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ABSTRACT

We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data
analysis system that leverages the power of large language models. LAMBDA is designed to address data
analysis challenges in data-driven applications through innovatively designed data agents using natural
language. At the core of LAMBDA are two key agent roles: the programmer and the inspector, which
are engineered to work together seamlessly. Specifically, the programmer generates code based on the
user’s instructions and domain-specific knowledge, while the inspector debugs the code when necessary.
To ensure robustness and handle adverse scenarios, LAMBDA features a user interface that allows direct
user intervention. Moreover, LAMBDA can flexibly integrate external models and algorithms through our
proposed Knowledge Integration Mechanism, catering to the needs of customized data analysis. LAMBDA
has demonstrated strong performance on various data analysis tasks. It has the potential to enhance data
analysis paradigms by seamlessly integrating human and artificial intelligence, making it more accessible,
effective, and efficient for users from diverse backgrounds. The strong performance of LAMBDA in solving
data analysis problems is demonstrated using real-world data examples. The code for LAMBDA is available
at https://github.com/AMA-CMFAI/LAMBDA and videos of three case studies can be viewed at https://
www.polyu.edu.hk/ama/cmfai/lambda.html. Supplementary materials for this article are available online,
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1. Introduction

Over the past decade, the data-driven approach utilizing deep
neural networks has driven the success of artificial intelligence
across many challenging applications in various fields (LeCun,
Bengio, and Hinton 2015). Despite these advancements, the
current paradigm encounters challenges and limitations in sta-
tistical and data science applications, particularly in domains
such as biology (Weissgerber et al. 2016), healthcare (Oakes,
Famelis, and Sahraoui 2024), and business (Weihs and Ickstadt
2018), which require extensive expertise and advanced coding
knowledge for data analysis. A significant barrier is the lack of
effective communication channels between domain experts and
sophisticated AI models (Park et al. 2021). To address this issue,
we introduce a Large Model Based Data Agent (LAMBDA),
which is a new open-source, code-free multi-agent data analysis
system designed to overcome this dilemma. LAMBDA aims to
create a much-needed medium, fostering seamless interaction
between domain knowledge and the capabilities of Al in statis-
tics and data science.

Our main objectives in developing LAMBDA are as follows.

(a) Crossing coding barrier: Coding has long been recognized
as a significant barrier for domain experts without a background
in statistics or computer science, preventing them from effec-
tively leveraging powerful AI tools for data analysis (Oakes,
Famelis, and Sahraoui 2024). LAMBDA addresses this challenge

by enabling users to interact with data agents through natural
language instructions, thereby offering a coding-free experience.
This approach significantly lowers the barriers to entry for tasks
in data science, such as data analysis and data mining, while
simultaneously enhancing efficiency and making these tasks
more accessible to professionals across various disciplines.

(b) Integrating human intelligence and AI: The existing
paradigm of data analysis is confronted with a challenge due
to the lack of an efficient intermediary that connects human
intelligence with artificial intelligence (Park et al. 2021). On one
hand, AI models often lack an understanding of the unlearned
domain knowledge required for specific tasks. On the other
hand, domain experts find it challenging to integrate their
expertise into AI models to enhance their performance (Dash
et al. 2022). LAMBDA provides a possible solution to alleviate
this problem. With a well-designed interface in our key-value
(KV) knowledge base, the agents can access external resources
like algorithms or models. This integration ensures that domain-
specific knowledge is effectively incorporated, meets the need
for customized data analysis, and enhances the agent’s ability to
perform complex tasks with higher accuracy and relevance.

(c) Reshaping data science education: LAMBDA has the
potential to become an interactive platform that can transform
statistical and data science education. It offers educators the
flexibility to tailor their teaching plans and seamlessly integrate
the latest research findings. This adaptability makes LAMBDA
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an invaluable tool for educators seeking to provide cutting-
edge, personalized learning experiences. Such an approach
stands in contrast to the direct application of models like GPT-4
(OpenAI 2023; Tu et al. 2024), offering a unique and innovative
educational platform.

Beyond these features, the design of LAMBDA also empha-
sizes reliability and portability. Reliability refers to LAMBDA's
ability to handle data analysis tasks stably and automatically
address failures. Portability ensures that LAMBDA is compatible
with various large language models (LLMs), allowing it to be
continuously enhanced by the latest state-of-the-art models. To
save users time on tasks such as document writing, LAMBDA
is equipped with the capability for automatic analysis report
generation. To accommodate diverse user needs, LAMBDA also
supports exporting code to IPython notebook files, such as
“ipynb” files in Jupyter Notebook.

While GPT-4 has demonstrated state-of-the-art performance
in advanced data analysis, its closed-source nature constrains
its adaptability to the rapidly expanding needs of statistical
and data science applications and specialized educational fields.
Furthermore, concerns regarding data privacy and security risks
are inherent in the present configuration of GPT-4 (Bavli et al.
2024). In contrast, by using the open-source LAMBDA, users
can alleviate concerns about data privacy by preventing the
transmission of user data to external servers. Additionally, it
offers greater flexibility and convenience in integrating domain
knowledge, installing packages, and using various computa-
tional resources.

LAMBDA demonstrates exceptional performance across var-
ious datasets used in our system testing. Moreover, it outper-
forms other data agents in handling complex domain tasks
during our experiments. In summary, our main contributions
are as follows: We propose a well-engineered architecture for an
LLM-based data agent that enables natural language-driven data
analysis in a conversational manner. Unlike typical end-to-end
data agents, our design allows human intervention throughout
the process, ensuring adaptability when the agent fails to com-
plete a task or misinterprets user intent. Moreover, we introduce
a Knowledge Integration mechanism to effectively handle tasks
requiring domain-specific knowledge, providing greater flexi-
bility when misalignment occurs in the knowledge. Its ongoing
development has the potential to enhance statistics and data
science, making advanced tools more accessible to diverse users.

This article begins with the background and related works
in Section 2. Section 3 provides a detailed description of the
proposed LAMBDA method. To evaluate its effectiveness, we
present our experiments and results in Section 4. Section 5
demonstrates examples and cases of LAMBDA’ application
in various scenarios, including data analysis, integration of
human intelligence, and interactive education. The article
concludes with a summary in Section 6. More information and
details, including implementation, some discussions, datasets,
case studies, and experimental settings, are provided in the
supplementary materials.

2. Background and Related Works

In recent years, the rapid progress in LLMs like GPT-3, GPT-
4, PaLM, LLaMA, and Qwen (Brown et al. 2020; OpenAlI 2023;

Chowdhery et al. 2022; Touvron et al. 2023; Bai et al. 2023)
has brought boundless possibilities to the field of artificial intel-
ligence and its applications in many fields, including statistics
and data science. Benefiting from this revolution, LLM-powered
agents (LLM agents) are developed to automatically solve prob-
lems in various domains like the search engine, software engi-
neering, gaming, and data science (Hong et al. 2023; Wu et al.
2023; Zhou et al. 2023; Hong et al. 2023; Guo et al. 2024).

2.1. LLMs as Data Analysis Agents

LLM-based data science agent, or data agent, is dedicated to
harnessing the power of LLMs to automate data science and
analysis tasks (Sun et al. 2024). For example, GPT-4-Advanced
Data Analysis and ChatGLM-Data Analysis can analyze user’s
data files, perform computations, and generate visualizations
(OpenAl 2023). Some works integrate LLMs into Jupyter Note-
books. For instance, MLCopilot (Zhang et al. 2023) and Chap-
ter (Chapyter 2023), enable users to interact directly with the
notebook, greatly enhancing flexibility. However, they cannot
automatically fix errors when they occur and require additional
magic commands to support natural language input.

Meanwhile, some researchers focus on designing end-to-
end data agents to automate the entire pipeline, including data
preprocessing and model evaluation, without human interven-
tion. For example, Data Interpreter (Hong et al. 2024) and
TaskWeaver (Qiao et al. 2023) accomplish their tasks through
planning and iterative steps. However, current state-of-the-art
LLM/VLM-based agents do not reliably automate complete data
science workflows (Cao et al. 2024). While fully relying on
LLM:s for each step reduces human effort, it also significantly
increases instability and uncertainty. In addition, if any inter-
mediate step does not align with the user’s intent, the process
must be repeated, potentially leading to token waste. In contrast,
LAMBDA is designed to support a human-agent collaboration
mode, allowing for human intervention at any stage of the
process if necessary.

Furthermore, these works have not adequately addressed the
high degree of user flexibility needed in data analysis, such as the
integration of custom algorithms or statistical models according
to user preferences. This flexibility is crucial for enhancing data
analysis tasks in domain-specific applications and in statisti-
cal and data science education. To address this gap, we have
designed a Knowledge Integration Mechanism that allows for
the easy incorporation of user resources into our agent system.

2.2. Multi-Agent Collaboration

A multi-agent system consists of numerous autonomous
agents that collaboratively engage in planning, discussions,
and decision-making, mirroring the cooperative nature of
human group work in problem-solving tasks (Guo et al. 2024).
Each agent has unique capabilities, objectives, and perceptions,
operating either independently or collectively to tackle complex
tasks or resolve problems (Huang et al. 2023a). Hong et al.
(2023) proposed MetaGPT, modeled after a software company,
consisting of agents such as Product Manager, Architect, Project
Manager, Engineer, and QA Engineer, efficiently breaking down
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Figure 1. Overview of LAMBDA. LAMBDA features two core agents: the “programmer”for code generation and the “inspector” for error evaluation. The programmer writes
and executes code based on user instructions, while the inspector suggests refinements if errors occur. This iterative process continues until the code is error-free or a
maximum number of attempts is reached. A human intervention mechanism allows users to modify and run the code directly when needed.

complex tasks into subtasks involving many agents working
together. However, even for simple tasks like data visualization,
MetaGPT consume a large number of tokens and require more
time. In addition, they generate engineering files that need
manual execution and lack the immediacy and interactivity
essential for intuitive data analysis. In contrast, LAMBDA
simplifies the collaboration process by involving only two
agents to simulates data analysis workflows, programmer and
inspector, respectively, reducing token and time consumption.
Moreover, its well-designed user interface allows users to
intuitively view the analysis results directly on the screen. A
comparison and discussion can be found in the supplement
materials.

2.3. Knowledge Integration

Addressing tasks that require domain-specific knowledge
presents a significant challenge for AI agents (Zhang et al.
2024). Incorporating knowledge into LLMs through in-context
learning (ICL) is a promising strategy for acquiring new
information. A well-known technique in this regard is retrieval-
augmented generation (RAG) (Gao et al. 2023), which enhances
the accuracy and reduces hallucinations of LLM answers by
retrieving external sources (Lewis et al. 2020; Borgeaud et al.
2022; Huang et al. 2023b; Mialon et al. 2023). In RAG, resources
are divided into sub-fragments, embedded into vectors, and
stored in a vector database. The model first queries this database,
identifying document fragments relevant to the user’s query
based on the similarity. These fragments are then utilized to
refine the answers generated by the LLMs through ICL (Lewis
et al. 2020). However, deploying a general RAG approach in
data analysis introduces specific challenges. First, the user’s
instructions may not align closely with the relevant code
fragments in the representation space, resulting in inaccurate
searches. Second, when dealing with extensive code, the agents

might struggle to contextualize the correct code segments, where
accuracy and completeness are essential for codes and final
results.

In addition, custom APIs (Hong et al. 2024) can be
implemented to handle domain-specific tasks (Qiao et al. 2023;
Hong et al. 2024). For example, systems like Data Interpreter and
TaskWeaver invoke the corresponding Tools/Plugins directly
within the generated code. Compared to direct parameter-
passing, this approach offers greater flexibility in tool usage.
However, since the agent cannot access the implementation
details of these plugins, it is limited to simple plugin usage and
may struggle to resolve misalignment between tools and human
instructions when plugin usage is inappropriate.

To address these challenges, we develop a specially designed
KV knowledge base with integration methods. This allows users
to choose between different modes, including “Full” and “Core¢”,
based on the complexity, length of the knowledge context, and
specific task requirements. By integrating knowledge, our agent
system becomes more adaptable to domain-specific tasks, lever-
aging human expertise more effectively.

3. Methodology

Our proposed multi-agent data analysis system, LAMBDA, con-
sists of two agents that cooperate seamlessly to solve data analy-
sis tasks using natural language, as shown in Figure 1. The macro
workflow describes the code generation process based on user
instructions and subsequently executing that code.

3.1. Overview

LAMBDA is structured around two core agent roles: the “pro-
grammer” and the “inspector,” who are tasked with code gener-
ation and error evaluation, respectively. The two agents can be
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Algorithm 1 Multi-agent Collaboration. A,, C, are the answer and extracted code by the programmer agent in iteration n. We
assume each A, contains C,, otherwise, the programmer’s reply will be returned to the user directly.  is the execution result, E
indicates an error, S, are suggestions provided by the inspector in iteration n, Cy, is the code written by a human. The final response

is denoted as R.

Require: Pr: Programmer agent
Require: I: Inspector agent
Require: d: Dataset provided by user
Require: ins: Instructions provided by user
Require: T: Maximum number of attempts

. n<20

2: C, < Ay, A, < Pr(d, ins)

r,  success

3 r= <« execute(Cy)
E, error

4: whiler = Eand n < T do

5: n<n-+1

6: S, <~ I(Cy_1,E)

7 C, < A, A, < Pr(Cy_1,S,,E)

8 r < execute(Cy)

9: end while

10: if r = E then

11: r < execute(Cy)

12: R < C, U Pr(r)

13: end if

14: R < C,, U Pr(r)

> Initialize iteration counter
> Extract code and answer by Programmer

> Code execution, similarly to subsequent r

> Self-correcting mechanism start
> Inspector provides suggestions

> Programmer modifies code
> Execute modified code

> Human intervention (Optional)
> Final response in natural language

> Final response in natural language

implemented separately using either the same or different LLMs.
When users submit an instruction, the programmer agent writes
code based on the provided instruction and dataset. This code is
then executed within the kernel of the host system. Should any
errors arise during execution, the inspector intervenes, offering
suggestions for code refinement. The programmer takes these
suggestions into account, revises the code, and resubmits it for
re-evaluation. This iterative cycle continues until the code runs
error-free or a preset maximum number of attempts is reached.
In order to cope with adverse situations and enhance its reliabil-
ity and flexibility, a human intervention mechanism is integrated
into the workflow. This feature allows users to modify and run
the code directly and intervene when necessary. The multi-agent
collaboration algorithm is demonstrated in Algorithm 1.

3.2. Programmer Agent

The main responsibility of the programmer is to write code
and respond to the user. Upon the user’s dataset upload, the
programmer receives a tailored system prompt that outlines the
programmer’s role, environmental context, and the I/O formats.
This prompt is augmented with examples to facilitate few-shot
learning for the programmer. Specifically, the system prompt
encompasses the user’s working directory, the storage path of the
dataset, the dimensions of the dataset, the name of each column,
the type of each column, information on missing values, and
statistical description.

The programmer’s workflow can be summarized as follows:
initially, the programmer writes code based on instructions from
the user or the inspector; subsequently, the program extracts
code blocks from the programmer’s output and executes them
in the kernel. Finally, the programmer generates a final response

based on the execution results and communicates it to the user.
This final response consists of a summary and suggestions for
the next steps.

3.3. Inspector Agent and Self-Correcting Mechanism

The inspector’s role is to provide modification suggestions when
errors occur in code execution. The prompt of the inspector
includes the code written by the programmer during the current
dialogue round and the error messages from the kernel. The
inspector will offer actionable revision suggestions to the pro-
grammer for code correction. This suggestion prompt contains
the erroneous code, kernel error messages, and the inspector’s
suggestions. This collaborative process between the two agents
iterates several rounds until the code executes successfully or the
maximum number of attempts is reached. This self-correcting
mechanism enables the programmer and inspector to make
multiple attempts in case of error. A case of self-correcting
mechanism and released experiment can be found in the sup-
plementary materials.

3.4. Integrating Human Intelligence and Al

Beyond leveraging the inherent knowledge of LLMs, LAMBDA
is further enhanced to integrate human intelligence through
external resources such as customized algorithms and statistical
models from users. As mentioned above, the challenges faced by
general RAG methods in data analysis stem from the potential
lack of clear correlation between user instructions and code
fragments in the representation space, as well as the impact of
the length of code fragments. We design a special KV knowledge
base for this challenge.
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class my_networks(knw):
def _init_ (self):
super().__init_ ()
self.name = ‘my_neural_networks'
self.description=“......
self.core_function = ‘train_my_networks’

def train_my networks(self): —>> ICL
args = argparse.ArgumentParser()
args.Ir = 5e-3
args.epochs = 100
args.schedule = cosine
train(args)

def train(self):

class my_networks(knw):

def init_ (self):
super().__init_ ()
self.name = ‘my_neural networks'
self.description=“......
self.core_function = ‘train_my_networks’

Core—> ICL

def train_my_networks(self):
args = argparse. ArgumentParser()
args.Ir = 5e-3
args.epochs = 100
args.schedule = cosine
train(args)

def train(self): ——> Runnable

Figure 2. Knowledge Integration Mechanism in LAMBDA: Knowledge Matching selects codes from the knowledge base by comparing descriptions with the instruction.
Two integration modes are available: “Full” mode injects the entire knowledge code into the LLM via ICL, while “Core” mode segments the code into essential usage for ICL

and runnable code for back-end execution.

The KV knowledge base is a repository for housing external
resources from users in key and value pairs. Specifically, we for-
mat the code of resources into key-value pairs: the key represents
the resource description, and the value denotes the code. The
user’s query will be matched within the knowledge base to select
the code with the highest similarity. Figure 2 demonstrates the
workflow of knowledge matching in LAMBDA. We define the
knowledge base as K = {(di,¢;) | i = 1,2,...,n}, where d;
represents the description of the ith piece of knowledge and ¢;
represents the corresponding source code.

When the user issues an instruction ins, an embedding model
F encodes all descriptions in the knowledge base and the ins,
such as Sentence-BERT (Reimers and Gurevych 2019). The
embedding tensors for descriptions and instruction are repre-
sented by ey, and e;ys, respectively. The cosine similarity between
them is calculated to select knowledge with a similarity score
greater than a threshold 6, with the highest-scoring match cho-
sen as the relevant knowledge.

Let the embedding function be F, the e4, and ey, are for-
mulated as follows e;, = F(d;),i € {1,2,...,n}, and ejs =
F(ins). The similarity S; between description and instruction is
computed using cosine similarity as

€d; - €ins
e e

The matched knowledge k with the highest S; is selected while

it satisfies S; > 0, computed as

Si(edp Cins) = Vie{l,2,...,n}.

k=cp, i"=arg max (Si(edpeins) : l{Si(edi,eins)>0})

Vie{l,2,...,n}.

The knowledge k will be embedded in ICL for the LLM to gen-
erate answer A. Formally, given a query g, matched knowledge
k, a set of demonstrations D = {(q1,k1,4a1), (42, k2,a2), ...,
(qn> kn>ay)}, and the LLM M, the model estimates the proba-
bility P(alg, k, D) and outputs the answer A that maximizes this
probability. The final response A is generated by the model M
as A < M(q,D).

The matching threshold 6 defines the required similarity
between a knowledge description and a user instruction, directly
influencing the complexity of retrieving relevant knowledge. A
higher 6 imposes stricter matching criteria, reducing the chance
of retrieval, whereas a lower 6 increases the probability of iden-
tifying a match.

The optimal selection of & depends on multiple factors. For
example, when users aim to incorporate specific knowledge into
a task, a lower 6 value increases the chance of retrieving the
relevant information. Furthermore, the length of the knowledge
description plays a critical role, as longer descriptions typically
necessitate a lower 6 value since user instructions are generally
more concise. By default, we recommend setting 6 to 0.2. How-
ever, this value can be adjusted based on the aforementioned
factors to optimize retrieval performance.

By integrating k through ICL, the model effectively com-
bines retrieved domain knowledge with contextual learning to
provide answers that are more accurate. Moreover, LAMBDA
offers two integration modes: “Full” and “Core”. In the “Full”
mode, the entire knowledge is used as the context in ICL. In
the “Core” mode, the core functions are processed through ICL,
while other functions are executed directly in the back-end.
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This approach allows the agents to focus on modifying the core
function directly, without the need to understand or implement
the sub-functions within it. The “Core” mode is particularly
effective for scenarios involving lengthy code, as it eliminates
the need to process the entire code through ICL. These two
modes of knowledge integration provide substantial flexibil-
ity for handling tasks that require domain-specific knowledge.
We evaluate our Knowledge Integration Mechanism in Table 8
through several domain tasks.

In summary, the Knowledge Integration Mechanism empow-
ers LAMBDA to perform domain tasks and offers the flexibility
needed to address complex data analysis challenges.

3.5. Kernel, Report Generation and Code Exporting

LAMBDA uses IPython as its kernel to manage sequential data
processing, where each operation builds on the previous one,
such as standardization followed by one-hot encoding. Imple-
mentation details are in the supplementary materials. LAMBDA
also generates analysis reports from dialogue history, including
data processing steps, visualizations, model descriptions, and
evaluation results. Users can choose from various report tem-
plates, and the agent creates reports via ICL, allowing users
to focus on higher-value tasks. A sample report is in Figure 9
and the supplementary materials. Moreover, users can download
their experimental code as an IPython notebook.

3.6. User Interface

LAMBDA provides an accessible user experience similar to
ChatGPT. Users can upload datasets and describe tasks in natu-
ral language, supported by LLMs like Qwen-2, which recognizes
27 languages. It is recommended to prompt LAMBDA step-

by-step, mimicking data analysts’ approach, to maintain con-
trol and embody the “human-in-the-loop” concept. LAMBDA
generates results, including code, figures, and models, which
users can copy and save with a single click. Even those without
expertise in statistics or data science can train advanced models
by simply asking for recommendations, such as XGBoost and
AdaBoost. Advanced users can customize LAMBDA’s knowl-
edge via an interface template. Users can also export text reports
and code for further study. A usage example is shown in Figure 9.
LAMBDA:s interface is designed to be accessible to users of all
backgrounds.

To summarize, the programmer agent, inspector agent, self-
correcting mechanism, and human-in-the-loop components
collectively ensure the reliability of LAMBDA. The integration
of knowledge makes LAMBDA scalable and flexible for domain-
specific tasks. To enhance portability, we provide an OpenAl-
style interface for LAMBDA. This ensures that most LLMs,
once deployed via open-source frameworks such as vLLM
(Kwon et al. 2023) and LLaMA-Factory (Zheng et al. 2024b),
are compatible with LAMBDA.

3.7. Prompt

We present examples of prompts for the roles of programmer,
inspector, self-corrector, and knowledge integrator. Additional
prompt examples and case studies are available in the supple-
mentary materials.

Figure 3 gives an example prompt for the data analyst at the
start of the analysis session.

Figure 4 shows a system prompt about the dataset, which
provides essential information to the programmer agent.

After obtaining the execution results, a prompt such as the
one given in Figure 5 can be used to format the output, enabling

You are a data analyst, your mission is to help humans do tasks related to data science and analysis. You are connecting to a
computer. You should write Python code to complete the user's instructions. Since the computer will execute your code in
Jupyter Notebook, you should directly use defined variables instead of rewriting repeated code. And your code should be started

with markdown format like:
“**python
Write your code here.

...... You can work with data uploaded to your computer by users, the working path of the user is {working_path}. You must

read or save files in this path. ...... \nHere is an example:
{example}

Figure 3. Prompt example for the data analyst.

Now, the user uploads the dataset in {working_path}, and here is the general information of the dataset:{

'num_rows': 150,
'num_features": 5,

'features': Index(['Sepal.Length', 'Sepal. Width', 'Petal Length', 'Petal. Width' \n
'missing_val'": Sepal.Length O\nSepal.Width  O\nPetal.Length O\nPetal.Width ~ O\nSpecies

'Species'|\n  dtype='object’) ......

O\ndtype: int64,

'describe': Sepal.Length Sepal.Width Petal.Length Petal. Width
count 150.00 150.00 150.00 150.00
mean 5.84 306 376 120 ...... }

Figure 4. Prompt example for the dataset.
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Prompt for Execution Result

This is the execution result by the computer (If nothing is printed, it may be figures or files):
{Executing_result}.
You should use 1-3 sentences to explain or give suggestions for next steps:

Figure 5. Prompt example for the execution result.

Prompt for Inspector

You are an experienced and insightful inspector, and you need to identify the bugs in the given code based on the error
messages and give modification suggestions.\n

- bug code:

{bug_code}\n

When executing the above code, errors occurred: {error_message}.

Please check the implementation of the function and provide a method for modification based on the error message. No
need to provide the modified code \n

Modification method:

Figure 6. Prompt example for inspector.

Prompt for Programmer to Fix the Bug

You should attempt to fix the bugs in the bellow code based on the provided error information and the method for
modification. Please make sure to carefully check every potentially problematic area and make appropriate adjustments
and corrections.

If the error is due to missing packages, you can install packages in the environment by “!pip install package_name” \n
- bug code:

{bug_code}\n

When executing the above code, errors occurred: {error_message}.

Please check and fix the code based on the modification method.\n

- modification method:

{fix_method }\n

The code you modified (should be wrapped in **"python™""):

Figure 7. Prompt example for code correction.

Prompt for Knowledge Integration

System Prompt for Retrieval

You can retrieve codes from the knowledge base. The retrieved code will be formatted as:

Retrieval: The retriever finds the following pieces of code cloud address the problem:\n"""python\n[retrieval_code|\n™™*
For example:

{example}

Prompt for Retrieval

Retrieval: The retriever finds the following pieces of code cloud address the problem. You should refer to this code
and modify it as appropriate.

Retrival code:

{code}

Figure 8. Prompt example for knowledge integration.

the programmer agent to provide an explanation or suggest the 4. Experiments
next steps.

When an error occurs, a prompt for the inspector is employed
to guide the inspector in identifying the cause of the bug and to The current data analysis paradigm relies on programming soft-

4.1. Data Experiments

offer revision suggestions (Figure 6). ware and languages such as R (R Core Team 2023), SAS (SAS
Figure 7 presents an example prompt for the programmer Institute Inc. 2015), and Python (Python Software Foundation
revising the error code. 2023) for computation and experimentation. To gain practical

For knowledge integration, the system message prompt and ~ €xperience and evaluate LAMBDASs performance in real-world
retrieval result are shown in Figure 8. data science tasks, we first applied LAMBDA to several standard
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Table 1. Datasets used in this study.

Datasets Usage

Classification
Classification
Classification
Classification

AIDS Clinical Trials Group Study 175 (Hammer et al. 1996)
NHANES (Dinh et al. 2023).

Breast Cancer Wisconsin (Wolberg et al. 1995)

Wine (Aeberhard and Forina 1991)

Concrete Compressive Strength (Yeh 2007) Regression
Combined Cycle Power Plant (Tfekci and Kaya 2014) Regression
Abalone (Nash et al. 1995) Regression - Case study
Airfoil Self-Noise (Brooks, Pope, and Marcolini 2014) Regression

Iris (Fisher 1988)
Heart Disease (Janosi et al. 1988)
Genomic Datasets (Anh 2023)

Classification - Case study
Regression - Case study
High-dimensional data

Framingham Heart Study Dataset (FHS 1948) Missing data
Student Admission Records (Kaggle SAD 2016) Missing data
MINIST (LeCun et al. 1998) Image data
SMS Spam (Almeida, Hidalgo, and Yamakami 2011) Text data

NOTE: The Genomic datasets include the following three datasets: TCGAmirna
(Bentink et al. 2012), EMTAB386 (Colaprico et al. 2015), and GSE49997 (Pils et al.
2012).

datasets for classification and regression analysis. In addition, we
conducted further investigations in broader statistical analysis
scenarios, such as high-dimensional data, missing data, image
data, and text data, to examined its robustness and versatility.
All information of the datasets used can be found in the supple-
mentary materials.

For classification problems, we measured accuracy on the
test data, defined as the ratio of correctly classified instances to
the total number of instances. For regression problems, we used
Mean Squared Error (MSE), which is the average of the squared
differences between the predicted values and the actual values in
the test data. The formula for MSE is: MSE = (1/n) Y 1, (yi —
1), where n is number of data points, y; is the observed value,
i is the predicted value. We employed 5-fold cross validation for
evaluation in all the cases. Table 1 lists the datasets used in our
experiments and case studies.

4.1.1. Experiments with Classical Tabular Data

We initially applied LAMBDA to several classical datasets,
covering both classification and regression tasks. To facilitate
comparison, we documented the analysis methods employed
by LAMBDA and then manually conducted the same anal-
yses using R. The results are summarized in Table 2, with
the corresponding results from the R analyses presented in
parentheses.

The results presented in Table 2 demonstrate LAMBDA’s
robust performance in executing data analysis tasks. These
results are either superior to or on par with those obtained
using R. These outcomes highlight LAMBDAS effectiveness
in leveraging various models across tabular data scenarios.
Furthermore, the results indicate that LAMBDA performs at
a level comparable to that of a data analyst proficient in R. This
suggests the potential for systems like LAMBDA to become
indispensable tools for data analysis in the future. Notably, there
was no human involvement in the entire experimental process
with LAMBDA, as only prompts in English were provided.

In summary, the experimental results demonstrate that
LAMBDA achieves human-level performance and can serve
as an efficient and reliable data agent, assisting individuals in
handling data analysis tasks.

4.1.2. Experiments with High-Dimensional Data and
Unstructured Data

To validate LAMBDA’ robustness and versatility, we further

explored its application across a broader range of data scenarios,

including high-dimensional data, missing data, image data, and

text data.

« High-dimensional data: We evaluated LAMBDA on the fol-
lowing three challenging high-dimensional clinical datasets:
TCGAmirna (Bentink et al. 2012), EMTAB386 (Colaprico
et al. 2015), and GSE49997 (Pils et al. 2012).

We summarize the sample size and dimensions in
Table 3. The test results are presented in Table 4. More
detailed descriptions of these three datasets are given in
the supplementary materials. We found that LAMBDA
consistently applies dimensionality reduction techniques,
such as Principal Component Analysis (PCA), as a prepro-
cessing step. This allows us to apply methods like logistic
regression without the regularization. The results indicate
that LAMBDA is capable of handling high-dimensional data.

« Missing data: We evaluated LAMBDA on three datasets con-
taining missing values, with results summarized in Table 5.
We observe that LAMBDA tends to prioritize deleting the
observations that contain missing values. However, with an
appropriate prompt, LAMBDA can also attempt to impute
missing values (e.g., mean value). When errors arise due
to missing values, the Inspector agent effectively identifies
the issue, notifies the Programmer agent, and applies the
necessary corrections.

o Image data: We used LAMBDA to train a handwritten
digit classifier based on the MNIST dataset. We prompted
LAMBDA to use various neural network architectures,
such as Convolutional Neural Networks (CNNs) and
Transformers, as backbone models. The results of this
experiment are presented in Table 6. According to Table 6,
we find LAMBDA can effectively implement and apply deep
learning architectures like CNNs and Transformers for image
classification tasks.

o Text data: We used LAMBDA to train a spam detection
classifier based on the SMS Spam Collection Dataset. Similar
to our approach with image data, we prompted LAMBDA
to experiment with different backbone models for this task.
The results are summarized in Table 7. As shown in Table 7,
LAMBDA successfully performed text classification tasks.
Notably, when prompted to use a Transformer-based archi-
tecture, LAMBDA employed DistilBERT-Base-Uncased for
transfer learning, which significantly improved both training
efficiency and model performance.

Overall, our findings indicate that LAMBDA is not only
capable of handling tabular tasks but also effectively processing
image and text data. In future work, we aim to explore more
complex and diverse data scenarios.

4.2. Performance of Knowledge Integration

We collected three domain-specific tasks to evaluate the pro-
posed Knowledge Integration Mechanism and compare it with
advanced data analysis agents. Specifically, the tasks involve
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Table 2. The experimental results obtained using LAMBDA and R are presented, with the R results indicated in parentheses.

Model Datasets
AIDS (%) NHANES (%) Breast Cancer(%) Wine(%)
Classification Logistic regression 86.54 (86.44) 99.43 (99.96) 98.07 (97.72) 98.89 (98.86)
SVM 88.45 (88.59) 98.82 (98.86) 97.72 (98.25) 98.89 (98.33)
Neural network 88.82 (87.89) 99.91 (99.91) 97.82(97.01) 82.60 (98.87)
Decision tree 87.70 (88.78) 100 (100) 94.26 (93.32) 92.14(90.91)
Random forest 89.29 (88.73) 100 (100) 96.84 (95.96) 98.33 (98.30)
Bagging 89.62 (88.82) 100 (100) 96.49 (94.90) 96.65 (96.60)
Gradient boost 89.20 (88.83) 100 (100) 96.84 (94.74) 96.65 (98.89)
XGBoost 89.67 (89.62) 100 (100) 97.54 (97.19) 95.54 (98.87)
AdaBoost 88.92 (89.10) 100 (100) 97.72 (97.55) 93.89(97.71)
Best accuracy 89.67 (89.62) 100 (100) 98.07 (98.25) 98.89 (98.89)
Concrete Power Plant Abalone Airfoil
Regression Linear regression 0.4596 (0.3924) 0.0714 (0.0713) 0.5086 (0.6867) 0.5717 (0.6972)
Lasso 0.5609 (0.3918) 0.0718(0.0713) 0.8042 (0.4739) 0.5738 (0.4886)
SVR 0.4012 (0.4780) 0.0534 (0.0489) 0.4542 (0.4408) 0.3854 (0.3725)
Neural network 0.2749 (0.3055) 0.0612 (0.0567) 0.4551(0.7185) 0.4292 (0.2604)
Decision tree 0.5242 (0.5837) 0.0551(0.1175) 0.5566 (0.5472) 0.3823 (0.2559)
Random forest 0.4211 (0.2755) 0.0375 (0.0363) 0.4749 (0.4460) 0.2655 (0.3343)
Gradient boost 0.3414 (0.3605) 0.0315 (0.0538) 0.4778 (0.5840) 0.2528 (0.2888)
XGBoost 0.3221(0.2991) 0.0319(0.0375) 0.4778 (0.4441) 0.2741 (0.2832)
CatBoost 0.2876 (0.4323) 0.0325 (0.0568) 0.4795 (0.4516) 0.2529 (0.2638)
Best MSE 0.2749 (0.2755) 0.0315 (0.0363) (0.4542) 0.4408 0.2528 (0.2559)

NOTE: Classification problems were evaluated using accuracy, where higher values indicate better performance. Regression problems were assessed using mean squared
error (MSE), where lower values are preferable. All results were derived from 5-fold cross-validation. The difference result bewteen LAMBDA and Ris introduced by different
data processing, hyper-paprameters and cross-validation. Bold values indicate best performance.

Table 3. Experiment datasets with their sizes and dimensions (rows, columns).

Table 5. Performance on Framingham, StuRecord, and Heart Disease datasets.

Data TCGAmirna EMTAB386 GSE49997 Model Framingham (%) StuRecord (%) Heart disease (%)
(Size, Dimension) (544, 802) (129, 10360) (194, 16051) Logistic regression 85.35 50.36 59.41
Neural network 84.95 57.28 60.40
Decision tree 84.27 52.96 52.49
Table 4. Performance on the high-dimensional datasets. Random forest 85.19 55.40 60.39
Bagging 85.02 58.65 60.06
Model TCGAmirna (%) EMTAB386 (%) GSE49997 (%) Gradient boosting 85.12 60.50 58.41
Logistic regression 5258 54.18 67.52 XGBoost 85.19 61.05 60.71
. AdaBoost 84.98 56.63 59.42
Decision tree 54.42 57.45 63.45 Best 8535 6105 60.40
Random forest 55.16 61.20 67.54 €s : : :
Bagging ) 56.62 58.21 70.63 NOTE: The results are reported in terms of accuracy through 5-fold cross-validation.
Gradient boosting 54.78 55.08 70.62 Bold values indicate best performance.
XGBoost 55.15 58.15 70.62
AdaBoost 55.15 57.45 70.62
Neural network 54.22 61.23 66.48 Table 6. Performance on the MNIST dataset.
Best 56.62 61.23 70.63
Model Accuracy (%)
NOTE: The results are reported in terms of accuracy through 5-fold cross-validation.
Bold values indicate best performance. CNN 99.19
Transformer 97.23

using the recent algorithm packages (e.g., PAMI (Piotrowski,
Cavalcante, and Gabor 2021)), implementing optimization algo-
rithms (e.g., computing the nearest correlation matrix), and
training the latest research models (e.g., nonnegative neural
networks). For each task, we define a score S that is calculated
as follows:

0, code error and execution error, or exceeded
runtime limit,

0.5, code error and execution successful,

0.8,  code successful, execution error due to other

issues, e.g. environment,

1, both code and execution successful.

To ensure maximum alignment in experimental settings, we
converted the code into corresponding tools for agents equipped
with a tools mechanism. For agents lacking such a mechanism,

Table 7. Performance of different backbones on the SPAM classification task.

Model Accuracy (%)
Multinomial Naive Bayes 98.39
BERT 99.37

we directly included the code in their context. All agents are
implemented using GPT-3.5, except for methods and platforms
that have their own models, such as GPT-4-Advanced Data
Analysis, ChatGLM-Data Analysis, and OpenCodelnterpreter.
Since each task can be completed within 1 min, we set a max-
imum runtime limit of 5 min to prevent some agents from
becoming stuck in infinite self-modification loops.

o Pattern Mining  Piotrowski, Cavalcante, and Gabor (2021)
introduce PAMI (PAttern MIning), a cross-platform, open-
source Python library offering algorithms to uncover patterns
in diverse databases across multiple computing architectures.
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Table 8. Performance of the knowledge integration mechanism.

Table 9. The results of case study on misalignment between tools and instructions.

PM NCM FPNENN Methods Misalignment loss Misalignment network
GPT-4-Advanced Data Analysis (OpenAl 2023)  0.80 (4) 0(1) 0(1) TaskWeaver (Plugins) X Directly using the plugin X Directly using the plugin
ChatGLM-Data Analysis (Du et al. 2022) 0(2) 0(2) 0(2) Data Interpreter (Tools) X Directly using the tool X Directly using the tool
Openinterpreter (Interpreter 2023) 0(2) 0(2) 0(2) LAMBDA (Knowledge) ¢ Alignment v/ Alignment
OpenCodelnterpreter (Zheng et al. 2024a) 1.00 (5) 0(1) 0(1) - - - -
Chapyter (Chapyter 2023) 0Q) 0Q) 0Q) NOTE: Both plugins and tools integration directly use the tools and are not aware of
Datalnterpreter (Tools) (Hong et al. 2024) 1.00(5) 1.00(5) 1.00(5) the misalignment between tools and instructions.
TaskWeaver (Plugins) (Qiao et al. 2023) 1.00(5) 1.00(5) 1.00(5)
LAMBDA (Knowledge) 1.00(5) 1.00(5) 1.00(5)

NOTE: In the table, “PM” refers to pattern mining, “NCM” refers to the nearest
correlation matrix, and “FPNENN" stands for fixed points in nonnegative neural
networks. The values represent the performance scores, with failure reasons noted
in brackets. Specifically, 1: code error and execution error; 2: exceeded runtime
limit; 3: code error but successful execution; 4: right code but execution error due
to other issues; 5: right code and successful execution. Bold values indicate best
performance.

o Nearest Correlation Matrix Qi and Sun (2006) propose a
Newton-type method specifically designed for the nearest
correlation matrix problem. Numerical experiments validate
the method’s fast convergence and high efficiency.

o Fixed Points Non-negative Neural Networks  Rage et al.
(2024) analyze nonnegative neural networks, which are
defined as neural networks that map nonnegative vectors
to nonnegative vectors.

Table 8 demonstrates the effectiveness of LAMBDA’s Knowl-
edge Integration mechanism. Specifically, our results showed
that many methods scored zero, particularly when the code was
lengthy or involved unfamiliar packages not encountered during
LLM training. In these situations, most other approaches strug-
gle with one-shot learning. Two exceptions are Data Interpreter
and TaskWeaver, which successfully complete the task using pre-
defined Plugins/Tools. With the pre-defined Plugins/Tools, they
can execute operations internally without requiring the LLM to
generate precise code. This mechanism is similar to the ‘Core’
mode of our LAMBDA.

With these tools, the LLM only needs to learn a given code
usage example rather than generating the full internal imple-
mentation, even when it has access to those details. Although
these approaches are generally suitable, the agent is likely to
make mistakes when there is the certain misalignment between
the users’ instructions and integrated knowledge. In such cir-
cumstances, we need to use the “Full” mode of our LAMBDA.
To further support our claim, we designed two additional exper-
iments.

We take the fixed point nonnegative neural networks as
a example. We further explore the following two cases that
involve misalignment in integrating knowledge/tools and
human instruction, which require modifications to the tools
(the loss and network mapping are annotated in the schema):

o Case 1: The instruction specifies the use of L1 Loss, whereas
the tool are originally configured with MSE Loss.

o Case 2: The instruction specifies a network structure map-
ping as follows:

- Encoder: 784 — 400, whereas 784 — 200 originally
configured.

- Decoder: 400 — 784, whereas 200 — 784 originally
configured.

From Table 9, we observe that in Cases 1 and 2, which
require modifications to the tools, both TaskWeaver and Data
Interpreter directly use the original tools without recognizing
that the tools no longer meet the new requirements although
the loss and network mapping are annotated in the schema. In
contrast, due to the visibility of the knowledge code under “Full”
mode, LAMBDA identifies that the original code cannot satisfy
the new requirements, makes the necessary adjustments, and
successfully completes the two cases.

5. Examples

We present an example of using LAMBDA for building a classi-
fication model in Figure 9. We also provide three case studies
in video format to demonstrate the use of LAMBDA in data
analysis, integrating human intelligence and AI, and education.

o Data Analysis  We simulate scenarios in which the user
requests LAMBDA to perform various tasks, including data
preprocessing, data visualization, and model training, on the
provided Iris dataset (Fisher 1988). LAMBDA consistently
delivers accurate responses. Additionally, LAMBDA gener-
ates an analysis report based on the chat history. A demon-
stration of this process is given in the first video at https://
www.polyu.edu.hk/ama/cmfai/lambda.html.

o Integrating Human Intelligence and AI ~ We demonstrated
the Knowledge Integration capabilities of LAMBDA by com-
puting the nearest correlation matrix using the Quadratically
Convergent Newton Method. We first highlighted the limita-
tions of GPT-4-Advanced Data Analysis in performing this
task, thereby underscoring the value of LAMBDA through
comparison. A demonstration is given in the second video at
https://www.polyu.edu.hk/ama/cmfai/lambda.html.

o Interactive Education =~ We consider an educational scenario
in which the teacher uses LAMBDA to design the exercise
assignments, and the students use LAMBDA to complete
exercises. The exercise dataset used is Abalone. This educa-
tional support system enhances the efficiency of both teach-
ing and learning. A demonstration is given in the third video
at https://www.polyu.edu.hk/ama/cmfai/lambda.html.

6. Conclusion

LAMBDA is an open-source multi-agent data analysis system
that effectively integrates human intelligence with artificial
intelligence. Experimental results demonstrate that LAMBDA
achieves satisfactory performance in handling various data
analysis tasks. In the future, LAMBDA can be further enhanced
with advanced planning, reasoning techniques, and knowledge
integration methods to address a broader range of domain-
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This is the Wine dataset. | want to do a classification task, can you recommend some models for me?

User For your classification task, here are some recommended models, along with brief explanations of their strengths: ..Q. °
1. Logistic Regression i“ Iil
A simple and interpretable linear model, effective for binary classification tasks, and can be extended to multiclass problems using softmax or one- | | AMBDA

vs-rest approaches.
2. Support Vector Machine (SVM)

Works well in high-dimensional spaces and with non-linear data using the kernel trick. It's useful for classification with a clear margin of separation.
9. AdaBoost

Combines weak classifiers (like decision stumps) by giving more weight to misclassified instances, allowing it to focus on difficult cases in the data.

My target column is class. First, draw a correlation matrix for the data.

import pandas as pd o Qo o
...... sdillil
data = pd.read_csv('/home/path/to/wine.csv') LIAMBDA

correlation_matrix = data.corr()

plt.figure(figsize=(12, 8))

sns.heatmap(correlation_matrix, annot=True, cmap="'coolwarm', fmt=".2f")

Here is the correlation matrix for the wine dataset, with the target column being 'class'. This visualization highlights the relationships
between the features and how they correlate with each other and the target.

[/xxx/Correlation_matrix.png]

Standardize the data. Then, encodes the column class ordinally.

o
import pandas as pd ‘..I.'i
»»»»» illlli
data = pd.read_csv('/home/path/to/wine.csv') LAMBDA

scaler = StandardScaler()

datal['Alcohol', 'Malicacid', 'Ash’, 'Alcalinity_of_ash', '"Magnesium', 'Total_phenols', 'Flavanoids',

'Nonflavanoid_phenols',

Execution result:

| | Alcohol | Malicacid | Ash | Alcalinity_of_ash | Magnesium | Total_phenols | Flavanoids | Nonflavanoid_phenols | Proanthocyanins | Color_intensity
| Hue | 0D280_0D315_of_diluted_wines | Proline | class |

R e e P T P B e e e e e e e e e

| 0]1.518613 | -0.562250 | 0.232053 | -1.169593 | 1.913905 | 0.808997 | 1.034819 | -0.659563 | 1.224884 | 0.251717 | 0.362177 | 1.847920 | ......

Based on the processed data last step, perform cross-validation on the LogisticRegression model. Using accuracy to evaluate it.

from sklearn.model_selection import cross_val_score o.oo !
from sklearn.linear_model import LogisticRegression “lllil
logreg = LogisticRegression() LAMBDA
scores = cross_val_score(logreg, X, y, cv=5, scoring="'accuracy')

Execution result:
Score: [0.97222222 0.97222222 1. 1. 1.]
Average Score: 0.9888888888888889

Train and select parameters for XGBoost, Print the best parameters and score based on cross-validation.

from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
param_grid = {

‘max_depth': [3, 5, 7],

'learning_rate': [0.1, 0.5, 1.0],

Execution result:
Best Parameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100}
Best Score: 0.9553968253968254

Classification Task Using Wine Dataset with Machine
Learning Models
1. Abstr

2. Introduction

ethodology:

Figure 9. An example of using LAMBDA for classification analysis with the Wine dataset.
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specific tasks. Our results and examples underscore the
significant potential of LAMBDA to enhance both statistical
and data science practice and education.

By bridging the gap between human expertise and Al capabil-
ities, LAMBDA aims to democratize data science and statistical
analysis, fostering a more inclusive environment for innovation
and discovery. Its open-source nature encourages collaboration
and continuous improvement from the global research com-
munity, allowing researchers and developers to contribute to its
evolution. As LAMBDA continues to develop, it has the potential
to become an invaluable tool for statisticians, data scientists,
and domain experts, enhancing their ability to analyze data
efficiently and effectively.

Moreover, LAMBDA holds significant potential for statistical
and data science education. Its natural language interface lowers
barriers for educators and students, enabling them to focus
on problem formulation rather than getting bogged down by
syntactic complexities. By generating executable code for var-
ious tasks, LAMBDA provides immediate, actionable feedback,
which can enhance the learning experience by allowing students
to see the direct impact of their queries and hypotheses. This
capability not only aids in teaching fundamental concepts but
also empowers students to experiment and explore data-driven
insights independently.

Future work on LAMBDA could focus on several key areas.
First, enhancing LAMBDAs ability to seamlessly integrate and
leverage large models from various domains for statistical anal-
ysis could significantly improve its capacity to tackle complex
data analysis tasks. Second, improving the user interface and
increasing user satisfaction would make the system more acces-
sible to non-experts. Third, incorporating real-time data pro-
cessing capabilities could enable LAMBDA to handle stream-
ing data, which is increasingly important in many applications.
Finally, expanding the system’s support for collaborative work
among multiple users could further enhance its utility in both
educational and professional settings. We plan to implement
LAMBDA in our classroom teaching scenarios, continuously
gather feedback from various groups, and use user satisfaction
as a metric for evaluating LAMBDA.

In conclusion, LAMBDA represents a meaningful step for-
ward in integrating human and artificial intelligence for data
analysis. Its continued development and refinement have the
potential to advance the fields of statistics and data science,
making sophisticated analytical tools more accessible to users
from diverse backgrounds. We have made our code available at
https://github.com/AMA-CMFAI/LAMBDA.

Supplementary Materials

The supplementary materials provide methodological details, experimental
data, case studies, and the experimental setup.
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