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ABSTRACT

In recent years, modern power systems integrated with renewable energy sources and communication tech-
nologies have been rapidly developed. However, the randomness and intermittency of renewable energy sources,
together with the unexpected disturbances in the vulnerable cyber layer, introduce uncertainties into power
systems, which pose huge threats to the stable operation of modern power systems and should be carefully
considered. Moreover, there is a lack of a comprehensive review of uncertainty modeling in modern power
systems, which is one of the significant tasks in quantifying uncertainties. In this review, the methods and
respective characteristics of uncertainty modeling in modern power systems are analyzed. According to the
outputs of methods, they are categorized as model-driven and data-driven methods. The existing uncertainties in
modern power systems and the respective modeling methods are investigated from the aspects of the physical
layer, cyber layer, and economic and social layer. The applications of uncertainty modeling methods in modern
power system operation are summarized from the aspects of steady state, dynamic, and risk analysis of modern
power systems. Also, the prospective future research topics are recommended.

1. Introduction

In power systems, inherent uncertainties are widespread, e.g., load
fluctuation, electricity price variation, and system interruption induced
by the change of weather conditions or equipment faults. Moreover,
with the construction of modern power systems, more uncertainties are
introduced. On the generation side, since sustainable development and
carbon emission reduction are concerned worldwide, governments have
issued numerous policies to stimulate renewable energy generation
[1,2], which has been extensively installed in power systems. In 2024,
the worldwide installed generation capacity of renewable energy sour-
ces is expected to increase by 540 GW [3]. However, renewable power
generations dominated by wind power and photovoltaic (PV) possess the
characteristics of randomness and fluctuation due to the change of
weather conditions, which injects uncertainties into modern power
systems. Meanwhile, on the demand side, electric vehicles (EVs) have

been developing rapidly, with more than 40 million EVs on roads
worldwide until 2023 [4]. However, due to the randomness of EV
charging, massive uncertainties will be introduced. Also, novel
communication and computing technologies are coupled to physical
power systems, contributing to the transformation from traditional
power systems into modern cyber-physical power systems (CPPSs) [1].
Although the introduction of the cyber layer is beneficial for achieving
more flexible and effective coordinated control, substantial un-
certainties such as communication congestion, time delay, and even
cyber-attacks exist in the cyber layer of CPPS. One of the most severe
cyber-attack incidents occurred on the Ukrainian power grid in 2015,
resulting in the power outage of 22.5 thousand consumers [5]. In gen-
eral, there are increasing uncertainties in the physical and cyber layers,
which have posed a tremendous threat to the safety and stability of
modern power systems and need to be seriously investigated.
Typically, two tasks are mainly needed to quantify the impacts of
uncertainties on power systems, which are uncertainty modeling and
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Abbreviations

Al Artificial intelligence

ASAI Average service availability index
ASUI Average service unavailability index
BNN Bayesian neural network

BR Backward reduction

CDF Cumulative distribution function
CNN Convolution neural network
CPPS Cyber physical power system
DoS Denial-of-service

EENS Expected energy not supplied
EUE Expected unserved energy

EV Electric vehicle

FDI False data injection

FFS Fast forward selection

FOR Forced outage ratio

GAN Generative adversarial network
GMM Gaussian mixture model

GRU Gate recurrent unit

KDE Kernel density estimation

LHS Latin hypercube sampling

LODF Line outage distribution factor
LOLE Loss of load expectation

LOLF Loss of load frequency

LOLP Loss of load probability

LRA Low-rank approximation

LSTM Long short-term memory

MCS Monte Carlo simulation

MPPT Maximum power point tracking
MTTF  Mean time to fault

MTTR  Mean time to recovery

PCE Polynomial chaos expansion
PDF Probability density function
PEM Point estimate method

PV Photovoltaic

RNN Recurrent neural network

RoCoF  Rate of change of frequency

SAIDI System average interruption duration index
SAIFI System average interruption frequency index
SDE Stochastic differential equation

SoC State of charge

TSI Transient stability index

uncertainty propagation analysis. Uncertainty modeling methods char-
acterize the randomness or fluctuations of uncertainties. The random-
ness of uncertainties in this paper focuses on the statistical characteristic
of possible values of uncertainties at a certain moment. And the fluc-
tuation of uncertainties focuses on the time-varying property of un-
certainties. It should be noted that whether to consider the randomness
or the fluctuation of uncertainties depends on the specific studied issue.
By comparison, uncertainty propagation analysis methods investigate
the relationship between the uncertainties and the concerned system
outputs. For example, in the probabilistic power flow analysis consid-
ering the uncertainty of wind, the uncertainty modeling describes the
randomness of wind speed, and the uncertainty propagation analysis
method calculates the probability distribution of system power flow
based on the results from uncertainty modeling. To analyze the impact
of uncertainties on the operation of modern power systems, both two
tasks are essential. More specifically, the outputs of uncertainty
modeling methods are the inputs of uncertainty propagation analysis
methods. Some reviews have summarized the existing methods for
quantifying uncertainties in modern power systems. The probabilistic
and possibilistic uncertainty quantification methods have been sum-
marized in [6]. Authors in [7] have covered more uncertainty quanti-
fication methods, including interval analysis methods and robust
optimization methods for uncertainties. In [8], in addition to the sum-
mary of uncertainty quantification methods, the uncertainties existing in
power systems also have been investigated. However, the above reviews
discuss the uncertainty modeling and propagation analysis methods
together without distinguishing them, and only a part of the uncertainty
modeling methods are covered. Additionally, some reviews have studied
uncertainties and applications of uncertainty quantification methods in
power system operation. In [9], the uncertainty modeling methods for
characterizing the uncertainties of PV and EV have been studied. The
uncertainties existing in the physical layer of power systems have been
summarized in [10]. Authors in [11] have investigated the applications
of uncertainty quantification methods in power flow analysis. In [12],
the applications of uncertainty quantification methods in power system
optimization operations have been discussed. Authors in [13] have
studied the influence of uncertainties on power system stability. How-
ever, only limited uncertainties and applications have been investigated,
and recent studies are not covered in the above reviews. Thus, a
comprehensive review containing the uncertainty modeling methods in

power systems, as well as the uncertainty uncertainties and applications,
is lacking.

In view of the above facts, it is vital to summarize the uncertainty
modeling methods to provide a reference for the research on the oper-
ation of modern power systems. The main contributions of this review
are as follows: 1) This review distinguishes uncertainty modeling
methods from propagation analysis methods and conducts a detailed
classification, comparison, and summary of uncertainty modeling
methods, which is valuable for relevant industrial technicians to have a
deep understanding of uncertainty modeling. By comparison, in the
current reviews, the uncertainty modeling methods are mostly neglected
or partly integrated into uncertainty propagation analysis methods. 2)
The review of the uncertainties in modern power systems covers the
uncertainties existing in traditional power systems, as well as the un-
certainties induced by the penetration of renewable energy sources, the
integration of cyber networks, and electricity markets. By comparison,
many existing studies usually only summarize the uncertainties caused
by the penetration of renewable energy sources while ignoring other
uncertainties. 3) This review comprehensively investigates the appli-
cations of uncertainty modeling methods in modern power systems. Not
only power flow analysis, operation optimization, and probabilistic
stability analysis, which are involved in the existing reviews, but also the
applications in stochastic stability and risk analysis are studied.

The remainder of the paper is structured as follows. Section 2 clas-
sifies uncertainty modeling methods from the perspectives of the out-
puts of uncertainty modeling methods and summarizes the
characteristics of different methods. In Section 3, the uncertainties in
modern power systems are categorized from the physical layer, cyber
layer, and economic and social layer. Moreover, the characteristics of
different uncertainties and corresponding modeling methods are sum-
marized. The applications of uncertainty modeling methods in modern
power system operations are addressed in Section 4. Section 5 recom-
mends promising future research topics. Section 6 contains concluding
remarks.

2. Uncertainty modeling methods
Uncertainty modeling methods are typically generic and not specif-

ically designed to handle uncertainties in modern power systems. And
modeling the uncertainties in modern power systems is just one of the
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Fig. 1. Summary of uncertainty propagation analysis methods.

scenarios where these uncertainty modeling methods are used. This
means that the uncertainties in modern power systems are not the ori-
gins of uncertainty modeling methods but their utilization scenarios.
Also, since this paper focuses on uncertainty modeling methods rather
than uncertainties, uncertainty modeling methods need to be high-
lighted and introduced at the beginning. Thus, uncertainty modeling
methods are introduced in this section, and uncertainties in modern
power systems are summarized in Section 3 for a clear logic and a
concise paper structure. Moreover, though this paper mainly focuses on
the uncertainty modeling methods, based on the facts that the uncer-
tainty propagation analysis and modeling methods are not clearly split
in the existing reviews, uncertainty propagation analysis methods in
modern power systems are re-summarized according to [6-17], as
shown in Fig. 1.

According to the different inputs of propagation analysis methods, i.
e., the outputs of the uncertainty modeling methods, this paper classifies
uncertainty modeling methods into two categories, namely, model-
driven methods and data-driven methods. Thus, if the outputs of un-
certainty modeling methods are data, they are defined as data-driven
methods in this paper; otherwise, they are defined as model-driven
methods. There are only model-driven methods and data-driven
methods till now since the outputs of existing uncertainty modeling
methods are either data or models. However, it should be noted that the
model/data dual-driven uncertainty modeling methods may be designed
for specific purposes in the future. Additionally, regarding some prop-
agation analysis methods, such as cumulant methods, the probabilistic

distribution of uncertainties, such as Weibull distribution or Gaussian
distribution with given parameters, is required, where model-driven
uncertainty modeling methods are employed, e.g., probabilistic den-
sity function (PDF) and cumulative distribution function (CDF). Also,
there are some propagation analysis methods requiring the probabilistic
results acquired via simulations, such as Monte Carlo simulation (MCS)
and point estimate method (PEM). Data-driven uncertainty modeling
methods will be adopted to generate the required scenarios using sam-
pling techniques, historical data, or data generation technologies. Be-
sides, for the conventional polynomial chaos expansion (PCE) and low-
rank approximation (LRA) methods, the PDFs of uncertainties and
sampling data are needed, where both data-driven and model-driven
methods are required.

2.1. Model-driven methods

2.1.1. Probabilistic density function / Cumulative distribution function
methods

2.1.1.1. Single probabilistic density function. The most common method
is to use the single PDF to model uncertainties. The types and parameters
of PDFs are determined by fitting the collected historical data in most
current research. For a random variable X , the PDF f(.) at the value x can
be defined as [18]

f0) = lim P{x<X<x + Ax}/Ax a
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Table 1
Typical continuous PDFs.
Type of PDF  Form of PDF Parameter description Examples of uncertainties
Beta Foe(x) = T(aper + apea)x1~1(1 — x)ﬂzxerl /(T(aper )T (aez)) ABe1, Apez: Shape parameters; I'(.): I function. Solar irradiance [19-22]
0<x<1 PV [23-28]
Exponential  fg(x) = exp(—x/agx)/aex , X >0 apx: Mean. EV [29]
Gamma fea(x) = a?‘;ﬁ“z‘ xﬂm\*lexp(ﬂzGazx) /T(AGa1) , X >0 aga1: Shape parameter; agq2: Scale parameter. Clearness index [30]
Wind power generation [31]
Conventional load [31]
Gaussian foau(x) = exp(—(x — aga)’/(20%41))/ (V27AGan) , agan: Standard deviation; agqup: Mean. Conventional generation [32]

—00 <X < + o0

Lognormal  f (x) = exp(—(Inx — agauz)?/(20%qn))/ (V27101X) , X > 0

Wind speed [33]
Wind power generation [26,31]
Conventional load
[22-25,27-29,31-42]
EV [29,43]
Operational parameter [23,44]
Communication error [42]
Carbon dioxide emission [45]
Cumulative energy demand [45]
aro1: Standard deviation of logarithmic values; aro2: Mean Solar irradiance [37]
of logarithmic values. Conventional load [46]
EV [19]
Windstorm [47]
Carbon dioxide emission [45]

Rayleigh fra(x) = xexp(—x2/(2a%,)) /a2, , x>0 aRq: Scale parameter. Wind speed [19,48]
Uniform Sfun(x) =1/(aum — aun2), Qum < X < Aynz aym: Lower bound; ayn2: Upper bound. Conventional generation [35]
Component fault [49]
Electricity price [45]
Discount rate [45]
Energy price [45]
Weibull Fwe(x) = awea(x, /awﬂ)“mrlexp(_(x Jawe )™ ) awe , x20 awe1: Scale parameter; ay,o: Shape parameter. Wind speed
[23,29,30,32,36-38,50-54]
Solar irradiance [39]
Wind power generation [25,27]
EV [19]
Windstorm [47]
25 where Ax is the infinitesimal; P{x < X < x + Ax} is the probability of
’ — Beta . random variable x in [x, x + Ax].
2z of — Exponential 1) Continuous PDFs.
% Gamma Some typical continuous PDFs widely utilized in power system un-
Q1.5+ — Gaussian certainty modeling are summarized in Table 1, the curves of which are
2 - Logn(?r'mal displayed in Fig. 2.
'_5 | - Ra)./lelgh 2) Discrete PDFs.
< - Um.form Apart from continuous uncertainties, discrete or approximate
£ 0.5 — Welbulll discrete uncertainties also exist in power systems. For such variables,
0 e | discrete single PDFs are usually utilized. Typical discrete PDFs are pre-
0 1 2 3 4 5 sented in Table 2, the curves of which are drawn in Fig. 3.
x Additionally, to adequately characterize the uncertainties in specific
scenarios, some empirical PDFs are developed. Typical PDF developing
Fig. 2. Curves of typical continuous PDFs. methods include forming a versatile PDF [63] and introducing the
truncated interval [64].
Table 2
Typical discrete PDFs.
Type of PDF Form of PDF Parameter description Examples of uncertainties
Binomial _ age ,x=1 ag,: Probability when the test result is x = 1. Conventional generation [34,55]
foel¥) =91 Zgp x=0 Generation fault [56,57]
EV [32]
Component fault [50,57]
Ice storm [58]
Earthquake [58]
Denial-of-service (DoS) attack [59]
Bernoulli foi(x) = Cy (1 —ag)™ ™, x =0, 1,2, ..., aga ap;: Probability when the test result is x = 1. Generation fault [56]
Poisson fro(x) = apexp(—apo)/x!, x =0,1,2, ..., +o0 ap,: Mean. EV [29]

Component fault [60]
Windstorm [61]
Ice storm [62]
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Fig. 5. KDE result of sampling data.

2.1.1.2. Mixed probabilistic density function. 1) Gaussian mixture model.

The above single PDF/CDF methods assume that the historical data
follow a certain single distribution. If the probability distribution of
uncertainties is complex, especially when it presents multi-peak char-
acteristics, a single PDF cannot adequately reflect the characteristics of
uncertainties. Gaussian mixture model (GMM) is not limited to the
above assumption. And the PDF of complex uncertainties is character-
ized by the linear combination of several Gaussian PDFs. The PDF of
GMM feum(x) can be expressed as follows [65]. GMM mixed by 5
Gaussian PDFs is drawn in Fig. 4 as an example.

o) =D 0n€xp(—(x ~ AGan2)”/(20Gaum))/ (V206 &)

where N is the number of Gaussian PDFs; agaun1, ®Gaun2 are the standard
deviation and the mean of n-th Gaussian PDF, respectively; , is the
weight of the n-th Gaussian PDF and meets the following conditions
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2) Kernel density estimation method

GMM and single PDF/CDF methods assume that historical data
follow a certain probability distribution, where the subjective priori
knowledge is added. By comparison, kernel density estimation (KDE)
needs no priori knowledge and is completely based on historical data.
KDE function fxpg(x) can be expressed as follows.

fros() =Y 8((x = xu)/d)/(Md) @

m=1

where M is the number of samples; d is the bandwidth; x;, is the m-th
sample; g(.) is the kernel function. According to the theory of KDE [66],
when M—+o0, h - 0, Mh—+o0, fxpr(x) will converge in probability to
the PDF of actual historical data. An example of using KDE to describe a
group of sampling data is shown in Fig. 5.

3) Copula method.

In all the above methods, PDF is adopted to model a single random
variable. If there are several uncertainties with correlations, a joint PDF
can be used. However, in power systems, the joint PDF is difficult to
obtain directly, whereas the marginal PDFs are relatively easier to ac-
quire. Copula method is usually utilized to obtain the equivalent joint
PDF when the marginal PDFs f,;(x;) are obtained. The Copula function
feop(x1, X2, ..., xp) is shown as follows [67]

()

Fp(Fy (a) By (x2), -+, F) (xp)) 5

op (X1, X2, 0+, Xp) = T s o (X
fC P( 1,42 P) anl (xl)anz (Xz)"'anP (Xp) Hf ( )
where Fy(x;) is the integral of f,;(x;); P is the number of random vari-
ables; ¢(.) is the generator function. An example of using the Copula
method to describe sampling data is shown in Fig. 6.
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2.1.1.3. Cumulative distribution function. CDF F(x) is the integral of PDF,
which can be expressed as [18]:

F(x) = /j f(u)du. (6)

Due to the simple transformation relationship illustrated in (6), the
uncertainties modeled by PDFs can also be modeled by CDFs. The CDFs
corresponding to the PDFs in Fig. 2-Fig. 5 are illustrated in Fig. 7.

2.1.2. Stochastic process methods

The PDF/CDF methods focus on modeling the steady-state charac-
teristics of random variables at the specific time point. By comparison,
time-varying characteristics cannot be reflected by them directly and
cannot be ignored in some concerned issues, which can be modeled by
stochastic process methods. In the uncertainty modeling of modern
power systems, Markov chain and stochastic differential equation (SDE)
are commonly adopted.

2.1.2.1. Markov chain. For a stochastic process X(t) in any time t; <
ty < -+ < t, with possible state set I, if it satisfies the following rela-
tionship, X(t) is a Markov process and has Markov property.

P{X(tn)SXH|X(t1) =X, X(tz) = X2, ", X(tnfl) = Xn—l}

7
= P{X(t) <Xt 1) = Xu1} @

wherex; el i =1, 2, -, n—1.

And the Markov process with discrete time and possible states is a
Markov chain, denoted as {X, =X(n), n=0, 1, 2, ---} with possible
states I = {I1, I, ---}. Thus, for Vm, n, there is:

P{Xmin =L|Xo =1, Xo =L, -, Xn =1} @)
= P{Xnin = [| Xy = [ }=Py(m, m+n)
Since a Markov chain will certainly transform into one of the states in I
at time m +n from the state I; at time n, there is:

+00

ZPU(m, m+n)=1 )]

Jj=1

Additionally, the matrix composed of Pj(m, m + n) is defined as the n-th
step state transition matrix P(m, m+n) [68]. And if Pj(m, m + n) is only
determined by i, j, and n, denoted as Pj(n), the Markov chain is homo-
geneous or called stationary. Thus, for a stationary Markov chain, the
state transition process can be formulated as follows. An example of the
state transition of a Markov chain with 3 states is shown in Fig. 8.

p(n) =p(0)P(n) = p(0)P*(1) (10)

where p(n) denotes the probability distribution of Markov chain states at
n-th step.
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2.1.2.2. Stochastic differential equation. As a typical control system, the
dynamic response of the power system is normally modeled as differ-
ential equations. After the introduction of stochastic processes, the dif-
ferential equations will transform into SDEs [69]. Ito process xs(t) is
usually considered in power systems, which has the following form

o (£) = s xs(£)) e + o5 (x5 (6))AW(0) an

where pg(xs(t)) and og(xs(t)) are the drift and diffusion terms, respec-
tively, which can be derived from:

{ﬂs(xs(t)) = Efxs(0)] a2
o3 (xs(t)) = Varxs(£)] = E{[xs(t) — us(xs(0))]*}

where Var(-) and [E(-) are variance and expectation operators,
respectively.

W(t) is commonly the Winner process, which has the following
characteristics:

(1) A second-order moment independent increment process, which
means that the second-order moment E[ W(t)] of the Winner process {
W(t), t=0} always exists when t>0, and for 0<ty < t; <ty < -+ < tp,
W(ty) —W(ty), W(tz) —W(t1), -+, W(t,) —W(ty_1) are independent.

(2) W(0) = 0.

(3) Forall 0 < t; < to, W(ty)-W(ty) ~ N(O, to — t1), where N(O, t5 — t;)
denotes Gaussian distribution with the mean of 0 and the variance of t5
— 1.

An example group of Winner processes is shown in Fig. 9.

2.1.3. Set-based methods

2.1.3.1. Fuzzy set. In the aforementioned methods, there are parame-
ters to be determined based on the historical data. However, sometimes
no sufficient historical data are available. Also, as the operation condi-
tions change, it may be ineffective to depict the changes with deter-
ministic parameters. Thus, the fuzzy set methods are introduced for
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modeling these epistemic uncertainties in the above scenarios [70]. In
the fuzzy set methods, the universe of discourse Upp = (Xmin, X1, Xu,
Xmax) is introduced to characterize the range of the uncertainty. The
membership degree function fr(x) is applied to quantify the degree of x
belonging to the uncertainty. And the a-cut Ur related to the member-
ship degree level ar is used to model the uncertainty, which can be
formulated as [7]:

UF = {x € UFD VD(X)Z(XE 0<(IF<1} (13)
Additionally, Ur can also be expressed by the lower limit Uppi, and the
upper limit of Upmax:

UF = [UFmin; UFmax} (14)

In power system uncertainty modeling, trapezoidal and triangular
membership degree functions are typically applied, which are drawn in
Fig. 10.

2.1.3.2. Uncertainty set. During the operation of power systems,
sometimes operators may pay more attention to the boundary of un-
certainties since they need to ensure that the adopted dispatching
methods are effective at the range of possible values of uncertainties or
in the worst scenarios, which usually correspond to interval optimiza-
tion belonging to interval analysis and robust optimization, respectively.
The interval optimization problem can be generally formulated as [71]:

rr)lgng,(X,, Z;)
hi(Xy, Z1)2b;
st. ¢ X e Uy
Zyc @

(15)

where g;(-) and hy(-) are the objective function and the constraints of the
interval optimization problem; X; and U; denote the uncertainties and
the boundary of uncertainties; Z; and Q; express the decision variables
and the boundary of decision variables; by is the boundary of constraints.

By comparison, the robust optimization problem is generally
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formulated as [72]:

hg(Xg, Zr)>0
XR S UR
Zr € Qg

minmax g, (Xp, Zg)s.t. (16)

where gg(-) and hg(-) are the objective function and the constraints of the
robust optimization problem; Xz and Ug denote the uncertainties and
the boundary of uncertainties; Zr and Qg express the decision variables
and the boundary of decision variables.

To solve the interval optimization problem formulated as (15), the
interval possibility degree or the theory of direct interval matching is
usually introduced to transform the interval optimization problem into
deterministic optimization problems [71]. Also, to solve the robust
optimization problem, (16) is usually transformed into the master
problem and the subproblem [72]. All these solving procedures need the
analytical expression of uncertainty boundaries. Thus, the uncertainty
set methods are introduced to characterize the boundary of uncertainties
[73]. For example, for the uncertainty shown in Fig. 5, it can also be
modeled by the uncertainty set with the lower limit and the upper limit
as presented in Fig. 11. And the typical uncertainty sets adopted in
modern power systems for modeling single and multiple uncertainties
are summarized in Table 3.

2.2. Data-driven methods
2.2.1. Sampling methods

2.2.1.1. Random sampling. For the uncertainty propagation analysis
methods with data as input, more available data usually contribute to
more accurate results. However, constrained by the calculation time and
resources, only limited data are sampled and analyzed. Reflecting the
probability distribution of historical data or PDFs as accurately as
possible through limited sampling data is an issue to be tackled in
sampling methods. Among them, the random sampling method is the
most conventional and simple one. However, since the computer can
only produce pseudo-random numbers, alternative methods are pro-
posed to improve sampling efficiency.

2.2.1.2. Latin hypercube sampling. Latin hypercube sampling (LHS)
method is a hierarchical sampling method that contains two steps, i.e.,
sampling and permutation. For K random variables x1, xo, ..., Xk, ..., Xk,
and the CDF of xy, i.e., yx = Fx(xx), LHS method can be summarized as:

(1) Sampling: The longitudinal axis of the CDF curve is divided into H
equally spaced intervals. The midpoint of each interval is chosen as the
sampling value of yx. And the inverse function of CDF is adopted to
calculate the sampling value of h-th xi [74].

Xin = F ' (h— 0.5)/H) a7
where H is the number of samples.

(2) Permutation: After forming the K x H-order initial sampling
matrix, each row of the initial sampling matrix is reordered, where the

Table 3
Comparison of uncertainty sets.
Type of set Form of set Parameter description Advantages Drawbacks
Box set Up = {X : Xpiow<X<Xpypp } x: Random variables; xpj,,: Lower bound of e Low complexity e Unable to describe correlations
X; Xgypp: Upper bound of x. o Straightforward to model of multiple random variables
e Not precise
Budget set Us = {x : XGlowi <Xi<XGuppis Xglowi: Lower bound of x;; Xguppi: Upper e Weakening conservation of box e Unable to describe correlations
Z Xi — Hgi <o} bound of x;; pgi: Mean of x;; I'g: Budget; Q: sets of multiple random variables
%€ | XGuppi — XGlowi| N Set of x;. e More accurate than box sets
Ellipsoidal Ug ={x:(x —ﬂz)TﬂE Y — pp)<ye} pe: Mean of x; pg: Covariance matrix of x; e Considering correlations of e High complexity

set ve: Radius of set.
Data-driven Up = {x : Pr(Xpiow <X<Xpyp)<1 — fip}

Xpiow: Lower bound of x; Xpy,: Upper
set bound of x; #p: Confidence interval.

multiple random variables
Narrowing ranges of sets
Weakening conservation of sets

Requiring additional data
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Fig. 12. Sampling performance of sampling methods.

sequence orthogonalization method can be used to minimize the cor-
relation of each row of the sampling matrix.

In [34], the authors have pointed out that for two independent
random variables, the mean of the coverage space percentage of random
sampling is [(H-1)/(H + 1)]2, whereas LHS is [(H—l)/H_]Z, which il-
lustrates that LHS has a larger sampling space under the same number of

Wind Power Output (kW)

Scenario No.

~ Time (h)
(a) Random Senarios
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&
=
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=
]
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2 5
£ 20
= 15
5 10
Scenario No. Time (h)

(b) Reduced Scenarios

Fig. 13. Comparison of different scenario reduction methods.

samples. Also, some improved LHS methods are proposed, such as
discrete LHS [55] and LHS combined with Cholesky decomposition
[34], which improve the performance of LHS from the perspective of
reducing calculation time, data storage space, and the correlation be-
tween variables.

2.2.1.3. Low discrepancy sequence sampling. Another method for
improving the sampling performance is to sample data according to the
sequences with a high degree of randomness, named as low discrepancy
sequences. The core of generating the low discrepancy sequence is that if
the low discrepancy sequence has already had numbers g—1, the g-th
number will be inserted into the largest interval of the existing sequence
so as to avoid the aggregation of the number series in local space. Halton
sequence [75] and Sobol sequence [76] are two common sequences.
Sobol sequence reorders Halton sequence by recursively generating di-
rection numbers, which performs better in the space coverage of high-
dimensional variables. The sampling performance of random sam-
pling, LHS, Halton sequence sampling, and Sobol sequence sampling in
2D space is demonstrated in Fig. 12.

2.2.2. Scenario reduction methods

Scenario reduction methods select or generate limited representative
scenarios to reflect all scenarios formed by historical time series. If the
initial scenario is S, the distance of every scenario s; and s; is I(s;, s;), the
scenario set deleted by the scenario reduction method is D, the reserved
set is R, the objective function of the scenario reduction method is [77]

mian,»minZl(si, 5)

s;eD SjER

(18)

where p; is the weighted probability of scenario s;. When the distance
between the deleted set D and the reserved set R is minimized by sce-
nario reduction, the reserved set R can reflect the original scenarios S as
typical scenarios. The typical scenario reduction methods used in
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Fig. 14. Structure of fully-connected neural network.

modern power systems are the backward reduction (BR) method, the
fast forward selection (FFS) method, and the cluster method.

2.2.2.1. Backward reduction. The procedure of the BR method can be
summarized as: (1) Set the initial scenario set S as the reserved set R; (2)
Calculate the sum of distances between all scenarios in the reserved set R
and other scenarios; (3) Find the scenario s; with the smallest sum of
distances; (4) Eliminate it into the deleted set D; (5) Find the scenario s;
closest to the chosen scenario s; in the reserved set R; (6) Add the
probability p; of scenario s; to the probability of scenario s; to ensure that
the total probability in the reserved set R is 1. Repeat the deletion and
probability superposition steps until the number of scenarios in the
reserved set R meets the requirements [78].

2.2.2.2. Fast forward selection. The FFS method is essentially a simpli-
fied inverse algorithm of the BR method. The core of FFS is to treat the
initial scenarios S as the deleted set D and select reserved set R from the
deleted set. Generally, the number of scenarios in reserved set R is much
less than that in deleted set D. Thus, the iteration number of FFS is much
less than that of BR, but the performance will decline [78].

2.2.2.3. Cluster. The above two scenario selection reduction methods
select the existing scenarios as the typical scenarios. However, some-
times, when the existing scenarios are not typical enough, cluster
methods can be adopted to generate the typical scenarios. The core of
the cluster method is to calculate the distance among all scenarios and
classify them with small distances into one cluster [78]. And the centers
of clusters are regarded as the typical scenarios.

For an example group of randomly generated output power of wind
generation, scenario reduction methods are carried out and presented in
Fig. 13, where the FFS method takes the least time, whereas the BR
method takes the longest time.

2.2.3. Neural network methods

The uncertainties in power systems are sometimes affected by mul-
tiple factors, and there is an interactive relationship among these factors,
which is difficult to explicitly characterize. Since neural networks can
express complex nonlinear relationships, they have been widely applied
in the uncertainty modeling of modern power systems in recent years.
The conventional fully-connected neural network structure is given in
Fig. 14.

A fully-connected neural network with one hidden layer can be
expressed as:

¥ = aou(Wouia(WiaX + bria) + bou) (19)

where x is the input variable; y is the output variable; Wy;q and W, are
the weights of the hidden layer and the output layer, respectively; bgiq
and boy denote the bias of the hidden layer and the output layer,
separately; agiq and apy: express the activation functions of the hidden
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layer and the output layer, respectively. Apart from the fully-connected
neural network, the typical neural network methods used in modern
power systems include convolution neural network (CNN), recurrent
neural network (RNN), Bayesian neural network (BNN), and generative
adversarial network (GAN) due to the advantages of graphic feature
extraction, feature extraction of time series, uncertainty handling, and
data generation, respectively. These different neural network methods
are basic neural network frameworks, which can be individually used or
in combination.

2.2.3.1. Convolution neural network. One of the most essential proper-
ties of CNN is that a neuron is only connected with part of adjacent
neurons. By weight sharing, the complexity of network calculation is
reduced. The characteristics of input variables are learned and extracted
in parallel through convolution and pooling [79], which is suitable for
image processing. A typical CNN structure is presented in Fig. 15.

2.2.3.2. Recurrent neural network. RNN is designed for time series, the
neurons of which have both feedforward and feedback connections. In
RNN, the hidden state h; at time t is determined by both the input x; at
time t and the hidden state h;_; at time t —1, which can be formulated as:

ht = tanh(WRNN["l.t,l7 xt] + bRNN) (20)

where Wgryy and bgryy denote the weight and the bias of RNN, respec-
tively.

However, when the network structure is deep, there will be vanish-
ing or exploding gradient. To overcome the above problems, long short-
term memory (LSTM) neural network adds the input gate, forget gate,
and output gate on the basis of RNN. Specifically, the input gate i, of
LSTM can be expressed as:

{ l~t = U(Wi[ht,l, xt] + bl) (21)
C; = tanh(W,[h;_1, x;] + b;)
where E‘t is the current memory unit; W; and W, are the weights of the
input gate and the memory unit, respectively; b; and b, are the biases of
the input gate and the memory unit, respectively.

The forget gate f, of LSTM can be expressed as:

fo=o(Wylhea, x] + by) (22)

where Wy and by denote the weight and the bias of the forget gate,
respectively.
The output gate o, of LSTM can be expressed as:

o, =oc(W, ht—l7 Xt +bo
{ht :of*tar[lh(Ct) Frb) @3
where W, and b, denote the weight and the bias of the output gate,
respectively.

Gate recurrent unit (GRU) neural network simplifies LSTM and only
introduces reset gate 2z, and the update gate r;, reducing network
complexity [80], which can be formulated as:

2. = 6(Wi[he_1, x:] + b;)
re= o(Wrlhe_1, -th] +b,) 24)
¢ = tanh(Wh[r*he_1, x| + bn)

h, = (1 —2))*he 1 + 2.%h,
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Fig. 16. Structure comparison of RNN, LSTM, and GRU.
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Fig. 17. Typical BNN structures [82].

where W,, W;, and Wy, denote the weights of the reset gate, the update
gate, and the hidden state, respectively; b, b,, and by, denote the biases
of the reset gate, the update gate, and the hidden state, respectively.

The structure comparison of RNN, LSTM, and GRU is illustrated in
Fig. 16.

2.2.3.3. Bayesian neural network. One of the major differences between
BNN and other neural network methods is that the parameters of BNN
are not fixed but follow certain probability distributions, i.e., epistemic
uncertainties. Thus, the calculation of BNN parameters 6 is actually to
determine the parameters of their probability distributions. Moreover,
the measurement errors of data are considered in BNN. Finally, every
output of BNN also follows a certain probability distribution. Two
typical BNNs are presented in Fig. 17. To calculate 6, the following loss
function Lgyy(6) is usually used to train BNNs in practice [81]:

1 Neny 1 — S 1
i

LBNN (0) - N, BNN
i=1

(25)

where Npyy is the data quantity of dataset D for training BNN; ygyy. and
yann. are measured data and outputs of BNN, respectively; ¢, denotes the
measurement errors of data.

Also, the variance of the output of BNN can be estimated as [81]:

Var(y|x, D) = Egp[Var(¥|x, 6)] + Varyp [E(Y|x, 6)] (26)
2.2.3.4. Generative adversarial network. Different from the above neural
network methods, GAN is composed of two neural networks, i.e., a
discriminator and a generator. The discriminator is used to assess
whether the input data is historical data or generated data. And the
generator is used to generate data with the same distribution as the
historical data [61]. Since there are two networks that need to be trained
simultaneously, the training of GAN is more difficult to converge than
other neural network methods. A typical GAN structure is presented in
Fig. 18.

According to the summary in Section 2, the uncertainty modeling
methods are illustrated in Fig. 19. The characteristics of uncertainty
modeling methods are summarized in Table 4. The matching matrix of
uncertainty modeling and propagation analysis methods are presented
in Table 5.

It should be noted that, as discussed above, the uncertainty modeling
methods are categorized according to the outputs of the modeling
methods. However, it can be noticed in Table 5 that the outputs of some
modeling methods are not consistent with the inputs of the propagation
analysis methods. For example, the outputs of PDF/CDF modeling
methods are models, while the inputs of numerical propagation analysis
methods are data. The reason is that data-driven sampling methods are
employed between these two methods to convert the models into data,
which means there are two steps during uncertainty modeling. Firstly,
PDF/CDF modeling method is used to obtain probability distributions of
uncertainties. Then, the sampling method is utilized to attain limited
sampling data.

Historical data
with true label .
Gil;le;altedldztéil Train for
with false label | ;. . .
Input noises discriminator Shared
& R parameters > Outputs
> | Generated data | T—>
Train with
Generator true label .
Discriminator

Fig. 18. Structure of GAN.
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Table 4
Characteristic summary of uncertainty modeling methods.
Uncertainty Advantages Drawbacks
modeling
methods

Model-driven
methods

Data-driven
methods

PDF/CDF methods

Stochastic process
methods
Set-based methods

Sampling methods

Scenario reduction
methods

Neural network
methods

Extensive optional types of PDFs/CDFs
Modeling Simply

Reflecting steady-state randomness of uncertainties
Reflecting temporal fluctuations of uncertainties
Getting rid of dependence on historical data
Reducing calculation amount

Reflecting steady-state randomness of uncertainties through a small
amount of data

e Reduce computational cost of propagation analysis

Reflecting temporal fluctuations of uncertainties

Reducing computational cost of propagation analysis

Describing characteristics of uncertainties induced by multiple factors
Reflecting steady-state randomness of uncertainties

Reflecting temporal fluctuations of uncertainties

Relying on historical data

e Unable to reflect temporal fluctuations of
uncertainties

Relying on historical data

e Relying on experience

Insufficiently fine boundary

e Unable to reflect temporal fluctuations of
uncertainties

Unable to reflect temporal fluctuations of
uncertainties

Relying on experience

Relying on a large amount of historical data
Time-consuming in training neural networks
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Matching matrix of modeling methods and propagation analysis methods.

Uncertainty optimization

Hybrid methods Interval
analysis

Possibilistic
methods

Probabilistic methods

Uncertainty modeling

methods

Robust optimization

IGDT

Stochastic optimization

Fuzzy-

Fuzzy-
MCS

Approximation
methods

Analytical methods

Numerical methods

scenario-
based

method

Single PDF/CDF [105]
Mixed PDF/CDF [106]

Single PDF/CDF

Single PDF/
CDF [100]

Single PDF/CDF
[27,28,33,35,39]

Single PDF/CDF

PDF/CDF  Single PDF/CDF

methods

Model-driven

[20,21,41,45,46,84,101-104]
Mixed PDF/CDF [86,88,97]

[19,25,26,38,41,49,52,53,57,

90-94]

[20,22-24,29,31,36,37,40,

methods

Mixed PDF/CDF

[96-99]

43,45,47,48,50,56,83-85]
Mixed PDF/CDF [86-89]
SDE [16,69,107-110]

Mixed PDF/CDF [38,95]

SDE [108,111]

Stochastic
process

methods

Uncertainty  Uncertainty set

Uncertainty set Fuzzy set [120]

[100,117-119]

Fuzzy set Fuzzy set

Fuzzy set

Uncertainty set [94]

Set-based
methods

[21,105,106,125-139]

set

[48]

[85,116]

[112-115]

[121-124]

LHS sampling [88,141,142]

LHS sampling

[28]

Random sampling
[36,83,87,140]

Sampling

methods

Data-driven

Low discrepancy sequence

sampling [86]

methods

LHS sampling [88]

Low discrepancy sequence

sampling [29,86]

BR [84]

BR [51,78,84]
FFS [78,84]

Scenario

FFS [84]

reduction
methods
Neural

Cluster [20,78,142,143]

CNN [51,79]

Cluster [20]

network

GAN [51,79,144]

methods
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3. Uncertainties in modern power systems

There are many uncertainty classifications, such as (1) aleatory un-
certainty and epistemic uncertainty [17,145], (2) technical uncertainty
and economic uncertainty [6,12,14], (3) operational uncertainty and
disturbance uncertainty [13], (4) input (or called external) uncertainty
and system (or called internal) uncertainty [10,146], (5) decision-
dependent uncertainty and decision-independent uncertainty [147],
(6) parameter uncertainty, operational state uncertainty, measurement
uncertainty, prediction uncertainty, and price uncertainty [146], (7)
subjective uncertainty and objective uncertainty [146], and (8) long-
term uncertainty, medium-term uncertainty, short-term uncertainty,
and real-time uncertainty [146]. Thus, following any one of these clas-
sifications cannot comprehensively summarize the uncertainties in
power systems. Moreover, though the existing uncertainty classifica-
tions are different, all these studies about uncertainty classifications
point out the fundamental physical origins of uncertainties. From the
perspective of the structure of modern power systems, the uncertainties
can be classified into physical and cyber layer uncertainty based on the
position of uncertainties in power systems. For the physical layer, power
systems can be split into generation, consumption, and network. Also,
the changes of economic and social factors in electricity markets will
bring uncertainties to power systems. Therefore, this section summa-
rizes the uncertainties in the physical layer, the cyber layer, and the
economic and social layer of modern power systems. Additionally, it
should be noted that only the uncertainties in power systems that can be
regarded as independent variables in the power system operation
analysis are considered in this paper and are modeled with uncertainty
modeling methods. For the uncertainties regarded as dependent vari-
ables, e.g., decision-dependent uncertainties, they are the results to be
determined by using uncertainty propagation analysis, are not modeled
with uncertainty modeling methods, and are not included. For example,
for the probabilistic power flow analysis considering wind power gen-
eration, both the wind speed and the operation states of power systems,
e.g., bus voltage, are random. However, the randomness of wind speed
leads to the randomness of bus voltage. Thus, wind speed is regarded as
the independent variable, and bus voltage is regarded as the dependent
variable in this issue. And only the wind speed is regarded as the un-
certainty and modeled by the uncertainty modeling method, e.g., PDF
method, rather than both the wind speed and the bus voltage.

3.1. Physical layer uncertainty
3.1.1. Generation uncertainty

3.1.1.1. Conventional generation uncertainty. In power systems, opera-
tion states and outputs of generators may change frequently. For the
uncertainties of operation states, the forced outage ratio (FOR) is usually
obtained by analyzing historical data firstly, and the current state
probability of generators is expressed by up state and outage state
modeled by binomial distribution or Bernoulli distribution [34]. In
addition, some more refined multi-state models are also adopted [56]. In
the sequential analysis of generator operation states, mean time to fault
(MTTF) and mean time to recovery (MTTR) are introduced and com-
bined with Markov chain [148]. For output uncertainties, in the actual
situation, generation outputs may be constrained rather than change
continuously. The possibility of output is commonly described by sam-
pling the historical data [140]. In addition, generators may be affected
by small disturbances during operation, which will affect the output and
dynamic performance. These disturbances are usually modeled as SDE
[109,149]. Also, the measurement errors of generation operation data
are usually considered as Gaussian PDFs [150]. Additionally, some pa-
rameters of generators are unknown due to the limited measurement
conditions, which are treated as epistemic uncertainties and may affect
the power system operation, where PDF methods are used to model
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these uncertainties [151].

3.1.1.2. Wind power uncertainty. With the development of renewable
power generation technologies, the penetration of renewable energy
sources in power systems continues to increase. Wind power generation
and PV have become the main uncertainties on the generation side due
to their wide application and intermittency and randomness affected by
weather conditions.

The impact of wind power uncertainties on power systems is re-
flected in the steady-state output and dynamic performance. For steady-
state outputs, the relationship between output power and wind speed
can be established by using piecewise functions [15] according to
maximum power point tracking (MPPT). And the probability distribu-
tion of the wind power generation output can be derived based on the
probability distribution of wind speed and the relationship between
output power and wind speed [23,24,29,30,33,37-39,50,52-54,83,
85,87,89,90,92,94,98,105,152,153], which is usually expressed by
using the following equations [15]:

1
P,(Vy) = 5/)WAWCPVEV 27)
0 ,forV, <V;and V,, >V,
Pw(vw): Pwr(Vc,fvf)/(Vf* i)aforViSVWSVr ¢k:1¢273
Pyr ,forV, < V,,<V,
(28)

where V,, is the wind speed; P,, denotes the output power of wind power
generation; p,, is the air density; A,, expresses the swept area of the rotor;
C, is wind energy utilization coefficient; P,, denotes the rated output
power; V;, V,, and V, are the cut-in, rated, and cut-out wind speeds of
wind power generation, respectively.

In terms of timescale, the probability distribution of short-term wind
speed mostly follows the Beta distribution, whereas the medium and
long-term distribution is dominated by the Weibull distribution [83].
However, there are many factors that may affect wind speed, including
meteorological and geographical conditions, such as the distance be-
tween the wind farm and the coast [154]. Also, the wind speeds of wind
turbines close to each other are correlated, and the wake effect in wind
farms will also affect the outputs of wind power generations [155]. To
accurately depict the uncertainties of wind power generation outputs,
two common types of methods have been developed. One is to take the
relevant factors into account and assess the randomness of wind speed,
thereby describing output uncertainties of wind power generations,
where copula methods [95,97] and neural network methods [156] are
generally applied. The other is to directly model the uncertainties of
wind power generation outputs, where scenario reduction methods
[51,78,141,142,144,157,158] and set-based methods [121,124,126,
127,130-135,138,159] are commonly employed. For dynamic perfor-
mance, similar to conventional power generation, the output also fluc-
tuates when considering time-varying small disturbances. Stochastic
processes are usually adopted to describe these uncertainties
[16,110,160]. Also, BNN methods and PDF methods are usually adopted
to characterize measurement errors and epistemic features of wind
power generation uncertainties [161,162].

3.1.1.3. Photovoltaic uncertainty. Similar to wind power generation, PV
outputs are also affected by weather conditions, and the uncertainty
modeling procedure is similar. Single PDF/CDF methods are usually
applied to describe the probability distribution of solar irradiance
[19-21,23,37,39,85,87,98,104,152], and then the uncertainty of PV
output is described based on the relationship between solar irradiance
and the output, which is typically formulated as [15]:
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PPV(GPV) = CpyApvGpy (29)
_ | PoyeGpy/Ggq , for 0 < Gpy<Gu
Py (Gpy) = {var , for Gpy>Gyq (30)
PoveGay/(GaaXe) , for 0 < Gpy<X,
Prv(Grv) = ' (31)
v (Gre) {PPVrGPV/ G , for Gpy=X.

where Gpy is the solar irradiance; Ppy denotes the output power of PV;
¢py expresses the generation efficiency; Apy is the area of the PV module;
Ppy, denotes the rated output power of PV; Gy and X, are the solar
irradiance under standard environment conditions and a specific irra-
diance point, respectively.

For timescale, the probability distribution of short-term solar irra-
diance mostly follows the Beta distribution, whereas the long-term
distribution is dominated by the Gaussian distribution [163]. In addi-
tion, PV outputs are also related to geographical location, cloud
coverage, and other factors. Mixed PDF/CDF methods are often utilized
when considering the correlation among multiple factors [164]. Also,
neural network methods [51,144,161] and set-based methods
[124,125,127,131,132,137,138,165] are usually used when directly
describing uncertainties of PV outputs, including measurement errors
and epistemic features.

3.1.2. Consumption uncertainty

3.1.2.1. Conventional load uncertainty. Conventional loads are highly
correlated with time and also fluctuate with the environment, weather,
electricity price, user behavior, etc. It is challenging to use explicit
functions to describe the relationship between loads and related factors.
Hence, modeling methods are usually applied to directly characterize
the uncertainty of conventional loads, and their measurement errors and
epistemic features can be considered by using BNN [161]. When his-
torical data are lacking, fuzzy set methods are usually applied [48,120].
By comparison, single PDF/CDF or mixed PDF/CDF methods
[22-25,27-29,31-33,35,37-42,46,85,87,89,93,94,97-102,104,166]
are adopted to describe the probability distributions of loads when
historical data are available. When the temporal fluctuation of loads
needs to be considered, sampling methods and scenario reduction
methods are often applied [51,59,88,141-143,157,158,167-169]. In
addition, the fluctuation of different timescale loads and different load
types are various. Some studies focus on uncertainties of specific loads, i.
e., short-term [170,171] and long-term loads [172], residential [171]
and industrial loads [170].

3.1.2.2. Electric vehicle uncertainty. In recent years, with the increasing
popularity of EV, it has become one of the main uncertainties of loads.
The impact of uncertainties of EVs on modern power systems is mainly
reflected in the randomness of the charging state, which is related to the
current battery state of EVs, user behaviors, and other factors. Single
PDF/CDF or mixed PDF/CDF methods are commonly utilized to char-
acterize the uncertainties of EVs from three aspects, i.e., daily arrival
time [43], initial battery state of charge (SoC) [43], and traveling dis-
tance [19,29,43,97]. The daily arrival time can be utilized to calculate
the start charging time of EVs, and the consumed power, i.e., the power
needed to be charged, can be calculated based on the initial battery SoC
and traveling distance. When charging fluctuations need to be consid-
ered, sampling methods and scenario reduction methods are often
adopted [152]. When the research focuses on the uncertainty of the
charging power itself rather than relevant factors, the randomness of
charging power can also be directly modeled [38,85].

3.1.3. Network uncertainty
Network uncertainties include the parameter and topology changes.
Single PDF/CDF methods are usually applied to characterize parameter
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changes [23,42,44]. Other network uncertainties are generally intro-
duced by topology changes, which are mainly caused by equipment
faults in networks. Similar to describing the fault uncertainty of power
generation equipment, the faults of lines and transformers in networks
are typically modeled by using single PDF/CDF methods [60,94] or SDE
methods [69]. Among the causes of faults, disaster is one of the factors
that cannot be overlooked. Disasters concerned in power systems
include windstorms [47,173], earthquakes [58], ice storms [58,62], etc.
Single PDF/CDF methods are usually adopted to model the occurrence
probability of disasters, and then the relationship between disaster
occurrence and fault occurrence is characterized [58,62]. Some more
detailed models consider uncertainties in the intensity [47,173] and
movement [47,173] of disasters.

3.2. Cyber layer uncertainty

With the wide application of communication technologies in modern
power systems, CPPS has emerged and developed fast in recent years.
However, due to the network transmission distance, hardware re-
strictions, and other factors, CPPS communication delay would occur.
Meanwhile, due to the existence of cyber layers, CPPS is more vulner-
able to frequent cyber-attack incidents compared with traditional power
systems. Thus, communication time delays and cyber-attacks are two
main uncertainties in the cyber layer. For time delay, stochastic process
methods are applied to characterize the change of time delay
[40,174,175]. For the uncertainties of cyber-attacks, there are 2 forms of
cyber-attack that are widely studied in CPPSs, i.e., the DoS attack and
the false data injection (FDI) attack. DoS attacks will result in temporary
communication interruption or termination, while FDI attacks manip-
ulate system operational data. Two methods are often adopted to model
the uncertainty of DoS attacks. One is to use discrete PDF/CDF methods
to describe the packet loss rate caused by DoS attacks [59], and the other
is to use Markov chain methods to depict the change of DoS attacks
[68,176]. For FDI attacks, the probability of the injected false random
data is commonly described by the single PDF/CDF method [103], and
the change of the false data can be characterized by the stochastic
process methods [107,177].

3.3. Economic and social layer uncertainty

From the aspects of the economic and social layer, uncertainties,
such as fuel supply, cost of production, economic growth, and discount
rate, have impacts on power system operations [12]. The uncertainties
of these factors can be modeled by single PDF/CDF methods [45].
However, there is a complex correlation relationship among these fac-
tors. Thus, a more common way is to reflect social and economic un-
certainties on the uncertainties of electricity prices and then investigate
the influence of electricity prices on the operation of power systems.
Although there are numerous types of electricity prices, e.g., spot price
and marginal price, the typical methods adopted for modeling different
electricity price uncertainties are similar, where single PDF/CDF
methods [84] and uncertainty set methods [123] are widely applied.
When addressing the fluctuation of electricity prices, scenario reduction
methods [157] and neural network methods [178] are often utilized.
Recently, with the widespread concern for sustainable development, the
uncertainty of carbon emission factors has also been included in the
uncertainty analysis of power systems [45,179].

The uncertainties in modern power systems modeled by uncertainty
modeling methods are summarized in Table 6. Also, uncertainties
modeled by PDF/CDF methods have been summarized in Table 1 and
Table 2 in detail.

4. Applications of uncertainty modeling in the analysis of
modern power system operation

The uncertainties in modern power systems increase the complexity
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of power system operation states and put forward high requirements for
power system operation analysis. Thus, this section focuses on which
issues about power system operation the uncertainty modeling methods
are applied to solve and how these uncertainty modeling methods can be
combined with other methods to solve them, whereas Section 3 focuses
on uncertainties themselves. And this section summarizes the applica-
tion of uncertainty modeling methods in power system operation from
the aspect of steady state, dynamic, and risk analysis.

4.1. Applications in steady-state analysis

4.1.1. Probabilistic power flow analysis

The traditional power flow analysis of power systems is determin-
istic, where the network topology, parameters, and injected power of
each node are fixed, and the power flow results are also determined.
However, due to numerous uncertainties in systems, the results of power
flow are probabilistic. If the deterministic power flow analysis method is
still used, it is necessary to calculate all possible situations, which
considerably increases the computational cost. Probabilistic power flow
analysis can directly obtain the probability distribution of power flow
according to the probability model of uncertainties, which greatly re-
duces the computational cost.

Uncertainty modeling methods are often adopted to describe the
probability  distributions of generations [19,24-27,30,32,34,
94,95,153,181,182] and consumption sources [19,24,25,27,32-34,
38,94] and then calculate the probability distribution of power flow.
Three types of uncertainty modeling methods are extensively applied,
including single PDF/CDF, mixed PDF/CDF, and sampling methods. In
probabilistic power flow analysis, there are commonly three types of
approaches combined modeling methods with propagation analysis
methods. One is to calculate the power flow results at sampling points
through the sampling method and MCS after obtaining the historical
data or PDF/CDF of power injection uncertainties [59,181]. This
approach takes the highest time cost. Another is to acquire the PDF/CDF
of uncertainties and then use the linearization propagation analysis
methods to attain the probabilistic power flow results [19,25,38,94,95].
For the third approach, the time cost is between those of the first two
approaches. After obtaining the historical data or PDF/CDF of un-
certainties, a small number of sampling data are collected by sampling
method to calculate the simplified surrogate model of power systems,
and then the surrogate model is applied to acquire the probabilistic
power flow results [27,182].

4.1.2. Probabilistic economic operation analysis

The intrusion of uncertainties into modern power systems will also
have an impact on the economic operation. The traditional economic
operation analysis is a deterministic optimization problem, which is not
suitable for the scenarios where uncertainties exist. Economic operation
analysis involves wide optimization issues, including unit commitment
[78,86,105,121,134,139,144], economic dispatch [22,46,51,101,103,
104,120,127,128,130-132,134,135,137,138,141,158,167,168,180,
183], siting [39,142], capacity sizing [39,45,88,108,125,
142,143,147,157,169], bidding strategy [21,79,102,123], electricity
purchasing [122], reconfiguration [41,136], etc. According to Fig. 1,
there are three typical optimization propagation analysis methods,
which also correspond to different uncertainty analysis procedures.
Corresponding to stochastic optimization methods, there are usually
three types of uncertainty analysis procedures. One is to obtain the mean
value according to the PDF/CDF of uncertainties or attain the sampling
points through sampling methods. Then, stochastic optimization calcu-
lation is conducted at the limited sampling points or the mean value to
obtain the PDF/CDF or the mean value of the objective
[21,45,86,104,167]. The other is based on the historical data or ac-
quired PDF/CDF of uncertainties. The typical scenarios are obtained by
sampling methods and scenario reduction methods, and then stochastic
optimization is conducted under typical scenarios
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Table 6
Summary of uncertainties modeled by uncertainty modeling methods.
Uncertainty Physical layer uncertainty Cyber layer Economic and
modeling © . © , uncertainty social layer
methods Generation uncertainty Consumption uncertainty Networl.( uncertainty
uncertainty
Model-driven PDF/CDF Conventional generation [32,34,35,55,151] Conventional load Operational Communication  Electricity
methods methods Wind speed [22-25,27-29,32-42,46,85,87-89,94,98-102,104,166,182] parameter error [42] price [45,84]
[19,23,24,29,32,33,36-39,48,50,52-54,85-87,89-92,94,95,98,153,180]  EV charging state [32] [23,44] DoS attack [59]  Discount rate
Solar irradiance [19-22,37-39,85,87,98,104,164,180] EV simultaneously charging number [19] Component fault FDI attack [103] [45]
Clearness index [30] EV daily driven mile [19,29] [49,50,57,60,94] Energy price
Wind power generation [25-27,31,88,97,101,102,166] EV recharging power [19] Windstorm [47] [45]
PV [23-28,96,97,101,181] Number of charging EV per day [29] Ice storm [58,62] Carbon dioxide
Generator fault [56,57] EV start charging time [43] Earthquake [58] emission [45]
EV SoC [43] Cumulative
EV charging service time [29] energy demand
EV charging load [38] [45]
EV departure time [43]
Stochastic  Conventional generation [109,149] Conventional load [149] Component fault Communication  Electricity
process Wind speed [110,160,175] [69] time delay price [108]
methods Solar irradiance [110] [40,174,175] Fuel price [39]
Wind power generation [16] FDI attack [107]
PV [111] DoS attack
[68,176]
Set-based  Conventional generation [100] Conventional load Operational Electricity
methods Wind power generation [21,48,112-114,119,120,122,124-126,128,131,132,136-139,159] parameter [118] price
[105,121,124,126,127,130-132,134,135,138,159] EV charging power [153] Component fault [122,123,157]
PV [124,125,127,131,132,137,138,165] [94,159] Installed
Generator parameter [117] capacity [48]
Operational parameter [85]
Data-driven Sampling Conventional generation [34,55,140] Conventional load [28,29,34,36,59,87,88,142] Electricity
methods methods Wind speed [29,36,83,86,87,141,182] EV daily driven mile [29] price [84]
Solar irradiance [87] Number of charging EV per day [29]
Wind power generation [59,88,142] EV charging service time [29]
PV [28,59,96,142]
Scenario Solar irradiance [169] Conventional load [51,142,143,157,158,167-169] Electricity
reduction  Wind power generation [51,78,141,142,144,157,158,180] EV charging state [85] price [178]
methods PV [20,51,142,144,157,168,180] Low carbon
factor [179]
Neural Conventional generation [150] Conventional load [51,161,171] Electricity
network Wind speed [156] EV arrival time [79] price [178]
methods Wind power generation [51,61,80,144,161] EV departure time [79]

PV [51,61,144,161]
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Table 7

Application summary of uncertainty modeling methods in modern power system.

Uncertainty Steady-state analysis Dynamic analysis Risk analysis

modeling Probabilistic power flow Probabilistic economic operation Probabilistic stability analysis Stochastic stability Reliability analysis Resilience analysis

methods analysis analysis analysis

Model- PDF/CDF Probabilistic voltage Unit commitment [86,105] Small signal stability Hazardous effect Hazardous effect
driven methods [19,24-27,30,32,38,94,181] Economic dispatch [23,29,35-37,40,44,52,53,64,92] assessment assessment [58,173]
methods Probabilistic active power [22,46,97,101,103,104,106,180] Rotor angle stability [28,36,96,98,99] [49,50,55,56,93] Resilience

[19,32-34,59,94,153] Bidding strategy [21,102] Voltage stability [36,83,87,89,96] Reliability improvement
Probabilistic reactive power Siting [39] Frequency stability improvement strategy strategy design [62]
[19,32,33] Capacity sizing [39,45,88] [36,42,54,59,90,91,151] design [60]
Percentage of different load types ~ Reconfiguration [41]
[95]
Stochastic Economic dispatch [84] Rotor angle fluctuation Hazardous effect Response strategy
process Siting [39] [16,69] assessment [109] [177]
methods Capacity sizing [39,108] Voltage fluctuation [149]
Frequency fluctuation
[160]
Stability improvement
— strategy design
o [40,68,174-176]
Stable region [107]
Stable probability [69]
Set-based Probabilistic voltage [94,119] Unit commitment [105,121,134,139] Hazardous effect Response strategy
methods Probabilistic active power Economic dispatch assessment [126] [133]
[94,119,153] [106,120,124,127-132,135,137,138]
Probabilistic reactive power Bidding strategy [123]
[119] Capacity sizing [115,125]
Electricity purchasing [122]
Reconfiguration [136]

Data- Sampling Probabilistic voltage [182] Unit commitment [86] Small signal stability [140] Hazardous effect
driven methods Economic dispatch [141] Rotor angle stability [96] assessment [173]
methods Capacity sizing [88] Voltage stability [36,83,87,96]

Scenario Unit commitment [78,144]
reduction Economic dispatch
methods [51,141,158,167,168,180]

Siting [142]

Capacity sizing [142,143,157,169]
Neural Unit commitment [144]
network Economic dispatch [51,161]
methods Bidding strategy [79]
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[51,78,123,141-144,168,169,180]. The third one is to set the proba-
bility of optimization constraints with uncertainty parameters being
higher than the predetermined confidence level and transform the
problem into chance constrained programming [46,101-103,183]. Be-
sides, the analysis procedure corresponding to IGDT and robust opti-
mization is to model uncertainties by adopting uncertainty set methods
and to integrate the model into the optimization constraints
[21,105,121,122,124,125,127,128,130-132,134-139]. The difference
is that the set boundary of IGDT is uncertain, and it is regarded as having
a positive or negative impact on the expected target and is included in
the objective function. In contrast, the set boundary of robust optimi-
zation is determined.

4.2. Applications in dynamic analysis

4.2.1. Probabilistic stability analysis

Power system stability analysis can be viewed as examining the
ability to sustain the operating equilibrium after small or large distur-
bances. For probabilistic stability analysis, the stability issues caused by
uncertainties in the physical layer, such as power generation
[23,28,29,31,35,36,42,52-54,83,87,89-92,96,98,99,140,159], load
[14,23,29,31,35-37,40,42,53,87,89,98,99,159] and operating parame-
ters [23,42,44] are usually studied. These uncertainties are usually
considered to be time-invariant within the time period to be analyzed.
Thus, the probabilistic system stability is affected due to the change of
steady states of power systems.

When analyzing probabilistic small disturbance stability, PDF/CDF
methods and sampling methods are commonly adopted to model un-
certainties, and then MCS methods [23,36,37,40,87,140], linearization
methods [52,53,92], or surrogate model methods [35] are utilized to
calculate the stability indices related to the eigenvalues of system state-
space equations. The typical indices include critical eigenvalues
[40,44,117,140], the real part of critical eigenvalue [29,36,37,
52,53,92], damping ratios [23,35,37,40], and participation factors
[140]. Additionally, rotor angle stability, voltage stability, and fre-
quency stability are widely concerned. The rotor angle stability repre-
sents the ability of the generator to maintain synchronous operation
after being disturbed. Voltage stability is related to the ability of power
systems to maintain the bus voltage at an acceptable level, which usually
reflects the balance of reactive power of power systems. Frequency
stability refers to the ability of the system to maintain the frequency to
the allowable range without collapse, which often illustrates the balance
of the active power. Transient stability index (TSI) is the typical index of
probabilistic rotor angle stability [28,36,98]. For common indices of
probabilistic voltage stability, there are load margin [31,36], probability
of voltage instability [31], load increase limit [35], conservation voltage
reduction capability [87], P-V curve [83,89], and Q-V curve [83,89].
And the rate of change of frequency (RoCoF) [54,90,91] and frequency
nadir/vertex [36,91] are typical indices of probabilistic frequency
stability.

4.2.2. Stochastic stability analysis

In the probabilistic stability analysis, system state-space equations
are considered as time-invariant, which are ordinary differential equa-
tions. By comparison, in stochastic stability analysis, the influence of
time-varying stochastic disturbances on system stability is considered,
where system state-space equations will be time-varying, which are
SDEs. In the stochastic stability analysis of power systems, two types of
problems are mainly studied. One is to analyze the influence of un-
certainties on systems, i.e., whether the system is stable or not when
there are uncertainties in systems, including wind speed [160], con-
ventional generation [109,149], and conventional load fluctuation
[149] modeled by SDE methods, and faults expressed by Markov chain
methods. Another is how to design control strategies to improve the
stochastic stability of systems when there are uncertainties in systems,
where the uncertainties in the cyber layer are normally explored and
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modeled by Markov chain methods, including stochastic attacks and
communication time delays [68,107,174,176].

4.3. Applications in risk analysis

4.3.1. Reliability analysis

The potential risks are considered in the design of power systems,
and the corresponding margin will be reserved to permit normal oper-
ation states of power systems under faults. Reliability analysis focuses on
the security of power systems during accidents and the ability to avoid
chain faults, resulting in systems out of control and large-area power
outages. Uncertainty faults in systems are broadly involved, including
generator, transmission line, and equipment faults [49,50,56,57,60].
Discrete PDF/CDF methods are used for modeling, and the assessment
indices of reliability are calculated, including line outage distribution
factor (LODF) [57], loss of load expectation (LOLE) [56,126], loss of
load probability (LOLP) [49,55,561, loss of load frequency (LOLF) [49],
expected energy not supplied (EENS) [49,50], expected unserved energy
(EUE) [55], average service availability index (ASAI) [50], average
service unavailability index (ASUI) [50], system average interruption
duration index (SAIDI) [50], system average interruption frequency
index (SAIFI) [50], and clearing time [93], by cooperating with linear-
ization methods, sampling methods, and MCS propagation analysis
methods, thereby conducting reliability analysis. In addition, there are
studies focusing on designing protection schemes to improve system
reliability with the reliability assessment indices as the objectives [60].

4.3.2. Resilience analysis

Resilience analysis focuses on assessing the restoration ability of
systems suffering unexpected extreme incidents [184]. Compared with
reliability analysis, there are overlaps between the faults concerned in
reliability analysis and those concerned in resilience analysis. The dif-
ference is that reliability analysis focuses on faults with high probability
and relatively limited impact on power systems, whereas resilience
analysis focuses on faults with low probability and great impact. In
resilience analysis of power systems, the impact of disasters and cyber-
attacks is generally assessed [185]. The analysis procedure and indices
are similar to those of reliability analysis. The probability of extreme
events is commonly modeled by PDF/CDF methods, and then the
assessment indices are calculated by MCS methods [47,173]. Also, the
response strategies during the extreme events modeled by Markov
chains and the recovery strategies have been concerned in resilience
analysis [177].

The application of modeling methods adopted in modern power
systems is summarized in Table 7.

5. Current research limitations and recommendations for future
research

The above review reveals that the uncertainty modeling methods
have provided effective solutions for analyzing the impact of un-
certainties on the operation of modern power systems. However, with
the development of modern power systems, the existing modeling
methods may not be effective for the potential issues in the future and
need to be further improved. The following research studies are
considered to be promising and recommended.

5.1. Generalization of uncertainty modeling methods

Most current uncertainty modeling methods can only reflect one of
the characteristics of uncertainties. For example, PDF methods reflect
the statistical characteristic of possible values of uncertainties at a
certain moment. Stochastic process methods reflect the time-varying
characteristics of uncertainties. And uncertainty set methods reflect
the boundary of possible values of uncertainties. Thus, if different
characteristics of uncertainties are considered simultaneously, multiple
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uncertainty modeling methods are needed. Moreover, since different
uncertainty modeling methods are suitable for different uncertainty
propagation analysis methods, the overall framework for analyzing the
impact of different characteristics of uncertainties on modern power
systems will be complicated. Although there are some studies focusing
on proposing general uncertainty methods for tackling different char-
acteristics, e.g., different timescales [186,187], these methods cannot
comprehensively handle various typical characteristics of uncertainties
till now.

To fill this research gap, it deserves to integrate existing uncertainty
modeling methods into a general form, which is challenging and may
need new theories. Also, superior methods in other research areas can be
investigated and modified to combine existing uncertainty modeling
methods. Moreover, the flexibility of data-driven uncertainty modeling
methods can be explored, e.g., building multiple neural networks for
modeling different characteristics of uncertainties and integrating them
into the unified one.

5.2. Accuracy and efficiency improvement of uncertainty modeling
methods

Most existing uncertainty modeling methods rely on a large number
of data to ensure high modeling accuracy, which are usually time-
consuming. Thus, how to balance accuracy and efficiency and reduce
the required data is worth studying. Moreover, there is a lack of a spe-
cific standard to illustrate the acceptable accuracy of uncertainty
modeling methods. Additionally, though there are some studies using
data augmentation technologies to reduce the required quantity of his-
torical data in uncertainty modeling [51,79,144], how to ensure that the
quality of generated data is within an acceptable degree also needs to be
addressed.

To fill this research gap, the acceptable accuracy of uncertainty
modeling methods needs to be determined based on the common prac-
tice in the industry. Also, the existing uncertainty modeling methods and
data augmentation technologies can be improved to ensure accuracy
improvement under the same historical data quantity. Moreover, the
analytical relationship between the historical data quantity and the
accuracy and efficiency of uncertainty modeling methods can be ob-
tained through detailed derivation. By selecting the appropriate his-
torical data quantity based on the derived analytical relationship, a
balanced improvement of accuracy and efficiency can be achieved.

5.3. Development of uncertainty modeling methods suitable for novel
uncertainties in modern power systems

With the wide utilization of renewable power generation, apart from
wind power and PV, novel types of renewable power generation have
been gradually integrated into modern power systems. Meanwhile, on
the demand side, the increasing number of controllable devices are
connected to power systems. Also, the integration of the cyber layer into
power systems introduces massive new components together with po-
tential uncertainties. Although there are some studies focusing on the
uncertainty modeling of demand response resources [188,189], there
will be massive novel types of uncertainties with unique characteristics
due to the increasing complexity of modern power systems, which
require to be carefully modeled.

To fill this research gap, the latest development of modern power
systems requires to be continuously paid attention to. And the possible
types and characteristics of uncertainties of new components connected
to power systems can be analyzed based on their operation states, where
the corresponding uncertainty modeling method can be used to char-
acterize the uncertainties. If the characteristics of novel uncertainties
cannot be effectively characterized by existing uncertainty modeling
methods, the development of novel uncertainty modeling methods
suitable for specific uncertainties is needed.
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5.4. Development of uncertainty modeling methods suitable for novel
tasks to tackle emerging issues

With the rapid development of modern power systems, emerging
issues simultaneously occur. For example, in the research area of power
system stability, there are only issues related to rotor angle stability,
voltage stability, and frequency stability [190]. However, due to the
high proportion of power electronics in modern power systems, new
stability issues occur, including resonance stability and converter-driven
stability [191]. It deserves to be discussed and investigated whether
these new issues require uncertainty analysis and what specific tasks
uncertainty modeling methods will be applied to.

To fill this research gap, sensitivity analysis can be conducted to
quantify the impact of uncertainties characterized by uncertainty
modeling methods on emerging issues in modern power systems,
thereby revealing the necessity of considering uncertainties in these is-
sues. And uncertainty modeling methods, together with corresponding
uncertainty analysis frameworks, suitable for these emerging issues
need to be developed.

6. Conclusions

In this paper, the uncertainty modeling methods applied in modern
power systems are comprehensively reviewed. Firstly, this review clas-
sifies uncertainty modeling methods according to the outputs of un-
certainty modeling methods as model-driven and data-driven methods
and analyzes the characteristics of these methods. Then, uncertainties in
modern power systems are summarized from physical, cyber, and eco-
nomic and social layers. Moreover, the typical procedures of charac-
terizing these uncertainties by adopting uncertainty modeling methods
are studied. Also, the application of uncertainty modeling methods in
power system operation is investigated. Meanwhile, with the construc-
tion of modern power systems, the current uncertainty modeling
methods may be ineffective in the future. Thus, the potential areas of
further research are recommended, including generalization of uncer-
tainty modeling methods, accuracy and efficiency improvement of un-
certainty modeling methods, and development of uncertainty modeling
methods suitable for novel uncertainties and tasks.
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