.753 to 0.756), as shown in Table I1l. Therefore,
we attempted to conduct another test that reduced the
classification to prone position exclusively (i.e., 6 classes).
In this case, the F1-score increased from 0.8849 (7-class
average) to 0.9399 (6-class weighted average). The F1-score
for predicting prone postures rose to 0.9301 (Table III).

Thick blankets influenced the accuracy of the posture
prediction. The F1-scores were the lowest among all blanket
conditions and were 0.8616 and 0.9282, respectively for the
7-class average and 6-class weighted average (Table I11).

Notably, thin blanket conditions showed the best results
and performed better than no blanket. The F1-scores were
0.9083 and 0.9534, respectively for the 7-class average and
6-class weighted average (Table 111). Moreover, the network
demonstrated resilience against blanket conditions. The
spread difference of F1-score between blanket conditions
was small (Fig. 7), 0.047 and 0.025, respectively for the 7-
class average and 6-class weighted average.
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TABLE llI

PERFORMANCE OF SACCPA152 UNDER DIFFERENT POSTURES AND BLANKET CONDITIONS.

Posture class F1-scores of different blanket conditions Overall blanket conditions
Null Thin Medium Thick F1-score Precision Recall
7-class average* 0.8812 0.9083 0.8881 0.8616 0.8849 0.8881 0.8869
6-class weighted average 0.9388 0.9534 0.9387 0.9282 0.9399 0.9450 0.9393
Supine 0.9474 1.0000 0.9677 0.8889 0.9504 0.9426 0.9583
Right log 0.9091 0.8955 0.8788 0.9062 0.8973 0.8252 0.9833
Left log 0.9231 0.9524 0.9524 0.9677 0.9486 0.9023 1.0000
Right fetal 0.9286 0.9655 0.9655 0.9492 0.9524 0.9910 0.9167
Left fetal 0.9474 0.9655 0.9655 1.0000 0.9700 1.0000 0.9417
Prone (head left & right) 0.958 0.9474 0.9204 0.8929 0.9301 0.9771 0.8875
Prone (head left) 0.7541 0.7857 0.7451 0.6538 0.7364 0.8100 0.6750
Prone (head right) 0.7586 0.7931 0.7419 0.6667 0.7395 0.7458 0.7333
*Seven classes considered both prone postures with head left and right.
TABLE IV

The ablation study revealed that the original model, when
tested with the validation subset, exhibited the best
performance (Table IV). Eliminating the separable atrous
convolution operations and the Saccpa attention unit resulted
in a decrease in the model’s performance. Furthermore, the
attenuation of the blocks within the stages could potentially
have an even more significant impact, which decreased the
F1-score from 0.7706 to a minimum of 0.7203.

Our robustness test via PhD-ART showed that PCK@0.1
was slightly decreased from 0.6518 to 0.6378 and the F1-
score was also slightly decreased from 0.8879 to 0.8476.
This demonstrated that the model was robust against
adversarial conditions (i.e., conditions where blanket is
partially covering).
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Fig. 6. Receiver-operating characteristics (ROC) curve of: (a) CNN-
Saccpa; (b) ResNet; (c) ECANet; (d) ViT; and (e) EfficientNet.
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RESULTS OF ABLATION STUDY ON VALIDATION SUBSET

Ablation Item Removed F1
Level

Original N/A 0.7706
Last SAC 0.7550
RSAC Last 2 SAC 0.7502
Last 3SAC 0.7560
Saccpa Last RSAC 0.7588
Attention Last 2 RSAC 0.7502
Last 3 RSAC 0.7560
1 block at stage 3 0.7501
Stages at 2 blocks at stage 3 0.7309
Blocks 2 blocks at stage 3 & 1 block at stage 4 0.7203
2 blocks at stage 3 & 2 block at stage 4 0.7370
2 blocks at stage 3 & 3 block at stage 4 0.7333

SAC: separable atrous convolution

VII. DISCUSSION

In this study, we proposed the SaccpaNet that aimed at
enhancing context modelling by expanding the receptive
field (i.e., input space) of attention units. We demonstrated
that SaccpaNet can be employed as the core for joint
coordinate estimation via cross-modal training and as the
backbone for sleep posture classification. The key innovation
of this network is to integrate different model architecture
characteristics, including cascade pyramid network,
separable convolution, and atrous convolution, as the
attention module, which may ultimately broaden the
receptive field at a relatively low computational cost. In
addition, our work might represent one of the first datasets (n
> 100) of depth camera images of different sleep postures.

A larger receptive field could enable the investigation of
long-range spatial dependencies, which relate to the spatial
relationship between two “points” far apart from each other
in the input space. A previous study showed that the accuracy
of posture estimation increased when long-range spatial
dependencies and a larger receptive field were considered.
Previous literature modelled contextual information based on
global information by patching [29-31], pooling strategy
[32-34], or increasing kernel size for convolutional
attentions [22, 35]. Nevertheless, pooling strategies (e.g.,
global pooling) resulted in a loss of information, while the
kernel size was usually pre-assigned and not adaptive to the
input resolution. The attention mechanism is an adaptive
selection process based on the input features [35], and our
proposed attention mechanism was developed by the
integration  of the  aforementioned  architecture
characteristics.
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We combined channel-wise separable convolution and
spatial sparable convolution to reduce computational cost
[36-38]. Compared to conventional convolution, our
approach could reduce the number of parameters from C? K2
to 2C2K H, and the number of flops from C?>K?H W to (C? +
2K) HW.

Atrous operation also enlarges the receptive field through
inserting gaps between filter values to capture long-range
dependencies without increasing the number of parameters
[39]. With atrous operation, the size of the receptive field
would grow exponentially as additional layers were stacked
[40]. The gap distances of 1, 2, 5, and 7 were chosen because
they were coprime numbers and helped reduce the gridding
effect [41]. The resulting unit (RSAC) of our model covered
a receptive field of 157 pixels, which is larger than that of the
Large Kernel Attention (13 pixels) [35]. At last, the RSAC
units were stacked in a multistage architecture design (a
cascade pyramid network) [42] to incorporate contextual
information under different scales.

With respect to the JCE performance, our hyperparameter
tunning approach headed for a relatively lightweight model
for joint coordinate estimation. The tuned model was
subsequently pretrained by the COCO datasets. We achieved
an overall PCK@0.1 of 0.652 after model training by our
own dataset. Comparing to other recent models, ViTPose+-
H has a PCK@0.1 of 0.759 [31], while that of a fine-tuned
convolutional pose machine achieved a PCK@0.1 of

approximately 0.62 (by observation of the result Figure) [19].

Considering the different in input modalities and blankets not
fully accounted in other studies, we believed that our model
performed well. The contribution of JCE on the classification
performance was also illustrated in the unit-by-unit ablation
study. The performance was the best when none of the units
were removed. Table V presents a comparison of similar
models employing Joint Coordinate Estimation (JCE).
Utilizing the same classifier architecture for a fair
comparison, our model exhibits a 4.8% reduction in
performance relative to the one incorporating OpenPose for
JCE. However, it is important to note that the latter requires
both RGB and depth images for input, whereas our model
operates solely on depth images. Moreover, our model’s
performance is on par with those not utilizing joint
estimation. Significantly, our approach offers the advantage
of providing supplementary information, such as limb
placement, which can facilitate subsequent analysis.
Variations in performance are expected due to differences in
data inputs and model configurations.

TABLE V
COMPARISON OF MODEL PERFORMANCE (F1-SCORE) FOR SLEEP
POSTURE CLASSIFICATION WITH JOINT ESTIMATION.
Study Testing Joint Classifier Backbone
dataset Estimation Effici ResN  ECA-
entNe et50 Net50

tB4
This study D JCE 0.860 0.844  0.885
[15] RGB+D OpenPose 0908 0913 0.922
[15] D No 0.873 0.836 0.874

D: depth images; RGB: red-green-blue images.
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With regards to the posture classification performance, our
best-performing model, Saccpal52 produced an overall F1-
score of 0.8849. From the confusion matrix, we found that
the model might not easily classify prone postures with head
turning left and right. If we did not subclassify prone
postures, the accuracy could be increased to 0.9301 F1-score,
and the overall weighed-averaged F1-score could reach
0.938. On the other hand, we also demonstrated that our best-
performing model was resilient against blanket conditions
with the spread distance of F1-score of 2.5% in classifying 6
postures and 4.7% in classifying 7 postures. Interestingly, we
also found that the classification performance for thin
blanket was better than that of no blanket. The depth camera
might not have the resolution to capture the abrupt depth
differences between the boundaries of the body surface and
the bed level. The thin blanket smoothed the spatial/depth
discrepancies of the physical form and enhanced the data
continuity. Besides, the improved performance under a thick
blanket for particular postures (e.g., left log and fetal), as
opposed to thinner blankets, may be attributed to the
regularization-like effect. The thick blanket could serve as
structural noise to prevent the model from overfitting the
finer details of the body surface that are more variable and
less discriminative for classification. The model then can
focus on more primary patterns that are crucial for
distinguishing postures.

In the field of machine learning, generalizability is the
model’s ability to maintain performance on new, unseen data,
while robustness pertains to the model’s stability against
noisy or adversarial inputs. Data augmentation bolsters both
robustness and generalizability. However, traditional
methods using affine transformations may fall short in
complex scenarios, such as varying blanket thicknesses. To
this end, we have proposed two innovative data
augmentation processes to this specific challenge. The first,
an intra-class mix-up technique, was developed to synthesize
a wider array of blanket data by blending images with
different blanket thicknesses from the original dataset,
thereby enhancing the model’s generalizability to unfamiliar
blanket conditions and reducing the risk of overfitting. The
second, PhD-ART introduces the overlaid flip-cut technique.
This approach generates scenarios where the subject is
partially obscured by a blanket, thereby evaluating the
model’s resilience to such adversarial conditions. This serves
as a robustness assessment for real-world applications.

The scalability of our model was demonstrated by a
consistent enhancement in performance as additional layers
are integrated. Our model might effectively utilize
hierarchical features, which become increasingly abstract
and informative with each added layer. Moreover, our model
appears to be particularly well-adapted to the domain of
under-blanket sleep posture classification, where nuanced
features are more discernible at greater depths. In contrast,
backbone models like ResNet experienced a decline in
performance with added depth. This could be attributed to
issues such as overfitting or the vanishing gradient problem,
where the extra layers do not necessarily contribute to
learning more useful representations.
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Fig. 7. Confusion matrices of sleep posture predictions of different blanket conditions: (a) overall; (b) no blanket;(c) thin; and (d) medium; (e) thick.
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Fig. 8. Radial barcharts comparing classification performance between different blanket conditions overall and on each posture.

There were some limitations in this study. As stated
previously, the classification accuracy of prone postures with
head facing left and right was poor. This might be because
prone postures hindered crucial facial features and the
resolution of the depth camera may not be sensitive enough
to account for the remaining features. Such a limitation could
potentially be alleviated by incorporating handcrafted
features, i.e. the kinematics of shoulders. Second, our model
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was restricted to detecting discrete events (i.e., static
postures). A full deployable system shall be built in order to
account for timeliness data and prediction (full sleeping
duration) as well as posture changes (toss and turn),
intermediate postures, and other on-bed behaviors and bed-
exiting events [5, 6]. Future studies may consider
background removal of the dataset and data augmentation
using Generative Adversarial Network (GAN) or Generative
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Artificial Intelligence (Al) to generate different mattress and
blanket features to improve the robustness of the model.
Besides, the attention mechanism can function as a tracking
tool for other modalities, such as radar [43, 44] and
microphone [45]. This enables these instruments to focus on
their point of interest, such as apnea sounds, respiratory
movements of the chest, and restless limb activities. This
study lays foundation for comprehensive exploration of sleep
quality studies and could potentially provide an alternative
approach to conventional polysomnography.

VIII. CONCLUSION

We developed a novel model architecture, SaccpaNet, that
included an attention network to expand receptive field at a
relatively low computational cost. Even with the interference
of blankets, SaccpaNet showed a rather high degree of
precision in finding points of interest (PCK@0.1 = 0.6518).
In addition, the classification accuracy of sleep postures was
outstanding, with an overall F1-score of 0.8881 and 0.945,
for 7-class and 6-class classification, respectively.
Particularly, the overall Fl-score reached 0.954 in thin
blanket conditions.
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